JP4505638B2 - Metal magnetic powder and magnetic recording medium using the same - Google Patents

Metal magnetic powder and magnetic recording medium using the same Download PDF

Info

Publication number
JP4505638B2
JP4505638B2 JP2004317584A JP2004317584A JP4505638B2 JP 4505638 B2 JP4505638 B2 JP 4505638B2 JP 2004317584 A JP2004317584 A JP 2004317584A JP 2004317584 A JP2004317584 A JP 2004317584A JP 4505638 B2 JP4505638 B2 JP 4505638B2
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
powder
surface layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004317584A
Other languages
Japanese (ja)
Other versions
JP2006128535A (en
Inventor
慎一 紺野
健一 井上
俊彦 上山
信也 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2004317584A priority Critical patent/JP4505638B2/en
Publication of JP2006128535A publication Critical patent/JP2006128535A/en
Application granted granted Critical
Publication of JP4505638B2 publication Critical patent/JP4505638B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高密度磁気記録に好適な耐酸化性に優れた金属磁性粉末、およびそれを用いた磁気記録媒体に関する。   The present invention relates to a metal magnetic powder excellent in oxidation resistance suitable for high-density magnetic recording, and a magnetic recording medium using the same.

近年、音声情報や映像情報のデジタル化、ハイエンド化に伴い記録・保存すべき情報量は増加する傾向にある。このため、記録媒体には一層の高容量化が求められている。   In recent years, the amount of information to be recorded and stored tends to increase with the digitization and high-end of audio information and video information. For this reason, the recording medium is required to have a higher capacity.

記録媒体としては、塗布型磁気記録媒体、デジタルビデオディスク、コンパクトディスク、ハードディスク、フロッピー(登録商標)ディスク、汎用型メモリーメディアなどが挙げられ、磁気以外の記録方式を採用する高密度記録媒体も広く実用化されるに至っている。しかし、情報量の増加に伴い、情報が失われたときの被害・損害も大きく、データのバックアップの重要性が以前にも増して高まっている。バックアップを大量に必要とする分野においては、単位容量あたりの単価が低い塗布型磁気記録媒体が広く使用されており、今後もその重要性は高いと考えられる。したがって、磁気記録媒体には一層の高容量化と信頼性の向上が期待されている。   Examples of the recording medium include a coating type magnetic recording medium, a digital video disk, a compact disk, a hard disk, a floppy (registered trademark) disk, a general-purpose memory medium, and a wide range of high-density recording media that employ recording methods other than magnetism. It has come to practical use. However, with the increase in the amount of information, the damage and loss when information is lost is significant, and the importance of data backup is increasing more than ever before. In the field where a large amount of backup is required, a coating type magnetic recording medium having a low unit price per unit capacity is widely used, and its importance is considered to be high in the future. Therefore, the magnetic recording medium is expected to further increase the capacity and improve the reliability.

磁気記録媒体の高容量化には、例えば塗布型磁気記録媒体の代表である磁気テープの場合、1巻あたりの巻き数を増加させるといった手法も採りうる。しかしそれよりも、記録密度を増大させること、すなわち、多くの情報をできるだけ小さい面積に書き込めるようにすることが、媒体の総数を低減させる上で極めて効果的である。   In order to increase the capacity of the magnetic recording medium, for example, in the case of a magnetic tape that is representative of a coating type magnetic recording medium, a method of increasing the number of turns per roll can be employed. However, increasing the recording density, that is, making it possible to write a large amount of information in the smallest possible area is extremely effective in reducing the total number of media.

磁気記録媒体の高記録密度化のために、ハード面においては情報の書き込みを短波長で行う試みがなされ、現在に至っている。磁性粒子のサイズは少なくとも記録波長よりも小さいことが必要であり、素材側において、高記録密度化のためには磁性粒子の微細化が最も有力な手段となる。   In order to increase the recording density of the magnetic recording medium, attempts have been made to write information at a short wavelength on the hardware side, and it has reached the present. The size of the magnetic particles must be at least smaller than the recording wavelength, and on the material side, miniaturization of the magnetic particles is the most effective means for increasing the recording density.

しかし、粒子の微細化は、耐酸化性あるいは磁気特性の低下を引き起こす可能性があり、必ずしも容易に実現できるものではない。磁性粒子として広く使用されている金属磁性粉末は通常、酸素を多く含有する酸化膜層(表層)によって安定性が保たれている。高い磁気特性を付与するには酸化膜層を薄くすれば良いが、薄くしすぎると耐酸化性に極めて劣る磁性粉末になり、大気に触れると発火してしまうことがある。逆に酸化膜層を厚くすれば飽和磁化値は低下してしまう。   However, miniaturization of particles may cause deterioration of oxidation resistance or magnetic properties, and cannot always be easily realized. Metal magnetic powders widely used as magnetic particles are usually kept stable by an oxide film layer (surface layer) containing a large amount of oxygen. In order to impart high magnetic properties, the oxide film layer may be thinned. However, if it is too thin, it becomes a magnetic powder with extremely inferior oxidation resistance and may ignite when exposed to the atmosphere. On the contrary, if the oxide film layer is thickened, the saturation magnetization value is lowered.

また、磁気記録媒体には、記録した情報が消失しない高信頼性が要求される。そのような高信頼性を得るには、磁気特性の経時劣化が少ない磁性粉末を使用する必要がある。具体的には、飽和磁化σsが経時変化しにくい特性すなわち「耐候性」に優れる磁性粉末であることが望まれる。耐候性も、基本的には耐酸化性の1形態と捉えることができ、酸化膜層(表層)を厚くすれば改善される傾向を示す。しかし、前述のように酸化膜層の増大は金属部分の減少を招き、磁気特性の低下につながる。特に、微粒子化を図った粒子の場合、金属部分の減少と同時に当該金属部分の分断が起こることも考えられ、酸化膜層の増大化で対応することは好ましくない。   Further, the magnetic recording medium is required to have high reliability so that recorded information is not lost. In order to obtain such high reliability, it is necessary to use a magnetic powder with little deterioration over time in magnetic characteristics. Specifically, it is desired to be a magnetic powder having a saturation magnetization σs that does not easily change with time, that is, excellent in “weather resistance”. The weather resistance can also be basically regarded as one form of oxidation resistance, and shows a tendency to improve if the oxide film layer (surface layer) is thickened. However, as described above, an increase in the oxide film layer causes a decrease in the metal portion, leading to a decrease in magnetic properties. In particular, in the case of particles that have been made finer, it is conceivable that the metal part is divided at the same time as the metal part is reduced.

これまでに、金属磁性粉の耐候性を改善する試みは種々行われてきた。
特許文献1では、FeとCoを含有する前駆体を還元して得られる金属磁性粉を採用して、磁気特性と耐候性の改善を図っている。
特許文献2では、Coの含有に加え、酸化膜層に含まれるγ−Fe23とFe34の量的関係をX線回折強度によって規定し、耐候性の改善を図っている。
特許文献3では、Coを含有する磁性粉において、酸化膜層を構成する鉄酸化物の結晶子サイズを規定し、耐候性の改善を図っている。
特許文献4では、Ni、Cu、ZnまたはMnを含む鉄酸化物で酸化皮膜を構成し、耐候性の改善を図っている。
So far, various attempts have been made to improve the weather resistance of metal magnetic powder.
In Patent Document 1, metal magnetic powder obtained by reducing a precursor containing Fe and Co is employed to improve magnetic properties and weather resistance.
In Patent Document 2, in addition to the content of Co, the quantitative relationship between γ-Fe 2 O 3 and Fe 3 O 4 contained in the oxide film layer is defined by the X-ray diffraction intensity to improve the weather resistance.
In patent document 3, in the magnetic powder containing Co, the crystallite size of the iron oxide which comprises an oxide film layer is prescribed | regulated, and the weather resistance is improved.
In Patent Document 4, an oxide film is composed of an iron oxide containing Ni, Cu, Zn, or Mn to improve weather resistance.

特開平10−17901号公報Japanese Patent Laid-Open No. 10-17901 特開2001−313207号公報JP 2001-313207 A 特開2004−13975号公報Japanese Patent Laid-Open No. 2004-13975 特開2001−137115号公報JP 2001-137115 A

前述のように、磁性粉の耐酸化性(耐候性を含む)を改善する手段として酸化膜層の厚みを増大する手法を採用した場合は、昨今の傾向である粒子径の微細化を考えた場合、金属部分の減少が生じ、結果として磁気特性そのものの低下を引き起こす原因ともなるので、得策ではない。つまり、微粒子化された金属磁性粉においては、酸化膜層厚みをできるだけ抑えた状態で耐酸化性を向上させることが重要となる。しかし、そのような技術は未だ確立されておらず、試行錯誤がなされているといってよい。前記特許文献に記載の技術では、長軸径が例えば50nm未満あるいは45nm以下と小さい粒子において、後述するΔσsが例えば10%以下となるような耐候性を安定して実現することは困難である。   As mentioned above, when adopting the method of increasing the thickness of the oxide film layer as a means to improve the oxidation resistance (including weather resistance) of the magnetic powder, the recent trend toward finer particle diameter was considered. In this case, the metal portion is reduced, and as a result, the magnetic properties themselves are deteriorated. That is, it is important to improve the oxidation resistance of the finely divided metal magnetic powder with the thickness of the oxide film layer suppressed as much as possible. However, such a technique has not yet been established, and it can be said that trial and error have been made. In the technique described in the above-mentioned patent document, it is difficult to stably realize weather resistance such that Δσs described later is, for example, 10% or less in a particle having a long axis diameter of, for example, less than 50 nm or 45 nm or less.

本発明は、高密度磁気記録媒体に好適な微粒子化した金属磁性粉において、その本来の優れた粉末磁気特性および媒体磁気特性を維持しながら、非常に優れた耐候性を実現したものを開発し提供しようというものである。   The present invention has developed a finely divided metal magnetic powder suitable for high-density magnetic recording media that has achieved excellent weather resistance while maintaining its original excellent powder magnetic properties and medium magnetic properties. It is to provide.

発明者らは、金属磁性粉の耐候性は、酸化膜層の化学組成、すなわち表層を構成する元素の存在比に大きく依存することを見出した。そして、更なる詳細な検討の結果、粒子の「表層」と「金属部分」のそれぞれにおけるCo/Fe原子比を微視的な観点で捉えることにより、非常に優れた耐候性を呈する金属磁性粉を特定することに成功した。本発明はこのような知見に基づいて完成したものである。   The inventors have found that the weather resistance of the metal magnetic powder greatly depends on the chemical composition of the oxide film layer, that is, the abundance ratio of elements constituting the surface layer. As a result of further detailed investigation, the metal magnetic powder exhibiting excellent weather resistance by grasping the Co / Fe atomic ratio in each of the “surface layer” and “metal part” of the particle from a microscopic viewpoint. Succeeded in identifying. The present invention has been completed based on such findings.

