JP2020149863A - Conductive resin and superconducting coil using the same - Google Patents

Conductive resin and superconducting coil using the same Download PDF

Info

Publication number
JP2020149863A
JP2020149863A JP2019046359A JP2019046359A JP2020149863A JP 2020149863 A JP2020149863 A JP 2020149863A JP 2019046359 A JP2019046359 A JP 2019046359A JP 2019046359 A JP2019046359 A JP 2019046359A JP 2020149863 A JP2020149863 A JP 2020149863A
Authority
JP
Japan
Prior art keywords
conductive resin
rod
conductor
granular
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019046359A
Other languages
Japanese (ja)
Inventor
草野 貴史
Takashi Kusano
貴史 草野
達郎 宇都
Tatsuro Uto
達郎 宇都
貞憲 岩井
Sadanori Iwai
貞憲 岩井
大谷 安見
Yasumi Otani
安見 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019046359A priority Critical patent/JP2020149863A/en
Publication of JP2020149863A publication Critical patent/JP2020149863A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

To provide a conductive resin that has a good conductivity, and to provide a superconducting coil in which suppression of thermal runaway and quenching is achieved by using the conductive resin.SOLUTION: In the superconducting coil, the conductive resin layer 13 for electrically connecting the superconducting wires includes a resin curing layer 31 that contains a resin main agent, a curing agent, a coupling agent and a dispersant, a plurality of granular conductors 32, and a plurality of rod-shaped conductors 33. The length of the rod-shaped conductor 33 is 10 times or more larger than the particle size of the granular conductor 32.SELECTED DRAWING: Figure 4

Description

本発明の実施形態は,導電性樹脂およびこれを用いた超電導コイルに関する。 An embodiment of the present invention relates to a conductive resin and a superconducting coil using the same.

超電導コイルは、発熱せずに、大電流の通電が可能な電磁石(マグネット)であり、大きな磁場を必要とする種々の用途に用いられる。特に、高温超電導体(例えば、Y系酸化物)は、金属系の超電導体に比べ、転移温度が高いため、これを用いた高温超電導コイルは、より効率的な運用が可能となる(効率的な冷却、小型化、高磁場)。 The superconducting coil is an electromagnet (magnet) capable of energizing a large current without generating heat, and is used in various applications requiring a large magnetic field. In particular, high-temperature superconductors (for example, Y-based oxides) have a higher transition temperature than metal-based superconductors, so high-temperature superconducting coils using them can be operated more efficiently (efficiently). Cooling, miniaturization, high magnetic field).

超電導コイルは、熱暴走やクエンチによって破損する可能性がある。すなわち、コイル(超電導線材)の冷却不足や内部欠陥(例えば、層間剥離)の発生によって、超電導線材内に常電導部(領域)が発生することがある。この常電導部は、電流によって発熱し、極めて短い時間(1秒未満)で数100K温度が上昇する(ホットスポット)。
このため、常電導部の発生を検知することで、熱暴走やクエンチを阻止することは困難である。特に、高温超電導体は、金属系の超電導体に比べて比熱が大きいため、常電導部の拡大が遅く、その検知前に、超電導線材が焼損する可能性が高い。
Superconducting coils can be damaged by thermal runaway or quenching. That is, a normal conducting portion (region) may be generated in the superconducting wire due to insufficient cooling of the coil (superconducting wire) or occurrence of internal defects (for example, delamination). This normal conducting unit generates heat due to an electric current, and the temperature rises by several hundreds of K in an extremely short time (less than 1 second) (hot spot).
Therefore, it is difficult to prevent thermal runaway and quenching by detecting the occurrence of the normal conducting unit. In particular, since the high-temperature superconductor has a larger specific heat than the metal-based superconductor, the expansion of the normal conducting portion is slow, and there is a high possibility that the superconducting wire will be burnt before the detection.

ここで、超電導コイルの巻線部材の側面に迂回路を形成することで、熱暴走またはクエンチを抑制する技術が公開されている(例えば、特許文献1)。しかしながら、熱暴走またはクエンチを効果的に抑制するのは必ずしも容易ではなかった。 Here, a technique for suppressing thermal runaway or quenching by forming a detour on the side surface of a winding member of a superconducting coil has been published (for example, Patent Document 1). However, it has not always been easy to effectively suppress thermal runaway or quenching.

特開2017−103352号公報JP-A-2017-103352

本発明は、導電性の良好な導電性樹脂、この導電性樹脂を用いて、熱暴走やクエンチの抑制を図った超電導コイルを提供することを目的とする。 An object of the present invention is to provide a conductive resin having good conductivity, and a superconducting coil that suppresses thermal runaway and quenching by using this conductive resin.

一態様に係る導電性樹脂は、樹脂主剤、硬化剤、カップリング剤、および分散剤を含む樹脂成分と、複数の粒状導電体と、複数の棒状導電体と、を具備する。前記棒状導電体の長さが、前記粒状導電体の粒径の10倍以上大きい。 The conductive resin according to one embodiment includes a resin component containing a resin main agent, a curing agent, a coupling agent, and a dispersant, a plurality of granular conductors, and a plurality of rod-shaped conductors. The length of the rod-shaped conductor is 10 times or more larger than the particle size of the granular conductor.

また、一態様に係る超電導コイルは、軸の周りに巻き回された超電導線材を有する巻き線部材と、上記巻き線部材の上記軸の方向の第1、第2の側面の少なくとも一方に配置された上記導電性樹脂の硬化層と、を具備する。 Further, the superconducting coil according to one aspect is arranged on at least one of a winding member having a superconducting wire wound around a shaft and the first and second side surfaces of the winding member in the direction of the shaft. The cured layer of the above conductive resin is provided.

本実施形態によれば、導電性樹脂層への効率的な導電性付与が可能となる導電性樹脂を提供することができる。
さらに本実施形態によれば、熱暴走やクエンチの抑制を図った超電導コイルを提供することができる。
According to the present embodiment, it is possible to provide a conductive resin capable of efficiently imparting conductivity to the conductive resin layer.
Further, according to the present embodiment, it is possible to provide a superconducting coil that suppresses thermal runaway and quenching.

実施形態に係る超電導コイル10の一部分解斜視図である。It is a partially disassembled perspective view of the superconducting coil 10 according to the embodiment. 超電導コイル10の断面図である。It is sectional drawing of the superconducting coil 10. 超電導線材20の一部分解斜視図である。It is a partially disassembled perspective view of the superconducting wire material 20. 実施形態に係る導電性樹脂層13の拡大断面図である。It is an enlarged sectional view of the conductive resin layer 13 which concerns on embodiment. 超電導コイル10の製造工程の一例を表すフロー図である。It is a flow chart which shows an example of the manufacturing process of a superconducting coil 10.

