JP2013194153A - Method for producing modified polyolefin microporous membrane - Google Patents

Method for producing modified polyolefin microporous membrane Download PDF

Info

Publication number
JP2013194153A
JP2013194153A JP2012063294A JP2012063294A JP2013194153A JP 2013194153 A JP2013194153 A JP 2013194153A JP 2012063294 A JP2012063294 A JP 2012063294A JP 2012063294 A JP2012063294 A JP 2012063294A JP 2013194153 A JP2013194153 A JP 2013194153A
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin microporous
solvent
polyolefin
modified polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063294A
Other languages
Japanese (ja)
Other versions
JP5906857B2 (en
Inventor
Daizaburo Yashiki
大三郎 屋鋪
Toshiki Innami
年基 印南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012063294A priority Critical patent/JP5906857B2/en
Publication of JP2013194153A publication Critical patent/JP2013194153A/en
Application granted granted Critical
Publication of JP5906857B2 publication Critical patent/JP5906857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a modified polyolefin microporous membrane which is improved in dimensional stability, even in a temperature range exceeding a heat treatment temperature in a heat treatment performed in formation of a polyolefin microporous membrane.SOLUTION: A method for producing a modified polyolefin microporous membrane includes: impregnating a microporous membrane (A) composed of polyolefin with a solvent (B) which has a surface tension at 25°C of 25 mN/m or more and does not dissolve the polyolefin; and then removing the solvent (B).

Description

本発明は、改質ポリオレフィン微多孔膜の製造方法に関する。更に詳しくは、非水電解液二次電池セパレータとして好適な改質ポリオレフィン微多孔膜の製造方法に関するものである。   The present invention relates to a method for producing a modified polyolefin microporous membrane. More specifically, the present invention relates to a method for producing a modified polyolefin microporous membrane suitable as a nonaqueous electrolyte secondary battery separator.

ポリオレフィン微多孔膜は、電池用セパレータ、電解コンデンサー用隔膜、各種フィルター、透湿防水衣料、逆浸透濾過膜、限外濾過膜及び精密濾過膜等の各種用途に用いられている。ポリオレフィン微多孔膜を電池用セパレータ、特にリチウムイオン電池用セパレータとして用いる場合、セパレータは正極と負極とを絶縁し続けることが必要であるため、特に高温時の寸法安定性の向上が求められている。 Polyolefin microporous membranes are used in various applications such as battery separators, electrolytic capacitor membranes, various filters, moisture-permeable waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes. When a polyolefin microporous membrane is used as a battery separator, particularly a lithium ion battery separator, the separator needs to continue to insulate the positive electrode and the negative electrode. Therefore, improvement in dimensional stability especially at high temperatures is required. .

一般にポリオレフィン微多孔膜は、製膜時に熱処理を施すことにより、該熱処理での熱処理温度以下の温度範囲における寸法安定性の向上を図ることができるものの、熱処理温度を超える温度範囲における寸法安定性は向上しない。 In general, a polyolefin microporous film can be improved in dimensional stability in a temperature range below the heat treatment temperature by performing a heat treatment during film formation, but the dimensional stability in a temperature range exceeding the heat treatment temperature is Does not improve.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、ポリオレフィンからなる微多孔膜を25℃における表面張力が25mN/m以上の溶媒で処理することで、熱処理温度を超える温度範囲におけるポリオレフィン微多孔膜の寸法安定を向上させることができることを見出し、本発明に至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have processed a microporous membrane made of polyolefin with a solvent having a surface tension at 25 ° C. of 25 mN / m or more, so that the temperature range exceeds the heat treatment temperature. It has been found that the dimensional stability of the polyolefin microporous membrane can be improved, and the present invention has been achieved.

すなわち、本発明は、以下の発明に係るものである。
<1> ポリオレフィンからなる微多孔膜(A)に、25℃における表面張力が25mN/m以上であって、かつポリオレフィンを溶解しない溶媒(B)を含浸させ、次いで溶媒(B)を除去することを特徴とする改質ポリオレフィン微多孔膜の製造方法。
<2> 微多孔膜(A)が、膜厚が8〜25μm、空隙率が40〜70%、平均孔径が0.05〜0.15μmであることを特徴とする前記<1>記載の改質ポリオレフィン微多孔膜の製造方法。
<3> ポリオレフィンからなる微多孔膜(A)に、以下の溶媒(B)と高分子化合物(C)とからなる溶液を含浸させて、次いで溶媒(B)を除去することを特徴とする改質ポリオレフィン微多孔膜の製造方法。
溶媒(B):25℃における表面張力が25mN/m以上であって、かつポリオレフィンを溶解しない溶媒。
<4> 前記高分子化合物(C)が、融点が180℃以上の高分子化合物である前記<3>記載の改質ポリオレフィン微多孔膜の製造方法。
That is, the present invention relates to the following inventions.
<1> A microporous membrane (A) made of polyolefin is impregnated with a solvent (B) having a surface tension at 25 ° C. of 25 mN / m or more and not dissolving polyolefin, and then removing the solvent (B). A process for producing a modified polyolefin microporous membrane.
<2> The modified <1>, wherein the microporous membrane (A) has a thickness of 8 to 25 μm, a porosity of 40 to 70%, and an average pore size of 0.05 to 0.15 μm. For producing a porous polyolefin microporous membrane.
<3> A microporous membrane (A) made of polyolefin is impregnated with a solution consisting of the following solvent (B) and polymer compound (C), and then the solvent (B) is removed. For producing a porous polyolefin microporous membrane.
Solvent (B): A solvent having a surface tension at 25 ° C. of 25 mN / m or more and does not dissolve polyolefin.
<4> The method for producing a modified polyolefin microporous membrane according to <3>, wherein the polymer compound (C) is a polymer compound having a melting point of 180 ° C. or higher.

本発明によれば、ポリオレフィン微多孔膜に施された熱処理での熱処理温度を超える温度範囲においても、寸法安定性が向上した改質ポリオレフィン微多孔膜が得られる。   According to the present invention, a modified polyolefin microporous membrane having improved dimensional stability can be obtained even in a temperature range exceeding the heat treatment temperature in the heat treatment applied to the polyolefin microporous membrane.