すなわち、本発明で提供する耐候性の良い金属磁性粉は、金属部分と表層とを有する粒子で構成され、金属部分および表層が共にFeおよびCoを主成分とする磁性粉末であって、「表層」のCo/Fe原子比をa、「金属部分」のCo/Fe原子比をb、「粒子全体」のCo/Fe原子比をcとしたとき、下記(1)(2)(3)式を満たすものとして特定されるものである。
0.3≦a/b≦0.7 ……(1)
b/c≧1.28 ……(2)
/c≦0.89 ……(3)
That is, the metal magnetic powder with good weather resistance provided by the present invention is composed of particles having a metal portion and a surface layer, and both the metal portion and the surface layer are magnetic powders containing Fe and Co as main components, Where the Co / Fe atomic ratio is “a”, the Co / Fe atomic ratio of the “metal part” is b, and the Co / Fe atomic ratio of the “whole particle” is c, the following formulas (1 ), ( 2) and (3) It is specified as satisfying.
0.3 ≦ a / b ≦ 0.7 (1)
b / c ≧ 1.28 (2)
a / c ≦ 0.89 (3)

前記表層のCo/Fe原子比aは、透過型電子顕微鏡を用いて、観察できる表層部分に電子ビームを選択的(ピンポイント的)に当てたEDS測定によって求まる値を採用することができる。ここで「観察できる表層部分」とは、酸化された金属酸化物を主成分とする層のことを表し、透過型電子顕微鏡により観察した際に金属部分が濃く現れるのに対して、薄く観察される部分を指す。
前記コアのCo/Fe原子比bは、透過型電子顕微鏡を用いて、観察できる表層部分よりも金属の影響により像(明視野像)が濃く現れる部分に電子ビームを選択的に当てたEDS測定によって求まる値を採用することができる。
粒子全体のCo/Fe原子比cは、Coについては粉末試料のICP分析から定まるCoの含有量(at.%)を用い、Feについては滴定による分析から定まるFeの含有量(at.%)を用いて、算出される値を採用することができる。
As the Co / Fe atomic ratio a of the surface layer, a value obtained by EDS measurement in which an electron beam is selectively (pinpointed) applied to the surface layer portion that can be observed using a transmission electron microscope can be adopted. Here, the “observable surface layer portion” means a layer mainly composed of an oxidized metal oxide, and when observed with a transmission electron microscope, the metal portion appears dark, whereas it is thinly observed. Refers to the part.
The Co / Fe atomic ratio b of the core is measured by EDS using a transmission electron microscope in which an electron beam is selectively applied to a portion where an image (bright field image) appears darker than the surface layer portion that can be observed. The value determined by can be adopted.
For the Co / Fe atomic ratio c of the whole particle, the Co content (at.%) Determined from the ICP analysis of the powder sample is used for Co, and the Fe content (at.%) Determined from the analysis by titration for Fe. The calculated value can be adopted using.

以上の磁性粉末において、ESCAにより測定されるイオンスパッタリングを行っていない状態の粉末試料における酸素含有量Osurf.(at.%)と、酸素分析装置により測定される粉末全体の酸素含有量Oall(at.%)が下記(4)式を満たすものが提供される。
surf./Oall>1.0 ……(4)
In the above magnetic powder, the oxygen content O surf. (At.%) In the powder sample not subjected to ion sputtering measured by ESCA, and the oxygen content O all of the whole powder measured by the oxygen analyzer. (At.%) Satisfying the following formula (4) is provided.
O surf. / O all > 1.0 …… (4)

上記の磁性粉末において、好ましくは粒子の平均長軸長が10〜45nm、飽和磁化σsが80〜130Am2/kg、下記(5)式で定義されるΔσsが10%以下であるものが提供される。
Δσs=(σs0−σs1)/σs0×100 ……(5)
ここで、σs0は、対象となる磁性粉末の飽和磁化(Am2/kg)、
σs1は、前記磁性粉末を恒温恒湿容器内で60℃,90%RHに1週間保持したのちの飽和磁化(Am2/kg)。
In the above magnetic powder, it is preferable that the average major axis length of the particles is 10 to 45 nm, the saturation magnetization σs is 80 to 130 Am 2 / kg, and Δσs defined by the following formula (5) is 10% or less. The
Δσs = (σs 0 −σs 1 ) / σs 0 × 100 (5)
Here, σs 0 is the saturation magnetization (Am 2 / kg) of the target magnetic powder,
σs 1 is the saturation magnetization (Am 2 / kg) after holding the magnetic powder in a constant temperature and humidity container at 60 ° C. and 90% RH for 1 week.

また、本発明では、以上の磁性粉末を用いた磁気記録媒体が提供される。   The present invention also provides a magnetic recording medium using the above magnetic powder.

本発明によれば、金属磁性粉を構成する粒子の「表層」および「金属部分」を微視的な観点で捉える新たな手法を採用することによって、微細化された金属磁性粉において非常に優れた耐候性を呈するものを特定し、提供することが可能になった。この磁性粉末は耐候性が改善されているにもかかわらず、優れた磁気特性を維持している。すなわち、金属磁性粉において「粒子の微細化」、「耐候性の改善」および「微細化された磁性粉本来の磁気特性の維持」を同時に実現した。したがって本発明は、高密度磁気記録媒体の性能および信頼性向上に寄与するものである。   According to the present invention, by adopting a new method for capturing the “surface layer” and “metal part” of the particles constituting the metal magnetic powder from a microscopic viewpoint, it is very excellent in the miniaturized metal magnetic powder. It has become possible to identify and provide those that exhibit high weather resistance. This magnetic powder maintains excellent magnetic properties despite its improved weather resistance. That is, in the metal magnetic powder, “fine particle refinement”, “improvement of weather resistance” and “maintenance of original magnetic properties of the refined magnetic powder” were realized at the same time. Therefore, the present invention contributes to improving the performance and reliability of the high-density magnetic recording medium.

発明者らはCoを含有する金属磁性粉において、粒子表層のCo量を適正化することが耐候性の向上に有効であることを見出した。そして、この知見に基づく発明を特願2004−122504号として開示した。   The inventors have found that, in a metal magnetic powder containing Co, optimizing the amount of Co in the particle surface layer is effective for improving weather resistance. And the invention based on this knowledge was disclosed as Japanese Patent Application No. 2004-122504.

粒子表層部の化学組成は、一般にはESCA(XPS,光電子分光分析法,Electron Spectroscopy for Chemical Analysis)等の表面分析手法によって知ることができる。前記特願2004−122504号においてもESCAを用いて表層部の組成を求め、耐候性の良好な磁性粉末を特定している。ところがその後、発明者らは、製法を含めた詳細な検討を進めた結果、ESCAを用いて分析した組成が同等であっても、他のものより一段と耐候性に優れた磁性粉末が出現する場合があることを知った。   The chemical composition of the particle surface layer can generally be known by a surface analysis method such as ESCA (XPS, Photon Spectroscopy for Chemical Analysis). In the Japanese Patent Application No. 2004-122504, the composition of the surface layer portion is obtained using ESCA, and a magnetic powder having good weather resistance is specified. However, after that, as a result of the detailed studies including the manufacturing method, the inventors have developed a magnetic powder that is more excellent in weather resistance than others even though the composition analyzed using ESCA is equivalent. Knew that there is.

そのような一段と耐候性に優れた粉末粒子の構造を明らかにすべく、発明者らは高分解能を有するFE−TEM(電解放射型透過型電子顕微鏡)を用いてより微視的な調査を行った。その結果、金属磁性粉の粒子表面には酸化物を主体とする被膜(本願では「表層」と呼んでいる)が形成されているが、高分解能FE−TEMを用いた明視野像においては、内部の金属の影響により像が濃く現れる部分が存在することがわかった。そのような像が濃く現れる部分に電子ビームをピンポイント的に当てたときのEDS(エネルギー分散型X線分光器)による測定値は、表層(像として薄く現れる部分)の組成情報よりも金属部分の組成情報をはるかに強く反映していると考えられる。したがって、高分解能FE−TEMに装備されているEDSにより、「表層」と「金属部分」それぞれについてのCo/Fe原子比を求めることが可能になるのである。   In order to clarify the structure of such powder particles with excellent weather resistance, the inventors conducted a more microscopic investigation using a high-resolution FE-TEM (electrolytic emission transmission electron microscope). It was. As a result, a coating mainly composed of oxide (called “surface layer” in the present application) is formed on the particle surface of the metal magnetic powder, but in a bright field image using a high resolution FE-TEM, It was found that there is a part where the image appears dark due to the influence of the metal inside. The measured value by EDS (energy dispersive X-ray spectrometer) when the electron beam is focused on the portion where such an image appears darkly is the metal portion rather than the composition information of the surface layer (the portion where the image appears light). It is thought that it reflects the composition information of. Therefore, the Co / Fe atomic ratio for each of the “surface layer” and the “metal portion” can be obtained by the EDS equipped in the high resolution FE-TEM.

すなわち、「表層」の部分のCo/Fe原子比は、観察される表層部分に電子ビームをピンポイント的に当てたときのEDS測定によって定めることができる。他方、「金属部分」の部分のCo/Fe原子比は、観察できる表層部分よりも金属の影響により像が濃く現れる部分に電子ビームをピンポイント的に当てたときのEDS測定によって定めることができる。これらのEDS測定値は場所による変動が小さいため、ほぼ全ての粒子についての測定値を代表していると考えて良く、したがって、それぞれ数ヶ所についてのEDS測定を行い、その平均値を当該粉末に固有の値として採用すればよい。   That is, the Co / Fe atomic ratio of the “surface layer” portion can be determined by EDS measurement when an electron beam is focused on the observed surface layer portion in a pinpoint manner. On the other hand, the Co / Fe atomic ratio of the “metal portion” portion can be determined by EDS measurement when an electron beam is focused on a portion where an image appears darker due to the influence of the metal than the surface layer portion that can be observed. . Since these EDS measured values vary little depending on the location, it may be considered that they represent the measured values for almost all particles. Therefore, EDS measurements are made at several locations, and the average value is measured on the powder. What is necessary is just to employ | adopt as an intrinsic | native value.

発明者らは、このような微視的な測定によって定まる表層のCo/Fe原子比をaとし、金属部分のCo/Fe原子比をbとしたとき、下記(1)式を満たすCo含有金属磁性粉において特に優れた耐候性が得られることを突き止めた。
0.3≦a/b≦0.7 ……(1)
その耐候性改善メカニズムについては現時点で未解明であるが、粒子の最表面における鉄以外の元素を低減したことによって、鉄とその他の成分との間における局部電池形成が抑制されるため、結果として耐候性が改善したのではないかと推察される。さらに、ESCAを用いた組成分析に差が認められない磁性粉末であっても、FE−TEMによる、より微視的な測定に基づく上記(1)式を満たすものは、そうでないものに比べ耐候性レベルが明らかに向上することから、(1)式に特徴付けられる粒子構造の差が耐候性に影響していることは確かである。現象に関して考察すると、ESCAの場合は試料の最表面を構成する物質の情報を広く拾ってくるため、ESCAにより酸化物層の組成とみなして測定された分析値には、金属部分からの情報も含んでおり、耐候性が一段と優れたものを区別して捉えることが難しかったものと考えられる
The inventors have determined that the Co / Fe atomic ratio of the surface layer determined by such microscopic measurement is a and the Co / Fe atomic ratio of the metal portion is b, and the Co-containing metal satisfying the following formula (1): It was found that particularly excellent weather resistance was obtained in the magnetic powder.
0.3 ≦ a / b ≦ 0.7 (1)
The weather resistance improvement mechanism is not yet elucidated at this time, but the formation of local cells between iron and other components is suppressed by reducing the elements other than iron on the outermost surface of the particles. It is inferred that the weather resistance has improved. Furthermore, even if the magnetic powder shows no difference in the composition analysis using ESCA, the one satisfying the above formula (1) based on the more microscopic measurement by FE-TEM is more resistant to weather than the other powder. Since the property level is clearly improved, it is certain that the difference in particle structure characterized by the equation (1) affects the weather resistance. Considering the phenomenon, in the case of ESCA, since the information of the substance constituting the outermost surface of the sample is widely picked up, the analytical value measured by ESCA as the composition of the oxide layer includes the information from the metal part. It is considered that it was difficult to distinguish and capture those that were further superior in weather resistance .

また、このような優れた耐候性を有する磁性粉末は、粒子全体におけるCo/Fe原子比cを用いて、下記(2)式あるいは(3)式によって特定されることがわかった。
b/c≧1.28 ……(2)
/c≦0.89 ……(3)
粒子全体のCo/Fe原子比cは、後述実施例で示すように、Coについては粉末試料の誘導結合高周波プラズマ発光分光分析(ICP atomic emission spectrochemical analysis)から定まるCoの含有量(at.%)を用い、Feについては粉末試料の自動滴定装置による分析から定まるFeの含有量(at.%)を用いて、算出される値を採用することができる。
Further, it was found that such a magnetic powder having excellent weather resistance is specified by the following formula (2) or (3) using the Co / Fe atomic ratio c in the whole particle.
b / c ≧ 1.28 (2)
a / c ≦ 0.89 (3)
The Co / Fe atomic ratio c of the entire particle is the Co content (at.%) Determined from ICP atomic emission spectrochemical analysis of the powder sample, as shown in the examples below. As for Fe, a value calculated using the Fe content (at.%) Determined from the analysis of the powder sample by an automatic titration apparatus can be adopted.