以下,図面を参照して,超電導コイルおよび導電性樹脂の実施形態を詳細に説明する。
図1、図2は、実施形態に係る超電導コイル10の一部分解斜視図および断面図である。図1は、導電性樹脂層13,側板14を分離した状態の超電導コイル10を表す。図2は、図1の軸Cに沿って切断した超電導コイル10を表す。
Hereinafter, embodiments of the superconducting coil and the conductive resin will be described in detail with reference to the drawings.
1 and 2 are a partially exploded perspective view and a cross-sectional view of the superconducting coil 10 according to the embodiment. FIG. 1 shows a superconducting coil 10 in a state where the conductive resin layer 13 and the side plate 14 are separated. FIG. 2 represents a superconducting coil 10 cut along the axis C of FIG.

超電導コイル10は、巻枠11,巻線部材12,導電性樹脂層13,側板14を有する。
巻枠11は、中心軸(軸)Cを有する略円筒形状をなし、巻線部材12を保持する。
巻線部材12は、超電導線材20を巻枠11上に軸Cを中心とする同心円状に巻き回して構成される。超電導線材20が周方向θに巻き回され、径方向rに積層される。すなわち、巻枠11上の径方向rに1〜nターン目の超電導線材20が順に積層される。このとき、超電導線材20の異なるターン間は、絶縁層25(例えば、絶縁樹脂)で絶縁される。
The superconducting coil 10 has a winding frame 11, a winding member 12, a conductive resin layer 13, and a side plate 14.
The winding frame 11 has a substantially cylindrical shape having a central axis (axis) C, and holds the winding member 12.
The winding member 12 is formed by winding the superconducting wire 20 around the winding frame 11 in a concentric circle around the shaft C. The superconducting wire 20 is wound in the circumferential direction θ and laminated in the radial direction r. That is, the superconducting wires 20 at the 1st to nth turns are sequentially laminated in the radial direction r on the winding frame 11. At this time, the different turns of the superconducting wire 20 are insulated by the insulating layer 25 (for example, an insulating resin).

導電性樹脂層13は、後述の導電性樹脂の層であり、異なるターン間での超電導線材20同士を電気的に接続させる。すなわち、超電導コイル10の使用中に巻線部材12中に常電導部が生じた場合、導電性樹脂層13が電流を径方向rに迂回させる。この結果、常電導部に流れる電流が低減し、超電導コイル10の熱暴走やクエンチの抑制が図られる。
このため、導電性樹脂層13の材料は、通常運転時(超電導線材20が超電導状態の時)において、超電導線材20の電気抵抗より電気抵抗が大きく、かつ、常電導転移時において、常電導転移箇所の電気抵抗より電気抵抗が小さいことが好ましい。後述のように、本実施形態に係る導電性樹脂層13は、高い導電性(例えば、1×10−3Ωm以下、より好ましくは、5×10−4Ωm以下の抵抗率)を有し、電流を効果的に迂回できる。
導電性樹脂層13は、巻線部材12の軸C方向の両側(または片側)側面に塗布、硬化して形成される。
The conductive resin layer 13 is a layer of a conductive resin described later, and electrically connects the superconducting wire members 20 between different turns. That is, when a normal conducting portion is generated in the winding member 12 while the superconducting coil 10 is being used, the conductive resin layer 13 bypasses the current in the radial direction r. As a result, the current flowing through the normal conducting portion is reduced, and thermal runaway and quenching of the superconducting coil 10 can be suppressed.
Therefore, the material of the conductive resin layer 13 has a higher electric resistance than the electric resistance of the superconducting wire 20 during normal operation (when the superconducting wire 20 is in the superconducting state), and at the time of the normal conduction transition, the normal conduction transition It is preferable that the electric resistance is smaller than the electric resistance of the place. As will be described later, the conductive resin layer 13 according to the present embodiment has high conductivity (for example, resistivity of 1 × 10 -3 Ωm or less, more preferably 5 × 10 -4 Ωm or less). The current can be effectively bypassed.
The conductive resin layer 13 is formed by being applied and cured on both side surfaces (or one side) of the winding member 12 in the axial C direction.

側板14は、導電性樹脂層13を外界から保護するものであり、例えば、絶縁体から構成できる。 The side plate 14 protects the conductive resin layer 13 from the outside world, and can be made of, for example, an insulator.

図3は、超電導線材20の一部分解斜視図である。
超電導線材20は、基体層21,超電導層22,保護層23,安定化層24を有する。
FIG. 3 is a partially exploded perspective view of the superconducting wire 20.
The superconducting wire 20 has a substrate layer 21, a superconducting layer 22, a protective layer 23, and a stabilizing layer 24.

基体層21は、例えば、ニッケル基合金、ステンレスまたは銅などの高強度の金属から構成される。
超電導層22は、基体層21上に形成され、例えば、酸化物超電導体(イットリウム系超電導体:YBaCu、ビスマス系超電導体:BiSrCaCu10、REBCO:REBaCu)等の超電導体で構成される。
保護層23は、超電導層22に含まれる酸素が超電導層22から拡散することを防止して、超電導層22の特性の変動を防止する。
安定化層24は、基体層21,超電導層22,保護層23を被覆し、超電導層22への過剰通電電流の迂回経路となって熱暴走を防止する。
The substrate layer 21 is made of, for example, a nickel-based alloy, a high-strength metal such as stainless steel or copper.
The superconducting layer 22 is formed on the substrate layer 21, for example, an oxide superconductor (yttrium-based superconductor: YBa 2 Cu 3 O 7 , bismuth-based superconductor: Bi 2 Sr 2 Ca 2 Cu 3 O 10 , REBCO: REBa 2 Cu 3 O y) composed of superconductors such.
The protective layer 23 prevents oxygen contained in the superconducting layer 22 from diffusing from the superconducting layer 22 and prevents fluctuations in the characteristics of the superconducting layer 22.
The stabilizing layer 24 covers the base layer 21, the superconducting layer 22, and the protective layer 23, and serves as a bypass path for the excess energizing current to the superconducting layer 22 to prevent thermal runaway.

なお、基体層21と超電導層22の間に、配向層、中間層を配置する等適宜の構成を採用できる。中間層は、基体層21と超電導層22の熱収縮の起因する熱歪みを緩和する。配向層は、中間層を基体層21の表面に配向させる。 An appropriate configuration such as arranging an alignment layer and an intermediate layer between the substrate layer 21 and the superconducting layer 22 can be adopted. The intermediate layer relaxes the thermal strain caused by the thermal shrinkage of the substrate layer 21 and the superconducting layer 22. The alignment layer aligns the intermediate layer with the surface of the substrate layer 21.