以下、本発明について詳しく説明する。 The present invention will be described in detail below.

本発明の改質ポリオレフィン微多孔膜の製造方法(以下、本発明の製造方法ということがある。)は、ポリオレフィンからなる微多孔膜(A)に、25℃における表面張力が25mN/m以上であって、かつポリオレフィンを溶解しないる溶媒(B)を含浸させ、次いで溶媒(B)を除去することで、改質ポリオレフィン微多孔膜が得られる。ここで、改質とは、熱処理での熱処理温度を超える温度範囲における寸法安定性が向上することをいう。   The method for producing a modified polyolefin microporous membrane of the present invention (hereinafter sometimes referred to as the production method of the present invention) comprises a microporous membrane (A) made of polyolefin with a surface tension at 25 ° C. of 25 mN / m or more. A modified polyolefin microporous membrane is obtained by impregnating the solvent (B) that does not dissolve the polyolefin and then removing the solvent (B). Here, the reforming means that dimensional stability in a temperature range exceeding the heat treatment temperature in heat treatment is improved.

ポリオレフィンからなる微多孔膜(A)(以下、ポリオレフィン微多孔膜(A)ということがある。)は、その内部に連結した細孔を有す構造を有し、一方の面から他方の面に気体や液体が透過可能であるポリオレフィンを主成分とする微多孔膜である。   The microporous membrane (A) made of polyolefin (hereinafter sometimes referred to as polyolefin microporous membrane (A)) has a structure having pores connected to the inside thereof, and from one surface to the other surface. It is a microporous membrane mainly composed of polyolefin that is permeable to gas and liquid.

ポリオレフィン微多孔膜(A)におけるポリオレフィン成分の割合は、全重量の50体積%以上であることを必須とし、90体積%以上であることが好ましく、95%体積以上であることがより好ましい。   The proportion of the polyolefin component in the polyolefin microporous membrane (A) must be 50% by volume or more of the total weight, preferably 90% by volume or more, and more preferably 95% by volume or more.

ポリオレフィン微多孔膜(A)のポリオレフィン成分には、重量平均分子量が5×10〜150×10の高分子量成分が含まれていることが好ましい。特にポリオレフィン微多孔膜(A)のポリオレフィン成分として重量平均分子量100万以上のポリオレフィン成分が含まれると、ポリオレフィン微多孔膜(A)の強度が高くなるため好ましい。 The polyolefin component of the polyolefin microporous membrane (A) preferably contains a high molecular weight component having a weight average molecular weight of 5 × 10 5 to 150 × 10 5 . In particular, when a polyolefin component having a weight average molecular weight of 1 million or more is contained as the polyolefin component of the polyolefin microporous membrane (A), the strength of the polyolefin microporous membrane (A) is preferably increased.

ポリオレフィンとしては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセンなどを重合した高分子量の単独重合体又は共重合体が挙げられる。これらの中でもエチレンを主体とする重量平均分子量100万以上の高分子量ポリエチレンが好ましい。   Examples of the polyolefin include a high molecular weight homopolymer or copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. Among these, high molecular weight polyethylene mainly having ethylene and having a weight average molecular weight of 1,000,000 or more is preferable.

ポリオレフィン微多孔膜(A)の膜厚は通常8〜25μmであるが、10μm以上が好ましく、12μm以上がより好ましい。膜厚が小さすぎると正負極間の絶縁を保つことが困難なので好ましくない。また上限も22μm以下が好ましく、20μm以下がより好ましい。膜厚が大きすぎると、電池容量エネルギー密度が低くなるため好ましくない。   The film thickness of the polyolefin microporous membrane (A) is usually 8 to 25 μm, preferably 10 μm or more, and more preferably 12 μm or more. If the film thickness is too small, it is difficult to maintain insulation between the positive and negative electrodes. The upper limit is also preferably 22 μm or less, and more preferably 20 μm or less. An excessively large film thickness is not preferable because the battery capacity energy density is lowered.

ポリオレフィン微多孔膜(A)の空隙率は通常40〜70%であるが、45%以上が好ましく50%以上がより好ましい。空隙率が低すぎるとイオン透過性が確保できないので好ましくない。また上限も65%以下が好ましく、60%以下がより好ましい。空隙率が高すぎるとセパレータの強度を十分に確保することが出来ないので好ましくない。   The porosity of the polyolefin microporous membrane (A) is usually 40 to 70%, preferably 45% or more, and more preferably 50% or more. If the porosity is too low, ion permeability cannot be secured, which is not preferable. The upper limit is also preferably 65% or less, and more preferably 60% or less. If the porosity is too high, it is not preferable because the separator cannot have sufficient strength.

ポリオレフィン微多孔膜(A)の平均孔径は通常0.05〜0.15μmであるが、0.06μm以上が好ましく、0.07μm以上がより好ましい。孔径が小さすぎると、イオン透過性が確保できないので好ましくない。また上限も0.14μm以下が好ましく、0.13μm以下がより好ましい。孔径が大きすぎると、溶媒処理乾燥時に表面張力が十分に機能せず、微多孔膜を改質できないため好ましくない。   The average pore size of the polyolefin microporous membrane (A) is usually 0.05 to 0.15 μm, preferably 0.06 μm or more, and more preferably 0.07 μm or more. If the pore diameter is too small, ion permeability cannot be secured, which is not preferable. The upper limit is preferably 0.14 μm or less, and more preferably 0.13 μm or less. If the pore diameter is too large, the surface tension does not sufficiently function during solvent treatment drying, and the microporous membrane cannot be modified, which is not preferable.

ポリオレフィン微多孔膜(A)の透気度は、通常、ガーレー値で30〜500秒/100ccの範囲であり、好ましくは、50〜300秒/100ccの範囲である。   The air permeability of the polyolefin microporous membrane (A) is usually in the range of 30 to 500 seconds / 100 cc in terms of Gurley value, and preferably in the range of 50 to 300 seconds / 100 cc.