さらに、粒子中の酸素の分布状態に着目すると、耐候性の顕著な改善をもたらすうえで、下記(4)式を満たすような酸素分布形態を実現することが望ましいことがわかった。
surf./Oall>1.0 ……(4)
ここで、Osurf.はESCAにより測定されるイオンスパッタリングを行っていない状態の粉末試料における酸素含有量(at.%)、Oallは酸素分析装置により測定される粉末全体の酸素含有量(at.%)である。
Further, when focusing attention on the distribution state of oxygen in the particles, it was found that it is desirable to realize an oxygen distribution form satisfying the following formula (4) in order to bring about a remarkable improvement in weather resistance.
O surf. / O all > 1.0 …… (4)
Here, O surf. Is the oxygen content (at.%) In the powder sample not subjected to ion sputtering measured by ESCA, and O all is the oxygen content (at. .%).

以上のような本発明に係る一段と耐候性に優れた金属磁性粉は、オキシ水酸化鉄を焼成してα−酸化鉄を主成分とする物質とし、これを還元・安定化してメタル粉とする手法で製造することができる。また、場合によってはオキシ水酸化鉄の段階でアンモニア水による洗浄を行ったものをそのまま還元、安定化して作製することも可能である。ただし、発明者らの詳細な検討によれば、α−酸化鉄を主成分とする物質を還元する前に適正な濃度のアンモニアを用いた洗浄を行うことが、一段と耐候性に優れ、良好な磁気特性を維持した微細な金属磁性粉を再現性良く製造する上で極めて有利であることがわかった。このようなアンモニアを用いた洗浄により、粒子中の表面近傍に存在するCoが、コバルトアンミン錯体として除去されるものと考えられ、この処理が最終的に得られる磁性粉粒子の表層におけるCo濃度低減をもたらし、それが耐候性の向上に繋がるのである。さらに、還元・安定化の処理は水蒸気を添加した状態で行い、かつ還元後または還元の途中の段階で水素アニールを実施することが望ましいこともわかった。
具体的には例えば以下のような方法で製造することができる。
The metal magnetic powder with excellent weather resistance according to the present invention as described above is obtained by baking iron oxyhydroxide to a substance containing α-iron oxide as a main component, and reducing and stabilizing the metal powder. It can be manufactured by a technique. In some cases, it is also possible to produce a product that has been washed with aqueous ammonia at the stage of iron oxyhydroxide as it is, reduced and stabilized. However, according to detailed examinations by the inventors, it is more excellent in weather resistance and good to perform cleaning with ammonia at an appropriate concentration before reducing the substance mainly composed of α-iron oxide. It has been found that this method is extremely advantageous for producing fine metal magnetic powders maintaining magnetic properties with good reproducibility. It is considered that the Co present in the vicinity of the surface in the particles is removed as a cobalt ammine complex by such cleaning using ammonia, and the Co concentration in the surface layer of the magnetic powder particles finally obtained by this treatment is reduced. This leads to improved weather resistance. Further, it has been found that reduction / stabilization treatment is preferably performed with water vapor added, and it is desirable to perform hydrogen annealing after reduction or in the middle of reduction.
Specifically, for example, it can be produced by the following method.

まず、先駆物質としてオキシ水酸化鉄をまず製造する。例えば、炭酸塩水溶液に第一鉄塩を添加して炭酸鉄を生成させ(その際、特性上差し支えない範囲で苛性アルカリを併用することもできる)、この液に酸素含有ガスを通気して酸化反応を起こさせてオキシ水酸化鉄とする方法、第一鉄塩と苛性アルカリの反応によりオキシ水酸化鉄とする方法、炭酸鉄の懸濁液に酸化剤を添加してオキシ水酸化鉄とする方法などが採用できる。これらのうちでも、苛性アルカリを用いた場合には、針状比の高い針状のオキシ水酸化鉄が生成し、炭酸鉄を経由する場合には、両端がとがった円柱形状(紡錘状)の粒子が得られやすく、酸化時における製造条件を適宜変化させることにより、平針状の粒子を得ることもできる。   First, iron oxyhydroxide is first produced as a precursor. For example, ferrous salt is added to an aqueous carbonate solution to produce iron carbonate (in this case, caustic alkali can be used in a range that does not interfere with the characteristics), and an oxygen-containing gas is passed through the solution to oxidize. A method of causing reaction to produce iron oxyhydroxide, a method of producing iron oxyhydroxide by reacting ferrous salt and caustic, and adding an oxidizing agent to a suspension of iron carbonate to produce iron oxyhydroxide. Methods can be adopted. Among these, when caustic is used, acicular iron oxyhydroxide with a high acicular ratio is generated, and when passing through iron carbonate, a cylindrical shape (spindle shape) with both ends sharpened. Particles are easily obtained, and flat needle-like particles can be obtained by appropriately changing the production conditions during oxidation.

本発明ではCoを含有した金属磁性粉を対象とする。粒子全体へのCo含有量の目安としては、Feに対する原子百分率(at.%)、すなわちCo/Fe原子比で50%以下、好ましくは2〜45%、より好ましくは10〜40%とするのが適当である。粒子全体のCo/Fe原子比をこのような範囲とすることにより、飽和磁化、保磁力、耐酸化性をバランスよく向上させることができる。
Coを含んだ磁性鉄合金粒子を得るには、上記のオキシ水酸化物作製段階の中間乃至最終酸化段階での液中にCoを添加もしくは追添する方法が好適である。
In the present invention, a metallic magnetic powder containing Co is used. As a measure of the Co content in the entire particle, the atomic percentage with respect to Fe (at.%), That is, the Co / Fe atomic ratio is 50% or less, preferably 2 to 45%, more preferably 10 to 40%. Is appropriate. By setting the Co / Fe atomic ratio of the entire particle in such a range, saturation magnetization, coercive force, and oxidation resistance can be improved in a balanced manner.
In order to obtain magnetic iron alloy particles containing Co, a method of adding or adding Co to the liquid in the middle or final oxidation stage of the oxyhydroxide preparation stage is preferable.

Coに加えて、本発明に従う磁性粒子はAlを含有することができる。Alの添加により、磁性粉の耐摩耗性の改善や焼結防止効果が得られ、バインダーに対する分散性を改善することができる。このためのAl含有量は、Al/(Fe+Co)原子比で50%以下、好ましくは1〜40%、より好ましくは2〜30%である。Al含有量が過剰になると、粒子の硬さは増大するものの、粒子における非磁性成分の割合が増加して磁気特性とりわけ飽和磁化の低下を招くので、好ましくない。Alの添加時期についてはオキシ水酸化鉄の形成初期の段階で行わないのがよい。Alを初期に大量添加した場合には針状性の維持が出来なくなる。このため、Alの添加はオキシ水酸化鉄の成長段階から酸化終了段階にかけて行うのが良い。   In addition to Co, the magnetic particles according to the invention can contain Al. By adding Al, it is possible to improve the wear resistance of the magnetic powder and to prevent sintering, and to improve the dispersibility in the binder. For this purpose, the Al content is 50% or less, preferably 1 to 40%, more preferably 2 to 30% in terms of Al / (Fe + Co) atomic ratio. If the Al content is excessive, the hardness of the particles increases, but the proportion of nonmagnetic components in the particles increases, leading to a decrease in magnetic properties, particularly saturation magnetization, which is not preferable. It is better not to add Al at the initial stage of iron oxyhydroxide formation. When a large amount of Al is added in the initial stage, the acicularity cannot be maintained. For this reason, Al is preferably added from the growth stage of iron oxyhydroxide to the oxidation end stage.

そのほか、製造上不可避に含まれる成分のほか、磁気特性もしくはバインダーへの分散性改善等を目的とした成分元素が含まれていてもよい。例えば、Si、Zn、Cu、Ti、Niなどが適量含まれていてもよい。ただし、これらの元素を多量に添加した場合には磁気特性などのバランスが崩れるので粒子の要求特性に応じた量の添加が必要である。これらの元素を添加する場合は、FeとCoの合計量に対して、添加元素の合計量が30at.%以下、好ましくは20at.%以下、更に好ましくは10at.%以下となる添加量範囲で行えばよい。   In addition, in addition to components inevitably included in production, component elements for the purpose of improving magnetic properties or dispersibility in a binder may be included. For example, Si, Zn, Cu, Ti, Ni, etc. may be included in appropriate amounts. However, when these elements are added in a large amount, the balance of the magnetic properties and the like is lost, so it is necessary to add an amount corresponding to the required properties of the particles. When these elements are added, the total amount of added elements is 30 at.% Or less, preferably 20 at.% Or less, more preferably 10 at.% Or less with respect to the total amount of Fe and Co. Just do it.

Yを含む希土類元素については、オキシ水酸化鉄の脱水・加熱還元時の焼結防止効果があるほか、粒度分布改善にも有効である。これらを添加する場合は、Yを含む希土類元素をRで表示すると、R/(Fe+Co)原子比で25%以下、好ましくは1〜20%、より好ましくは2〜15%とするのがよい。Yを含む希土類元素の過剰な添加は、飽和磁化の低下等を招くので好ましくない。適切な希土類元素としてはYの他にGd(ガドリニウム)、Yb(イッテルビウム)、La(ランタン)、Sc(スカンジウム)が例示できる。発明者らが得た知見によると、原子量の大きな希土類元素であるほど低σs領域では好適な磁気特性を示す。Yを含む希土類元素の添加時期としてはオキシ水酸化鉄の成長段階で添加して固溶させてもよいし、成長完了後に添加して被着してもよい。   The rare earth element containing Y has an effect of preventing sintering during dehydration and heat reduction of iron oxyhydroxide, and is effective in improving the particle size distribution. When these are added, when the rare earth element containing Y is represented by R, the R / (Fe + Co) atomic ratio is 25% or less, preferably 1 to 20%, more preferably 2 to 15%. Excessive addition of rare earth elements including Y is not preferable because it causes a decrease in saturation magnetization. Examples of suitable rare earth elements include Gd (gadolinium), Yb (ytterbium), La (lanthanum), and Sc (scandium) in addition to Y. According to the knowledge obtained by the inventors, a rare earth element having a larger atomic weight shows more favorable magnetic properties in the low σs region. The rare earth element containing Y may be added at the growth stage of iron oxyhydroxide to be dissolved, or may be added and deposited after the growth is completed.

少なくともCoを含有したオキシ水酸化鉄を得たあとは、そのオキシ水酸化鉄スラリーを濾過、洗浄し、均一に熱がかかるような処理を施した後に、これを80〜300℃、好ましくは120〜250℃、より好ましくは150〜220℃の条件にて6時間以上不活性ガスまたは空気中で乾燥させるのがよい。温度が低すぎると粒子に被着している物理吸着水が除去されず、後の工程において不均一な反応を引き起こす原因にもなるため好ましくない。また、温度が高すぎると粒子の一部のα−Fe23への形態変化が進んでしまい、かつそれは均一に発生せず、熱のかかりやすいところから順次進むため、次工程以降における反応に影響を及ぼし、最終的な金属磁性粉末の磁気特性等に対して悪影響を及ぼす危険性があるので好ましくない。得られたオキシ水酸化鉄の乾燥固形物を、250〜700℃の窒素中で加熱脱水し、α−Fe23(ヘマタイト)等の酸化鉄(以下、単に「α−酸化鉄」という)へと変化させる。この加熱脱水時には雰囲気中に水蒸気、酸素、炭酸ガスなどが含まれることを妨げない。 After obtaining the iron oxyhydroxide containing at least Co, the iron oxyhydroxide slurry is filtered and washed, and subjected to a treatment that uniformly heats, and then this is treated at 80 to 300 ° C., preferably 120 ° C. It is good to dry in inert gas or air for 6 hours or more on the conditions of -250 degreeC, More preferably, 150-220 degreeC. If the temperature is too low, the physically adsorbed water adhering to the particles is not removed, and this may cause a non-uniform reaction in a later step, which is not preferable. In addition, if the temperature is too high, the morphological change of a part of the particles to α-Fe 2 O 3 proceeds, and it does not occur uniformly and proceeds sequentially from the place where heat is easily applied. This is not preferable because it may affect the magnetic properties of the final metal magnetic powder. The obtained dried solid product of iron oxyhydroxide is heated and dehydrated in nitrogen at 250 to 700 ° C., and iron oxide such as α-Fe 2 O 3 (hematite) (hereinafter simply referred to as “α-iron oxide”). To change. It does not prevent the atmosphere from containing water vapor, oxygen, carbon dioxide, etc. during the heat dehydration.