(導電性樹脂層13の詳細)
以下、導電性樹脂層13の詳細を説明する。
図4は、実施形態に係る導電性樹脂層13の拡大断面図である。
(Details of Conductive Resin Layer 13)
Hereinafter, the details of the conductive resin layer 13 will be described.
FIG. 4 is an enlarged cross-sectional view of the conductive resin layer 13 according to the embodiment.

導電性樹脂層13は、樹脂硬化層31、粒状導電体32、棒状導電体33を有する。
樹脂硬化層31は、樹脂主剤、硬化剤、カップリング剤、分散剤、調整剤(必要に応じて添加)を含む樹脂混合物を塗布、硬化した層である。
樹脂主剤は、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂等の熱硬化性樹脂を用いることができる。
硬化剤は、室温、あるいは低温で低粘度の液状材料であり、樹脂主剤の硬化を促進する。
カップリング剤は、有機材料と反応結合する官能基,および無機材料と反応結合する官能基の双方を有する化合物,例えば、有機ケイ素化合物(シランカップリング剤)であり、樹脂主剤の接着性を向上する。
The conductive resin layer 13 has a resin cured layer 31, a granular conductor 32, and a rod-shaped conductor 33.
The resin cured layer 31 is a layer to which a resin mixture containing a resin main agent, a curing agent, a coupling agent, a dispersant, and an adjusting agent (added if necessary) is applied and cured.
As the resin main agent, for example, a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, or a melamine resin can be used.
The curing agent is a liquid material having a low viscosity at room temperature or low temperature, and promotes curing of the resin main agent.
The coupling agent is a compound having both a functional group that reacts with an organic material and a functional group that reacts with an inorganic material, for example, an organosilicon compound (silane coupling agent), and improves the adhesiveness of the resin main agent. To do.

分散剤は、例えば、無機材料の粒子であり、樹脂混合物に混合され(充填材)、樹脂硬化物の強度の向上が図られる。 The dispersant is, for example, particles of an inorganic material, which is mixed with a resin mixture (filler) to improve the strength of the cured resin product.

調整剤は、揮発性有機物、例えば、メタノール、エタノール、イソプロピルアルコール、アセトンである。調整剤は、導電性樹脂の塗布性(塗り易さ)の向上、またはその凝固後の厚さの制御のために添加される。樹脂混合物の硬化時に、調整剤の多くは揮発するが、硬化後でも微量な成分は残留する。調整剤が、メタノール、エタノール、イソプロピルアルコールまたはアセトンの場合、この残留物質はそれぞれ、メチル基を含む物質、エチル基を含む物質、酢酸基を含む物質、またはジメチルジオキシランを含む。 The modifier is a volatile organic compound such as methanol, ethanol, isopropyl alcohol, acetone. The adjusting agent is added to improve the coatability (easiness of coating) of the conductive resin or to control the thickness of the conductive resin after solidification. Most of the modifiers volatilize when the resin mixture is cured, but trace components remain even after curing. When the modifier is methanol, ethanol, isopropyl alcohol or acetone, the residual material comprises a methyl group-containing substance, an ethyl group-containing substance, an acetic acid group-containing substance, or dimethyldioxirane, respectively.

粒状導電体32、棒状導電体33は、少なくとも一部が導電性材料からなり、導電性樹脂層13内に分散され、導電性樹脂層13に導電性を付与する。後述のように、形状の異なる粒状導電体32、棒状導電体33を併用することで、導電性樹脂層13の導電性を向上できる。 At least a part of the granular conductor 32 and the rod-shaped conductor 33 is made of a conductive material and is dispersed in the conductive resin layer 13 to impart conductivity to the conductive resin layer 13. As will be described later, the conductivity of the conductive resin layer 13 can be improved by using the granular conductors 32 and the rod-shaped conductors 33 having different shapes in combination.

導電性材料として、金、銀、銅、これらを含む合金(例えば、Ag−Pd、Cu−Cr、Ag−Cu−Ni)を選択できる。
粒状導電体32、棒状導電体33は、同一材料、別材料のいずれとしても良い。例えば、粒状導電体32、棒状導電体33の双方をCu,Agのいずれか、または粒状導電体32、棒状導電体33の一方をCu,他方をAgとできる。
As the conductive material, gold, silver, copper and alloys containing these (for example, Ag-Pd, Cu-Cr, Ag-Cu-Ni) can be selected.
The granular conductor 32 and the rod-shaped conductor 33 may be made of the same material or different materials. For example, both the granular conductor 32 and the rod-shaped conductor 33 can be either Cu or Ag, or one of the granular conductor 32 and the rod-shaped conductor 33 can be Cu and the other can be Ag.

粒状導電体32、棒状導電体33は、単一材料、複合材料のいずれでもよい。すなわち、粒状導電体32、棒状導電体33は、その全体を導電性材料とする(単一材料)他、非導電性の基材を導電性材料で被覆した複合材料としてもよい。
無機の非導電性材料として、ガラス、金属酸化物(例えば、アルミナ)が挙げられる。有機の非導電性材料として、ナイロン樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂が挙げられる。
非導電性材料の粒状体(粒子など)、棒状体(繊維、ファイバなど)にメッキ等の手段で導電性材料を被覆することで、粒状導電体32、棒状導電体33を形成できる。
The granular conductor 32 and the rod-shaped conductor 33 may be either a single material or a composite material. That is, the granular conductor 32 and the rod-shaped conductor 33 may be made of a conductive material as a whole (single material), or may be a composite material in which a non-conductive base material is coated with a conductive material.
Examples of the inorganic non-conductive material include glass and metal oxides (for example, alumina). Examples of the organic non-conductive material include nylon resin, acrylic resin, epoxy resin, phenol resin, urea resin, and melamine resin.
The granular conductor 32 and the rod-shaped conductor 33 can be formed by coating the granular body (particles or the like) or the rod-shaped body (fiber, fiber or the like) of the non-conductive material with the conductive material by means such as plating.

粒状導電体32は、粒状、例えば、球形状(真球形状、回転楕円体形状等)とすることができる。
棒状導電体33は、棒状(例えば、円柱形状)を有する。
The granular conductor 32 can be granular, for example, spherical (spherical, spheroidal, etc.).
The rod-shaped conductor 33 has a rod-like shape (for example, a cylindrical shape).