ポリオレフィン微多孔膜(A)の製造方法は特に限定されるものではなく、例えば特開平7−29563号公報に記載されたように、熱可塑性樹脂に可塑剤を加えてフィルム成形した後、該可塑剤を適当な溶媒で除去する方法や、特開平7−304110号公報に記載されたように、公知の方法により製造した熱可塑性樹脂からなるフィルムを用い、該フィルムの構造的に弱い非晶部分を選択的に延伸して微細孔を形成する方法が挙げられる。
例えば、ポリオレフィン微多孔膜(A)が、超高分子量ポリエチレン及び重量平均分子量1万以下の低分子量ポリオレフィンを含むポリオレフィン樹脂から形成されてなる場合には、製造コストの観点から、以下に示すような方法により製造することが好ましい。
(1)超高分子量ポリエチレン100重量部と、重量平均分子量1万以下の低分子量ポリオレフィン5〜200重量部と、炭酸カルシウム等の無機充填剤100〜400重量部とを混練してポリオレフィン樹脂組成物を得る工程
(2)前記ポリオレフィン樹脂組成物を用いてシートを成形する工程
(3)工程(2)で得られたシート中から無機充填剤を除去する工程
(4)工程(3)で得られたシートを延伸する工程
(5)工程(4)で得られたシートを熱処理する工程
なお、ポリオレフィン微多孔膜(A)については上記記載の特性を有する市販品を用いることができる。
The method for producing the polyolefin microporous membrane (A) is not particularly limited. For example, as described in JP-A-7-29563, a plasticizer is added to a thermoplastic resin to form a film. Using a film made of a thermoplastic resin produced by a known method as described in JP-A-7-304110 or a method of removing the agent with a suitable solvent, and a structurally weak amorphous part of the film And a method of forming fine holes by selectively stretching.
For example, when the polyolefin microporous membrane (A) is formed from an ultrahigh molecular weight polyethylene and a polyolefin resin containing a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, from the viewpoint of production cost, as shown below It is preferable to manufacture by a method.
(1) A polyolefin resin composition obtained by kneading 100 parts by weight of ultrahigh molecular weight polyethylene, 5 to 200 parts by weight of a low molecular weight polyolefin having a weight average molecular weight of 10,000 or less, and 100 to 400 parts by weight of an inorganic filler such as calcium carbonate. (2) The step of molding a sheet using the polyolefin resin composition (3) The step of removing the inorganic filler from the sheet obtained in the step (2) (4) The step (3) Step of stretching the sheet (5) Step of heat-treating the sheet obtained in the step (4) As the polyolefin microporous membrane (A), a commercially available product having the characteristics described above can be used.

ポリオレフィン微多孔膜(A)は、本発明の目的を損なわない範囲で他の成分を含んでいてもよい。他の成分としては、例えば酸化防止剤、分散剤、可塑剤などが挙げられる。 The polyolefin microporous membrane (A) may contain other components as long as the object of the present invention is not impaired. Examples of other components include an antioxidant, a dispersant, and a plasticizer.

本発明の含浸とは、多孔質体の内部にまで液体を染み込ませることを意味する。すなわち、本発明においては、含浸処理によりポリオレフィン微多孔膜(A)の細孔が実質的に溶媒(B)で満たされた状態になる。   The impregnation of the present invention means that the liquid is soaked into the porous body. That is, in the present invention, the pores of the polyolefin microporous membrane (A) are substantially filled with the solvent (B) by the impregnation treatment.

溶媒(B)は、25℃での表面張力が25mN/m以上であって、かつポリオレフィンを溶解しない溶媒であれば特に制限は無い。溶媒(B)としては、例えばクロロホルム(25℃での表面張力26.7mN/m)、四塩化炭素(同26.4mN/m)、ジクロロメタン(同27.2mN/m)、1,2−ジクロロエタン(同31.9mN/m)、1,1,2,2−テトラクロロエタン(同35.6mN/m)等のハロゲン系溶媒や、ジメチルスルホキシド(同42.9mN/m)、ホルムアミド(同57.0mN/m)等の極性有機溶媒が挙げられる。 The solvent (B) is not particularly limited as long as it has a surface tension at 25 ° C. of 25 mN / m or more and does not dissolve polyolefin. Examples of the solvent (B) include chloroform (surface tension 26.7 mN / m at 25 ° C.), carbon tetrachloride (26.4 mN / m), dichloromethane (27.2 mN / m), 1,2-dichloroethane. (31.9 mN / m), 1,1,2,2-tetrachloroethane (35.6 mN / m), dimethyl sulfoxide (42.9 mN / m), formamide (57. Polar organic solvents such as 0 mN / m).

また、25℃での表面張力が25mN/m未満の溶媒、例えばアセトン(同23.5mN/m)、メタノール(同22.1mN/m)、エタノール(同22.0mN/m)、1−プロパノール(同23.3mN/m)、2−プロパノール(同20.9mN/m)、酢酸エチル(同23.4mN/m)、ジエチルエーテル(同16.7mN/m)等についても、例えば水(同72.8mN/m)等の25℃での表面張力が25mN/mを超える溶媒と混合し、25℃での表面張力を25mN/m以上に調製して溶媒(B)として使用することもできる。混合溶媒として使用する場合は、乾燥過程で残存する溶媒の表面張力が増大するように、表面張力の高い溶媒の沸点が、表面張力の低い溶媒の沸点よりも高いことが好ましい。   Further, a solvent having a surface tension at 25 ° C. of less than 25 mN / m, such as acetone (23.5 mN / m), methanol (22.1 mN / m), ethanol (22.0 mN / m), 1-propanol (23.3 mN / m), 2-propanol (20.9 mN / m), ethyl acetate (23.4 mN / m), diethyl ether (16.7 mN / m), etc. 72.8 mN / m) and the like, and a solvent having a surface tension at 25 ° C. exceeding 25 mN / m and adjusting the surface tension at 25 ° C. to 25 mN / m or more can also be used as the solvent (B). . When used as a mixed solvent, the boiling point of the solvent having a high surface tension is preferably higher than the boiling point of the solvent having a low surface tension so that the surface tension of the solvent remaining in the drying process increases.

