JP4518216B2 - Method for cleaning granular solids by vacuum filtration - Google Patents

Method for cleaning granular solids by vacuum filtration Download PDF

Info

Publication number
JP4518216B2
JP4518216B2 JP08391799A JP8391799A JP4518216B2 JP 4518216 B2 JP4518216 B2 JP 4518216B2 JP 08391799 A JP08391799 A JP 08391799A JP 8391799 A JP8391799 A JP 8391799A JP 4518216 B2 JP4518216 B2 JP 4518216B2
Authority
JP
Japan
Prior art keywords
cake
liquid
amount
washing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08391799A
Other languages
Japanese (ja)
Other versions
JP2000271414A (en
Inventor
善平 水谷
千春 西沢
博 三村
健二 山田
範高 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP08391799A priority Critical patent/JP4518216B2/en
Publication of JP2000271414A publication Critical patent/JP2000271414A/en
Application granted granted Critical
Publication of JP4518216B2 publication Critical patent/JP4518216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、幅広い粒度分布を有する粒状固形物の真空ろ過方法による洗浄、又は副生粒状固形物からの有用成分の回収を効率的に実施する方法である。即ち、本発明は、高分子工業、有機・無機等の各種分野において、広い粒度分布を有する粒状固形物の高純度化、又は粒状固形物に含有される有用成分の回収に関し工業的に有効な方法を提供するものである。
【0002】
【従来の技術】
溶液重合又は懸濁重合により得られる重合体、あるいは有機合成反応等によって得られた沈澱物を、スラリー溶液中等から分離・洗浄するには遠心分離、加圧濾過、真空濾過等の方法が一般的に用いられている。
【0003】
沈澱や析出によって得られた幅広い粒度分布を持つ重合固形物あるいは有機合成化合物等を含むスラリーを濾過し、濾過後の沈澱物の洗浄や沈澱物に含有される有用成分を回収する際には、微粒子に比較して粗粒子の洗浄又は粗粒子に含有される有用物質の回収が困難であることは一般的に知られていた。スラリー濾過後のケーキを洗浄する際には、更に、粗粒子間に発生した洗浄液の流路を洗浄液が優先的に通過する事により、粗粒子ばかりでなく全体的に洗浄効率や有用成分の回収効率が低下する事もよく知られていた。これらの問題を解決する為に、例えば加圧による方法や遠心力を利用した濾過洗浄方法を用いる事が知られていた。
【0004】
これらの方法で、幅広い粒度分布を有する粒状固形物の洗浄等を効率よく実施しようとすると、過度の圧力や過度の遠心力により、粒状固形物の粒子が破壊され、微粒子が必要以上に増加したり、粒状固形物が非常に堅い大きな塊となり、その後の取り扱いに支障をきたす等の不都合が生じる場合があった。
【0005】
比較的粒子に負荷がかからない真空濾過洗浄方法を使用した場合に、従来の方法では被処理物の粒度分布が幅広い場合には、スラリー濾過後に形成されたケーキは、粒子間にスラリー液や空間を有する密度が低いものとなる。この様なケーキは、その後の洗浄液等による洗浄あるいは有用成分の回収には適していない為に目的とする洗浄度や回収度を達成する為には、多量の洗浄液等を使用したり、洗浄回数を多くする等の時間的および経済的に不利な方法を採らざるを得ないのが現状である。
【0006】
真空濾過における一般的な洗浄効率を上げる方法として、常圧下で洗浄液をケーキに添加し粒状固形物との接触時間を延長して洗浄効率を上げる方法、洗浄液で何度もケーキを洗浄する方法、またその際に洗浄液使用量低減の為に、洗浄液を繰り返して使用する方法(例えば向流洗浄方法)などが一般的に知られていた。しかし、これらの方法は特に粒度分布の広い粒状固形物の洗浄などを考慮に入れた方法で無いため、幅広い粒度分布を有する粒状固形物の有効な洗浄に関しては効果が薄いばかりでなく、洗浄液などを多量に使用するとか、あるいは洗浄回数を多くしなければならない等の不利な点を有していた。
【0007】
【発明が解決しようとする課題】
本発明が意図するところは、上記した技術的に困難な点を解決しようとするものである。即ち、幅広い粒度分布を持つ粒状固形物を含むスラリーを真空濾過により固液分離した後、粒状固形物のケーキの洗浄あるいは粒状固形物に含有される有用成分の回収が必要な際の、有効で経済的な洗浄方法あるいは回収方法を提供するものである。
【0008】
【課題を解決しようとする手段】
上記課題を解決するために、本発明者らは鋭意検討の結果、幅広い粒度分布を持つ粒状固形物を含むスラリーを真空濾過により固液分離した後、該粒状固形物を洗浄する方法において、一旦真空濾過にて溶剤等と粒状固形物を分離する事で形成されたケーキを常圧下にて洗浄液を添加・攪拌して一度だけ再スラリー化し、再度真空下にて濾過を行い、再度ケーキ層を形成させた後、洗浄液で再度形成させたケーキ層を洗浄してなる粒状固形物の洗浄方法である。
【0009】
【発明の実施の形態】
具体的には、幅広い粒度分布を持つ粒状固形物を含むスラリーをまず、真空濾過により固液分離し、濾布などの濾材上にケーキを形成させる。その後、常圧下にて、水及び/又は溶剤等の洗浄液を添加し、攪拌を行う。この際、ケーキは水及び/又は溶剤等に分散され再スラリー化された状態になる。次に、再び真空濾過を行い濾材上にケーキを再形成する。この再形成されたケーキは、単にスラリー濾過のみのケーキと比べてより密となることを見いだした。
【0010】
詳細に調べたところ、ケーキの構造も最上面に細かな粒子の堆積層、中間部分に粗粒子と粗粒子間の空隙により細かな粒子が詰まった状態の堆積層、濾材に最も近い最下層部には層としては薄いが、微粒子の堆積層からなる3層からなる構造になっていた。
【0011】
この3層構造のケーキを再形成した後、水及び/又は溶剤等の洗浄液を添加して、真空濾過洗浄を行う。ケーキを3層構造のより密な構造にした後に洗浄を行う事で、再スラリー化を経ずに洗浄した場合に比較して、洗浄液がケーキに均一に分散されると共に、ケーキの上下の圧力差が全体的に均一になるため、減圧にする効果が有効に利用され、粗粒子中の内部にまで洗浄液が行き渡り、洗浄あるいは有用成分の回収効率が大幅に改良される。
【0012】
本発明方法においては、スラリー濾過によるケーキ形成以後の洗浄液などによるケーキの解砕を繰り返すことは好ましくない。即ち、本発明方法の主旨は、ケーキを解砕する事により、ケーキを形成する粒状固形物と洗浄液をよりよく接触させて洗浄効率を向上させることでは無く、あくまでも洗浄されやすい3層構造からなるケーキ層を形成させた後に洗浄する事にある。粒状固形物の粒度分布が幅広い場合には、単に洗浄液とのよりよい接触のみで洗浄効率などを向上させる事は困難である。特に、粗粒子中に含有される不純物の洗浄、あるいは有効成分の回収に関しては、単なる粒状固形物と洗浄液等との接触で効果を得るためには非常に長時間を要する等の不都合が生じる。
【0013】
本発明が適用可能な粒状固形物とは、溶液重合後の沈澱や懸濁重合によって得られた高分子物質、合成反応あるいはその後の沈澱工程によって得られた有機合成化合物、又は有用成分の回収等を目的にスラリー中に存在する無機化合物である。そして、粒状固形物の粒径は、1μm〜5mmの範囲にある事が好ましいが、必ずしもこの範囲にとらわれるものではない。しかしながら、本発明は粒状固形物中に、粒径100μm以下のものが15重量%以上含まれる場合に適用すると効果的である。特に、溶液重合で得られた反応液に重合物の貧溶媒を加えて得られる幅広い粒度分布を有する重合固形物を含むスラリーの分離、洗浄に有効であり、重合して得られた重合物の種類にとらわれるものではない。これら重合物の濃度は通常、数%から数十%の範囲のものが得られ、重合物は幅広い粒度分布を有するのが通常である。
【0014】