このあと、還元処理に供する前に、α−酸化鉄をアンモニアガスを通気させた水溶液中で洗浄することが望ましい。この操作により、粒子の表層に存在するCoをコバルトアンミン錯体の形で効率よく除去することが可能になり、最終的に形成される表層のCo量を意図的に低減することができるようになる。特に、前記a/b値が(1)式を満たすようにCoの分布形態がコントロールされた粒子を得ることができる。具体的には、洗浄に供するアンモニア水の濃度を変化させても良いし、また別法としては、純水に硫酸アンモニウムや塩化アンモニウムといったアンモニウム塩を溶解することによって、液中のアンモニウム濃度を上昇させ、アンモニウム錯体を形成させることも可能である。その後、常法により水洗、乾燥すればよい。   Thereafter, it is desirable to wash the α-iron oxide in an aqueous solution in which ammonia gas is passed before being subjected to the reduction treatment. By this operation, Co existing on the surface layer of the particles can be efficiently removed in the form of a cobalt ammine complex, and the amount of Co in the finally formed surface layer can be intentionally reduced. . In particular, particles in which the distribution form of Co is controlled so that the a / b value satisfies the equation (1) can be obtained. Specifically, the concentration of ammonia water used for washing may be changed. Alternatively, the ammonium concentration in the liquid is increased by dissolving an ammonium salt such as ammonium sulfate or ammonium chloride in pure water. It is also possible to form ammonium complexes. Thereafter, it may be washed with water and dried by a conventional method.

この操作の後、適宜に粉体pHを調整する目的で、炭酸ガス等により粉末を洗浄して、適切な前駆体を形成させることも可能である。この処理は気相での処理でも構わないし、水中に分散させた粒子に対して炭酸ガスを液中に導入して処理する方法を採ることもできる。処理の均一化を考慮すれば、液相で分散処理した後に炭酸ガスを導入して行う方法が適当である。   After this operation, it is possible to form an appropriate precursor by washing the powder with carbon dioxide gas or the like for the purpose of appropriately adjusting the pH of the powder. This treatment may be a treatment in a gas phase, or a method of treating the particles dispersed in water by introducing carbon dioxide into the solution may be employed. In view of uniform treatment, a method of introducing carbon dioxide gas after dispersion treatment in a liquid phase is suitable.

次いで、このようにして得られたα−酸化鉄を気相還元により還元する。還元性ガスとしては一酸化炭素、アセチレン、水素などが例示できる。還元は水蒸気を添加しながら行うことが磁気特性改善の観点から好ましい。還元処理は、初め比較的低温で還元し、次いで昇温して高温で還元するという「多段還元」を採用することもできる。   Next, the α-iron oxide thus obtained is reduced by gas phase reduction. Examples of the reducing gas include carbon monoxide, acetylene, and hydrogen. The reduction is preferably performed while adding water vapor from the viewpoint of improving magnetic properties. For the reduction treatment, “multistage reduction” in which reduction is first performed at a relatively low temperature and then the temperature is increased and reduction is performed at a high temperature may be employed.

前記(1)式、あるいは更に(2)式や(3)式を満たすようにCoの分布形態がコントロールされた粒子を得るためには、還元された合金鉄粉末を100〜500℃程度の水素雰囲気中で加熱処理することが有効である(水素アニール)。この場合も粒子表面を変性させる働きを有する気体の添加を妨げない。   In order to obtain particles in which the distribution form of Co is controlled so as to satisfy the formula (1), or further the formulas (2) and (3), the reduced alloy iron powder is charged with hydrogen at about 100 to 500 ° C. Heat treatment in an atmosphere is effective (hydrogen annealing). Also in this case, addition of a gas having a function of modifying the particle surface is not hindered.

還元後に得られる粉末は非常に活性が高いので、そのまま大気中でハンドリングすると発火する恐れがある。そこで、酸素を1〜10体積%程度に抑制した気体を反応系中に導入することによって、徐酸化により粒子表面に緻密な酸化物層を形成させる(安定化処理)。安定化処理は、前記還元処理後、50〜200℃の任意の温度まで冷却し、例えば不活性ガス中に適量の酸素を含有させた弱酸化性ガスや、空気等を導入して行う。この場合も、水蒸気を添加しながら行うことが望ましい。なお、前記の水素アニールを行う場合は、磁性粉自体の安定性改善のため、水素アニールの前および後に安定化処理を行うこともできる。   The powder obtained after the reduction is very active and may ignite if handled in the atmosphere. Therefore, by introducing a gas in which oxygen is suppressed to about 1 to 10% by volume into the reaction system, a dense oxide layer is formed on the particle surface by slow oxidation (stabilization treatment). The stabilization treatment is performed after the reduction treatment by cooling to an arbitrary temperature of 50 to 200 ° C. and introducing, for example, a weak oxidizing gas containing an appropriate amount of oxygen in an inert gas, air, or the like. Also in this case, it is desirable to carry out while adding water vapor. In addition, when performing the above-mentioned hydrogen annealing, in order to improve the stability of the magnetic powder itself, a stabilization treatment can be performed before and after the hydrogen annealing.

このようにして、例えば粒子の平均長軸長が10〜45nmといった微細な磁性粉末であって、耐候性を顕著に改善したCo含有金属磁性粉を得ることができる。なお、飽和磁化σsは80〜130Am2/kgの範囲とすることが好ましい。σsが80Am2/kg未満の場合は、保磁力等にも影響を及ぼすので、媒体化した際に出力不足を引き起こす可能性があり、また媒体の保磁力分布等に悪影響を及ぼすことがある。これらのことから、高密度記録媒体としての信頼性には不安が残るものとなる。一方、130Am2/kgを超えると、磁性塗料作成の際に凝集が起こりやすくなってしまい、また分散性にも悪影響を及ぼす。
この金属磁性粉は、通常広く実施されている手法により、塗布型磁気記録媒体をはじめとする種々の磁気記録媒体に好適に使用することができる。
In this way, it is possible to obtain a Co-containing metal magnetic powder that is a fine magnetic powder having an average major axis length of, for example, 10 to 45 nm and has significantly improved weather resistance. The saturation magnetization σs is preferably in the range of 80 to 130 Am 2 / kg. When [sigma] s is less than 80 Am < 2 > / kg, the coercive force and the like are also affected, which may cause a shortage of output when the medium is formed, and may adversely affect the coercive force distribution and the like of the medium. For these reasons, there remains concern about the reliability of the high-density recording medium. On the other hand, if it exceeds 130 Am 2 / kg, aggregation tends to occur during the preparation of the magnetic paint, and the dispersibility is also adversely affected.
This metal magnetic powder can be suitably used for various magnetic recording media including a coating type magnetic recording medium by a generally widely used technique.

まず以下に、各実施例、比較例で採用した各特性値の評価法を説明する。
〔粒子の長軸長および短軸長〕
これらは、透過型電子顕微鏡観察を行って求めた。具体的には以下のとおりである。
観察試料の調整は、測定サンプル約0.005gを2%コロジオン溶液10mL中に添加し、分散処理を施してから、その溶液を水に1〜2滴滴下してコロジオン膜を生成させ、これをグリッドの片面に付着させ、自然乾燥させた後に被膜強化のためにカーボン蒸着を施すことによって行った。
First, an evaluation method for each characteristic value employed in each example and comparative example will be described below.
[Long axis length and short axis length of particles]
These were determined by observation with a transmission electron microscope. Specifically, it is as follows.
The observation sample was prepared by adding about 0.005 g of a measurement sample into 10 mL of a 2% collodion solution, applying a dispersion treatment, and dropping 1 to 2 drops of the solution into water to form a collodion film. This was performed by adhering to one side of the grid and allowing it to dry naturally, followed by carbon deposition to strengthen the coating.

この試料について、透過型電子顕微鏡(日本電子株式会社製の100CX-Mark-II型)を使用し、100kVの加速電圧で、明視野での観察を行った。平均長軸長、短軸長の値は、電子顕微鏡写真(58000倍)を縦方向および横方向にそれぞれ3倍に引き延ばした写真をプリントし、この写真に示される粒子500個以上についてそれぞれ長軸長、短軸長を測定し、その平均値を求めることによって算出した。ただし、電子顕微鏡写真上に存在する粒子については、単分散している粒子の他、粒子間で結合(焼結、連晶)している粒子、重なりあう粒子などさまざまな態様を呈しているため、測定を行う上で、どの粒子をどのように測定するかあらかじめ合理的で妥当な基準を設けておく必要がある。その基準は以下のとおりとした。   This sample was observed in a bright field at an accelerating voltage of 100 kV using a transmission electron microscope (100CX-Mark-II type manufactured by JEOL Ltd.). The values of the average major axis length and minor axis length are obtained by printing a photograph obtained by stretching an electron micrograph (58,000 times) in the vertical direction and the horizontal direction by 3 times, respectively. The length and the short axis length were measured, and the average value was calculated. However, the particles present on the electron micrographs are not only monodispersed particles, but also have various modes such as particles that are bonded (sintered, continuous crystal) between particles, and overlapping particles. In performing the measurement, it is necessary to establish a reasonable and reasonable standard in advance which particle is to be measured and how. The standard was as follows.

−長軸長、短軸長測定基準−
長軸長は粒子の長手方向において最も長いところを測定した値を指す。短軸長は粒子の幅方向において最も長いところを測定した値を指す。
-Long axis length and short axis length measurement standards-
The long axis length refers to a value obtained by measuring the longest portion in the longitudinal direction of the particle. The minor axis length is a value obtained by measuring the longest portion in the width direction of the particle.

透過型電子顕微鏡写真上に映っている粒子のうち、測定する粒子の選定基準は次のとおりとした。
[1] 粒子の一部が写真の視野の外にはみだしている粒子は測定しない。
[2] 輪郭がはっきりしており、孤立して存在している粒子は測定する。
[3] 形状が針状になっていないが、独立しており単独粒子として測定が可能な粒子は測定する。
[4] 粒子同士に重なりがあるが、両者の境界が明瞭で、粒子全体の形状も判断可能な粒子は、それぞれの粒子を単独粒子として測定する。
[5] 重なり合っている粒子で、境界がはっきりせず、粒子の全形も判らない粒子は、粒子の形状が判断できないものとして測定しない。
Among the particles shown on the transmission electron micrograph, the selection criteria for the particles to be measured were as follows.
[1] Do not measure particles that are partially outside the field of view of the photograph.
[2] Measure particles that are well-defined and isolated.
[3] Measure particles that are not acicular, but are independent and can be measured as single particles.
[4] Particles that overlap each other but whose boundaries are clear and whose shape can be determined are measured as individual particles.
[5] Particles that overlap but do not have clear boundaries and do not know the full shape of the particle are not measured as the particle shape cannot be determined.