ポリオレフィン微多孔膜(A)に溶媒(B)を含浸させる方法に特に制限は無く、ポリオレフィン微多孔膜(A)を溶媒(B)に浸漬させる方法や、溶媒(B)をポリオレフィン微多孔膜(A)に塗布する方法などが挙げられる。
ポリオレフィン微多孔膜(A)を溶媒(B)に浸漬させる方法としては、ロール状のポリオレフィン微多孔膜(A)を浸漬させる方法や、枚葉に切り出したポリオレフィン微多孔膜(A)を浸漬させる方法、またロールから繰り出した反物状のポリオレフィン微多孔膜(A)を連続的に溶媒(B)に槽をくぐらせる方法、などが挙げられる。
溶媒(B)をポリオレフィン微多孔膜(A)に塗布する方法としては、溶媒(B)の粘度にもよるが例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクターブレードコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法などが挙げられる。
The method for impregnating the polyolefin microporous membrane (A) with the solvent (B) is not particularly limited, and the method of immersing the polyolefin microporous membrane (A) in the solvent (B) or the solvent (B) with the polyolefin microporous membrane ( A method of applying to A) may be mentioned.
As a method of immersing the polyolefin microporous membrane (A) in the solvent (B), a method of immersing the roll-shaped polyolefin microporous membrane (A) or a polyolefin microporous membrane (A) cut into a single wafer is immersed. And a method of continuously passing the tank-shaped polyolefin microporous membrane (A) fed from a roll through a solvent (B).
As a method of applying the solvent (B) to the polyolefin microporous membrane (A), although depending on the viscosity of the solvent (B), for example, a gravure coater method, a small diameter gravure coater method, a reverse roll coater method, a transfer roll coater method, Examples thereof include a kiss coater method, a dip coater method, a knife coater method, an air doctor blade coater method, a blade coater method, a rod coater method, a squeeze coater method, a cast coater method, a die coater method, a screen printing method, and a spray coating method.

溶媒(B)がポリオレフィン微多孔膜(A)に染み込みにくい場合は、ポリオレフィン微多孔膜(A)を真空状態にして細孔内部の空気を除去し、その後溶媒(B)を注入する真空含浸方法を取っても良い。   When the solvent (B) hardly penetrates into the polyolefin microporous membrane (A), the polyolefin microporous membrane (A) is evacuated to remove air inside the pores, and then inject the solvent (B). You may take it.

溶媒(B)の除去方法としては、自然乾燥、送風乾燥、加熱乾燥、減圧乾燥などいかなる方法でもよい。なお、溶媒(B)を含浸したポリオレフィン微多孔膜(A)から除去する際に加熱を行う場合には、ポリオレフィン微多孔膜(A)の細孔が熱によって収縮しない温度で行うことが好ましい。   As a method for removing the solvent (B), any method such as natural drying, air drying, heat drying, and reduced pressure drying may be used. In addition, when performing heating when removing from the polyolefin microporous membrane (A) impregnated with the solvent (B), it is preferable to carry out at a temperature at which the pores of the polyolefin microporous membrane (A) do not shrink by heat.

本願発明において、溶媒(B)の含浸に際し、予め、溶媒(B)に可溶な高分子化合物(C)を溶媒(B)に溶解し、該溶液を含浸させることができる。かかる高分子化合物(C)を併用することにより、熱処理温度を超える温度範囲における、改質ポリオレフィン微多孔膜の寸法安定性の一層の向上を図ることができる。本発明の改質ポリオレフィン微多孔膜を電池用セパレータ、特にリチウムイオン電池用セパレータとして用いる場合、高分子化合物(C)は電池の電解液に不溶であり、またその電池の使用範囲で電気化学的に安定である高分子が好ましい。   In the present invention, upon impregnation with the solvent (B), the polymer compound (C) soluble in the solvent (B) can be dissolved in the solvent (B) in advance and impregnated with the solution. By using this polymer compound (C) in combination, it is possible to further improve the dimensional stability of the modified polyolefin microporous membrane in a temperature range exceeding the heat treatment temperature. When the modified polyolefin microporous membrane of the present invention is used as a battery separator, particularly as a lithium ion battery separator, the polymer compound (C) is insoluble in the battery electrolyte and is electrochemical within the battery usage range. Highly stable polymers are preferred.

高分子化合物(C)としては、耐熱性の点から、融点が180以上の高分子化合物であるのが好ましく、例えば、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体やエチレン−テトラフルオロエチレン共重合体などの含フッ素ゴム、スチレン−ブタジエン共重合体およびその水素化物、メタクリル酸エステル共重合体、アクリロニトリル−アクリル酸エステル共重合体、スチレン−アクリル酸エステル共重合体、エチレンプロピレンラバー、ポリ酢酸ビニルなどのゴム類、ポリビニルアルコール、ポリエチレングリコール、アルギン酸ナトリウム、ポリアクリル酸、ポリアクリルアミド、ポリメタクリル酸等の水溶性ポリマー、セルロースエーテル、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリアミド、ポリエステルなどが挙げられ、中でも、セルロースエーテル、ポリエーテルイミド、ポリアミドイミド、ポリエーテルアミド、ポリアミドがより好ましく、セルロースエーテルがさらに好ましい。
セルロースエーテルとしては、例えば、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、カルボキシエチルセルロース、メチルセルロース、エチルセルロース、シアンエチルセルロース、オキシエチルセルロース等が挙げられ、化学的な安定性に優れたCMC、HECが特に好ましい。
The polymer compound (C) is preferably a polymer compound having a melting point of 180 or more from the viewpoint of heat resistance. For example, vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer or ethylene-tetrafluoro Fluorine-containing rubber such as ethylene copolymer, styrene-butadiene copolymer and its hydride, methacrylic acid ester copolymer, acrylonitrile-acrylic acid ester copolymer, styrene-acrylic acid ester copolymer, ethylene propylene rubber, Rubbers such as polyvinyl acetate, water-soluble polymers such as polyvinyl alcohol, polyethylene glycol, sodium alginate, polyacrylic acid, polyacrylamide, polymethacrylic acid, cellulose ether, polyphenylene ether, polysulfone, polyethers Hong, polyphenylene sulfide, polyether imide, polyamide imide, polyether amide, polyamide, polyester and the like are mentioned. Among them, cellulose ether, polyether imide, polyamide imide, polyether amide, polyamide are more preferable, and cellulose ether is more preferable. .
Examples of the cellulose ether include carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), carboxyethyl cellulose, methyl cellulose, ethyl cellulose, cyanethyl cellulose, oxyethyl cellulose and the like, and CMC and HEC excellent in chemical stability are particularly preferable. .