また、本発明の方法に用いられる溶媒や沈澱化剤といった溶剤としては、目的とする重合物の性質や合成プロセスにより種々選択される事が可能である。
【0015】
真空濾過を行う際に用いられる濾材の材質としては、ナイロン、アクリル、ポリエステル、ポリプロピレン、ポリテトラフルオロエチレン、ポリエーテルエーテルケトン、ポリビニリデン、ポリビニリデンジフロライドおよびポリクロロトリフルオロエチレン等の合成繊維や、綿および羊毛といった天然繊維が上げられるがこの限りではない。むしろ、真空濾過する被処理物の性状や溶剤との耐薬品性を考慮して選定される。濾材は通気量(JISL1096、一般織物試験法)は、一般に(1cc/sec)/cm2 〜(25cc/sec)/cm2 のものが使用される。
【0016】
真空濾過を行う際の真空度(減圧度)は常圧より低圧の状態であればよく、一般的には 600torr以下であり、好ましくは 450torr以下である。
【0017】
本発明方法による再成形された洗浄直後のケーキ中には、未だ多量の洗浄液等が含まれており、洗浄液中に含まれる微量の不純物等を除去する為にも洗浄終了後の脱液は重要である。この洗浄後の脱液時間は、一般に1〜10分である。本脱液操作は通常真空化で行われ、脱液時間や真空度などは粒状固形物等の種類、ケーキ層の厚み等により適宜選定される。通常、ケーキ層の厚みは 5〜50mmである。
【0018】
また、本発明の洗浄方法においてケーキを再スラリー化するのに使用される洗浄液の量は、粒状固形物や洗浄液の種類によって適宜選択できるが、ケーキを形成する粒状固形物が均一に再スラリー化するに十分な量が必要であり、一般的には粒状固形物の1.0から5.0重量倍である。再スラリー化に使用する液量が5.0重量倍を超えるとケーキ再形成の際の濾過に時間がかかり、また必要以上の洗浄液を使用することになり経済的に不利になる。一方、再スラリー化に使用する液量が1.0重量未満であると再スラリー化が困難となる。
【0019】
本発明において、スラリー濾過によるケーキ形成以後の洗浄液等による再スラリー化を行う時間は、通常5〜120秒であり、好ましくは5〜60秒である。再スラリー化によるケーキの解砕を長時間行うことは好ましくない。即ち、洗浄液等の液中でケーキを長時間攪拌するとさらに微粒子を増加させ、その後の取り扱いに支障をきたす等の不都合が生じる。
【0020】
本発明の洗浄方法においてケーキを再スラリー化する場合には、濾材に面する最下層部分に、最初に形成されたケーキ層を該ケーキ層の厚さの通常2〜60%、好ましくは2〜20%残すことが、常圧下でのスラリー攪拌時に洗浄液等の漏れを防ぎ、且つ洗浄に適したケーキの形成に効果がある。また、攪拌羽根と濾材との接触がないために、濾材の損傷を防ぐ効果もある。
【0021】
【実施例】
以下に、実施例および比較例によって本願発明をより具体的に説明するが、本願発明はこれらに限定されるものではない。
【0022】
実施例および比較例における真空濾過の検討は濾過面積約100cm2 のヌッチェ型真空濾過機を用い一連の濾過・洗浄を行った。濾過・洗浄は真空度を 400torr、通気量(5cc/sec)/cm2 の濾材を使用して行った。
【0023】
参考例1
ポリフェニレンエーテルのトルエン・アミン反応液をメタノールの水溶液中に添加し攪拌しながら析出・沈殿化させた。こうして得たスラリー中にはポリフェニレンエーテル10wt%、トルエン30wt%、メタノール52wt%、水5wt %、アミン3wt %が含まれる。スラリー中の固形分の粒度分布は粒子径1.5mm 以上から30μm以下まで幅広く分布し、その内粒子径が 1〜100 μm以下の物が28wt%、1.5mm 〜 5mmの物が13%含まれていた。但し、上記アミンの沸点は75℃以上であった。
【0024】
実施例1
参考例1のスラリー 800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約60wt%であった。その後、常圧下でポリフェニレンエーテル重量に対し2倍量のメタノールを添加し、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕・攪拌して再スラリー化した。再び真空濾過を行い濾材上にケーキの再形成を行った。その後、真空下でポリフェニレンエーテル重量に対し2.5倍量、4.5倍量のメタノールを、再形成されたケーキ上より添加し、2度真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の総洗浄メタノール量はポリフェニレンエーテル重量の9.0倍量であり、湿ケーキ中の含液率は53.9wt%、残トルエン量は 7.0wt%、残アミン量は0.03wt%であった。また、該ケーキは単に濾過した時のものと比べ上層に微粒子層、中間部に比較的粒径の大きい物とその隙間に微粒子が詰まった層があり、濾材に最も近い最下部に微粒子層があるという3層構造になっていた。
【0025】
実施例2
参考例1のスラリー800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約60wt%であった。その後、常圧下でポリフェニレンエーテル重量に対し4.5倍量のメタノールを添加し、ケーキの最下層から1.0mm分のケーキを残して、ケーキを解砕・攪拌後再び脱液を行いケーキの再形成を行った。その後、真空下でポリフェニレンエーテル重量に対し4.5倍量のメタノールを、再形成されたケーキ上より添加し、真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の総洗浄メタノール量はポリフェニレンエーテル重量の9.0倍量であり、湿ケーキ中の含液率は55.2wt%、残トルエン量は 8.0wt%、残アミン量は0.09wt%であった。
【0026】
比較例1
参考例1のスラリー800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約60wt%であった。その後、ケーキの再形成なしに真空下で、ポリフェニレンエーテル重量に対し2倍量、2.5倍量、4.5倍量のメタノールを3度添加し、真空濾過・洗浄を繰り返した。その後、真空下で約2分脱液した。この場合の総洗浄メタノール量はポリフェニレンエーテル重量の9.0倍量であり、湿ケーキ中の含液率はは58.5wt%、残トルエン量は12.2wt%、残アミン量は0.28wt%であった。
【0027】
比較例2
参考例1のスラリー800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約60wt%であった。その後、常圧下でポリフェニレンエーテル重量に対し2.0倍量のメタノールを添加し、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕・攪拌後、再び真空濾過を行いケーキの再形成を行った。このケーキの解砕と真空濾過による再形成をポリフェニレンエーテル重量に対し2.5倍量、4.5倍量のメタノールにて、同様に更に2度繰り返し行った。その後、真空下で約2分脱液した。この場合の総洗浄メタノール量はポリフェニレンエーテル重量の9.0倍量であり、湿ケーキ中の含液率は56.5wt%、残トルエン量は10.0wt%、残アミン量は0.20wt%であった。
【0028】
比較例3
参考例1のスラリー800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約60wt%であった。その後、常圧下でポリフェニレンエーテル重量に対し2.0倍量のメタノールをケーキ上より添加しケーキを解砕する事なしに接触させ1分後に、再び真空による濾過を行いケーキの洗浄を行った。その後、ポリフェニレンエーテル重量の2.5倍量、4.5倍量のメタノールを2度添加し、真空濾過・洗浄した。最後に真空下で約2分脱液した。この場合の湿ケーキ中の含液率は57.0wt%、残トルエン量は11.0wt%、残アミン量は0.24wt%であった。
【0029】
参考例2
参考例1と同様の方法で、沈澱時の攪拌速度のみ変えてスラリーを得た。スラリー中の固形分の粒度分布は粒子径1μm〜5mmまで幅広く分布し、その内粒子径が 1〜100 μmの物が23wt%、1.5mm 〜 5mmの物が17wt%含まれていた。
【0030】
実施例3
参考例2のスラリー800gを真空濾過し濾材上に20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約61wt%であった。その後、常圧下にてポリフェニレンエーテル重量に対し1.5倍量のメタノールを添加し、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕・攪拌し、再び真空濾過を行いケーキの再形成を行った。その後、再形成されたケーキにポリフェニレンエーテル重量に対し7.5倍量のメタノールにて真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の湿ケーキ中の含液率は54.2wt%、残トルエン量 7.0%% 、残アミン量0.06wt%であった。