このとき、粒状導電体32は、棒状導電体33間に介在し、棒状導電体33間の電気的接続をより確実にする。
以上のように、粒状導電体32と棒状導電体33の組み合わせによって、導電性樹脂層13への効率的な導電性付与が可能となる。
At this time, the granular conductor 32 is interposed between the rod-shaped conductors 33 to further secure the electrical connection between the rod-shaped conductors 33.
As described above, the combination of the granular conductor 32 and the rod-shaped conductor 33 makes it possible to efficiently impart conductivity to the conductive resin layer 13.

また、主として、硬化前の樹脂混合物の流動性の確保と硬化後の導電性樹脂層13の導電性の確保を両立する観点から、粒状導電体32、棒状導電体33の形状、数量は以下が好ましい。
粒状導電体32の径(直径)r1は、好ましくは2〜10μm(より好ましくは、4〜7μm)である。
棒状導電体33の径(直径)r2は、好ましくは5〜15μm(より好ましくは7〜10μm)である。
Further, mainly from the viewpoint of ensuring the fluidity of the resin mixture before curing and ensuring the conductivity of the conductive resin layer 13 after curing, the shapes and quantities of the granular conductor 32 and the rod-shaped conductor 33 are as follows. preferable.
The diameter (diameter) r1 of the granular conductor 32 is preferably 2 to 10 μm (more preferably 4 to 7 μm).
The diameter (diameter) r2 of the rod-shaped conductor 33 is preferably 5 to 15 μm (more preferably 7 to 10 μm).

ここで、粒状導電体32の径r1は、棒状導電体33の径r2(円柱状でない場合は、断面積を円周率で除し、その1/2乗を2倍した値とする)より小さいことが好ましい。複数の棒状導電体33の間に粒状導電体32が配置されて、複数の棒状導電体33間の導通を確保することを容易とするためである。具体的には、径r1とr2の比(=r2/r1)は、好ましくは0.4〜2.5(さらに好ましくは0.7〜1.5)である。 Here, the diameter r1 of the granular conductor 32 is derived from the diameter r2 of the rod-shaped conductor 33 (if it is not cylindrical, the cross-sectional area is divided by the pi and its 1/2 power is doubled). Small is preferable. This is because the granular conductor 32 is arranged between the plurality of rod-shaped conductors 33, and it is easy to secure the continuity between the plurality of rod-shaped conductors 33. Specifically, the ratio of diameters r1 to r2 (= r2 / r1) is preferably 0.4 to 2.5 (more preferably 0.7 to 1.5).

棒状導電体33の長さは、好ましくは、粒状導電体32の径r1の10〜2,000倍(20〜20,000μm)、より好ましくは、50〜100倍(200〜700μm)である。粒状導電体32の径r1に対する棒状導電体33の長さの比(長さ/径)が小さすぎると、電子の経路(電流パス)を確保する為には数多くの粒状導電体32が必要となるが、粒状導電体32同士の接触も必要となり、導電率が低下(抵抗率が増大)し易くなる。一方、比(長さ/径)が大きすぎると、棒状導電体33同士の隙間を、粒状導電体32が埋めることが困難となり、導電率が低下(抵抗率が増大)し易くなる。 The length of the rod-shaped conductor 33 is preferably 10 to 2,000 times (20 to 20,000 μm), more preferably 50 to 100 times (200 to 700 μm) the diameter r1 of the granular conductor 32. If the ratio (length / diameter) of the length of the rod-shaped conductor 33 to the diameter r1 of the granular conductor 32 is too small, a large number of granular conductors 32 are required to secure the electron path (current path). However, contact between the granular conductors 32 is also required, and the conductivity tends to decrease (resistivity increases). On the other hand, if the ratio (length / diameter) is too large, it becomes difficult for the granular conductor 32 to fill the gap between the rod-shaped conductors 33, and the conductivity tends to decrease (resistivity increases).

粒状導電体32の径r1、棒状導電体33の径r2、長さが、それぞれ揃っていることが好ましい。これらの径や長さにバラツキがあると、粒状導電体32、棒状導電体33の間に隙間が発生し易くなる。
例えば、粒状導電体32の径r1、棒状導電体33の径r2、長さそれぞれの大部分(値が下から10%〜90%の範囲内のデータ)が、それぞれの中央値(メジアン)の0.7〜1.5倍の範囲内に含まれることが好ましい。すなわち、径r1、r2、長さそれぞれの下から全体の10%未満の範囲のデータ(下位10%未満)、下から全体の90%より大きい範囲のデータ(上位10%未満)であれば、中央値の0.7〜1.5倍の範囲外であることが許容される。
また、径r1、径r2、長さそれの10%〜90%の範囲のデータ)が、それぞれの中央値の0.8〜1.3倍(さらに好ましくは、0.9〜1.1倍)の範囲内に含まれることがより好ましい。
このような粒径の分布は、例えば、粒状導電体32(粒状物質)の場合は、市販の粒度分布測定装置(水中で粒子を浮遊させてレーザを照射した時に出来る影の大きさを計測する装置等)で測定できる。また棒状導電体33(棒状物質)の直径は、可能な限り方向を揃えた状態で底面と平行な面で切断した面を顕微鏡観察し画像処理によって測定できる。
It is preferable that the diameter r1 of the granular conductor 32, the diameter r2 of the rod-shaped conductor 33, and the length are the same. If there is a variation in these diameters and lengths, a gap is likely to be generated between the granular conductor 32 and the rod-shaped conductor 33.
For example, most of the diameter r1 of the granular conductor 32, the diameter r2 of the rod-shaped conductor 33, and the length (data in the range of 10% to 90% from the bottom) are the median values of each. It is preferably contained in the range of 0.7 to 1.5 times. That is, if the data is in the range of less than 10% of the total from the bottom of the diameters r1, r2, and the length (less than the lower 10%), and the data in the range of more than 90% of the whole from the bottom (less than the top 10%). It is acceptable to be outside the median range of 0.7-1.5 times.
Further, the diameter r1, the diameter r2, and the data in the range of 10% to 90% of the length itself are 0.8 to 1.3 times (more preferably 0.9 to 1.1 times) the median of each. ) Is more preferable.
For such a particle size distribution, for example, in the case of a granular conductor 32 (particulate matter), a commercially available particle size distribution measuring device (for example, measuring the size of a shadow formed when particles are suspended in water and irradiated with a laser). It can be measured with a device, etc.). Further, the diameter of the rod-shaped conductor 33 (rod-shaped substance) can be measured by image processing by observing a surface cut by a surface parallel to the bottom surface in a state where the directions are aligned as much as possible.

導電性樹脂層13に占める導電体全体(粒状導電体32と棒状導電体33)の重量は、好ましくは30〜70重量%(より好ましくは40〜60重量%)である。
このうち、導電性樹脂層13に占める粒状導電体32の重量は、好ましくは25〜40重量%(より好ましくは30〜35重量%)である。
導電性樹脂層13に占める棒状導電体33の重量は、好ましくは10〜25重量%(より好ましくは15〜20重量%)である。
The weight of the entire conductor (granular conductor 32 and rod-shaped conductor 33) in the conductive resin layer 13 is preferably 30 to 70% by weight (more preferably 40 to 60% by weight).
Of these, the weight of the granular conductor 32 in the conductive resin layer 13 is preferably 25 to 40% by weight (more preferably 30 to 35% by weight).
The weight of the rod-shaped conductor 33 in the conductive resin layer 13 is preferably 10 to 25% by weight (more preferably 15 to 20% by weight).

粒状導電体32と棒状導電体33を導電性樹脂層13中に均一に分散するために、これらの密度(g/cm:単位体積当たりの質量)を適宜の値とすることが好ましい。硬化前、粒状導電体32と棒状導電体33は、液状の樹脂混合物中に浮いた状態で存在する。このため、粒状導電体32と棒状導電体33の密度が大きく異なると、個別の層を形成し、均一な分散が阻害される。
すなわち、粒状導電体32の密度d1と棒状導電体33の密度d2は、近いことが好ましい。これらの密度の比K(=d1/d2)は、好ましくは0.1〜10(より好ましくは、0.25〜4、さらに好ましくは、0.5〜2)である。
In order to uniformly disperse the granular conductor 32 and the rod-shaped conductor 33 in the conductive resin layer 13, it is preferable to set their densities (g / cm 3 : mass per unit volume) to appropriate values. Before curing, the granular conductor 32 and the rod-shaped conductor 33 are present in a floating state in the liquid resin mixture. Therefore, if the densities of the granular conductor 32 and the rod-shaped conductor 33 are significantly different, individual layers are formed and uniform dispersion is hindered.
That is, it is preferable that the density d1 of the granular conductor 32 and the density d2 of the rod-shaped conductor 33 are close to each other. The ratio K (= d1 / d2) of these densities is preferably 0.1 to 10 (more preferably 0.25 to 4, still more preferably 0.5 to 2).

また、粒状導電体32の密度(g/cm:単位体積当たりの平均質量)d1と棒状導電体33の密度d2は、液状の樹脂混合物の平均密度(例えば、0.7〜2.0g/cm)とある程度近く、好ましくは4g/cm以下(より好ましくは、3g/cm以下)である。 Further, the density of the granular conductor 32 (g / cm 3 : average mass per unit volume) d1 and the density d2 of the rod-shaped conductor 33 are the average density of the liquid resin mixture (for example, 0.7 to 2.0 g / g / g /. It is close to cm 3 ) to some extent, preferably 4 g / cm 3 or less (more preferably 3 g / cm 3 or less).

以上の、粒状導電体32および棒状導電体33の形状、寸法、分量等は、例えば、電子顕微鏡での観察によって、測定可能である。 The shapes, dimensions, quantities, and the like of the granular conductor 32 and the rod-shaped conductor 33 can be measured by, for example, observing with an electron microscope.

(超電導コイル10の製造方法)
以下、超電導コイル10の製造方法を説明する。
図5は、超電導コイル10の製造工程の一例を表すフロー図である。超電導コイル10は、次のようにして作成できる。
(Manufacturing method of superconducting coil 10)
Hereinafter, a method for manufacturing the superconducting coil 10 will be described.
FIG. 5 is a flow chart showing an example of a manufacturing process of the superconducting coil 10. The superconducting coil 10 can be created as follows.

(1)巻線部材12の作成(ステップS11)
巻枠11に超電導線材20を巻いて巻線部材12を作成する。
巻線部材12は、一般的に、巻枠11への巻回によって成形された後に、巻枠11ごとエポキシ樹脂などの絶縁材に含浸される(絶縁層25の形成)。
巻枠11に巻回されて隣接する複数の超電導線材20同士の間隙(線材間隙)に絶縁材が充填されるとともに、巻線部材12が絶縁材でコーティングされる。
(1) Preparation of winding member 12 (step S11)
The superconducting wire 20 is wound around the winding frame 11 to create the winding member 12.
The winding member 12 is generally formed by winding around the winding frame 11 and then impregnated with an insulating material such as epoxy resin together with the winding frame 11 (formation of the insulating layer 25).
An insulating material is filled in the gaps (wire gaps) between the plurality of superconducting wire rods 20 that are wound around the winding frame 11 and adjacent to each other, and the winding member 12 is coated with the insulating material.

(2)導電性樹脂混合物の作成(ステップS12)
樹脂主剤、硬化剤、カップリング剤、分散剤、調整剤(必要に応じて添加)、粒状導電体32、棒状導電体33を混合して、導電性樹脂混合物を作成する。例えば、自転・公転式の混合機を用いて、導電性樹脂混合物を攪拌する。
(2) Preparation of conductive resin mixture (step S12)
A resin main agent, a curing agent, a coupling agent, a dispersant, an adjusting agent (added if necessary), a granular conductor 32, and a rod-shaped conductor 33 are mixed to prepare a conductive resin mixture. For example, a rotating / revolving mixer is used to stir the conductive resin mixture.

(3)導電性樹脂層13の作製、側板14の取り付け(ステップS13,S14)
巻線部材12の側面に、混合、攪拌した導電性樹脂混合物を塗布し、側板14を取り付ける。
(3) Preparation of conductive resin layer 13 and attachment of side plate 14 (steps S13, S14)
A mixed and agitated conductive resin mixture is applied to the side surface of the winding member 12, and the side plate 14 is attached.

(4)導電性樹脂層13の硬化(ステップS15)
その後、導電性樹脂層13を硬化させることで、超電導コイル10が作成される。このとき、必要に応じて、導電性樹脂層13を加熱してもよい。
(4) Curing of the conductive resin layer 13 (step S15)
After that, the superconducting coil 10 is created by curing the conductive resin layer 13. At this time, the conductive resin layer 13 may be heated if necessary.

(1)実施例1、比較例1
実施例1および比較例1につき説明する。
原料としてエポキシ樹脂(樹脂主剤)、硬化剤、カップリング剤、分散剤、および導電体を使用した。導電体としては、球体(銅粉)の粒状導電体32と柱体(銀線材)の棒状導電体33を用いた。
(1) Example 1, Comparative Example 1
Example 1 and Comparative Example 1 will be described.
Epoxy resin (resin main agent), curing agent, coupling agent, dispersant, and conductor were used as raw materials. As the conductors, a spherical (copper powder) granular conductor 32 and a pillar (silver wire) rod-shaped conductor 33 were used.

比較例1では、銅粉の粒径と銀線材の長さは、10μmと20μm(中央値、それぞれの範囲は、5〜15μmと15〜25μmとほぼ同等とした(長さ/粒径=2.0)。
実施例1では、銅粉の粒径と銀線材の長さは、3μmと50μm(中央値、それぞれ範囲は、1〜5μmと30〜70μm)と大きく異ならせた(長さ/粒径=36.7)。
これらを所定の比率で秤量した。例えば、体積比で「エポキシ樹脂:硬化剤:カップリング剤:分散剤:銅粉:銀線材=33:1:15:1:25:25」で測りとり、自転・公転式の混合機で1分間混合した。
これらを幅5mm、長さ50mmの型(溝)に塗布、硬化して、体積抵抗率測定用試料とし、四端子法で抵抗率を測定した。
比較例1では導通が確保できずに抵抗率が測定出来なかった。これに対し、実施例1では抵抗率3.2×10−4Ωmが得られた。
In Comparative Example 1, the particle size of the copper powder and the length of the silver wire were set to be approximately the same as 10 μm and 20 μm (median, the respective ranges were 5 to 15 μm and 15 to 25 μm (length / particle size = 2). .0).
In Example 1, the particle size of the copper powder and the length of the silver wire were significantly different from 3 μm and 50 μm (median, the ranges were 1 to 5 μm and 30 to 70 μm, respectively) (length / particle size = 36). .7).
These were weighed at a predetermined ratio. For example, measure by volume ratio "epoxy resin: curing agent: coupling agent: dispersant: copper powder: silver wire = 33: 1: 15: 1: 25: 25", and 1 with a rotating / revolving mixer. Mix for minutes.
These were applied to a mold (groove) having a width of 5 mm and a length of 50 mm and cured to prepare a sample for volume resistivity measurement, and the resistivity was measured by the four-terminal method.
In Comparative Example 1, the resistivity could not be measured because the continuity could not be secured. On the other hand, in Example 1, a resistivity of 3.2 × 10 -4 Ωm was obtained.

以上の様に、導電性樹脂の抵抗率測定結果から、粒状導電体の粒径と棒状導電体の長さが大きく異なると、抵抗率(導電性)を改善できることが確認できた。複数の棒状導電体の間に粒状導電体が入り込むことにより、導電体が全体として隙間無く密に配置したためと考えられる。 As described above, from the resistivity measurement results of the conductive resin, it was confirmed that the resistivity (conductivity) can be improved when the particle size of the granular conductor and the length of the rod-shaped conductor are significantly different. It is considered that the granular conductors were inserted between the plurality of rod-shaped conductors so that the conductors were densely arranged without any gaps as a whole.

(2)実施例2、3
実施例2と実施例3では、それぞれの導電体の大きさ(粒径と長さ)を揃えた原料を使用し、実施例1と同様の工程で導電性樹脂を試作した。
実施例2では2〜4μmの粒径を有する粒状導電体を使用したところ(径r1の10〜90%が、中央値(2.9μm)の0.91〜1.10倍)、2.8×10−4Ωmの抵抗率が得られた。
実施例3では、400〜600μmの長さを有する棒状導電体を使用したところ(径r1の10〜90%が、中央値(510μm)の0.80〜1.26倍)、2.1×10−4Ωmの抵抗率が得られた。
これに対して、実施例1では、粒状物質の径の10〜90%が、中央値(3.1μm)の0.82〜1.22倍に対応し、棒状物質の長さの10〜90%が、中央値(490μm)の0.72〜1.43倍に対応していた。
(2) Examples 2 and 3
In Examples 2 and 3, raw materials having the same size (particle size and length) of the respective conductors were used, and a conductive resin was prototyped in the same process as in Example 1.
In Example 2, when a granular conductor having a particle size of 2 to 4 μm was used (10 to 90% of the diameter r1 was 0.91 to 1.10 times the median value (2.9 μm)), 2.8. A resistivity of × 10 -4 Ωm was obtained.
In Example 3, when a rod-shaped conductor having a length of 400 to 600 μm was used (10 to 90% of the diameter r1 was 0.80 to 1.26 times the median (510 μm)), 2.1 × A resistivity of 10 -4 Ωm was obtained.
On the other hand, in Example 1, 10 to 90% of the diameter of the particulate matter corresponds to 0.82 to 1.22 times the median (3.1 μm), and 10 to 90% of the length of the rod-shaped substance. % Corresponded to 0.72 to 1.43 times the median (490 μm).

以上のように、同種の導電体の大きさをより均一化することで、抵抗率をさらに改善できることを確認できた。 As described above, it was confirmed that the resistivity can be further improved by making the size of the same type of conductor more uniform.

(3)実施例4
実施例1〜3では、導電体として銅粉や銀線のように単一材料の事例について述べたが、複合材料を用いてもよい。
実施例4では、導電体としてアルミナ粉にCuを蒸着した粒状物質とナイロン繊維にAgを電解メッキした棒状物質を使用し、実施例1と同様な原料と工程で試作した。
(3) Example 4
In Examples 1 to 3, the case of a single material such as copper powder or silver wire as a conductor has been described, but a composite material may be used.
In Example 4, a granular substance in which Cu was vapor-deposited on alumina powder and a rod-shaped substance in which Ag was electroplated on nylon fibers were used as conductors, and a prototype was made using the same raw materials and processes as in Example 1.

実施例4では、抵抗率2.9×10−4Ωmが得られた。抵抗率が実施例1とほぼ同等だったのは電気の経路が複数の導電体の接触点を介しているからである。その結果、中身の物質が酸化物や有機物の様な絶縁体でも、抵抗率に与える影響は小さく、ナイロンのような柔らかい物質により接触抵抗が低減し、抵抗率が減少した。
またメッキとすることでAgのような貴金属の使用を抑制でき、コスト低減の効果も得られた。
以上のように、導電体は単一材料である必要はなく、酸化物や有機物の表面を導電体で被覆した複合材料としても同様の効果が得られた。
In Example 4, a resistivity of 2.9 × 10 -4 Ωm was obtained. The resistivity was almost the same as that of Example 1 because the electric path is through the contact points of the plurality of conductors. As a result, even if the substance inside is an insulator such as an oxide or an organic substance, the effect on the resistivity is small, and the contact resistance is reduced by a soft substance such as nylon, and the resistivity is reduced.
Further, by plating, the use of precious metals such as Ag can be suppressed, and the effect of cost reduction can be obtained.
As described above, the conductor does not have to be a single material, and the same effect can be obtained as a composite material in which the surface of an oxide or an organic substance is coated with the conductor.

以上、実施例1〜4では、導電成分として銅や銀のような純金属の事例について述べたが本願発明はこれらに限るものではなく、AgやCuを含んだ物質、例えばAg−Pd、Cu−Cr、Ag−Cu−Ni等についても同様の効果が期待できる。 As described above, in Examples 1 to 4, examples of pure metals such as copper and silver as conductive components have been described, but the present invention is not limited to these, and substances containing Ag and Cu, for example, Ag-Pd and Cu. Similar effects can be expected for −Cr, Ag—Cu—Ni and the like.

(4)実施例5
実施例5では、導電性樹脂を作製する混合工程前に、導電性樹脂の体積の30vol%の割合で、調整剤としてエタノール(揮発性有機溶剤)を添加して実施例1と同一工程で試作した。この結果、抵抗率3.3×10−4Ωmが得られ、固化後の導電性樹脂を分析したところ、僅かだが、エチル基を含む物質を検出できた。
このエタノールの添加により、次のように、作業性が向上される。
・粘度(粘性)が低下し、塗布性(塗り易さ)が向上する。
・塗布前の導電性樹脂の密度が低下し、より薄く塗布することが可能となる。
・調整剤に起因する残存物質があるが、僅かなので抵抗率に与える影響は小さい。
また調整剤としては、エタノールに限らず、メタノール、イソプロピルアルコール、アセトン等の揮発性有機溶剤についても同様の結果を期待出来る。
(4) Example 5
In Example 5, ethanol (volatile organic solvent) was added as an adjusting agent at a ratio of 30 vol% of the volume of the conductive resin before the mixing step of producing the conductive resin, and a trial production was performed in the same step as in Example 1. did. As a result, a resistivity of 3.3 × 10 -4 Ωm was obtained, and when the conductive resin after solidification was analyzed, a substance containing an ethyl group could be detected, although it was a small amount.
By adding this ethanol, workability is improved as follows.
-Viscosity (viscosity) decreases and coatability (easiness to apply) improves.
-The density of the conductive resin before application is reduced, and it becomes possible to apply thinner.
-Although there is residual substance due to the adjusting agent, the effect on resistivity is small because it is small.
Further, the adjusting agent is not limited to ethanol, and similar results can be expected for volatile organic solvents such as methanol, isopropyl alcohol, and acetone.

(超電導コイル10での試験)
実施例1〜5の導電性樹脂を用いて超電導コイル10を作成、試験した。
ここでは、巻線部材12の側面の一方に導電性樹脂混合物を塗布、硬化して、導電性樹脂層13を有する超電導コイル10を作成した。その後、液体窒素雰囲気で超電導コイル10の過電流試験を実施した。この結果、超電導コイル10の導電性樹脂層13で電流の迂回が観察され、実施形態1〜5の導電性樹脂の有効性を確認できた。
(Test with superconducting coil 10)
The superconducting coil 10 was prepared and tested using the conductive resins of Examples 1 to 5.
Here, a conductive resin mixture was applied to one of the side surfaces of the winding member 12 and cured to prepare a superconducting coil 10 having a conductive resin layer 13. Then, an overcurrent test of the superconducting coil 10 was carried out in a liquid nitrogen atmosphere. As a result, the diversion of the electric current was observed in the conductive resin layer 13 of the superconducting coil 10, and the effectiveness of the conductive resin of the first to fifth embodiments could be confirmed.

以上のように、導電性樹脂の導電体を粒状(粒状導電体32)と棒状(棒状導電体33)とし、棒の長さを粒の径より十分長くすることで、低抵抗率(高導電率)を有する導電性樹脂が得られる。またこの導電性樹脂を超電導コイルに使用することで、熱暴走やクエンチを抑制できる。
ここでは、導電性樹脂を超電導コイル10の電流迂回に用いている。しかし、本実施形態に係る導電性樹脂は、広範な用途を有し、超電導とは異なる他分野、例えば、半導体装置に用いることができる。
As described above, the conductors of the conductive resin are made into granules (granular conductor 32) and rod-shaped (rod-shaped conductor 33), and the length of the rod is made sufficiently longer than the diameter of the particles, so that the resistivity is low (high conductivity). A conductive resin having a resistivity) can be obtained. Further, by using this conductive resin for the superconducting coil, thermal runaway and quenching can be suppressed.
Here, the conductive resin is used for the current bypass of the superconducting coil 10. However, the conductive resin according to this embodiment has a wide range of uses, and can be used in other fields different from superconductivity, for example, semiconductor devices.

本発明のいくつかの実施形態を説明したが,これらの実施形態は,例として提示したものであり,発明の範囲を限定することは意図していない。これら新規な実施形態は,その他の様々な形態で実施されることが可能であり,発明の要旨を逸脱しない範囲で,種々の省略,置き換え,変更を行うことができる。これら実施形態やその変形は,発明の範囲や要旨に含まれるとともに,特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10: 超電導コイル、11: 巻枠、12: 巻線部材、13: 導電性樹脂層、14: 側板、20: 超電導線材、21: 基体層、22: 超電導層、23: 保護層、24: 安定化層、25: 絶縁層、31: 樹脂硬化層、32: 粒状導電体、33: 棒状導電体 10: Superconducting coil, 11: Winding frame, 12: Winding member, 13: Conductive resin layer, 14: Side plate, 20: Superconducting wire, 21: Base layer, 22: Superconducting layer, 23: Protective layer, 24: Stable Chemical layer, 25: Insulation layer, 31: Resin cured layer, 32: Granular conductor, 33: Rod-shaped conductor

Claims (8)