本発明の製造方法により得られる改質ポリオレフィン微多孔膜は、原料として使用されるポリオレフィン微多孔膜に比して、該ポリオレフィン微多孔膜に施された熱処理での熱処理温度を超える温度範囲における寸法安定性が向上している。   The modified polyolefin microporous membrane obtained by the production method of the present invention has dimensions in a temperature range that exceeds the heat treatment temperature in the heat treatment applied to the polyolefin microporous membrane as compared to the polyolefin microporous membrane used as a raw material. Stability is improved.

寸法安定性は、改質ポリオレフィン微多孔膜の加熱形状維持率を算出することにより評価することができる。加熱形状維持率は、実施例に記載の方法と同様の方法で算出することができる。加熱形状維持率が高いほど、改質ポリオレフィン微多孔膜は寸法安定性が向上していることを意味する。   The dimensional stability can be evaluated by calculating the heating shape retention rate of the modified polyolefin microporous membrane. The heating shape maintenance rate can be calculated by the same method as that described in the examples. A higher heating shape retention rate means that the modified polyolefin microporous membrane has improved dimensional stability.

本発明の製造方法により得られる改質ポリオレフィン微多孔膜は、高温時の寸法安定性に優れるので、様々な用途に用いることができ、中でも電池用セパレータとして、特には非水電解液二次電池セパレータとして好適に用いることができる。   The modified polyolefin microporous membrane obtained by the production method of the present invention is excellent in dimensional stability at high temperatures, and can be used for various applications. In particular, as a battery separator, particularly a non-aqueous electrolyte secondary battery. It can be suitably used as a separator.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

実施例及び比較例のポリオレフィン微多孔膜および改質ポリオレフィン微多孔膜の物性等は以下の方法で測定した。
(1)厚み測定(単位:μm)
ポリオレフィン微多孔膜および改質ポリオレフィン微多孔膜厚みは、JIS規格(K7130−1992)に従い、測定した。
(3)空隙率(単位:体積%)
ポリオレフィン微多孔膜から、一辺の長さ10cmの正方形のサンプルを切り出し、重量W(g)と厚みD(cm)を測定した。サンプル中のそれぞれの材質の重量(Wi(g))を求め、それぞれの材質について、Wi(g)と真比重(真比重i(g/cm))とから体積を算出して、次式より空隙率(体積%)を求めた。
空隙率(体積%)=100−[{(W1/真比重1)+(W2/真比重2)+・・+(Wn/真比重n)}/(10×10×D)]×100
The physical properties of the polyolefin microporous membranes and modified polyolefin microporous membranes of Examples and Comparative Examples were measured by the following methods.
(1) Thickness measurement (unit: μm)
The thickness of the polyolefin microporous membrane and the modified polyolefin microporous membrane were measured in accordance with JIS standards (K7130-1992).
(3) Porosity (unit: volume%)
A square sample having a side length of 10 cm was cut out from the polyolefin microporous membrane, and the weight W (g) and the thickness D (cm) were measured. The weight (Wi (g)) of each material in the sample is obtained, and the volume of each material is calculated from Wi (g) and true specific gravity (true specific gravity i (g / cm 3 )). Further, the porosity (volume%) was obtained.
Porosity (volume%) = 100 − [{(W1 / true specific gravity 1) + (W2 / true specific gravity 2) + ·· + (Wn / true specific gravity n)} / (10 × 10 × D)] × 100

(4)透気度(単位:秒/100cc)
ポリオレフィン微多孔膜および改質ポリオレフィン微多孔膜の透気度は、JIS P8117に基づいて、(株)東洋精機製作所製のデジタルタイマー式ガーレ式デンソメータで測定した。
(5)フィルム平均孔径
JIS K 3832の規定に基づいて、Automated Capillary Flow Porometer(POROUS MATERIALS INC社製)を用い、含浸液をフロリナートFC−40(住友スリーエム(株)製)として、ポリオレフィン微多孔膜の平均孔径を求めた。
(4) Air permeability (unit: seconds / 100cc)
The air permeability of the polyolefin microporous membrane and the modified polyolefin microporous membrane was measured with a digital timer type Gurley type densometer manufactured by Toyo Seiki Seisakusho, based on JIS P8117.
(5) Average film pore diameter Based on the provisions of JIS K 3832, using an Automated Capillary Flow Porometer (manufactured by POROUS MATERIALS INC.), The impregnating solution was Fluorinert FC-40 (manufactured by Sumitomo 3M Co., Ltd.), and a polyolefin microporous membrane The average pore diameter was determined.

(6)加熱形状維持率
ポリオレフィン微多孔膜および改質ポリオレフィン微多孔膜を8cm×8cmに切り出し、中央に、各辺がMD方向(ポリオレフィン微多孔膜を作製したときの流れ方向)とTD方向(ポリオレフィン微多孔膜を作製したときの流れ方向と直交する方向)のいずれか一方向と平行となるように6cm×6cmの正方形を記入した後、2枚の紙で挟み込んだ状態で130℃のオーブンに1時間静置して加熱した。所定時間加熱後にオーブンから取り出したサンプルについて、面内に記入した正方形の各辺の寸法を測定し、MD方向に平行な一辺とTD方向に平行な一辺について、次式より加熱形状維持率を算出した。
加熱形状維持率(%)= 加熱後の寸法÷加熱前の寸法×100
(6) Heating shape maintenance rate A polyolefin microporous membrane and a modified polyolefin microporous membrane are cut into 8 cm × 8 cm, and each side has MD direction (flow direction when producing a polyolefin microporous membrane) and TD direction ( Enter a 6cm x 6cm square so that it is parallel to any one of the directions (perpendicular to the flow direction when the polyolefin microporous membrane was made), and then sandwich it between two sheets of paper at 130 ° C. And left to heat for 1 hour. For the sample taken out of the oven after heating for a predetermined time, measure the dimension of each side of the square written in the plane, and calculate the heating shape maintenance rate from the following formula for one side parallel to the MD direction and one side parallel to the TD direction. did.
Heated shape retention rate (%) = dimension after heating ÷ dimension before heating x 100