【0031】
比較例4
参考例2のスラリーを用い、真空下にて濾過し濾材上に20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約61wt%であった。その後常圧下にてポリフェニレンエーテル重量に対し0.5倍量のメタノールを添加し、ケーキの最下層から5.0mm分のケーキを残して、ケーキを解砕・攪拌し再び真空濾過を行いケーキの再形成を行った。しかしながらケーキは解砕できたものの通常再形成されるケーキの形状と異なり凹凸が大きくケーキ表面に粗粒子が多く存在していた。再形成されたケーキにポリフェニレンエーテル重量に対し8.5倍量のメタノールにて真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の湿ケーキ中の含液率は59.0wt%、残トルエン量12.3wt%、残アミン量0.25wt%であった。
【0032】
参考例3
参考例1と同様の方法で、沈澱時の攪拌速度のみ変えてスラリーを得た。スラリー中の固形分の粒度分布は粒子径1μm〜5mmまで幅広く分布し、その内粒子径が 1〜100 μmの物が18wt%、1.5mm 〜 5mmの物が20%含まれていた。
【0033】
実施例4
参考例3のスラリー400gを真空濾過し濾材上に10mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約61wt%であった。その後、常圧下にてポリフェニレンエーテル重量に対し2.0倍量のメタノールを添加し、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕・攪拌し、再び真空濾過を行いケーキの再形成を行った。その後、ポリフェニレンエーテル重量に対し7.0倍量のメタノールにて真空濾過・洗浄を行った。その後、真空下で約1分脱液した。この場合の湿ケーキ中の含液率は55.9wt%、残トルエン量 7.5wt%、残アミン量0.08wt%であった。
【0034】
比較例5
参考例3のスラリーを用い真空濾過にて濾材上に10mm厚のケーキを形成した。この操作によって得られたケーキ中の含液率は約61wt%であった。その後ケーキを解砕することなしに、ポリフェニレンエーテル重量に対し9.0倍量のメタノールをケーキ上より添加して真空濾過・洗浄を行った。その後、真空下で約1分脱液した。この場合の湿ケーキ中の含液率は59.1wt%、残トルエン量16.1wt%、残アミン量0.51wt%であった。
【0035】
比較例6
参考例3のスラリー800gを用いろ材上に20mm厚のケーキを形成した。この操作によって得られたケーキ中の含液率は約62wt%であった。その後ケーキを解砕することなしに、ポリフェニレンエーテル重量に対し9.0倍量のメタノールをケーキ上より添加して真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の湿ケーキ中の含液率59.5wt%、残トルエン量13.9wt%、残アミン量0.36wt%であった。
【0036】
比較例7
参考例3のスラリーを用い濾材上に10mm厚のケーキを形成した。この操作によって得られたケーキ中の含液率は約61wt%であった。その後、常圧下にてポリフェニレンエーテル重量に対し2.25倍量のメタノールを添加し、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕し再び真空濾過を行いケーキの再形成を行った。その後、ポリフェニレンエーテル重量に対し2.25倍量のメタノールにて、同様にしてケーキの解砕と真空濾過による再形成を3回繰り返した。その後、真空下で約1分脱液した。この場合の湿ケーキ中の含液率は56.4wt%、残トルエン量12.0wt%、残アミン量0.28wt%であった。
【0037】
参考例
参考例1と同様の方法で、沈澱時の攪拌速度のみ変えてスラリーを得た。スラリー中の固形分の粒度分布は粒子径1μm〜5mmまで幅広く分布し、その内粒子径が 1〜100 μmの物が13wt%、1.5mm 〜 5mmの物が24%含まれていた。
【0038】
比較例11
参考例4のスラリー 800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約66wt%であった。その後、常圧下でポリフェニレンエーテル重量に対し2倍量のメタノールを添加し、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕・攪拌して再スラリー化した。再び真空濾過を行い濾材上にケーキの再形成を行った。その後、真空下でポリフェニレンエーテル重量に対し7.0倍量のメタノールを、再形成されたケーキ上より添加し、真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の総洗浄メタノール量はポリフェニレンエーテル重量の9.0倍量であり、湿ケーキ中の含液率は60.1wt%、残トルエン量は13.1wt%、残アミン量は0.29wt%であった。また、該ケーキは 100μm以下の粒子が18wt%、23wt%、28wt%含まれるスラリーを用いてケーキの再形成した場合の様な、上層に微粒子層、中間部に比較的粒径の大きい物とその隙間に微粒子が詰まった層があり、濾材に最も近い最下部に微粒子層があるという3層構造になっておらず、ケーキ表面には粗大き粒子のみが存在し、濾材に面した最下層部分にのみ微粒子の層があるという構造になっていた。
【0039】
比較例8
参考例4のスラリー800gを真空濾過し濾材上に厚さ20mmのケーキを形成した。この操作によって得られたケーキ中の含液率は約66wt%であった。その後、ケーキを解砕する事なしに、ポニフェニレンエーテルの重量に対して9.0倍量のメタノールをケーキ上より添加して真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の湿ケーキ中の含液率は63.4wt%、残トルエン量は18.3wt%、残アミン量は0.77wt%であった。
【0040】
参考例5
ポリカーボネート樹脂溶液にポリカーボネートに対して貧溶媒であるイソプロパノールを添加し攪拌しながら析出・沈殿化させた。こうして得たスラリー中には、ポリカーボネート樹脂7wt%、メチレンクロライド35wt%、イソプロパノール58wt%が含まれていた。スラリー中の固形分の粒度分布は 1.5mm以上から30μm以下まで幅広く分布し、その内粒子径が 1〜 100μm以下のものが35wt%、 1.5〜 5mm以上のものが9wt%含まれていた。
【0041】
実施例6
参考例5に記載のスラリー1000gを真空濾過し濾材上にに20mm厚さのケーキを形成した。この後、常圧下でポリカーボネート重量に対して3倍量のイソプロパノールを添加し、、ケーキの最下層から0.5mm分のケーキを残して、ケーキを解砕・攪拌して再スラリー化した。再び真空濾過を行い濾材上にケーキの再形成を行った。その後、真空下でポリカーボネート重量に対し3倍量、6倍量のイソプロパノールを、再形成されたケーキ上より添加し、2度真空濾過・洗浄を行った。その後、真空下で約2分脱液した。この場合の総洗浄イソプロパノール量はポリカーボネート重量の12倍量であり、湿ケーキ中の残メチレンクロライド量は4.3wt%であった。
【0042】
比較例9
参考例5のスラリー1000gを真空下にて濾過し濾材上に20mm厚さのケーキを形成した。その後、ケーキを解砕することなしに、ポリカーボネート重量に対して12倍量のイソプロパノールをケーキ上より添加して真空濾過・洗浄をを行った。その後、真空下で約2分脱液した。この場合の湿ケーキ中の残メチレンクロライド量は、8.1wt%であった。
【0043】
比較例10
参考例5のスラリー1000gを真空下にて濾過し濾材上に20mm厚さのケーキを形成した。その後、常圧下でポリカーボネート重量に対して4倍量のイソプロパノールを添加し、ケーキを解砕・攪拌後、再び真空濾過を行いケーキの再形成を行った。このケーキの解砕と真空濾過による再形成をポリカーボネート重量に対して4倍量のイソプロパノールにて、更に2度繰り返し行った。その後、真空下で約2分脱液した。この場合の総洗浄イソプロパノール量はポリカーボネート重量の12倍量であり、湿ケーキ中の残メチレンクロライド量は6.6wt%であった。
【0044】
【発明の効果】