粒子間の結合の有無、すなわち粒子がただ重なり合っているのか、それとも焼結しているのかは次のようにして判定した。
(イ) フォーカスの異なった複数枚の写真を準備し、フリンジ(注:電子顕微鏡の明視野において、物質が変化しているところで見られる境界線のこと)がよく現れている写真から、粒子の境界部分を判断した。
(ロ) 重なり合う粒子において、両者の輪郭が交差する部分を観察し、両者の輪郭線が丸みを帯びて交わっている場合は焼結していると判断し、全ての交差部分において両者の輪郭線が他方の輪郭線とは無関係にある角度をもって点で交わっている場合は単に重なっているだけであると判断した。
(ハ) 境界が存在しているか、していないかはっきりせず、判断が難しい場合は、粒子間焼結が生じているとは判断せず、個々の粒子として測定し、粒子を大きく見積もった。
The presence or absence of bonding between the particles, that is, whether the particles were just overlapping or sintered was determined as follows.
(B) Prepare multiple photos with different focus, and from the photo where the fringe (note: the boundary line where the substance changes in the bright field of the electron microscope) often appears, The boundary part was judged.
(B) In the overlapping particle, observe the part where the outlines of the two intersect, and if the outlines of both of them intersect with each other in a rounded shape, it is judged that they are sintered. If they intersect at a point with an angle regardless of the other contour line, it is judged that they only overlap.
(C) When it is difficult to judge whether the boundary exists or not, it is not judged that inter-particle sintering has occurred, and it is measured as individual particles, and the particles are greatly estimated. .

〔粒子の微細領域における組成分析〕
粒子の「表層」のみの部分、および「金属部分」のみの部分についての組成分析は、EDS(メーカーによってはEDXと称される)を装備した高分解能FE−TEM(例えば、日立製;H-9500、HF-2200、日本電子製;JEM-4010、JEM-3010など)を用いて行うことができる。
[Composition analysis in the fine region of particles]
The compositional analysis of the “surface layer” -only part and the “metal part” -only part of the particle was performed using a high-resolution FE-TEM (for example, made by Hitachi; 9500, HF-2200, manufactured by JEOL; JEM-4010, JEM-3010, etc.).

試料の調製は、測定サンプル約0.005gを2%コロジオン溶液10mL中に添加し、分散処理を施してから、その溶液を水に1〜2滴滴下してコロジオン膜を生成させ、これをグリッドの片面に付着させ、自然乾燥させた後に被膜強化のためにカーボン蒸着を施すことによって行った。   The sample is prepared by adding about 0.005 g of a measurement sample into 10 mL of a 2% collodion solution, applying a dispersion treatment, and then dropping 1 to 2 drops of the solution into water to form a collodion film. The film was deposited on one side of the film and allowed to dry naturally, followed by carbon deposition for strengthening the film.

測定は以下のようにして行った。まず、低倍率(例えば300〜1000倍程度)で電子線を当て、吸着ガス等のコンタミを除去した。その後、粒子の測定が行える程度に高倍率の電子線に切り替えた上で、試料粒子の移動する方向を確認した。その中でも影響をなかなか受けない粒子を選択し、粒子中の微小な測定ポイントにのみに電子線を当てることによって、その微小領域の組成をEDSにて測定した。微小な測定ポイントとして「表層」を選択することにより表層のみの組成が測定され、「観察できる表層部分よりも金属の影響により像が濃く現れる部分」を選択することにより金属部分の組成が測定される。20sec毎に粒子がドリフトしないかどうか確認しつつ測定を行い、3回の積算結果(合計60sec分)をもって測定結果としている。   The measurement was performed as follows. First, an electron beam was applied at a low magnification (for example, about 300 to 1000 times) to remove contaminants such as adsorbed gas. Thereafter, the direction of movement of the sample particles was confirmed after switching to a high-magnification electron beam so that the particles could be measured. Among them, a particle that is not easily affected is selected, and an electron beam is applied only to a minute measurement point in the particle, and the composition of the minute region is measured by EDS. By selecting “surface layer” as a minute measurement point, the composition of only the surface layer is measured, and by selecting “the portion where the image appears darker than the surface layer portion that can be observed”, the composition of the metal portion is measured. The Measurement is performed while confirming whether or not the particles drift every 20 seconds, and the measurement result is obtained by integrating three times (for a total of 60 seconds).

この測定により求めた表層のCo/Fe原子比を「表層(Co/Fe)」と表示し、金属部分のCo/Fe原子比を「金属部分(Co/Fe)」と表示する。   The Co / Fe atomic ratio of the surface layer obtained by this measurement is indicated as “surface layer (Co / Fe)”, and the Co / Fe atomic ratio of the metal portion is indicated as “metal portion (Co / Fe)”.

〔粒子全体の組成分析〕
粒子全体の組成分析については、Co、AlおよびYの定量は日本ジャーレルアッシュ株式会社製高周波誘導プラズマ発光分析装置(ICP)IRIS/APを用いて行い、Feの定量は平沼産業株式会社製平沼自動滴定装置 COMTIME-980を用いて行い、酸素の定量は LECO Corporation製 NITROGEN/OXYGEN DETERMETER TC-436型を用いて行った。これらの定量結果はwt.%として与えられるので、Feに対する原子百分率の比(at.%)の算出は一旦全元素の割合をwt.%からat.%に変換したうえで行った。
この測定により求めた粒子全体のCo/Fe原子比を「全体(Co/Fe)」と表示する。
[Composition analysis of the entire particle]
For the compositional analysis of the whole particle, Co, Al and Y are quantified using a high frequency induction plasma emission analyzer (ICP) IRIS / AP manufactured by Japan Jarrel Ash Co., and Fe is quantified by Hiranuma Sangyo Co., Ltd. An automatic titrator COMTIME-980 was used, and oxygen was quantified using a NITROGEN / OXYGEN DETERMETER TC-436 manufactured by LECO Corporation. Since these quantitative results are given as wt.%, The ratio of atomic percentage to Fe (at.%) Was calculated once the ratio of all elements was converted from wt.% To at.%.
The Co / Fe atomic ratio of the whole particle obtained by this measurement is displayed as “total (Co / Fe)”.

〔ESCAによる表面組成分析〕
参考のため、ESCAすなわちX線光電子分光法(XPS)を用いた粉末粒子表面の組成分析も行った。測定条件は、アルバック・ファイ株式会社製 5800を使用し、X線源はAl陽極線源150W、分析面積は800μmφ、中和銃を使用、取り出し角45°に設定し、試料はホルダー上にセッティングした。スキャニング速度は5eV/min、 エッチングはSiO2換算で2nm/cycle の割合で行った。そのときの測定範囲は下記のとおりである。
Fe(2p): 740 〜700(eV)
Co(3s): 810 〜770(eV)
Al(2p): 88 〜68(eV)
Y(3d): 172〜152(eV)
O(1s): 545〜525(eV)
この測定により求めた粒子表面のCo/Fe原子比を「ESCA(Co/Fe)」と表示する。
[Surface composition analysis by ESCA]
For reference, composition analysis of the powder particle surface using ESCA, that is, X-ray photoelectron spectroscopy (XPS) was also performed. Measurement conditions are 5800 made by ULVAC-PHI Co., Ltd., X-ray source is Al anode source 150W, analysis area is 800μmφ, neutralizing gun is used, take-out angle is 45 °, sample is set on holder did. The scanning speed was 5 eV / min, and the etching was performed at a rate of 2 nm / cycle in terms of SiO 2 . The measurement range at that time is as follows.
Fe (2p): 740 to 700 (eV)
Co (3s): 810 to 770 (eV)
Al (2p): 88-68 (eV)
Y (3d): 172 to 152 (eV)
O (1s): 545 to 525 (eV)
The Co / Fe atomic ratio of the particle surface obtained by this measurement is displayed as “ESCA (Co / Fe)”.

〔Oの存在比〕
上記ESCAによって得られたイオンスパッタによるエッチングを行っていない状態の粉末試料における酸素含有量Osurf.(at.%)と、酸素分析装置(前記LECO Corporation製 NITROGEN/OXYGEN DETERMETER TC-436型)により測定される粉末全体の酸素含有量Oall(at.%)の値から、Osurf./Oallの値を算出した。
[O abundance ratio]
Oxygen content O surf. (At.%) In a powder sample not etched by ion sputtering obtained by ESCA and an oxygen analyzer (NITROGEN / OXYGEN DETERMETER TC-436 manufactured by LECO Corporation) from the value of the measured overall powder oxygen content O all (at.%), was calculated value of O surf. / O all.

〔TG測定〕
粒子の金属部分部分は、大気中酸素存在下で加熱した後に生じた酸素重量により相対的に判断できる。セイコーインスツルメンツ社製 TG/DTA装置 TG/DTA6300型で測定したデータをEXSTAR300型データ解析装置を用いて分析した。測定方法としては供試試料を10mg分取したのち、Alセルの中に試料を挿入して加熱を開始する。このセルに入った試料とAlの空セルの相対的な重量変化を見ることで、供試試料の重量増加を測定した。この時の昇温速度は10℃/minとし、測定及び昇温範囲は常温から300℃までとした。そのときに増加した重量は粉末が酸化されることによって増加した酸素の重量であり、これは金属部分が酸化されたことによる重量増加と推定する。
[TG measurement]
The metal portion of the particles can be relatively judged by the weight of oxygen generated after heating in the presence of atmospheric oxygen. Data measured with a TG / DTA apparatus TG / DTA6300 manufactured by Seiko Instruments Inc. was analyzed using an EXSTAR300 data analysis apparatus. As a measuring method, after taking 10 mg of a test sample, the sample is inserted into an Al cell and heating is started. The weight increase of the test sample was measured by observing the relative weight change between the sample in this cell and the Al empty cell. The temperature increase rate at this time was 10 ° C./min, and the measurement and temperature increase range was from room temperature to 300 ° C. The weight increased at that time is the weight of oxygen increased as a result of oxidation of the powder, which is assumed to be an increase in weight due to oxidation of the metal portion.

〔粉末の磁気特性〕
粉末の磁気特性は、東栄工業株式会社製のVSM装置 VSM-7Pを使用して、外部磁場125.6kA/m(10kOe)で測定した。
[Magnetic properties of powder]
The magnetic properties of the powder were measured with an external magnetic field of 125.6 kA / m (10 kOe) using a VSM device VSM-7P manufactured by Toei Kogyo Co., Ltd.

〔粉末の耐酸化性評価〕
当該粉末の飽和磁化σs0(Am2/kg)と、当該粉末を常法により恒温恒湿容器内で60℃、90%RHに1週間保持したのちの飽和磁化σs1(Am2/kg)を測定し、下記(5)式によりΔσs(%)を求めて評価した。Δσsが小さいほど耐候性は良好である。
Δσs=(σs0−σs1)/σs0×100 ……(5)
[Evaluation of oxidation resistance of powder]
Saturation magnetization σs 0 (Am 2 / kg) of the powder and saturation magnetization σs 1 (Am 2 / kg) after holding the powder in a constant temperature and humidity container at 60 ° C. and 90% RH for one week by a conventional method Was measured and Δσs (%) was obtained and evaluated by the following equation (5). The smaller Δσs, the better the weather resistance.
Δσs = (σs 0 −σs 1 ) / σs 0 × 100 (5)

〔比表面積〕
湯浅イオニクス株式会社製の4ソープUSを用いて、B.E.T.法により求めた。
〔Specific surface area〕
It was determined by the BET method using 4 soap US manufactured by Yuasa Ionics Co., Ltd.

〔結晶子Dx〕
理学電気株式会社製のX線回折装置 RAD-2Cで得られるFe(110)面の回折ピークの半価幅からDxを求めた。すなわちD(110)=Kλ/βcosθ(式中Kはシェラー定数=0.9,λは照射X線波長,βは回折ピークの半価幅;ラジアンに補正して用いる,θは回折角を表す)に従って求めた。
[Crystallite Dx]
Dx was determined from the half-value width of the diffraction peak of the Fe (110) plane obtained with an X-ray diffractometer RAD-2C manufactured by Rigaku Corporation. That is, D (110) = Kλ / βcos θ (where K is the Scherrer constant = 0.9, λ is the irradiation X-ray wavelength, β is the half-value width of the diffraction peak; radians are used after correction, and θ represents the diffraction angle. ).