(ポリオレフィン微多孔膜の作製)
超高分子量ポリエチレン粉末(三井化学(株)製の「340M」)70重量%および重量平均分子量1000のポリエチレンワックス(日本精鑞(株)製の「FNP−0115」)30重量%と、該超高分子量ポリエチレンとポリエチレンワックスとの合計量100重量部に対して、酸化防止剤(チバ・スペシャリティ・ケミカルズ(株)製の「Irg1010」)を0.4重量%、P168(チバ・スペシャリティ・ケミカルズ(株)製)を0.1重量%、ステアリン酸ナトリウムを1.3重量%を加え、更に全体積に対して38体積%となるように平均孔径0.1μmの炭酸カルシウム(丸尾カルシウム(株)製)を加え、これらを粉末のままヘンシェルミキサーで混合した後、二軸混練機で溶融混練してポリオレフィン樹脂組成物とした。該ポリオレフィン樹脂組成物を表面温度が150℃の一対のロールにて圧延しシートを作成した。このシートを塩酸水溶液(塩酸4mol/L、非イオン系界面活性剤0.5重量%)に浸漬させることで炭酸カルシウムを除去し、続いてTD方向に延伸した後に120℃で熱処理して、表1に示す性状のポリオレフィン微多孔膜A1〜A3を得た。
(Production of polyolefin microporous membrane)
70% by weight of ultra high molecular weight polyethylene powder (“340M” manufactured by Mitsui Chemicals, Inc.) and 30% by weight of polyethylene wax having a weight average molecular weight of 1000 (“FNP-0115” manufactured by Nippon Seiki Co., Ltd.) 0.4 wt% of antioxidant (“Irg1010” manufactured by Ciba Specialty Chemicals Co., Ltd.) and P168 (Ciba Specialty Chemicals (Ciba Specialty Chemicals)) with respect to 100 parts by weight of the total amount of high molecular weight polyethylene and polyethylene wax Co., Ltd.) 0.1% by weight, sodium stearate 1.3% by weight, and calcium carbonate having an average pore size of 0.1 μm (Maruo Calcium Co. Are mixed with a Henschel mixer in the form of a powder, and then melt-kneaded with a biaxial kneader to obtain a polyolefin resin composition. . The polyolefin resin composition was rolled with a pair of rolls having a surface temperature of 150 ° C. to prepare a sheet. The sheet was immersed in an aqueous hydrochloric acid solution (hydrochloric acid 4 mol / L, nonionic surfactant 0.5% by weight) to remove calcium carbonate, and subsequently stretched in the TD direction and then heat treated at 120 ° C. Polyolefin microporous membranes A1 to A3 having the properties shown in FIG.

Figure 2013194153
Figure 2013194153

(実施例1)
ポリオレフィン微多孔膜A1にエタノール30wt%水溶液(25℃における溶媒表面張力が57.5dyn/cm)をバーコーターで塗工し、室温で乾燥させて改質ポリオレフィン微多孔膜を得た。改質ポリオレフィン微多孔膜の膜厚は16.3μm、透気度は112秒/100ccであった。また、改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
Example 1
A 30 wt% ethanol aqueous solution (solvent surface tension at 25 ° C. of 57.5 dyn / cm) was applied to the polyolefin microporous membrane A1 with a bar coater and dried at room temperature to obtain a modified polyolefin microporous membrane. The film thickness of the modified polyolefin microporous film was 16.3 μm, and the air permeability was 112 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(実施例2)
ポリオレフィン微多孔膜A1にエタノール30wt%水溶液にカルボキシメチルセルロース(第一工業製薬(株)製の「WS−C」)(以下CMCと略す場合あり)を1wt%溶解させた溶液を、バーコーターで塗工し室温で乾燥させて改質ポリオレフィン微多孔膜を得た。改質ポリオレフィン微多孔膜の膜厚は16.3μm、透気度は117秒/100ccであった。また、改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
(Example 2)
A solution obtained by dissolving 1 wt% of carboxymethyl cellulose (“WS-C” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) (hereinafter sometimes abbreviated as CMC) in a 30 wt% ethanol aqueous solution in a polyolefin microporous membrane A1 is applied with a bar coater. And dried at room temperature to obtain a modified polyolefin microporous membrane. The film thickness of the modified polyolefin microporous film was 16.3 μm, and the air permeability was 117 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(実施例3)
ポリオレフィン微多孔膜A2にエタノール30wt%水溶液をバーコーターで塗工し、室温で乾燥させて改質ポリオレフィン微多孔膜を得た。ポリオレフィン微多孔膜A2の膜厚は16.0μm、透気度は133秒/100ccであった。また改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
(Example 3)
A 30 wt% ethanol aqueous solution was applied to the polyolefin microporous membrane A2 with a bar coater and dried at room temperature to obtain a modified polyolefin microporous membrane. The polyolefin microporous membrane A2 had a thickness of 16.0 μm and an air permeability of 133 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(実施例4)
ポリオレフィン微多孔膜A2にエタノール30wt%水溶液にカルボキシメチルセルロース(第一工業製薬(株)製の「WS−C」)を1wt%溶解させた溶液を、バーコーターで塗工し室温で乾燥させて改質ポリオレフィン微多孔膜を得た。改質ポリオレフィン微多孔膜の膜厚は15.5μm、透気度は190秒/100ccであった。また、改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
Example 4
A solution obtained by dissolving 1 wt% of carboxymethyl cellulose (“WS-C” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in a 30 wt% ethanol solution in a polyolefin microporous membrane A2 was coated with a bar coater and dried at room temperature. A porous polyolefin microporous membrane was obtained. The modified polyolefin microporous membrane had a thickness of 15.5 μm and an air permeability of 190 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(実施例5)
ポリオレフィン微多孔膜A3にエタノール30wt%水溶液にカルボキシメチルセルロース(第一工業製薬製、WS−C)を0.3wt%溶解させた溶液を、バーコーターで塗工し室温で乾燥させて改質ポリオレフィン微多孔膜を得た。改質ポリオレフィン微多孔膜の膜厚は15.7μm、透気度は159秒/100ccであった。また、改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
(Example 5)
A solution of 0.3 wt% carboxymethyl cellulose (Daiichi Kogyo Seiyaku Co., Ltd., WS-C) dissolved in 30 wt% ethanol solution in polyolefin microporous membrane A3 was coated with a bar coater and dried at room temperature to modify the modified polyolefin fine particles. A porous membrane was obtained. The film thickness of the modified polyolefin microporous film was 15.7 μm, and the air permeability was 159 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(実施例6)
ポリオレフィン微多孔膜A3にエタノール30wt%水溶液にカルボキシメチルセルロース(第一工業製薬(株)製の「WS−C」)を1wt%溶解させた溶液を、バーコーターで塗工し室温で乾燥させて改質ポリオレフィン微多孔膜を得た。改質ポリオレフィン微多孔膜の膜厚は15.3μm、透気度は218秒/100ccであった。また、改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
(Example 6)
A solution prepared by dissolving 1 wt% of carboxymethyl cellulose (“WS-C” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) in a 30 wt% ethanol solution in a polyolefin microporous membrane A3 was coated with a bar coater and dried at room temperature. A porous polyolefin microporous membrane was obtained. The film thickness of the modified polyolefin microporous membrane was 15.3 μm, and the air permeability was 218 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(実施例7)
ポリオレフィン微多孔膜A3にクロロホルム(25℃における溶媒表面張力が26.7dyn/cm)をバーコーターで塗工し、室温で乾燥させて改質ポリオレフィン微多孔膜を得た。改質ポリオレフィン微多孔膜の膜厚は17.2μm、透気度は130秒/100ccであった。また、改質ポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
(Example 7)
Chloroform (solvent surface tension at 25 ° C .: 26.7 dyn / cm) was applied to the polyolefin microporous membrane A3 with a bar coater and dried at room temperature to obtain a modified polyolefin microporous membrane. The film thickness of the modified polyolefin microporous membrane was 17.2 μm, and the air permeability was 130 seconds / 100 cc. Table 2 shows the heating shape retention rate of the modified polyolefin microporous membrane.