本発明方法によれば、従来の方法に比較して、洗浄液の使用量や洗浄回数を低減することができ、幅広い粒度分布を持つ粒状固形物の高純度化、あるいは有用物質の回収効率の向上が可能となる。本発明を工業的な装置に適用した場合には、濾過装置を相対的に小さくできるばかりでなく、抽出後の抽出液中有用成分の濃度が高くなり、その後の有用成分の単離に於いても経済的に有利な結果をもたらす等、多くの利点がある。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for efficiently carrying out washing of a granular solid having a wide particle size distribution by a vacuum filtration method or recovering useful components from a by-product granular solid. That is, the present invention is industrially effective for high-purity granular solids having a wide particle size distribution or recovery of useful components contained in granular solids in various fields such as polymer industry and organic / inorganic. A method is provided.
[0002]
[Prior art]
Generally, methods such as centrifugation, pressure filtration, and vacuum filtration are generally used for separating and washing a polymer obtained by solution polymerization or suspension polymerization, or a precipitate obtained by organic synthesis reaction, etc. from a slurry solution. It is used for.
[0003]
When filtering a slurry containing a polymerized solid or organic synthetic compound having a wide particle size distribution obtained by precipitation or precipitation, washing the precipitate after filtration and collecting useful components contained in the precipitate, It has been generally known that it is more difficult to clean coarse particles or recover useful substances contained in coarse particles than fine particles. When washing the cake after slurry filtration, the washing liquid preferentially passes through the flow path of the washing liquid generated between the coarse particles, so that not only coarse particles but also the overall washing efficiency and useful components are recovered. It was also well known that the efficiency decreased. In order to solve these problems, it has been known to use, for example, a pressurizing method or a filtration cleaning method using centrifugal force.
[0004]
If these methods are used to efficiently wash granular solids with a wide particle size distribution, the particles of the granular solids are destroyed by excessive pressure or excessive centrifugal force, and the number of fine particles increases more than necessary. In some cases, the granular solid becomes a very hard large lump, which causes problems such as hindering subsequent handling.
[0005]
When using a vacuum filtration washing method that does not place a relatively large load on the particles, and the conventional method has a wide particle size distribution of the material to be treated, the cake formed after slurry filtration has a slurry liquid or space between the particles. It has a low density. Such a cake is not suitable for subsequent cleaning with a cleaning solution or the recovery of useful components, so a large amount of cleaning solution or the like can be used to achieve the desired level of cleaning and recovery. Currently, there is no choice but to take time and economical disadvantages such as increasing
[0006]
As a general method of increasing the washing efficiency in vacuum filtration, a method of adding a washing liquid to the cake under normal pressure to extend the contact time with the granular solid to increase the washing efficiency, a method of washing the cake many times with the washing liquid, At that time, in order to reduce the amount of the cleaning liquid used, a method of repeatedly using the cleaning liquid (for example, a countercurrent cleaning method) is generally known. However, these methods are not particularly methods that take into consideration the washing of granular solids having a wide particle size distribution, so that they are not only effective for effective washing of granular solids having a wide particle size distribution, but also cleaning liquids, etc. However, there are disadvantages such as the use of a large amount or the number of washings must be increased.
[0007]
[Problems to be solved by the invention]
The present invention intends to solve the above technical difficulties. In other words, it is effective when it is necessary to wash a slurry of granular solids or recover useful components contained in granular solids after a solid-liquid separation by vacuum filtration of granular solids having a wide particle size distribution. An economical cleaning method or recovery method is provided.
[0008]
[Means to solve the problem]
In order to solve the above-mentioned problems, the present inventors have intensively studied and, after solid-liquid separation of a slurry containing granular solids having a wide particle size distribution by vacuum filtration, in the method of washing the granular solids, The cake formed by separating particulate solids from the solvent and the like by vacuum filtration is re-slurried only once by adding and stirring the washing liquid under normal pressure, filtering again under vacuum, and again the cake layer This is a method for washing granular solids formed by washing a cake layer that has been formed and then re-formed with a washing liquid.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Specifically, a slurry containing granular solids having a wide particle size distribution is first solid-liquid separated by vacuum filtration to form a cake on a filter medium such as a filter cloth. Thereafter, a cleaning liquid such as water and / or a solvent is added and stirred under normal pressure. At this time, the cake is dispersed in water and / or a solvent and reslurried. Next, vacuum filtration is performed again to re-form the cake on the filter medium. The reshaped cake was found to be denser than a cake with only slurry filtration.
[0010]
When examined in detail, the cake structure also has a fine particle deposit layer on the top surface, a middle particle clogged with coarse particles between the coarse particles, and the bottom layer portion closest to the filter medium. Although it was thin as a layer, it had a three-layer structure consisting of a fine particle deposition layer.
[0011]
After the three-layer cake is reformed, a cleaning liquid such as water and / or a solvent is added and vacuum filtration cleaning is performed. Compared to the case where the cake is washed without re-slurrying, the washing liquid is uniformly dispersed in the cake, and the pressure above and below the cake is increased by making the cake a dense structure having a three-layer structure. Since the difference becomes uniform as a whole, the effect of reducing the pressure is effectively used, the cleaning liquid is spread to the inside of the coarse particles, and the recovery efficiency of cleaning or useful components is greatly improved.
[0012]
In the method of the present invention, it is not preferable to repeat the crushing of the cake with a washing solution after the cake formation by slurry filtration. That is, the gist of the method of the present invention is not to improve the cleaning efficiency by crushing the cake, thereby bringing the solid solids forming the cake into better contact with the cleaning liquid, and it has a three-layer structure that is easily cleaned. It is to wash after forming the cake layer. When the particle size distribution of the granular solid is wide, it is difficult to improve the cleaning efficiency and the like simply by making better contact with the cleaning liquid. In particular, regarding the cleaning of impurities contained in coarse particles or the recovery of active ingredients, inconveniences such as a very long time are required in order to obtain an effect simply by contact between a granular solid and a cleaning liquid.
[0013]
The granular solids to which the present invention can be applied include a high-molecular substance obtained by precipitation or suspension polymerization after solution polymerization, an organic synthetic compound obtained by a synthesis reaction or a subsequent precipitation step, or recovery of useful components, etc. It is an inorganic compound present in the slurry for the purpose. The particle size of the granular solid is preferably in the range of 1 μm to 5 mm, but is not necessarily limited to this range. However, the present invention is effective when applied to a granular solid containing 15% by weight or more of particles having a particle size of 100 μm or less. In particular, it is effective for separation and washing of a slurry containing a polymer solid having a wide particle size distribution obtained by adding a poor solvent for a polymer to a reaction solution obtained by solution polymerization. It is not bound by type. The concentration of these polymers is usually in the range of several percent to several tens of percent, and the polymer usually has a wide particle size distribution.
[0014]
Various solvents such as a solvent and a precipitating agent used in the method of the present invention can be selected depending on the properties of the target polymer and the synthesis process.
[0015]
Filter materials used for vacuum filtration include synthetic fibers such as nylon, acrylic, polyester, polypropylene, polytetrafluoroethylene, polyetheretherketone, polyvinylidene, polyvinylidene difluoride, and polychlorotrifluoroethylene. Natural fibers such as cotton and wool are not limited. Rather, it is selected in consideration of the properties of the object to be vacuum filtered and the chemical resistance with the solvent. The filter medium is generally used with an air permeability (JISL1096, general textile test method) of (1 cc / sec) / cm 2 to (25 cc / sec) / cm 2 .
[0016]
The degree of vacuum (pressure reduction) at the time of vacuum filtration is not particularly limited as long as it is lower than normal pressure, and is generally 600 torr or less, preferably 450 torr or less.
[0017]
The cake immediately after washing, which has been remolded by the method of the present invention, still contains a large amount of washing liquid, etc., and in order to remove trace amounts of impurities contained in the washing liquid, it is important to remove the liquid after completion of washing. It is. The drainage time after this washing is generally 1 to 10 minutes. This liquid removal operation is usually performed in a vacuum, and the liquid discharge time, the degree of vacuum, and the like are appropriately selected depending on the type of granular solid, the thickness of the cake layer, and the like. Usually the thickness of the cake layer is 5-50mm.
[0018]
In addition, the amount of the cleaning liquid used to reslurry the cake in the cleaning method of the present invention can be appropriately selected depending on the type of granular solid and the cleaning liquid, but the granular solid forming the cake is reslurried uniformly. A sufficient amount is necessary, and is generally 1.0 to 5.0 times the weight of the granular solid. When the amount of the liquid used for reslurry exceeds 5.0 times by weight, it takes time for filtration at the time of cake re-formation, and more cleaning liquid than necessary is used, which is economically disadvantageous. On the other hand, if the amount of liquid used for reslurry is less than 1.0 weight, reslurry becomes difficult.
[0019]
In this invention, the time which reslurries with the washing | cleaning liquid after the cake formation by slurry filtration, etc. is 5 to 120 seconds normally, Preferably it is 5 to 60 seconds. It is not preferable to disintegrate the cake by reslurry for a long time. That is, when the cake is stirred for a long time in a liquid such as a cleaning liquid, the fine particles are further increased, and the subsequent handling is hindered.
[0020]
When the cake is reslurried in the cleaning method of the present invention, the cake layer formed first is usually 2 to 60% of the thickness of the cake layer, preferably 2 to 2 in the lowermost layer portion facing the filter medium. Leaving 20% is effective in preventing the leakage of the cleaning liquid and the like when stirring the slurry under normal pressure and forming a cake suitable for cleaning. Further, since there is no contact between the stirring blade and the filter medium, there is an effect of preventing the filter medium from being damaged.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these.
[0022]
In the examination of vacuum filtration in Examples and Comparative Examples, a series of filtration and washing was performed using a Nutsche type vacuum filter having a filtration area of about 100 cm 2 . Filtration and washing were performed using a filter medium having a degree of vacuum of 400 torr and an air flow rate (5 cc / sec) / cm 2 .
[0023]
Reference example 1
A toluene-amine reaction solution of polyphenylene ether was added to an aqueous methanol solution and precipitated and precipitated while stirring. The slurry thus obtained contains 10 wt% polyphenylene ether, 30 wt% toluene, 52 wt% methanol, 5 wt% water, and 3 wt% amine. The particle size distribution of the solid content in the slurry is widely distributed from 1.5 mm to 30 μm in particle size, including 28 wt% of those whose particle size is 1 to 100 μm or less and 13% of 1.5 to 5 mm. It was. However, the boiling point of the amine was 75 ° C. or higher.
[0024]
Example 1
800 g of the slurry of Reference Example 1 was vacuum filtered to form a 20 mm thick cake on the filter medium. The liquid content in the cake obtained by this operation was about 60 wt%. Thereafter, twice the amount of methanol with respect to the weight of polyphenylene ether was added under normal pressure, leaving a cake of 0.5 mm from the bottom layer of the cake, and the cake was crushed and stirred to reslurry. Vacuum filtration was performed again to re-form the cake on the filter medium. Thereafter, 2.5 times and 4.5 times the amount of methanol with respect to the weight of polyphenylene ether was added from above the re-formed cake under vacuum, and vacuum filtration and washing were performed twice. Thereafter, the liquid was removed under vacuum for about 2 minutes. The total amount of methanol washed in this case was 9.0 times the weight of polyphenylene ether, the liquid content in the wet cake was 53.9 wt%, the amount of residual toluene was 7.0 wt%, and the amount of residual amine was 0.03 wt% . In addition, the cake has a fine particle layer in the upper layer compared to the one just filtered and a layer having a relatively large particle size in the middle part and a layer clogged with fine particles in the gap, and the fine particle layer in the lowermost part closest to the filter medium. It had a three-layer structure.
[0025]
Example 2
800 g of the slurry of Reference Example 1 was vacuum filtered to form a cake having a thickness of 20 mm on the filter medium. The liquid content in the cake obtained by this operation was about 60 wt%. Then, add 4.5 times the amount of methanol to the polyphenylene ether under normal pressure, leave 1.0mm of cake from the bottom layer of the cake, crush and stir the cake, and then drain again to remove the cake. Re-formation was performed. Thereafter, 4.5 times the amount of methanol relative to the weight of polyphenylene ether was added from above the re-formed cake under vacuum, and vacuum filtration and washing were performed. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the total amount of washing methanol was 9.0 times the weight of polyphenylene ether, the liquid content in the wet cake was 55.2 wt%, the residual toluene amount was 8.0 wt%, and the residual amine amount was 0.09 wt%. .
[0026]
Comparative Example 1
800 g of the slurry of Reference Example 1 was vacuum filtered to form a cake having a thickness of 20 mm on the filter medium. The liquid content in the cake obtained by this operation was about 60 wt%. Thereafter, methanol was added three times, 2.5 times, and 4.5 times the amount of polyphenylene ether under vacuum without re-forming the cake, and vacuum filtration and washing were repeated. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the total amount of washing methanol was 9.0 times the weight of polyphenylene ether, the liquid content in the wet cake was 58.5 wt%, the residual toluene amount was 12.2 wt%, and the residual amine amount was 0.28 wt%. It was.
[0027]
Comparative Example 2
800 g of the slurry of Reference Example 1 was vacuum filtered to form a cake having a thickness of 20 mm on the filter medium. The liquid content in the cake obtained by this operation was about 60 wt%. Then, add 2.0 times the amount of methanol to the weight of polyphenylene ether under normal pressure, leave a cake of 0.5 mm from the bottom layer of the cake, crush and stir the cake, then vacuum filter again and cake Was reformed. The cake was crushed and re-formed by vacuum filtration in the same manner twice with 2.5 and 4.5 times the amount of methanol relative to the weight of polyphenylene ether. Thereafter, the liquid was removed under vacuum for about 2 minutes. The total amount of methanol washed in this case was 9.0 times the weight of polyphenylene ether, the liquid content in the wet cake was 56.5 wt%, the residual toluene amount was 10.0 wt%, and the residual amine amount was 0.20 wt%. .
[0028]
Comparative Example 3
800 g of the slurry of Reference Example 1 was vacuum filtered to form a cake having a thickness of 20 mm on the filter medium. The liquid content in the cake obtained by this operation was about 60 wt%. Thereafter, 2.0 times the amount of methanol with respect to the weight of polyphenylene ether was added from above the cake under normal pressure, and the cake was brought into contact without being crushed, and after 1 minute, filtration by vacuum was performed again to wash the cake. Thereafter, 2.5 times the amount of polyphenylene ether and 4.5 times the amount of methanol were added twice, followed by vacuum filtration and washing. Finally, the liquid was removed for about 2 minutes under vacuum. In this case, the liquid content in the wet cake was 57.0 wt%, the residual toluene content was 11.0 wt%, and the residual amine content was 0.24 wt%.
[0029]
Reference example 2
By the same method as in Reference Example 1, only the stirring speed during precipitation was changed to obtain a slurry. The particle size distribution of the solid content in the slurry was widely distributed from 1 μm to 5 mm in particle diameter, and 23 wt% of the particles having an inner particle diameter of 1 to 100 μm and 17 wt% of those having a particle diameter of 1.5 mm to 5 mm.
[0030]
Example 3
800 g of the slurry of Reference Example 2 was vacuum filtered to form a 20 mm cake on the filter medium. The liquid content in the cake obtained by this operation was about 61 wt%. Then, add 1.5 times the amount of methanol to the weight of polyphenylene ether under normal pressure, leave a cake of 0.5 mm from the bottom layer of the cake, crush and stir the cake, and perform vacuum filtration again The cake was reformed. Thereafter, the re-formed cake was vacuum filtered and washed with 7.5 times the amount of methanol relative to the weight of polyphenylene ether. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the liquid content in the wet cake was 54.2 wt%, the residual toluene amount was 7.0 %%, and the residual amine amount was 0.06 wt%.
[0031]
Comparative Example 4
Using the slurry of Reference Example 2, filtration was carried out under vacuum to form a 20 mm cake on the filter medium. The liquid content in the cake obtained by this operation was about 61 wt%. Then add 0.5 times the amount of methanol under normal pressure to the weight of polyphenylene ether, leave 5.0mm of cake from the bottom layer of the cake, crush and stir the cake and vacuum filter again to remove the cake. Re-formation was performed. However, although the cake could be crushed, unlike the cake shape that was normally reshaped, the unevenness was large and many coarse particles were present on the cake surface. The re-formed cake was vacuum filtered and washed with 8.5 times the amount of methanol relative to the weight of polyphenylene ether. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the liquid content in the wet cake was 59.0 wt%, the residual toluene amount was 12.3 wt%, and the residual amine amount was 0.25 wt%.