〔媒体特性〕
供試粉末100質量部に対し以下の材料を下記組成となるような割合で配合して遠心ボールミルで1時間分散させて磁性塗料を作製した。得られた磁性塗料をポリエチレンテレフタレートからなるベースフイルム上にアプリケーターを用いて塗布して磁気テープを作製し、その保磁力Hcxを測定し、また、そのヒステリシスループからSFDx値を算出した。また、テープの耐候性はΔBmで評価した。これは、当該磁気テープを恒温恒湿容器内で60℃、90%RHに1週間保持し、その保持の前後における磁気テープの飽和磁束密度Bm(G)から、前記Δσsと同様にして求めた。磁気テープの磁気特性は前掲のVSM装置を使用し、外部磁場125.6kA/m(10kOe)で測定した。
(磁気テープ組成)
強磁性鉄合金粉末 100質量部(後述の各例で得られた粉末)
ポリウレタン樹脂 30質量部(東洋紡株式会社製のUR−8200)
塩化ビニル系樹脂 30質量部(日本ゼオン株式会社製のMR−110)
メチルエチルケトン 190質量部
シクロヘキサノン 80質量部
トルエン 110質量部
ステアリン酸 1質量部
アセチルアセトン 1質量部
アルミナ 3質量部
カーボンブラック 2質量部
[Media characteristics]
The following materials were blended in a proportion of the following composition with respect to 100 parts by mass of the test powder, and dispersed in a centrifugal ball mill for 1 hour to prepare a magnetic paint. The obtained magnetic paint was applied onto a base film made of polyethylene terephthalate using an applicator to produce a magnetic tape, its coercive force Hcx was measured, and the SFDx value was calculated from its hysteresis loop. The weather resistance of the tape was evaluated by ΔBm. This was obtained in the same manner as Δσs from the saturation magnetic flux density Bm (G) of the magnetic tape before and after holding the magnetic tape in a constant temperature and humidity container at 60 ° C. and 90% RH for 1 week. . The magnetic properties of the magnetic tape were measured using the above-mentioned VSM apparatus and an external magnetic field of 125.6 kA / m (10 kOe).
(Magnetic tape composition)
100 parts by mass of ferromagnetic iron alloy powder (powder obtained in each example described later)
30 parts by mass of polyurethane resin (UR-8200 manufactured by Toyobo Co., Ltd.)
30 parts by mass of vinyl chloride resin (MR-110 manufactured by Zeon Corporation)
Methyl ethyl ketone 190 parts by mass Cyclohexanone 80 parts by mass Toluene 110 parts by mass Stearic acid 1 part by mass Acetylacetone 1 part by mass Alumina 3 parts by mass Carbon black 2 parts by mass

〔実施例1〕
5000mLビーカーに純水3000mLを装入し、温調機で40℃に維持しながら、これに0.03mol/Lの硫酸コバルト(特級試薬)溶液と0.15mol/Lの硫酸第一鉄(特級試薬)水溶液を1:4の混合割合にて混合した溶液を500mL添加した。その後、Fe+Coに対して炭酸が3当量となる量の顆粒状の炭酸ナトリウムを直接添加し、液中温度が±5℃を超えないように調整しつつ、炭酸鉄を主体とする懸濁液を作った。これを1時間30分熟成した後、純酸素を20mL/minで5分間通気して核晶を形成させ、65℃まで昇温し、更に50mL/minで純酸素を通気して酸化を1時間継続した。そのあと、純酸素を窒素に切り替えてから、30分程度熟成した。
[Example 1]
In a 5000 mL beaker, 3000 mL of pure water was charged and maintained at 40 ° C. with a temperature controller. To this, 0.03 mol / L cobalt sulfate (special grade reagent) solution and 0.15 mol / L ferrous sulfate (special grade) were added. Reagent) 500 mL of a solution prepared by mixing aqueous solutions at a mixing ratio of 1: 4 was added. Thereafter, granular sodium carbonate in an amount of 3 equivalents of carbonate with respect to Fe + Co is directly added, and the suspension mainly composed of iron carbonate is adjusted so that the temperature in the liquid does not exceed ± 5 ° C. Had made. After aging this for 1 hour 30 minutes, pure oxygen was aerated at 20 mL / min for 5 minutes to form nucleus crystals, the temperature was raised to 65 ° C., and pure oxygen was aerated at 50 mL / min to oxidize for 1 hour. Continued. Thereafter, the pure oxygen was changed to nitrogen, and then aging was performed for about 30 minutes.

その後、液温を40℃まで降温し、温度が安定してからAlとして1.0質量%の硫酸アルミニウム水溶液を5.0g/minの添加速度で20分間添加し続けた。さらに純酸素を50mL/minで流し続け、酸化を完結させた。なお、酸化の終点は、上澄み液を少量分取し、ヘキサシアノ酸鉄カリウムの溶液を使用して、液色が変化しないことを確認した後とした。
酸化終了後の液に酸化イットリウムの硫酸水溶液(Yとして2.0質量%含有する)を300g添加した。このようにして、Alが固溶され、Yが表面に被着されたオキシ水酸化鉄の粉末を得た。
Thereafter, the liquid temperature was lowered to 40 ° C., and after the temperature was stabilized, 1.0 mass% aluminum sulfate aqueous solution as Al was continuously added at a rate of 5.0 g / min for 20 minutes. Further, pure oxygen was kept flowing at 50 mL / min to complete the oxidation. The end point of the oxidation was determined after a small amount of the supernatant was collected, and it was confirmed that the liquid color did not change using a potassium iron hexacyanoate solution.
300 g of a sulfuric acid aqueous solution of yttrium oxide (containing 2.0% by mass as Y) was added to the solution after completion of oxidation. Thus, iron oxyhydroxide powder in which Al was dissolved and Y was deposited on the surface was obtained.

前記オキシ水酸化鉄のケーキを常法により濾過、水洗後、130℃で乾燥し、オキシ水酸化鉄乾燥固形物を得た。その固形物10gをバケットに挿入し、水蒸気を水として1.0g/minの導入速度で添加しながら大気中にて400℃で焼成し、α−酸化鉄(ヘマタイト)を主成分とする鉄系酸化物を得た。   The iron oxyhydroxide cake was filtered and washed with water in the usual manner, and then dried at 130 ° C. to obtain a dried iron oxyhydroxide solid. 10 g of the solid material is inserted into a bucket, and fired at 400 ° C. in the atmosphere while adding steam as water at an introduction rate of 1.0 g / min, and iron-based mainly containing α-iron oxide (hematite). An oxide was obtained.

この鉄系酸化物を、純水4000mLを入れた、気泡発生装置を備えた撹拌機付きビーカー内に添加した。前記のオキシ水酸化鉄ケーキをミキサー(特殊機化工業株式会社製のホモミクサー)を用いて、回転速度5000rpm・10分間にて水中に解膠・分散させた後、窒素を投入しつつ、酸素が完全に除去されるのを待った。ビーカー内の酸素濃度を酸素濃度計によりモニタリングし、0%を示した時点で酸素が完全に除去されたものとした。   This iron-based oxide was added into a beaker with a stirrer equipped with an air bubble generator containing 4000 mL of pure water. The above iron oxyhydroxide cake was peptized and dispersed in water at a rotational speed of 5000 rpm for 10 minutes using a mixer (a homomixer manufactured by Tokushu Kika Kogyo Co., Ltd.). Waited for complete removal. The oxygen concentration in the beaker was monitored with an oximeter, and oxygen was completely removed when 0% was indicated.

その後、温調機を用いて40℃に設定し、温度が安定してから窒素をアンモニアガスに交換し、100mL/minの流速で通気しながら、α−酸化鉄を15分間洗浄した。その後、常法により濾過後、0.01mol/Lの酢酸10Lでスラリーを洗浄し、さらに60Lの超純水でスラリーを洗浄した後、130℃にて6時間乾燥し、α−酸化鉄の粉末を得た。   Then, it set to 40 degreeC using a temperature controller, after temperature stabilized, nitrogen was replaced | exchanged for ammonia gas, (alpha) -iron oxide was wash | cleaned for 15 minutes, ventilating with the flow rate of 100 mL / min. Then, after filtration by a conventional method, the slurry is washed with 10 L of 0.01 mol / L acetic acid, further washed with 60 L of ultrapure water, and then dried at 130 ° C. for 6 hours to obtain an α-iron oxide powder. Got.

このα−酸化鉄を、通気可能なバケット内に投入し、該バケットを貫通型還元炉内に装入し、水素ガス(流速:40L/min)を通気しつつ、水蒸気を水として1.0g/minの導入速度で添加しながら、400℃で30分間還元処理を施した。還元時間終了後、水蒸気の供給を停止し、水素雰囲気下600℃まで10℃/minの昇温速度にて昇温した。その後、水蒸気を水として1.0g/minの導入速度で添加しながら60分高温還元処理を行い、還元鉄合金粉末を作製した。   This α-iron oxide is put into a bucket that can be ventilated, and the bucket is charged into a through-type reduction furnace, and hydrogen gas (flow rate: 40 L / min) is ventilated while water is 1.0 g as water. While adding at an introduction rate of / min, reduction treatment was performed at 400 ° C. for 30 minutes. After completion of the reduction time, the supply of water vapor was stopped, and the temperature was increased to 600 ° C. under a hydrogen atmosphere at a temperature increase rate of 10 ° C./min. Thereafter, high-temperature reduction treatment was performed for 60 minutes while adding water vapor as water at an introduction rate of 1.0 g / min to produce reduced iron alloy powder.

その後、炉内雰囲気を水素から窒素に変換し、50L/minの流速で窒素を導入しながら炉内温度を降温レート20℃/minで90℃まで低下させた。酸化膜形成初期段階は窒素50L/minと純酸素400mL/minの混合割合にて混合したガスを炉内に添加し、水蒸気を水として1.0g/minの導入速度で添加しながら、水蒸気・酸素・窒素の混合雰囲気中にて酸化膜を形成させ、表面の酸化による発熱が抑制された段階で徐々に空気の供給量を増すことによって、雰囲気中における酸素濃度を上昇させた。最終的な純酸素の流量は2.0L/minの添加量とした。その際、炉内に導入されるガスの総量は窒素の流量を調整することによりほぼ一定に保たれるようにした。この最初の安定化処理は、概ね90℃に維持される雰囲気下で実施された。   Thereafter, the furnace atmosphere was converted from hydrogen to nitrogen, and the furnace temperature was lowered to 90 ° C. at a temperature drop rate of 20 ° C./min while introducing nitrogen at a flow rate of 50 L / min. In the initial stage of oxide film formation, a gas mixed at a mixing rate of 50 L / min of nitrogen and 400 mL / min of pure oxygen is added to the furnace, and water vapor is added at a rate of introduction of 1.0 g / min as water vapor. An oxide film was formed in a mixed atmosphere of oxygen and nitrogen, and the oxygen concentration in the atmosphere was increased by gradually increasing the amount of air supply when heat generation due to surface oxidation was suppressed. The final pure oxygen flow rate was 2.0 L / min. At that time, the total amount of gas introduced into the furnace was kept almost constant by adjusting the flow rate of nitrogen. This initial stabilization treatment was performed in an atmosphere maintained at approximately 90 ° C.

次いで、窒素雰囲気下、10℃/minで450℃まで昇温した後、水素ガス(流速:50L/min)を用い、水蒸気を水として1.0g/minの導入速度で添加しながら30分間還元した(アニール工程)。   Next, after raising the temperature to 450 ° C. at 10 ° C./min in a nitrogen atmosphere, reduction is performed for 30 minutes using hydrogen gas (flow rate: 50 L / min) and adding water vapor as water at an introduction rate of 1.0 g / min. (Annealing process).