(比較例1)
ポリオレフィン微多孔膜A3にエタノール(25℃における溶媒表面張力が22.0dyn/cm)をバーコーターで塗工し、室温で乾燥させた。乾燥後のポリオレフィン微多孔膜A3の膜厚は17.3μm、透気度は127秒/100ccであった。乾燥後のポリオレフィン微多孔膜の加熱形状維持率を表2に示す。
(Comparative Example 1)
Ethanol (the solvent surface tension at 25 ° C. was 22.0 dyn / cm) was applied to the polyolefin microporous membrane A3 with a bar coater and dried at room temperature. The film thickness of the microporous polyolefin membrane A3 after drying was 17.3 μm, and the air permeability was 127 seconds / 100 cc. Table 2 shows the heating shape retention rate of the polyolefin microporous membrane after drying.

Figure 2013194153
Figure 2013194153

Claims (4)

ポリオレフィンからなる微多孔膜(A)に、25℃における表面張力が25mN/m以上であって、かつポリオレフィンを溶解しない溶媒(B)を含浸させ、次いで溶媒(B)を除去することを特徴とする改質ポリオレフィン微多孔膜の製造方法。   A microporous membrane (A) made of polyolefin is impregnated with a solvent (B) having a surface tension at 25 ° C. of 25 mN / m or more and not dissolving polyolefin, and then the solvent (B) is removed. A method for producing a modified polyolefin microporous membrane. 微多孔膜(A)が、膜厚が8〜25μm、空隙率が40〜70%、平均孔径が0.05〜0.15μmである請求項1記載の改質ポリオレフィン微多孔膜の製造方法。   The method for producing a modified polyolefin microporous membrane according to claim 1, wherein the microporous membrane (A) has a thickness of 8 to 25 µm, a porosity of 40 to 70%, and an average pore size of 0.05 to 0.15 µm. ポリオレフィンからなる微多孔膜(A)に、以下の溶媒(B)と高分子化合物(C)とからなる溶液を含浸させて、次いで溶媒(B)を除去することを特徴とする改質ポリオレフィン微多孔膜の製造方法。
溶媒(B):25℃における表面張力が25mN/m以上であって、かつポリオレフィンを溶解しない溶媒。
A modified polyolefin fine film characterized by impregnating a microporous membrane (A) made of polyolefin with a solution consisting of the following solvent (B) and polymer compound (C) and then removing the solvent (B). A method for producing a porous membrane.
Solvent (B): A solvent having a surface tension at 25 ° C. of 25 mN / m or more and does not dissolve polyolefin.
前記高分子化合物(C)が、融点が180℃以上の高分子化合物である請求項3記載の改質ポリオレフィン微多孔膜の製造方法。   The method for producing a modified polyolefin microporous membrane according to claim 3, wherein the polymer compound (C) is a polymer compound having a melting point of 180 ° C or higher.
JP2012063294A 2012-03-21 2012-03-21 Method for producing modified polyolefin microporous membrane Active JP5906857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063294A JP5906857B2 (en) 2012-03-21 2012-03-21 Method for producing modified polyolefin microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063294A JP5906857B2 (en) 2012-03-21 2012-03-21 Method for producing modified polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
JP2013194153A true JP2013194153A (en) 2013-09-30
JP5906857B2 JP5906857B2 (en) 2016-04-20

Family

ID=49393506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063294A Active JP5906857B2 (en) 2012-03-21 2012-03-21 Method for producing modified polyolefin microporous membrane

Country Status (1)