樹脂主剤、硬化剤、カップリング剤、および分散剤を含む樹脂成分と、
複数の粒状導電体と、
複数の棒状導電体と、を具備し、
前記棒状導電体の長さが、前記粒状導電体の粒径の10倍以上大きい、
導電性樹脂。
Resin components including resin main agent, hardener, coupling agent, and dispersant,
With multiple granular conductors,
With a plurality of rod-shaped conductors,
The length of the rod-shaped conductor is 10 times or more larger than the particle size of the granular conductor.
Conductive resin.
前記複数の粒状導電体の粒径および前記複数の棒状導電体の長さの少なくともいずれかにおいて、その10%〜90%が、中央値の0.7〜1.5倍の範囲内に含まれる、
請求項1に記載の導電性樹脂。
At least one of the particle size of the plurality of granular conductors and the length of the plurality of rod-shaped conductors, 10% to 90% thereof is included in the range of 0.7 to 1.5 times the median value. ,
The conductive resin according to claim 1.
前記粒状導電体、前記棒状導電体の少なくともいずれかは、絶縁体およびこの絶縁体を被覆する導電性被覆を有する
請求項1または2に記載の導電性樹脂。
The conductive resin according to claim 1 or 2, wherein at least one of the granular conductor and the rod-shaped conductor has an insulator and a conductive coating for coating the insulator.
前記粒状導電体および前記棒状導電体は、銀または銅の少なくとも一方を含む
請求項1乃至3のいずれか1項に記載の導電性樹脂。
The conductive resin according to any one of claims 1 to 3, wherein the granular conductor and the rod-shaped conductor include at least one of silver and copper.
前記樹脂成分が、メタノール、エタノール、イソプロピルアルコールまたはアセトンの少なくとも1つを含む
請求項1乃至4のいずれか1項に記載の導電性樹脂。
The conductive resin according to any one of claims 1 to 4, wherein the resin component contains at least one of methanol, ethanol, isopropyl alcohol or acetone.
前記樹脂成分が、メチル基、エチル基、酢酸基、またはジメチルジオキシランの少なくとも1つを含む
請求項5に記載の導電性樹脂。
The conductive resin according to claim 5, wherein the resin component contains at least one of a methyl group, an ethyl group, an acetic acid group, or dimethyldioxirane.
硬化後の抵抗率が、1×10−3Ωm以下である
請求項1乃至6のいずれか1項に記載の導電性樹脂。
The conductive resin according to any one of claims 1 to 6, wherein the resistivity after curing is 1 × 10 -3 Ωm or less.
軸の周りに巻き回された超電導線材を有する巻き線部材と、
前記巻き線部材の前記軸の方向の第1、第2の側面の少なくとも一方に配置された請求項1乃至7のいずれか1項に記載の導電性樹脂の硬化層と、
を具備する超電導コイル。
A winding member having a superconducting wire wound around a shaft,
The cured layer of the conductive resin according to any one of claims 1 to 7, which is arranged on at least one of the first and second side surfaces of the winding member in the axial direction.
A superconducting coil equipped with.
JP2019046359A 2019-03-13 2019-03-13 Conductive resin and superconducting coil using the same Pending JP2020149863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019046359A JP2020149863A (en) 2019-03-13 2019-03-13 Conductive resin and superconducting coil using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019046359A JP2020149863A (en) 2019-03-13 2019-03-13 Conductive resin and superconducting coil using the same

Publications (1)

Publication Number Publication Date
JP2020149863A true JP2020149863A (en) 2020-09-17

Family

ID=72432076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019046359A Pending JP2020149863A (en) 2019-03-13 2019-03-13 Conductive resin and superconducting coil using the same

Country Status (1)

Country Link
JP (1) JP2020149863A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206641A (en) * 1982-05-26 1983-12-01 Sumitomo Bakelite Co Ltd Composite material of metal with thermosetting resin
JPS59152936A (en) * 1983-02-21 1984-08-31 Kuraray Co Ltd Hybrid resin composition having excellent electromagnetic shielding property and rigidity
JP2006070300A (en) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp Metal particulate-containing composition and its application
JP2011052300A (en) * 2009-09-04 2011-03-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2014051590A (en) * 2012-09-07 2014-03-20 Namics Corp Silver paste composition and its manufacturing method
JP2015086090A (en) * 2013-10-29 2015-05-07 株式会社ノリタケカンパニーリミテド Conductor paste and heat-dissipating substrate
JP2017103352A (en) * 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2017141328A (en) * 2016-02-08 2017-08-17 日本碍子株式会社 Transparent conductive adhesive, laminate, and substrate joining method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206641A (en) * 1982-05-26 1983-12-01 Sumitomo Bakelite Co Ltd Composite material of metal with thermosetting resin
JPS59152936A (en) * 1983-02-21 1984-08-31 Kuraray Co Ltd Hybrid resin composition having excellent electromagnetic shielding property and rigidity
JP2006070300A (en) * 2004-08-31 2006-03-16 Mitsubishi Materials Corp Metal particulate-containing composition and its application
JP2011052300A (en) * 2009-09-04 2011-03-17 Dowa Electronics Materials Co Ltd Flaky silver powder, method for producing the same, and conductive paste
JP2014051590A (en) * 2012-09-07 2014-03-20 Namics Corp Silver paste composition and its manufacturing method
JP2015086090A (en) * 2013-10-29 2015-05-07 株式会社ノリタケカンパニーリミテド Conductor paste and heat-dissipating substrate
JP2017103352A (en) * 2015-12-02 2017-06-08 株式会社東芝 Superconducting coil and superconducting coil device
JP2017141328A (en) * 2016-02-08 2017-08-17 日本碍子株式会社 Transparent conductive adhesive, laminate, and substrate joining method

Similar Documents

Publication Publication Date Title
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
US8238990B2 (en) Granular superconducting joint
Godeke et al. Limits of NbTi and ${\rm Nb} _ {3}{\rm Sn} $, and Development of W&R Bi–2212 High Field Accelerator Magnets
US3869686A (en) Super-conductive coils incorporating insulation between adjacent winding layers having a contraction rate matching that of the super-conductive material
US4977039A (en) Superconducting wire and cable
CN105940466A (en) Metal matrix composite wire, power inductor, and preparation methods thereof
Wang et al. Transport properties of multifilament MgB2 long wires and coils prepared by an internal Mg diffusion process
JP2010093036A (en) Superconducting coil, superconducting magnet, epoxy resin varnish and method for manufacturing them
Mulder et al. Development of joint terminals for a new six-around-one ReBCO-CORC cable-in-conduit conductor rated 45 kA at 10 T/4 K
JP2002373534A (en) Superconducting wire, its producing method, and superconducting magnet using it
JP2004192934A (en) Superconductive wire and its manufacturing method
JP2020149863A (en) Conductive resin and superconducting coil using the same
JP7123728B2 (en) Conductive resin and superconducting coil using the same
JP2021057110A (en) Conductive resin, and superconductive coil provided with the same
WO2012099029A1 (en) Connecting structure for superconducting wire material and method for manufacturing same
JP7395413B2 (en) Superconducting coil manufacturing method and electrical equipment manufacturing method
CN111262051B (en) Nb of internal tin process3Sn superconducting wire joint and preparation method thereof
US20220396681A1 (en) Polymer composition
JP7395412B2 (en) superconducting coil
JPH1125785A (en) Oxide superconducting stranded wire, manufacture of oxide superconducting cable conductor, coated wire, stranded wire and cable conductor
Zeitlin et al. Continued progress on a low cost high current density mono element internal tin conductor (MEIT) with integral barriers
Rossel et al. Multi-composite wire for high performance pulsed magnets
JPH065604B2 (en) Superconducting stranded wire
JP2845905B2 (en) Compound conducting wire for alternating current
Zhu et al. Study on the Nb 3 Sn rutherford cable for high-energy accelerators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230117