この粉末の製法におけるアンモニアを用いた洗浄条件、アニール工程の条件、を表1に示した(以下の例についても同様)。
また、得られた磁性粉末の粉体特性は表2に示してある(以下の例についても同様)。
更に、この磁性粉末の磁気特性、およびこの粉末を使用して前述の方法で作製した磁気テープについての磁気特性(媒体特性)は表3に示してある(以下の例についても同様)。
The cleaning conditions using ammonia and the annealing process conditions in this powder manufacturing method are shown in Table 1 (the same applies to the following examples).
The powder characteristics of the obtained magnetic powder are shown in Table 2 (the same applies to the following examples).
Further, the magnetic properties of this magnetic powder and the magnetic properties (medium properties) of the magnetic tape produced by the above-described method using this powder are shown in Table 3 (the same applies to the following examples).

〔実施例2、3〕
実施例1においてα−酸化鉄(ヘマタイト)の洗浄に使用したアンモニアの流量を100mL/minから200mL/min(実施例2)、500mL/min(実施例3)にそれぞれ変更した以外は、実施例1と同様にして表面変性金属磁性粉末を得た。
[Examples 2 and 3]
Example 1 except that the flow rate of ammonia used for washing α-iron oxide (hematite) in Example 1 was changed from 100 mL / min to 200 mL / min (Example 2) and 500 mL / min (Example 3). In the same manner as in Example 1, a surface-modified metal magnetic powder was obtained.

〔実施例4〜7〕
実施例1において、当初に添加した硫酸コバルト水溶液の濃度を0.03mol/Lから0.01mol/L(実施例4)、0.02mol/L(実施例5)、0.04mol/L(実施例6)、0.05mol/L(実施例7)にそれぞれ変更した以外は、実施例1と同様にして表面変性金属磁性粉末を得た。
[Examples 4 to 7]
In Example 1, the concentration of the cobalt sulfate aqueous solution initially added was changed from 0.03 mol / L to 0.01 mol / L (Example 4), 0.02 mol / L (Example 5), 0.04 mol / L (implementation). Example 6) A surface-modified metal magnetic powder was obtained in the same manner as in Example 1 except for changing to 0.05 mol / L (Example 7).

〔実施例8〕
実施例1において、アンモニアによる洗浄操作を行った後に、一度デカンテーションにより粒子と洗浄液を分離した後に、上澄みを注意深く除き、再度純水を添加し懸濁状態にしてから、炭酸ガスを1000mL/minの流速で、処理液のpHが6.0になるまで添加し、その後濾過・洗浄・水洗し、表面変性α−酸化鉄を主体とする粒子粉末を得た以外は、実施例1と同様の操作を行って金属磁性粉末を得た。
Example 8
In Example 1, after the washing operation with ammonia, the particles and the washing liquid were once separated by decantation, the supernatant was carefully removed, pure water was added again to make a suspension, and carbon dioxide gas was added at 1000 mL / min. The same treatment as in Example 1 was conducted except that the treatment solution was added until the pH of the treatment solution reached 6.0, and then filtered, washed, and washed to obtain particle powder mainly composed of surface-modified α-iron oxide. The operation was performed to obtain a metal magnetic powder.

〔実施例9〜11〕
実施例8において、当初に添加した硫酸コバルト水溶液の濃度を0.03mol/Lから0.01mol/L(実施例9)、0.02mol/L(実施例10)、0.04mol/L(実施例11)にそれぞれ変更した以外は、実施例8と同様にして表面変性金属磁性粉末を得た。
[Examples 9 to 11]
In Example 8, the concentration of the cobalt sulfate aqueous solution initially added was changed from 0.03 mol / L to 0.01 mol / L (Example 9), 0.02 mol / L (Example 10), 0.04 mol / L (implementation). A surface-modified metal magnetic powder was obtained in the same manner as in Example 8 except for changing to Example 11).

〔実施例12〜18〕
実施例1において、水素のアニール処理における処理の雰囲気を水素からエチレン(実施例12)、一酸化炭素(実施例13)、アセチレン(実施例14)にそれぞれ変更した以外は、実施例1と同様にして表面変性金属磁性粉末を得た。
[Examples 12 to 18]
Example 1 is the same as Example 1 except that the atmosphere of hydrogen annealing is changed from hydrogen to ethylene (Example 12), carbon monoxide (Example 13), and acetylene (Example 14). Thus, a surface-modified metal magnetic powder was obtained.

〔比較例1、2〕
実施例1においてα−酸化鉄(ヘマタイト)の洗浄に使用したアンモニアの流量を100mL/minから10mL/min(比較例1)、1000mL/min(比較例2)にそれぞれ変更した以外は、実施例1と同様にして表面変性金属磁性粉末を得た。
[Comparative Examples 1 and 2]
Example 1 except that the flow rate of ammonia used for washing α-iron oxide (hematite) in Example 1 was changed from 100 mL / min to 10 mL / min (Comparative Example 1) and 1000 mL / min (Comparative Example 2), respectively. In the same manner as in Example 1, a surface-modified metal magnetic powder was obtained.

〔比較例3〕
実施例1において、α−酸化鉄(ヘマタイト)のアンモニアを用いた洗浄を行わなかった以外は、実施例1を繰り返した。
[Comparative Example 3]
In Example 1, Example 1 was repeated except that α-iron oxide (hematite) was not washed with ammonia.

〔比較例4〕
実施例1において、焼成を行わず、かつα−酸化鉄のアンモニアを用いた洗浄を行わなかった以外は、実施例1を繰り返した。
[Comparative Example 4]
In Example 1, Example 1 was repeated except that no baking was performed and no washing with ammonia of α-iron oxide was performed.

〔比較例5〕
ESCAによる表面のCo/Fe原子比と、ICPおよび自動滴定装置による粒子全体の(Co/Fe)値の比が0.96であり、組成としてCo/Fe原子比が10.1%、物性として長軸長0.091μm、軸比7、B.E.T.法による比表面積値120.4m2/gを有する鉄を主成分としたオキシ水酸化鉄粒子を準備した。
これを、特殊機化工業製ホモミクサーを用いて5000rpm、10分間の条件にて水中に均一に解謬した(スラリー濃度:20g/L、スラリー量1L)。
得られたスラリーを気泡塔に入れ、スラリー中に窒素ガスを気泡状にして40L/分の流量で導入することにより溶存酸素を系外へ排出させた。ついで、5%NH3水溶液に特級試薬硫酸コバルト七水和物15.28gを溶解したコバルトアンミン錯体溶液200mLを、窒素ガスを通気させながら該スラリー中に添加し、室温で10分間撹拌して混合した。
[Comparative Example 5]
The ratio of the Co / Fe atomic ratio of the surface by ESCA and the (Co / Fe) value of the whole particle by ICP and automatic titrator is 0.96, and the Co / Fe atomic ratio is 10.1% as a composition. Iron oxyhydroxide particles mainly composed of iron having a major axis length of 0.091 μm, an axial ratio of 7, and a specific surface area value of 120.4 m 2 / g according to the BET method were prepared.
This was uniformly unwound in water using a homomixer manufactured by Koki Kogyo Kogyo under the condition of 5000 rpm for 10 minutes (slurry concentration: 20 g / L, amount of slurry 1 L).
The obtained slurry was put in a bubble column, and nitrogen gas was bubbled into the slurry and introduced at a flow rate of 40 L / min to discharge dissolved oxygen out of the system. Next, 200 mL of a cobalt ammine complex solution obtained by dissolving 15.28 g of the special grade reagent cobalt sulfate heptahydrate in 5% NH 3 aqueous solution was added to the slurry while aeration of nitrogen gas was conducted, and the mixture was stirred for 10 minutes at room temperature and mixed. did.

その後、特級無水炭酸ナトリウム56.23g(この炭酸塩の添加量はCO2/(Fe+Co)の原子比で2に相当)を添加した。その際に炭酸の溶解時の発生熱による影響を緩和するため、液温が10℃よりも高くならないように調整した。このあと、温度の上昇を抑制しながら混合を15分間実施し、オキシ水酸化鉄の表面に鉄・コバルトの炭酸塩を被覆したのち、酢酸を用いて35℃、pH=7.5に調整し、3時間の熟成を施した。 Thereafter, 56.23 g of special grade anhydrous sodium carbonate (the amount of carbonate added corresponds to 2 in terms of the atomic ratio of CO 2 / (Fe + Co)) was added. At that time, the liquid temperature was adjusted so as not to be higher than 10 ° C. in order to alleviate the influence of the heat generated when carbonic acid was dissolved. Then, mixing was carried out for 15 minutes while suppressing the temperature rise, and after iron / cobalt carbonate was coated on the surface of iron oxyhydroxide, it was adjusted to 35 ° C. and pH = 7.5 using acetic acid. Aged for 3 hours.

熟成後、酸素含有ガス(空気)を通気して徐々に酸化を行い、酸化開始より30分経過後、Al/(Fe+Co)=8.5at.%になるようにアルミニウムイオン濃度を調整した硫酸アルミニウム水溶液(無水硫酸アルミニウム3.86gを純水100mLに溶解)を徐々に追加(酸化割合85%までの区間で酸化が終了するように調整)したあとで、アンモニア水(濃度30%)を使用してpHを9.5に調整し、温度が安定するまで熟成させた。ついで酸化イットリウム1.86gを100mLの希硫酸に溶解した酸化イットリウム溶液(この濃度はY/(Fe+Co)=で、6.2at.%に相当する)を一挙に添加して、Yをオキシ水酸化鉄の表面に被着させた。Yの被着操作の後、熟成を1時間行って二層構造を有するオキシ水酸化鉄粒子を得た。得られた二層構造を有するオキシ水酸化鉄粒子は、Co/Fe=30.3at.%,Al/(Fe+Co)=8.3at.%、Y/(Fe+Co)=6.0at.%の組成を有し、平均長軸長=0.098μm、軸比=7、B.E.T.比表面積値=114.3m2/gであり、Dx=11.8nmであった。 After aging, oxygen-containing gas (air) is ventilated to gradually oxidize, and after 30 minutes from the start of oxidation, aluminum sulfate whose aluminum ion concentration is adjusted to Al / (Fe + Co) = 8.5 at.% After gradually adding aqueous solution (dissolving 3.86 g of anhydrous aluminum sulfate in 100 mL of pure water) (adjusting so that oxidation is completed in the interval up to 85% oxidation rate), use aqueous ammonia (concentration 30%). The pH was adjusted to 9.5 and aged until the temperature was stable. Next, an yttrium oxide solution in which 1.86 g of yttrium oxide was dissolved in 100 mL of dilute sulfuric acid (this concentration is Y / (Fe + Co) =, corresponding to 6.2 at.%) Was added all at once, and Y was oxyhydroxylated. It was deposited on the iron surface. After the Y deposition operation, aging was performed for 1 hour to obtain iron oxyhydroxide particles having a two-layer structure. The obtained iron oxyhydroxide particles having a two-layer structure have a composition of Co / Fe = 30.3 at.%, Al / (Fe + Co) = 8.3 at.%, Y / (Fe + Co) = 6.0 at.%. Average major axis length = 0.098 µm, axial ratio = 7, BET specific surface area value = 114.3 m 2 / g, and Dx = 11.8 nm.

このオキシ水酸化鉄をステンレスボード中に入れて石英管に挿入した上で電気炉に装入し、大気中475℃に30分間加熱して酸化鉄粒子にした。炉内に水素ガスを50L/minの流量で通気しながら加熱還元を行った。還元開始から15分間は500℃に保持し、次いで1℃/minの昇温速度で600℃まで昇温した後、その温度に30分維持した。その後、得られた還元粉末を窒素ガス雰囲気中で70℃まで冷却したあと、70℃の温度に維持しながら、窒素:酸素の割合を9:1とした酸素含有ガスを55L/minの割合で90分間通気し、還元粉末の表面に酸化膜を形成させ、磁性粉末を得た。   The iron oxyhydroxide was placed in a stainless steel board and inserted into a quartz tube, and then charged in an electric furnace, and heated to 475 ° C. in the atmosphere for 30 minutes to form iron oxide particles. Heat reduction was carried out while ventilating hydrogen gas in the furnace at a flow rate of 50 L / min. The temperature was maintained at 500 ° C. for 15 minutes from the start of the reduction, then heated to 600 ° C. at a rate of 1 ° C./min, and then maintained at that temperature for 30 minutes. Thereafter, the obtained reduced powder was cooled to 70 ° C. in a nitrogen gas atmosphere, and then maintained at a temperature of 70 ° C., an oxygen-containing gas with a nitrogen: oxygen ratio of 9: 1 was added at a rate of 55 L / min. Aeration was performed for 90 minutes to form an oxide film on the surface of the reduced powder to obtain a magnetic powder.