Country Link
JP (1) JP5906857B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183187A (en) * 2014-03-24 2015-10-22 達興材料股▲ふん▼有限公司 Resin composition for forming heat resistant film, heat resistant film formed thereby, and battery having the heat resistant film
JP5938512B1 (en) * 2015-11-30 2016-06-22 住友化学株式会社 Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminate separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
JP6012838B1 (en) * 2015-11-30 2016-10-25 住友化学株式会社 Method for producing separator for non-aqueous electrolyte secondary battery
KR101830029B1 (en) * 2016-08-31 2018-02-19 스미또모 가가꾸 가부시키가이샤 A method for producing a separator for a nonaqueous electrolyte secondary battery
WO2018078702A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator and secondary battery including separator
WO2019151118A1 (en) * 2018-01-31 2019-08-08 日本ゼオン株式会社 Composition for lithium ion secondary cell separator, two-part composition for lithium ion secondary cell separator, method for manufacturing lithium ion secondary cell separator, and method for manufacturing lithium ion secondary cell
CN115377610A (en) * 2021-05-19 2022-11-22 溧阳月泉电能源有限公司 Modified polyolefin diaphragm and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861130A (en) * 1981-10-08 1983-04-12 Mitsubishi Rayon Co Ltd Treating method of porous polyethylene film
JPS6328406A (en) * 1986-07-21 1988-02-06 Asahi Medical Co Ltd Network porous hollow yarn membrane
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH07224227A (en) * 1994-02-15 1995-08-22 Maindo:Kk Resin composition, method of molding the same, and molded article produced from the same
JP2000256499A (en) * 1999-03-08 2000-09-19 Nitto Denko Corp Porous film and its production
JP2004051780A (en) * 2002-07-19 2004-02-19 Dainippon Toryo Co Ltd Transfer method and covering material for transfer
JP2004227972A (en) * 2003-01-24 2004-08-12 Sumitomo Chem Co Ltd Separator for non-aqueous electrolytic solution secondary battery
JP2008216865A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp Composition for forming liquid crystal alignment layer and method for manufacturing liquid crystal display device
JP2008257255A (en) * 2007-03-14 2008-10-23 Sony Corp Anti-glare film, optical film, anti-glare polarizer and display device
JP2009242631A (en) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Microporous polyolefin membrane

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861130A (en) * 1981-10-08 1983-04-12 Mitsubishi Rayon Co Ltd Treating method of porous polyethylene film
JPS6328406A (en) * 1986-07-21 1988-02-06 Asahi Medical Co Ltd Network porous hollow yarn membrane
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH07224227A (en) * 1994-02-15 1995-08-22 Maindo:Kk Resin composition, method of molding the same, and molded article produced from the same
JP2000256499A (en) * 1999-03-08 2000-09-19 Nitto Denko Corp Porous film and its production
JP2004051780A (en) * 2002-07-19 2004-02-19 Dainippon Toryo Co Ltd Transfer method and covering material for transfer
JP2004227972A (en) * 2003-01-24 2004-08-12 Sumitomo Chem Co Ltd Separator for non-aqueous electrolytic solution secondary battery
JP2008216865A (en) * 2007-03-07 2008-09-18 Seiko Epson Corp Composition for forming liquid crystal alignment layer and method for manufacturing liquid crystal display device
JP2008257255A (en) * 2007-03-14 2008-10-23 Sony Corp Anti-glare film, optical film, anti-glare polarizer and display device
JP2009242631A (en) * 2008-03-31 2009-10-22 Asahi Kasei E-Materials Corp Microporous polyolefin membrane

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183187A (en) * 2014-03-24 2015-10-22 達興材料股▲ふん▼有限公司 Resin composition for forming heat resistant film, heat resistant film formed thereby, and battery having the heat resistant film
JP5938512B1 (en) * 2015-11-30 2016-06-22 住友化学株式会社 Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminate separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
JP6012838B1 (en) * 2015-11-30 2016-10-25 住友化学株式会社 Method for producing separator for non-aqueous electrolyte secondary battery
US9508975B1 (en) 2015-11-30 2016-11-29 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator, nonaqueous electrolyte secondary battery laminated separator, nonaqueous electrolyte secondary battery member, and nonaqueous electrolyte secondary battery
KR101830029B1 (en) * 2016-08-31 2018-02-19 스미또모 가가꾸 가부시키가이샤 A method for producing a separator for a nonaqueous electrolyte secondary battery
US20180062138A1 (en) * 2016-08-31 2018-03-01 Sumitomo Chemical Company, Limited Method of producing nonaqueous electrolyte secondary battery separator
JP2018037311A (en) * 2016-08-31 2018-03-08 住友化学株式会社 Method for manufacturing separator for nonaqueous electrolyte secondary battery
CN107799698A (en) * 2016-08-31 2018-03-13 住友化学株式会社 The manufacture method of nonaqueous electrolytic solution secondary battery distance piece
WO2018078702A1 (en) * 2016-10-24 2018-05-03 住友化学株式会社 Separator and secondary battery including separator
JPWO2018078702A1 (en) * 2016-10-24 2019-06-27 住友化学株式会社 Separator, and secondary battery including the separator
WO2019151118A1 (en) * 2018-01-31 2019-08-08 日本ゼオン株式会社 Composition for lithium ion secondary cell separator, two-part composition for lithium ion secondary cell separator, method for manufacturing lithium ion secondary cell separator, and method for manufacturing lithium ion secondary cell
CN115377610A (en) * 2021-05-19 2022-11-22 溧阳月泉电能源有限公司 Modified polyolefin diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JP5906857B2 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5906857B2 (en) Method for producing modified polyolefin microporous membrane
KR101777991B1 (en) Laminated porous film, separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6033944B2 (en) Method for producing laminated porous film
JP5694971B2 (en) Method for producing polyolefin microporous film and method for producing laminated porous film
KR101998014B1 (en) Coating liquid, laminated porous film, and method for producing laminated porous film
JP5156158B2 (en) Composite membrane and manufacturing method thereof
KR101515770B1 (en) Coating liquid and laminated porous film
JP6341993B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
KR20160077118A (en) Laminate porous film, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6264163B2 (en) Separator manufacturing method
JP2016040784A (en) Separator and method for manufacturing the same
US10385180B2 (en) Package of porous film
JP6886839B2 (en) Polyolefin microporous membrane
JP6408237B2 (en) Method for producing laminated porous film
JP2013014017A (en) Laminated porous film
JP2012226921A (en) Porous laminate film
JP6462994B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
JPH08138643A (en) Separator for battery and manufacture thereof
KR20160032311A (en) Battery Separator with Excellent Shut-down Function and Heat Resistance and Secondaty Cell Battery
JP6612739B2 (en) Laminated porous film and non-aqueous electrolyte secondary battery
JP6354650B2 (en) Coating liquid and laminated porous film
JP2019010883A (en) Laminate porous film and nonaqueous electrolyte solution secondary battery
JP2013133418A (en) Coating liquid, laminated porous film, and method for producing laminated porous film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R151 Written notification of patent or utility model registration

Ref document number: 5906857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350