[0032]
Reference example 3
By the same method as in Reference Example 1, only the stirring speed during precipitation was changed to obtain a slurry. The particle size distribution of the solid content in the slurry was widely distributed from 1 μm to 5 mm in particle size, and 18 wt% of those having an inner particle size of 1 to 100 μm and 20% of 1.5 mm to 5 mm.
[0033]
Example 4
400 g of the slurry of Reference Example 3 was vacuum filtered to form a 10 mm cake on the filter medium. The liquid content in the cake obtained by this operation was about 61 wt%. Then, add 2.0 times the amount of methanol to the polyphenylene ether under normal pressure, leave a cake of 0.5 mm from the bottom layer of the cake, crush and stir the cake, and vacuum filter again The cake was reformed. Thereafter, vacuum filtration and washing were performed with 7.0 times the amount of methanol relative to the weight of polyphenylene ether. Thereafter, the liquid was removed under vacuum for about 1 minute. In this case, the liquid content in the wet cake was 55.9 wt%, the residual toluene amount was 7.5 wt%, and the residual amine amount was 0.08 wt%.
[0034]
Comparative Example 5
Using the slurry of Reference Example 3, a 10 mm thick cake was formed on the filter medium by vacuum filtration. The liquid content in the cake obtained by this operation was about 61 wt%. Then, without pulverizing the cake, 9.0 times the amount of methanol with respect to the weight of polyphenylene ether was added from above the cake, and vacuum filtration and washing were performed. Thereafter, the liquid was removed under vacuum for about 1 minute. In this case, the liquid content in the wet cake was 59.1 wt%, the residual toluene amount was 16.1 wt%, and the residual amine amount was 0.51 wt%.
[0035]
Comparative Example 6
Using a slurry of 800 g of Reference Example 3, a 20 mm thick cake was formed on the filter medium. The liquid content in the cake obtained by this operation was about 62 wt%. Then, without pulverizing the cake, 9.0 times the amount of methanol with respect to the weight of polyphenylene ether was added from above the cake, and vacuum filtration and washing were performed. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the liquid content in the wet cake was 59.5 wt%, the residual toluene amount was 13.9 wt%, and the residual amine amount was 0.36 wt%.
[0036]
Comparative Example 7
Using the slurry of Reference Example 3, a 10 mm thick cake was formed on the filter medium. The liquid content in the cake obtained by this operation was about 61 wt%. Thereafter, 2.25 times the amount of methanol with respect to the weight of polyphenylene ether is added under normal pressure, leaving a cake of 0.5 mm from the bottom layer of the cake, crushing the cake, and vacuum filtering again to re-use the cake. Formation was performed. Thereafter, the crushing of the cake and re-formation by vacuum filtration were repeated three times in the same manner with 2.25 times the amount of methanol based on the weight of polyphenylene ether. Thereafter, the liquid was removed under vacuum for about 1 minute. In this case, the liquid content in the wet cake was 56.4 wt%, the residual toluene amount was 12.0 wt%, and the residual amine amount was 0.28 wt%.
[0037]
Reference example 4
By the same method as in Reference Example 1, only the stirring speed during precipitation was changed to obtain a slurry. The particle size distribution of the solid content in the slurry was widely distributed from 1 μm to 5 mm in particle size, and 13 wt% of the particles having an inner particle size of 1 to 100 μm and 24% of 1.5 mm to 5 mm.
[0038]
Comparative Example 11
800 g of the slurry of Reference Example 4 was vacuum filtered to form a 20 mm thick cake on the filter medium. The liquid content in the cake obtained by this operation was about 66 wt%. Thereafter, twice the amount of methanol with respect to the weight of polyphenylene ether was added under normal pressure, leaving a cake of 0.5 mm from the bottom layer of the cake, and the cake was crushed and stirred to reslurry. Vacuum filtration was performed again to re-form the cake on the filter medium. Thereafter, 7.0 times the amount of methanol relative to the weight of polyphenylene ether was added from above the re-formed cake under vacuum, and vacuum filtration and washing were performed. Thereafter, the liquid was removed under vacuum for about 2 minutes. The total amount of methanol washed in this case was 9.0 times the weight of polyphenylene ether, the liquid content in the wet cake was 60.1 wt%, the residual toluene amount was 13.1 wt%, and the residual amine amount was 0.29 wt%. . The cake has a fine particle layer in the upper layer and a relatively large particle size in the middle as in the case of re-forming the cake using a slurry containing particles of 100 μm or less of 18 wt%, 23 wt%, and 28 wt%. There is a layer packed with fine particles in the gap, and there is no three-layer structure with the fine particle layer closest to the filter medium, only the coarse particles are present on the cake surface, the lowest layer facing the filter medium The structure had a fine particle layer only in the part.
[0039]
Comparative Example 8
800 g of the slurry of Reference Example 4 was vacuum filtered to form a cake having a thickness of 20 mm on the filter medium. The liquid content in the cake obtained by this operation was about 66 wt%. Then, without pulverizing the cake, 9.0 times the amount of methanol with respect to the weight of poniphenylene ether was added from the cake, and vacuum filtration and washing were performed. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the liquid content in the wet cake was 63.4 wt%, the residual toluene content was 18.3 wt%, and the residual amine content was 0.77 wt%.
[0040]
Reference Example 5
Isopropanol, which is a poor solvent for polycarbonate, was added to the polycarbonate resin solution and precipitated and precipitated while stirring. The slurry thus obtained contained 7 wt% polycarbonate resin, 35 wt% methylene chloride, and 58 wt% isopropanol. The particle size distribution of the solid content in the slurry was widely distributed from 1.5 mm to 30 μm, with 35 wt% of those having an inner particle size of 1 to 100 μm and 9 wt% of those having a diameter of 1.5 to 5 mm or more.
[0041]
Example 6
1000 g of the slurry described in Reference Example 5 was vacuum filtered to form a 20 mm thick cake on the filter medium. Thereafter, 3 times the amount of isopropanol with respect to the weight of the polycarbonate was added under normal pressure, and a cake of 0.5 mm was left from the bottom layer of the cake, and the cake was crushed and stirred to reslurry. Vacuum filtration was performed again to re-form the cake on the filter medium. Thereafter, 3 times and 6 times the amount of isopropanol with respect to the weight of the polycarbonate was added from above the reformed cake under vacuum, and vacuum filtration and washing were performed twice. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the total amount of washed isopropanol was 12 times the weight of the polycarbonate, and the amount of residual methylene chloride in the wet cake was 4.3 wt%.
[0042]
Comparative Example 9
1000 g of the slurry of Reference Example 5 was filtered under vacuum to form a 20 mm thick cake on the filter medium. Then, without crushing the cake, 12 times the amount of isopropanol with respect to the weight of the polycarbonate was added from above the cake, and vacuum filtration and washing were performed. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the amount of residual methylene chloride in the wet cake was 8.1 wt%.
[0043]
Comparative Example 10
1000 g of the slurry of Reference Example 5 was filtered under vacuum to form a 20 mm thick cake on the filter medium. Thereafter, 4 times the amount of isopropanol with respect to the weight of the polycarbonate was added under normal pressure, the cake was crushed and stirred, and vacuum filtration was performed again to re-form the cake. The cake was crushed and re-formed by vacuum filtration, and was further repeated twice with 4 times the amount of isopropanol relative to the weight of the polycarbonate. Thereafter, the liquid was removed under vacuum for about 2 minutes. In this case, the total amount of washed isopropanol was 12 times the weight of the polycarbonate, and the amount of residual methylene chloride in the wet cake was 6.6 wt%.
[0044]
【The invention's effect】
According to the method of the present invention, the amount of washing liquid used and the number of washings can be reduced as compared with the conventional method, and the purity of granular solids having a wide particle size distribution is improved, or the recovery efficiency of useful substances is improved. Is possible. When the present invention is applied to an industrial apparatus, not only can the filtration apparatus be made relatively small, but also the concentration of useful components in the extract after extraction is increased, and in the subsequent isolation of useful components. There are many advantages, such as providing economically advantageous results.

Claims (1)

粒径が1μm〜5mmの範囲であり、しかも粒径が100μm以下のものが15重量%以上含まれる幅広い粒度分布を持つ粒状固形物を含むスラリーを真空濾過により固液分離した後、該粒状固形物を洗浄する方法において、一旦真空濾過にて溶剤等と粒状固形物を分離する事で形成されたケーキを、濾材に面する最下層部分に最初に形成されたケーキ層を、該ケーキ層の厚さの2〜60%を残し、粒状固形物の1.0〜5.0重量倍の洗浄液を常圧下にて添加・攪拌して一度だけ再スラリー化し、再度真空下にて濾過を行い、再度ケーキ層を形成させた後、洗浄液で再度形成させたケーキ層を洗浄することを特徴とする粒状固形物の洗浄方法。 After the slurry containing a solid particle having a wide particle size distribution in which the particle size is in the range of 1 to 5 mm and the particle size is 100 μm or less is 15% by weight or more is subjected to solid-liquid separation by vacuum filtration, the granular solid In the method for washing the product, the cake formed by separating the solid solid and the like with a solvent once by vacuum filtration, the cake layer first formed in the lowermost layer part facing the filter medium, Leave 2-60% of the thickness, add and agitate the washing liquid 1.0 to 5.0 times by weight of the granular solid under normal pressure to reslurry it once, and filter again under vacuum, A method for cleaning a granular solid, comprising forming a cake layer again and then cleaning the cake layer formed again with a cleaning liquid.
JP08391799A 1999-03-26 1999-03-26 Method for cleaning granular solids by vacuum filtration Expired - Lifetime JP4518216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08391799A JP4518216B2 (en) 1999-03-26 1999-03-26 Method for cleaning granular solids by vacuum filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08391799A JP4518216B2 (en) 1999-03-26 1999-03-26 Method for cleaning granular solids by vacuum filtration

Publications (2)

Publication Number Publication Date
JP2000271414A JP2000271414A (en) 2000-10-03
JP4518216B2 true JP4518216B2 (en) 2010-08-04

Family

ID=13815965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08391799A Expired - Lifetime JP4518216B2 (en) 1999-03-26 1999-03-26 Method for cleaning granular solids by vacuum filtration

Country Status (1)

Country Link
JP (1) JP4518216B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142617A (en) * 2006-12-08 2008-06-26 Chuo Kakoki Kk Method for cleaning powder, and method for cleaning and drying therefor
JP2012206026A (en) * 2011-03-30 2012-10-25 Sumitomo Bakelite Co Ltd Microchannel device and method for manufacturing microchannel device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615116A (en) * 1992-02-04 1994-01-25 Tsukishima Kikai Co Ltd Horizontal vacuum filter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62125806A (en) * 1985-11-25 1987-06-08 Tsukishima Kikai Co Ltd Vacuum filtration method
JPH01157409A (en) * 1987-12-15 1989-06-20 Kawasaki Steel Corp Hexagonal system boron nitride and its production
GB8917073D0 (en) * 1989-07-26 1989-09-13 D & C Ltd Filtration apparatus
JP3091200B2 (en) * 1990-06-20 2000-09-25 月島機械株式会社 Horizontal vacuum filter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615116A (en) * 1992-02-04 1994-01-25 Tsukishima Kikai Co Ltd Horizontal vacuum filter

Also Published As

Publication number Publication date
JP2000271414A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CA1278668C (en) Recovery of polyester from scrap by high shear conditions
CA2398041A1 (en) Process for the recovery of crude terephthalic acid (cta)
US5648313A (en) Method for production of adsorption material
CN107879370A (en) The preparation method of oil-free carbonated rare earth
JP4518216B2 (en) Method for cleaning granular solids by vacuum filtration
US4533750A (en) Process for isolating methacrylic acid by extraction
JP2005255963A (en) Method for recovering ester monomer from fibrous polyester
TW200906921A (en) Method for separation/removal of foreign material from polyester fiber waste
US2467402A (en) Recovery of proteins from castor
JPH0674296B2 (en) Rubber purification method
FR2877949A1 (en) PROCESS FOR PURIFYING A SOLUTION OF PLASTIC MATERIAL
EP0652969B1 (en) Process of increasing the particle size of polymers
JP2003519205A (en) Method for recovering purified terephthalic acid (PTA)
US2822091A (en) Filtration of solutions
JP2003105079A (en) Method for eliminating metal compound from crude polyether
JP2001122962A (en) Method for producing polyphenylene ether
JP2557103B2 (en) Solid-liquid separation method and solid-liquid separation device
JP5064299B2 (en) Method for producing dry powder of porous polymer particles
JP2004083899A (en) Removing method of finely divided particle from polyethylene terephthalate depolymerization solution and method for regenerating filter medium used for removing method
JP7321313B2 (en) Method for recovering polyester fabric with ionic liquid catalyst
CN211217143U (en) A solvent centrifugation recovery integrated device for preparing etifovir dipivoxil
JP3964190B2 (en) Method for producing vinyl chloride resin for paste processing
JPS60146013A (en) Method for recovery and treatment
US2300176A (en) Rubber chloride precipitation
JPS6069053A (en) Extraction and separation of methacrylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

EXPY Cancellation because of completion of term