Figure 0004505638
Figure 0004505638

Figure 0004505638
Figure 0004505638

Figure 0004505638
Figure 0004505638

〔特性評価について〕
a/b値が0.3〜0.7、b/c値が1.28以上、a/c値が0.89以下を満たす実施例1〜7の磁性粉末は、いずれも長軸長が45nmを下回る微細粒子からなるものであるにもかかわらず、5%を下回るΔσsおよび2%を下回るΔBmを呈し、優れた耐候性改善効果が認められた。磁気特性についても高密度磁気記録媒体に適した優れた性能が維持された。
[About characteristic evaluation]
The magnetic powders of Examples 1 to 7 satisfying an a / b value of 0.3 to 0.7 , a b / c value of 1.28 or more, and an a / c value of 0.89 or less have long axis lengths. Despite being composed of fine particles of less than 45 nm, Δσs of less than 5% and ΔBm of less than 2% were exhibited, and an excellent weather resistance improving effect was observed. In terms of magnetic properties, excellent performance suitable for high-density magnetic recording media was maintained.

これに対し、比較例1、3、4、5はα−酸化鉄の洗浄時におけるアンモニア濃度が低すぎたか、α−酸化鉄のアンモニアを用いた洗浄を行わなかったものであり、これらは実施例のものに比べ、還元前の段階で粒子表面に残存するCo量が多かったものと推察され、結果的に表層のCo量が十分低減されず、耐候性あるいはSFDxに劣った。比較例2は逆に洗浄時のアンモニア濃度が高かったものであり、表層のCo量が少なくなりすぎ、耐候性およびSFDxが悪かった。   On the other hand, Comparative Examples 1, 3, 4, and 5 are those in which the ammonia concentration during washing of α-iron oxide was too low or the α-iron oxide was not washed with ammonia. Compared to the examples, it was presumed that the amount of Co remaining on the particle surface was large at the stage before reduction, and as a result, the amount of Co on the surface layer was not sufficiently reduced, and the weather resistance or SFDx was inferior. In Comparative Example 2, on the contrary, the ammonia concentration during washing was high, the amount of Co on the surface layer was too small, and the weather resistance and SFDx were poor.

また、表2の「ESCA(Co/Fe)/全体(Co/Fe)」の値には目立った差が認められなくても、微細領域の分析によるa/b値、b/c値、a/c値を採ると大きな相違が認められ、耐候性はそのa/b値、b/c値、a/c値に依存して改善可能になる点が注目される。   In addition, even if there is no noticeable difference in the value of “ESCA (Co / Fe) / overall (Co / Fe)” in Table 2, the a / b value, b / c value, a It is noted that when the / c value is taken, a large difference is recognized, and the weather resistance can be improved depending on the a / b value, b / c value, and a / c value.

Claims (7)

金属部分と表層とを有する粒子で構成され、金属部分および表層が共にFeおよびCoを主成分とする磁性粉末であって、表層のCo/Fe原子比aと金属部分のCo/Fe原子比bと粒子全体のCo/Fe原子比cが下記(1)〜(3)式の関係を満たす磁性粉末。
0.3≦a/b≦0.7 ……(1)
b/c≧1.28 ……(2)
a/c≦0.89 ……(3)
It is composed of particles having a metal part and a surface layer, and both the metal part and the surface layer are magnetic powders mainly composed of Fe and Co, and the Co / Fe atomic ratio a of the surface layer and the Co / Fe atomic ratio b of the metal part And a magnetic powder in which the Co / Fe atomic ratio c of the whole particle satisfies the following expressions (1) to (3).
0.3 ≦ a / b ≦ 0.7 (1)
b / c ≧ 1.28 (2)
a / c ≦ 0.89 (3)
前記表層のCo/Fe原子比aが、透過型電子顕微鏡を用いて、観察できる表層部分に電子ビームを選択的に当てたEDS測定によって求まる値である請求項1に記載の磁性粉末。 The magnetic powder according to claim 1, wherein the Co / Fe atomic ratio a of the surface layer is a value determined by EDS measurement in which an electron beam is selectively applied to a surface layer portion that can be observed using a transmission electron microscope. 前記金属部分のCo/Fe原子比bが、透過型電子顕微鏡を用いて、観察できる表層部分よりも金属の影響により像が濃く現れる部分に電子ビームを選択的に当てたEDS測定によって求まる値である請求項1または2に記載の磁性粉末。   The Co / Fe atomic ratio b of the metal part is a value obtained by EDS measurement using a transmission electron microscope, in which an electron beam is selectively applied to a part where an image appears darker than the surface layer part that can be observed. The magnetic powder according to claim 1 or 2. 粒子全体のCo/Fe原子比cが、Coについては粉末試料のICP分析から定まるCoの含有量(at.%)を採用し、Feについては滴定による分析から定まるFeの含有量(at.%)を採用して算出されるものである請求項1〜3のいずれかに記載の磁性粉末。 For the Co / Fe atomic ratio c of the whole particle, the Co content (at.%) Determined from ICP analysis of the powder sample is adopted for Co, and the Fe content (at.%) Determined from titration analysis for Fe. The magnetic powder according to claim 1, wherein the magnetic powder is calculated by employing ESCAにより測定されるイオンスパッタリングを行っていない状態の粉末試料における酸素含有量Osurf.(at.%)と、酸素分析装置により測定される粉末全体の酸素含有量Oall(at.%)が下記(4)式を満たす請求項1〜のいずれかに記載の磁性粉末。
surf./Oall>1.0 ……(4)
The oxygen content O surf. (At.%) In the powder sample in a state where ion sputtering is not performed as measured by ESCA and the oxygen content O all (at.%) Of the whole powder as measured by the oxygen analyzer are The magnetic powder according to any one of claims 1 to 4 , which satisfies the following formula (4).
O surf. / O all > 1.0 …… (4)
粒子の平均長軸長が10〜45nm、飽和磁化σsが80〜130Am2/kg、下記(5)式で定義されるΔσsが10%以下である請求項1〜5のいずれかに記載の磁性粉末。
Δσs=(σs0−σs1)/σs0×100 ……(5)
ここで、σs0は、対象となる磁性粉末の飽和磁化(Am2/kg)、
σs1は、前記磁性粉末を恒温恒湿容器内で60℃,90%RHに1週間保持したのちの飽和磁化(Am2/kg)。
Magnetic according to any one of the average major axis length of the particles 10~45Nm, saturation magnetization σs is 80~130Am 2 / kg, the following (5) ?? s is 10% or less defined by the equation claims 1-5 Powder.
Δσs = (σs 0 −σs 1 ) / σs 0 × 100 (5)
Here, σs 0 is the saturation magnetization (Am 2 / kg) of the target magnetic powder,
σs 1 is the saturation magnetization (Am 2 / kg) after holding the magnetic powder in a constant temperature and humidity container at 60 ° C. and 90% RH for 1 week.
請求項1〜6のいずれかに記載の磁性粉末を用いた磁気記録媒体。 The magnetic recording medium using the magnetic powder according to any one of claims 1-6.
JP2004317584A 2004-11-01 2004-11-01 Metal magnetic powder and magnetic recording medium using the same Expired - Fee Related JP4505638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317584A JP4505638B2 (en) 2004-11-01 2004-11-01 Metal magnetic powder and magnetic recording medium using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317584A JP4505638B2 (en) 2004-11-01 2004-11-01 Metal magnetic powder and magnetic recording medium using the same

Publications (2)

Publication Number Publication Date
JP2006128535A JP2006128535A (en) 2006-05-18
JP4505638B2 true JP4505638B2 (en) 2010-07-21

Family

ID=36722879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317584A Expired - Fee Related JP4505638B2 (en) 2004-11-01 2004-11-01 Metal magnetic powder and magnetic recording medium using the same

Country Status (1)

Country Link
JP (1) JP4505638B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016154A1 (en) 2008-08-05 2010-02-11 Dowaエレクトロニクス株式会社 Metallic magnetic powder for magnetic recording and process for producing the metallic magnetic powder
JP5556982B2 (en) * 2008-10-15 2014-07-23 戸田工業株式会社 Ferromagnetic metal particle powder, method for producing the same, and magnetic recording medium
JP5948033B2 (en) 2011-09-21 2016-07-06 株式会社日立製作所 Sintered magnet
JP5548234B2 (en) 2012-05-10 2014-07-16 Dowaエレクトロニクス株式会社 Magnetic component, metal powder used therefor, and manufacturing method thereof
EP2801424B1 (en) * 2013-03-13 2017-03-08 DOWA Electronics Materials Co., Ltd. Magnetic component, soft magnetic metal powder used in same, and method for producing same
JP6406172B2 (en) * 2015-08-25 2018-10-17 住友金属鉱山株式会社 Method for producing fine powder of iron-based alloy containing rare earth element
EP3689497A4 (en) * 2017-09-25 2021-06-23 National Institute of Advanced Industrial Science and Technology Magnetic material and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030920A (en) * 1999-07-12 2000-01-28 Hitachi Maxell Ltd Magnetic powder, its manufacture, and magnetic recording medium
JP2001192211A (en) * 1999-12-28 2001-07-17 Toda Kogyo Corp Method for manufacturing powdery particle of iron- based compound
JP2004035939A (en) * 2002-07-02 2004-02-05 Toda Kogyo Corp Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030920A (en) * 1999-07-12 2000-01-28 Hitachi Maxell Ltd Magnetic powder, its manufacture, and magnetic recording medium
JP2001192211A (en) * 1999-12-28 2001-07-17 Toda Kogyo Corp Method for manufacturing powdery particle of iron- based compound
JP2004035939A (en) * 2002-07-02 2004-02-05 Toda Kogyo Corp Spindle-shaped alloy magnetic particle powder for magnetic recording, and its manufacturing process

Also Published As

Publication number Publication date
JP2006128535A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
EP1764806B1 (en) Method for producing ferromagnetic powder.
JP4758858B2 (en) Metallic magnetic powder for magnetic recording medium and method for producing the same
JP5905205B2 (en) Metallic magnetic powder and method for producing the same
JP4505638B2 (en) Metal magnetic powder and magnetic recording medium using the same
JP5731483B2 (en) Metal magnetic powder and method for producing the same, magnetic paint, and magnetic recording medium
JP5090546B2 (en) Metallic magnetic powder for magnetic recording media
US8852314B2 (en) Method of producing magnetic powder for magnetic recording medium
JP4677734B2 (en) Magnetic powder for magnetic recording media
JP5280661B2 (en) Method for producing metal magnetic powder
JP2006190842A (en) Magnetic metal powder and magnetic recording medium using the same
JP4758936B2 (en) Metallic magnetic powder for magnetic recording and method for producing the same
JP2010219359A (en) Metallic magnetic powder and method for manufacturing the same
JP5337286B2 (en) Metal magnetic powder
EP1770722B1 (en) Magnetic powder for magnetic recording medium
JP4929473B2 (en) Magnetic powder for magnetic recording medium, method for producing the same, and magnetic recording medium using the same
JP2767056B2 (en) Needle crystal iron alloy magnetic particles for magnetic recording
JP3582578B2 (en) Needle-like alloy magnetic particle powder mainly composed of iron
JP5082045B2 (en) Method for producing magnetic powder for magnetic recording medium
JP5102485B2 (en) Manufacturing method of metal magnetic powder
JP4228165B2 (en) Manufacturing method of spindle-shaped alloy magnetic particle powder for magnetic recording material
EP1788587B1 (en) Ferromagnetic powder for a magnetic recording medium and method of producing the powder
JP2008084900A (en) Magnetic powder for coating type magnetic recording medium, its production process and magnetic recording medium
JP2000203847A (en) Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4505638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees