JP4484748B2 - Method for producing silica glass product - Google Patents

Method for producing silica glass product Download PDF

Info

Publication number
JP4484748B2
JP4484748B2 JP2005112195A JP2005112195A JP4484748B2 JP 4484748 B2 JP4484748 B2 JP 4484748B2 JP 2005112195 A JP2005112195 A JP 2005112195A JP 2005112195 A JP2005112195 A JP 2005112195A JP 4484748 B2 JP4484748 B2 JP 4484748B2
Authority
JP
Japan
Prior art keywords
silica glass
producing
product according
glass product
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005112195A
Other languages
Japanese (ja)
Other versions
JP2006290666A (en
Inventor
司 坂口
博行 渡辺
朗 藤ノ木
博之 齋藤
孝之 今泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2005112195A priority Critical patent/JP4484748B2/en
Publication of JP2006290666A publication Critical patent/JP2006290666A/en
Application granted granted Critical
Publication of JP4484748B2 publication Critical patent/JP4484748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz

Description

本発明は、半導体産業における熱処理用治具、更に詳しくは高純度が必要とされる半導体装置用のシリカガラス治具の製造方法に関する。  The present invention relates to a heat treatment jig in the semiconductor industry, and more particularly to a method for manufacturing a silica glass jig for a semiconductor device that requires high purity.

近年半導体装置用に使用されるシリカガラス治具は半導体素子の高集積化に伴い不純物が出来る限り少なくなるよう高純度化が進められてきた。そのため使用する素材として合成シリカガラスを用いて治具を製作する場合があるが素材が高価であり最終的なシリカガラス治具も非常に高価なものとなっていた。  In recent years, silica glass jigs used for semiconductor devices have been improved in purity so as to minimize impurities as semiconductor elements are highly integrated. Therefore, a jig may be manufactured using synthetic silica glass as a material to be used, but the material is expensive and the final silica glass jig is very expensive.

上記問題点を解消し高純度で安価に、かつ生産性よくシリカガラス製品を製造する方法としてシリカガラス粉末を溶液中に分散したスラリーを型に入れて成形する、いわゆる鋳込み成形法が提案された。従来のシリカガラス製品の鋳込み成形法として、例えば特許文献1に示す、平均径が40nmで、直径が10〜500nmのシリカ粉を水と混合し、さらに塩酸またはアンモニア水を導入し固形分0.2〜5質量%の濃度に混練し、高品位スチール開放分割管又はPVC管に型入れし、超音波をかけて気泡を除去し、鋳込み成形したのち、純化処理、熱処理する方法などがある。しかし、前記特許文献1の製造方法では、単純な形状をした製品が製造できるにとどまる上に、高価となる欠点があった。また、特許文献2には、原料のヒュームドシリカと大粒子化シリカとを1:10〜1:1の混合質量比で用い、水およびPVAと共に撹拌し混合した後フッ化アンモニウムと混ぜフッ素樹脂製の型に入れ静置ケル化し、乾燥し、型出し、有機物除去操作を経てHe/Cl雰囲気中でガラス化する光ファイハー用透明シリカチューブの製造方法が提案されている。しかし、この引用文献2に記載の製造方法においても、特許文献1と同様に単純な形状をした製品が製造できるにとどまる上に、高価となる欠点があった。さらに、特許文献3には、シリカガラス粉末を成形し、酸処理し、脱気したのち焼結することで超高純度なシリカガラス原料を用いることなく透明性の高いシリカガラス焼結体を得る方法が提案されている。しかし、この製造方法では高純度のシリカガラス製品が得られると記載するにとどまり、半導体産業で使用する高純度のシリカガラスについては何の記載もない。
特公平6―76222号公報 特開平11-171585号公報 特開平11-189427公報
A so-called cast molding method has been proposed in which a slurry in which silica glass powder is dispersed in a solution is placed in a mold and molded as a method for solving the above problems and producing a silica glass product with high purity, low cost and high productivity. . As a conventional casting method for silica glass products, for example, as shown in Patent Document 1, silica powder having an average diameter of 40 nm and a diameter of 10 to 500 nm is mixed with water, and hydrochloric acid or aqueous ammonia is further introduced to obtain a solid content of 0.2 to There are methods such as kneading to a concentration of 5% by mass, putting into a high-grade steel open divided pipe or PVC pipe, removing bubbles by applying ultrasonic waves, casting, and then performing purification treatment and heat treatment. However, the manufacturing method of Patent Document 1 has a drawback that it is not only capable of manufacturing a product having a simple shape, but also becomes expensive. In Patent Document 2, fumed silica and large particle silica are mixed at a mixing mass ratio of 1:10 to 1: 1, mixed with water and PVA, mixed with ammonium fluoride, and mixed with fluorine fluoride. There has been proposed a method for producing a transparent silica tube for an optical fiher that is placed in a mold and allowed to stand still, dried, molded, and vitrified in a He / Cl atmosphere through organic substance removal operations. However, the manufacturing method described in the cited document 2 has a drawback that it is not only capable of manufacturing a product having a simple shape as in Patent Document 1, but also becomes expensive. Further, in Patent Document 3, a silica glass powder is molded, acid-treated, deaerated and then sintered to obtain a highly transparent silica glass sintered body without using an ultra-high purity silica glass raw material. A method has been proposed. However, this manufacturing method only describes that a high-purity silica glass product can be obtained, and there is no description about the high-purity silica glass used in the semiconductor industry.
Japanese Patent Publication No. 6-76222 Japanese Patent Laid-Open No. 11-171585 JP-A-11-189427

こうした現状に鑑み、本発明者等は鋭意研究を続けた結果、1μm以下のシリカガラス1次粒子と純水とを混合し、乾燥してシリカガラス顆粒を作製し純化し、焼結した後に、さらに純水と混ぜ粉砕混合し、乾燥して80〜85質量%の高濃度スラリーとしたのち成形型に鋳込み、ガラス化することで、安価に、生産性よく、かつ比較的大型形状のシリカガラス製品が容易に製造できることを見出して本発明を完成したものである。すなわち、   In view of the current situation, the present inventors have continued intensive research, as a result of mixing silica glass primary particles of 1 μm or less and pure water, drying to produce silica glass granules, purifying, and sintering, Furthermore, it is mixed with pure water, pulverized and mixed, dried to form a high-concentration slurry of 80 to 85% by mass, cast into a mold, and vitrified at low cost, with high productivity, and relatively large-sized silica glass The present invention has been completed by finding that a product can be easily manufactured. That is,

本発明は、高純度のシリカガラス製品を安価に、生産性よく製造できる方法を提供することを目的とする。   An object of this invention is to provide the method of manufacturing a high purity silica glass product cheaply and with sufficient productivity.

また、本発明は、高純度で比較的大型形状のシリカガラス製品を容易に製造する方法を提供することを目的とする。   Another object of the present invention is to provide a method for easily producing a silica glass product having a high purity and a relatively large shape.

上記目的を達成する本発明は、(A)1μm以下のシリカガラス1次粒子と純水とを混合し、乾燥してシリカガラス顆粒を作成する工程、(B) シリカガラス顆粒を分級後純化処理する工程、(C)純化顆粒を焼結処理して焼結粉とする工程、(D)焼結粉を純水と混合し、粉砕して70〜78質量%のスラリーとした後、乾燥してシリカガラス粒子の濃度が80〜85質量%の高濃度スラリーとする工程、(E)高濃度スラリーを成形型に鋳込む工程、及び(F)成形体を成形型から取り出し、乾燥、純化処理し、さらにガラス化処理する工程、の各工程を清浄雰囲気で行うことを特徴とするシリカガラス製品の製造方法に係る。   The present invention to achieve the above object is (A) a step of mixing silica glass primary particles of 1 μm or less and pure water and drying to produce silica glass granules, and (B) purification treatment after classifying silica glass granules. (C) a step of sintering the purified granule to obtain a sintered powder, (D) mixing the sintered powder with pure water, pulverizing it into a slurry of 70 to 78% by mass, and drying. A step of forming a high-concentration slurry having a silica glass particle concentration of 80 to 85% by mass, (E) a step of casting the high-concentration slurry into a mold, and (F) taking out the molded body from the mold and drying and purifying it. Further, the present invention relates to a method for producing a silica glass product, wherein the steps of vitrification are performed in a clean atmosphere.

本発明の原料として1μm以下のシリカガラス1次粒子を使用するが、このシリカガラス1次粒子は珪酸エチルを用いたゾルーゲル法、廃シリコン微粒子を熱酸化する方法、四塩化珪素を加水分解する方法などで製造される。いずれの製造方法によってもシリカガラス1次粒子中のナトリウム、カリウム、リチウム、カルシウム、マグネシウム、アルミニウム、鉄、チタン、銅、ニッケル、ホウ素の各元素は0.1ppm以下がよい。また、シリカガラス1次粒子と混合する純水としては1μs未満の電気伝導度をもつ脱イオン水が好適である。   Silica glass primary particles of 1 μm or less are used as the raw material of the present invention. This silica glass primary particle is a sol-gel method using ethyl silicate, a method of thermally oxidizing waste silicon fine particles, a method of hydrolyzing silicon tetrachloride Etc. are manufactured. Regardless of the production method, the elements of sodium, potassium, lithium, calcium, magnesium, aluminum, iron, titanium, copper, nickel, and boron in the silica glass primary particles are preferably 0.1 ppm or less. Moreover, deionized water having an electric conductivity of less than 1 μs is suitable as the pure water mixed with the silica glass primary particles.

本発明の製造方法では、高純度のシリカガラス1次粒子を用い、それを有機バインダーなどの不純物混合材料を用いることなく、純水と混合するなどして高濃度スラリーを作製したのち、成形型に鋳込みガラス化することで、高純度で比較的大型のシリカガラス製品を安価に、生産性よく製造できる。   In the production method of the present invention, a high-concentration silica glass primary particle is used, and a high-concentration slurry is prepared by mixing it with pure water without using an impurity mixed material such as an organic binder. By virtue of being cast into glass, high-purity and relatively large silica glass products can be produced at low cost and with high productivity.

本発明の製造方法では、上述のとおり1μm以下のシリカガラス1次粒子と純水とを、前記シリカガラス1次粒子の濃度が60〜70質量%となるように給排気が可能な攪拌羽及びスクレーパーをもつ回転式円筒形容器内に導入し10〜20rpmの速度で回転しつつ攪拌し、乾燥してシリカガラス顆粒を作製する。前記撹拌においてシリカガラス1次粒子の濃度が60質量%未満では処理時間が長くかかり好ましくなく、70質量%を越えるとスラリーの抵抗が非常に大きくなり撹拌が不可能となり高価な設備を要する。前記シリカガラス顆粒の乾燥においては、回転式円筒容器に100〜150℃に暖められた清浄な空気を10〜20m3/minの割合で送風して行われるが、ここでいう清浄な空気とはHEPAフィルター等を通すことにより達成される。これによりナトリウム、カリウム、リチウム、カルシウム、マグネシウム、アルミニウム、鉄、チタン、銅、ニッケル、ホウ素の各元素が50ng/m3以下となり、工程中でのパーティクルなどによる汚染が防止される。 In the production method of the present invention, as described above, silica glass primary particles of 1 μm or less and pure water, stirring blades capable of supplying and exhausting the silica glass primary particles at a concentration of 60 to 70% by mass and It is introduced into a rotating cylindrical container having a scraper, stirred while rotating at a speed of 10 to 20 rpm, and dried to produce silica glass granules. In the stirring, if the concentration of the silica glass primary particles is less than 60% by mass, the treatment time is long, which is not preferable. If the concentration exceeds 70% by mass, the resistance of the slurry becomes very large and stirring becomes impossible, and expensive equipment is required. The silica glass granules are dried by blowing clean air heated to 100 to 150 ° C. in a rotating cylindrical container at a rate of 10 to 20 m 3 / min. What is clean air here? This is achieved by passing through a HEPA filter. Thereby, each element of sodium, potassium, lithium, calcium, magnesium, aluminum, iron, titanium, copper, nickel, and boron becomes 50 ng / m 3 or less, and contamination by particles in the process is prevented.

また、最終的なスラリーの水分量を5質量%以下、シリカガラス顆粒の粒径を0.5〜5000μmの範囲とする。スラリーの水分量が5質量%を越えると純化工程前に乾燥工程を別途必要としコスト高となる。   Further, the water content of the final slurry is set to 5 mass% or less, and the particle size of the silica glass granules is set to a range of 0.5 to 5000 μm. If the water content of the slurry exceeds 5% by mass, a separate drying step is required before the purification step, resulting in high costs.

上記シリカガラス顆粒は内部に存在する不純物を除去するため純化する。純化はロータリーキルンなど連続処理が可能な炉を使用するが純化に必要な顆粒の適切な流動性を確保し十分に高純度とするため振動ふるい等を使用し100〜1000μmに分級しておく必要がある。この時の顆粒の比表面積は50〜80m2/gの範囲となる。純化処理はロータリーキルン内にHCl含有ガスを流量2L/分以上で流しながら温度1100〜1200℃に加熱し顆粒のスループットを100g/min以下とすることにより効果的に純化を行うことができる。次に上記シリカガラス顆粒に適切な顆粒骨格強度を持たせるため熱処理を施し焼結粉にする。前述の純化工程で収縮した純化顆粒がもつ比表面積は30〜60m2/gにとどまるためこの熱処理なしでは顆粒骨格強度が弱く次工程で成形品に割れやクラックが発生する。また、熱処理のコストを低くするため空気中で行われるが、その際、るつぼ等のシリカガラス容器を用いシリカガラス顆粒をその中に充填し、さらに、その充填シリカガラス容器の外側に一回り大きいシリカガラス容器を被せ加熱炉からの汚染を防ぐとともに、シリカガラス顆粒から発生する些少なガスの外気中への発散を行わせる。シリカガラス顆粒の充填密度は0.6g/cm3以上の見かけ密度となるよう充填することが重要である。特に充填に当たり振とうするのがよい。充填密度の不均一又は前記充填密度未満では焼結状態が不均一となり均質な高濃度スラリーが得られない。焼結のための加熱温度は、HEPAフィルターを通した空気中で1220〜1250℃の範囲で加熱するのがよい。焼結温度が前記温度範囲を超えると容器内壁にシリカガラス顆粒が融着し、その解砕に時間がかかり作業効率が悪くなる。さらに、シリカガラス顆粒が非常に硬くなり容器内壁が削られ、粗大粒子がスラリー中に混入することが起こる。その一方、温度が低すぎると顆粒骨格強度が低くなり製品にクラックや割れが生じ易くなる。 The silica glass granules are purified to remove impurities present inside. For purification, a furnace capable of continuous processing such as a rotary kiln is used, but it is necessary to classify to 100 to 1000 μm using a vibrating sieve etc. in order to ensure adequate fluidity of the granules necessary for purification and sufficiently high purity. is there. The specific surface area of the granules at this time is in the range of 50 to 80 m 2 / g. The purification treatment can be effectively performed by heating to a temperature of 1100 to 1200 ° C. while flowing an HCl-containing gas in the rotary kiln at a flow rate of 2 L / min or more and setting the granule throughput to 100 g / min or less. Next, in order to give the silica glass granule an appropriate granule skeleton strength, heat treatment is performed to obtain a sintered powder. Since the specific surface area of the purified granules contracted in the above-described purification process is only 30 to 60 m 2 / g, the granular skeleton strength is weak without this heat treatment, and cracks and cracks occur in the molded product in the next process. Also, in order to reduce the cost of heat treatment, it is carried out in the air. At that time, a silica glass container such as a crucible is used to fill the silica glass granule therein, and is further slightly larger outside the filled silica glass container. A silica glass container is put on to prevent contamination from the heating furnace, and a small amount of gas generated from the silica glass granules is diffused into the outside air. It is important to fill the silica glass granules so that the apparent density is 0.6 g / cm 3 or more. Shake well when filling. If the packing density is non-uniform or less than the above-mentioned packing density, the sintered state is non-uniform and a homogeneous high-concentration slurry cannot be obtained. The heating temperature for sintering is preferably in the range of 1220 to 1250 ° C. in air through a HEPA filter. When the sintering temperature exceeds the above temperature range, silica glass granules are fused to the inner wall of the container, and it takes time to disintegrate the glass, resulting in poor working efficiency. Furthermore, the silica glass granules become very hard, the inner wall of the container is shaved, and coarse particles are mixed into the slurry. On the other hand, if the temperature is too low, the strength of the granule skeleton is lowered, and cracks and cracks are likely to occur in the product.

上記工程で得られた焼結粉は次いで純水とさらに必要に応じてシリカガラスボールとともに回転円筒形密閉容器に導入される。前記焼結粉の割合は70〜78質量%がよい。また、使用する回転円筒形密閉容器の内壁は高純度のポリウレタンやシリカガラスなどのライニング材で覆い不純物の混入を防ぐのがよい。前記回転円筒形密閉容器は、回転速度は10〜100rpmに調整される。この回転速度によりシリカガラスボールによる過度の衝撃が和らげられ、ライニング被膜の磨耗を防ぎ異物や不純物の混入が防止できる。回転円筒形密閉容器の作業時間はシリカガラス焼結粉の作製量によって異なるが約1〜7日間が採られる。回転円筒形密閉容器に導入されるシリカガラスボールは焼結粉の100質量%以下がよく、直径20〜25mmのシリカガラスボールと直径25〜35mmのシリカガラスボールとを質量比で1:2の割合で混合するのがよい。シリカガラスボールが焼結粉の100質量%を越えるとライニング層に傷がつき不純物の混入が起こる。   The sintered powder obtained in the above step is then introduced into a rotating cylindrical sealed container together with pure water and, if necessary, a silica glass ball. The ratio of the sintered powder is preferably 70 to 78% by mass. Also, the inner wall of the rotating cylindrical airtight container to be used is preferably covered with a lining material such as high-purity polyurethane or silica glass to prevent impurities from entering. The rotational speed of the rotating cylindrical airtight container is adjusted to 10 to 100 rpm. Excessive impact caused by the silica glass ball is relieved by this rotational speed, and the wear of the lining film can be prevented and contamination of foreign matters and impurities can be prevented. The working time of the rotating cylindrical airtight container varies depending on the production amount of the silica glass sintered powder, but takes about 1 to 7 days. The silica glass ball introduced into the rotating cylindrical sealed container should be 100% by mass or less of the sintered powder, and the silica glass ball having a diameter of 20 to 25 mm and the silica glass ball having a diameter of 25 to 35 mm has a mass ratio of 1: 2. Mix in proportions. When the silica glass ball exceeds 100% by mass of the sintered powder, the lining layer is scratched and impurities are mixed.

上記作業によりシリカガラス顆粒濃度70〜78質量%のスラリーにする。前記スラリー中にシリカガラスボールが存在したままにしておくと、スラリーがその近辺で固化してしまうため、それらを取り除き、次いで中心軸に対し10°〜60°の角度に傾斜した開放型回転容器内に導入し、室温〜50℃のHEPAフィルターを通した清浄空気中で加温し乾燥させ、さらに高濃度スラリーとする。前記乾燥での水分蒸発速度は初期には1kg当たり50g/時間以下、終期には5g/時間以下と勾配をつけて乾燥するのがよい。水分除去速度が最後まで速いとスラリーの表面近傍で固化が進み不均一なスラリーが形成される。また、最初から遅い場合には所定の水分量に達するまで非常に時間がかかり作業効率が悪い。この乾燥によりスラリー中のシリカガラス粒子濃度が80〜85質量%の高濃度スラリーとなり、シリカガラス粒子の粒度分布は、1〜6μmと15〜40μmに肩を持ち6〜15μmの範囲にピークをもつ図1に示す粒度分布となる。この粒度分布を有することで高濃度スラリーは流動性を保持でき成形型への重力鋳込みが可能となり大型形状の製品を精度よく製造できる。しかし、シリカガラス粒子の粒度分布が図2に示すような単純な1峰型になると鋳込み時に離型が困難であったり割れや泡が生じ精度の高い製品を得ることが難しい。前記乾燥中の開放型回転容器の回転速度は5rpm以下にし、泡の巻き込みを少なくするのがよい。また、開放型回転容器が前記の傾斜を有することで傾きによる応力が高濃度スラリーに付与され、高粘度である高濃度スラリーの流動性が保持され均一なスラリーができる。   By the above operation, a slurry having a silica glass granule concentration of 70 to 78% by mass is obtained. If the silica glass balls are left in the slurry, the slurry is solidified in the vicinity thereof, so that they are removed, and then the open rotating container inclined at an angle of 10 ° to 60 ° with respect to the central axis It is introduced into the inside, heated in clean air passing through a HEPA filter at room temperature to 50 ° C. and dried to obtain a highly concentrated slurry. The moisture evaporation rate in the drying is preferably 50 g / hour or less per kg in the initial stage and 5 g / hour or less in the final stage with a gradient. If the moisture removal rate is fast to the end, solidification proceeds near the surface of the slurry and a non-uniform slurry is formed. In addition, when it is slow from the beginning, it takes a very long time to reach a predetermined moisture content, and the working efficiency is poor. This drying results in a high-concentration slurry in which the silica glass particle concentration in the slurry is 80 to 85% by mass. The particle size distribution of the silica glass particles has shoulders at 1 to 6 μm and 15 to 40 μm, and peaks in the range of 6 to 15 μm. The particle size distribution shown in FIG. 1 is obtained. By having this particle size distribution, the high-concentration slurry can maintain fluidity and can be gravity-cast into a mold, so that a large-sized product can be accurately manufactured. However, when the particle size distribution of the silica glass particles becomes a simple one-peak type as shown in FIG. 2, it is difficult to release the mold during casting, or cracks and bubbles occur, and it is difficult to obtain a highly accurate product. The rotational speed of the open-type rotating container during drying should be 5 rpm or less to reduce entrainment of bubbles. In addition, since the open-type rotating container has the above-described inclination, stress due to the inclination is applied to the high-concentration slurry, and the fluidity of the high-concentration slurry having high viscosity is maintained and a uniform slurry can be formed.

シリカガラス粒子濃度が80〜85質量%の高濃度スラリーは次いで成形型に鋳込まれるが、本発明では例えば溝つきリングが作成できるような成形型が用いられる。成形型の上型には型材質の溶出が生じないような高純度の多孔性素材が選ばれる。多孔性素材としてポーラスセラミックス、発泡性プラスチック、ポーラスカーボン等が使用できるが、このときスラリー中のシリカガラス粒子による目詰まりを防止するために気孔径が1〜5μmであることが必要である。特に、製作のし易さ、ハンドリング、コストなどからポーラスセラミックスが好適である。下型にも高純度多孔性素材が選ばれるが、時には気孔が存在しない材料も選ばれる。両方の型が吸湿すると割れが発生することがあるからである。実質的に気孔が存在しない材料としては金属、プラスチック、セラミックス等が挙げられるが型の製作費用や日数、量産性、離型性のよさからシリコーンゴム等のゴム弾性体がよい。硬度の高い材料であると、スラリーが下型に付着し離型に時間がかかる上に、割れが発生することがあり製品の歩留まりが低下する場合がある。また、前記成形型の上型には肉厚が変化する部分、形状変化が大きい部分、または微細な部分に吸湿および圧縮空気吐出兼用口を設け、そこから吸水時に減圧を行い、脱型時に圧縮空気を送るエアーラインを設けるのがよい。   The high-concentration slurry having a silica glass particle concentration of 80 to 85% by mass is then cast into a mold, and in the present invention, a mold that can form a grooved ring is used. For the upper mold of the mold, a highly pure porous material that does not cause elution of the mold material is selected. Porous ceramics, foamable plastics, porous carbon, etc. can be used as the porous material. At this time, the pore diameter must be 1 to 5 μm in order to prevent clogging by silica glass particles in the slurry. In particular, porous ceramics are suitable because of ease of manufacture, handling, cost, and the like. A high-purity porous material is selected for the lower mold, but sometimes a material without pores is also selected. This is because cracks may occur when both molds absorb moisture. Examples of the material that does not substantially have pores include metals, plastics, ceramics, and the like, but rubber elastic bodies such as silicone rubber are preferable in terms of mold manufacturing cost, days, mass productivity, and good releasability. If the material has high hardness, the slurry adheres to the lower mold and takes time to release, and cracks may occur and the yield of the product may decrease. In addition, the upper die of the mold is provided with a moisture absorption and compressed air discharge port in a portion where the thickness changes, a portion where the shape change is large, or a fine portion, and from there, pressure is reduced when absorbing water, and compression is performed when demolding. It is recommended to provide an air line for sending air.

上記高濃度スラリーは非常に高粘度でダイラタンシー特性を持つのでシリカガラス粒子の沈降による密度のバラツキを抑えることができる。この高濃度スラリーの成形型への鋳込み工程では、重力鋳込みとする。鋳込み成形法では通常圧力鋳込みが採用されるが、ダイラタンシー特性を持つものは圧力をかけると途中で詰まってしまい鋳込みを行うことができない。本発明では重量鋳込みにより比較的大型形状をもった型内の微細な部分までスラリーの充填が図られ、硬質な転写性のよい成形体が作成でき、精度の高いシリカガラス製品が製造できる。   The high-concentration slurry has a very high viscosity and a dilatancy characteristic, so that variation in density due to settling of silica glass particles can be suppressed. Gravity casting is used in the casting process of the high-concentration slurry into the mold. In the casting molding method, pressure casting is usually employed, but those having dilatancy characteristics are clogged when pressure is applied, and casting cannot be performed. In the present invention, the slurry is filled up to a minute portion in a mold having a relatively large shape by weight casting, a hard molded article having good transferability can be produced, and a highly accurate silica glass product can be produced.

成形型から離型した成形体は例えば室温〜200℃まで50℃上昇毎に4時間ずつ静置し乾燥される。このとき雰囲気は清浄な状態となるようにHEPAフィルターに通した空気を用いる。得られた乾燥成形体は純化処理されるが、その条件はHCl含有ガスを0.5L/分以上流すとともに温度を900〜1200℃とする。これにより不純物が特に表層から除去されクラックの発生が防止された高純度な製品が得られる。   The molded body released from the mold is allowed to stand, for example, for 4 hours every 50 ° C. from room temperature to 200 ° C. and dried. At this time, air passed through a HEPA filter is used so that the atmosphere is clean. The obtained dried molded body is purified, and the conditions are that the HCl-containing gas is supplied at 0.5 L / min or more and the temperature is 900 to 1200 ° C. As a result, a high-purity product in which impurities are removed from the surface layer and cracks are prevented is obtained.

乾燥純化された成形体は最高温度1600℃までに加熱されガラス化されるが、1200℃〜1400℃までは10Pa以下の減圧雰囲気で、また、1400〜1600℃の範囲では不活性ガス下、2×105Pa以下の圧力下で加熱される。不活性ガスとしてはHe、N2、Arなどが用いられる。 The dried and purified molded body is heated to a maximum temperature of 1600 ° C and vitrified, but from 1200 ° C to 1400 ° C under a reduced pressure atmosphere of 10 Pa or less, and in the range of 1400 to 1600 ° C under inert gas, 2 Heated under a pressure of × 10 5 Pa or less. As the inert gas, He, N 2 , Ar, or the like is used.

上記本発明のシリカガラス製品の製造方法の概略プロセスフローを図3に示す。   A schematic process flow of the method for producing a silica glass product of the present invention is shown in FIG.

以下に本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

実施例1
四塩化珪素を加水分解して得た平均粒径が100nmのシリカガラス1次粒子130kgと0.5μsの電気伝導度をもつ純水70kgとを、内面が高純度ポリウレタンでライニングされ給排気を備えた回転円筒形容器に導入し撹拌した。撹拌開始から1時間後に、HEPAフィルターを通した清浄で130℃に暖められた空気10m3/minを流し水分を徐々に蒸発した。約30時間後、水分が0.5質量%、粒径範囲が1〜5000μmのシリカガラス顆粒を得た。この時のHEPAフィルターを通す前の空気をフィルター吸収法により補足分析を行ったところ表1に示すとおりであった。
Example 1
A silica glass primary particle with an average particle diameter of 100 nm obtained by hydrolyzing silicon tetrachloride and 130 kg of pure water having an electrical conductivity of 0.5 μs, and the inner surface is lined with high-purity polyurethane and equipped with air supply and exhaust The mixture was introduced into a rotating cylindrical container and stirred. One hour after the start of stirring, 10 m 3 / min of air that was passed through a HEPA filter and was warmed to 130 ° C. was flowed to gradually evaporate the water. After about 30 hours, silica glass granules having a water content of 0.5% by mass and a particle size range of 1 to 5000 μm were obtained. Table 1 shows the result of supplemental analysis of the air before passing through the HEPA filter at this time by the filter absorption method.

(単位ng/m3 (Unit: ng / m 3 )

さらに、HEPAフィルターを通過後同様に分析を行ったところ表2に示すとおりであった。   Further, the analysis was conducted in the same manner after passing through the HEPA filter.

(単位ng/m3 (Unit: ng / m 3 )

次に、シリカガラス顆粒をナイロン製の網をもつふるい振とう機に導入し100〜1000μmの粒径をもつ顆粒に分級した後、ロータリーキルンに50g/minのスループットで流した。このときロータリーキルン内は1200℃で加熱しながら1.5L/minの流量でHClを導入した。得られた純化顆粒の純度は全ての元素において表3に示すように0.05ppmであった。  Next, the silica glass granules were introduced into a sieve shaker having a nylon mesh, classified into granules having a particle size of 100 to 1000 μm, and then passed through a rotary kiln at a throughput of 50 g / min. At this time, HCl was introduced at a flow rate of 1.5 L / min while heating at 1200 ° C. in the rotary kiln. As shown in Table 3, the purity of the obtained purified granule was 0.05 ppm for all elements.

(単位ppm) (Unit: ppm)

更に純化した顆粒を直径300mmの複数のシリカガラス製るつぼ中に充填し、それらのるつぼより一回り大きいるつぼで蓋をし、大気雰囲気炉内に設置した。充填に当たっては振とう機を用いるつぼを振とうしながら充填密度を0.65g/cm3とした。得られた充填シリカガラス顆粒は1225℃で、10時間加熱し焼結した。そのシリカガラス焼結粉100kgとイオン交換水33kgとを、高純度ポリウレタンでライニングした直径500mm長さ1000mmの回転円筒形密閉容器に入れ、さらにシリカボール80kgを導入し回転数18rpmで5日間操業し、シリカガラス粒子をおよそ75質量%含むスラリーを製造した。シリカガラス粒子の粒度分布は、レーザー回折式の粒度分布測定機器を用いて測定したところ図1に示すように1〜6μmと15〜40μmに肩をもち6μm〜15μmの範囲にピークをもっていた。次にシリカガラスボールを取り除き開放型回転容器にスラリーを移し、そこでさらに25℃のHEPAを通した清浄空気中で乾燥し、シリカガラス粒子濃度83質量%の固形分をもつ高濃度スラリーとした。この時直径900mm高さ500mmで内側が高純度のポリウレタンで被覆され、中心軸が垂直軸に対し45°の傾斜をもった回転円筒形密閉容器を用いた。 Further, the purified granules were filled into a plurality of silica glass crucibles having a diameter of 300 mm, covered with crucibles one size larger than those crucibles, and placed in an atmospheric furnace. For filling, the packing density was 0.65 g / cm 3 while shaking the crucible using a shaker. The obtained filled silica glass granules were heated and sintered at 1225 ° C. for 10 hours. 100 kg of the silica glass sintered powder and 33 kg of ion-exchanged water are placed in a rotating cylindrical sealed container with a diameter of 500 mm and a length of 1000 mm lined with high-purity polyurethane, and further 80 kg of silica balls are introduced and operated at 18 rpm for 5 days. A slurry containing approximately 75% by mass of silica glass particles was produced. The particle size distribution of the silica glass particles was measured using a laser diffraction type particle size distribution measuring instrument. As shown in FIG. 1, the particle size distribution had shoulders at 1 to 6 μm and 15 to 40 μm, and peaks in the range of 6 to 15 μm. Next, the silica glass balls were removed and the slurry was transferred to an open-type rotary container, where it was further dried in clean air through HEPA at 25 ° C. to obtain a high concentration slurry having a solid content of silica glass particle concentration of 83% by mass. At this time, a rotating cylindrical airtight container having a diameter of 900 mm and a height of 500 mm and coated with high-purity polyurethane on the inside and having a central axis inclined at 45 ° with respect to the vertical axis was used.

上記乾燥は、水分除去が1kgあたりの初期には40g/時間、終期には4g/時間の勾配をもって乾燥し、この時の回転円筒形密閉容器の回転速度を1rpmとした。次に前記高濃度スラリーを溝付リングを作製するため上型がポーラスカーボン製で下型がシリコーンゴム製の型に導入した。鋳込みは鋳込み口に漏斗を装着し、そこから自然に流し込み充填した後、上型に設けられた減圧口から1×10Paの減圧下でそのまま1時間放置し、前記減圧口より圧搾空気を吹き込み離型した。得られた成形体をHEPAを通した空気で室温〜200℃まで50℃上昇毎に4時間静置し乾燥した。乾燥した成形体にHCl含有ガスを1L/分で流し、1200℃で1時間熱処理し、純化を行った。次いで10Paの減圧雰囲気で1200〜1400℃まで100℃上昇毎に2時間保持し、さらに1×105PaのN2ガス雰囲気下で1400〜1500℃に加熱後1500℃で10分保持しガラス化した。得られた溝付リングは形状も良好であり、バルク純度を測定したところ表4に示すように全ての元素濃度が0.05ppm以下であった。 In the above drying, moisture removal was performed with a gradient of 40 g / hour in the initial stage per 1 kg and 4 g / hour at the end, and the rotational speed of the rotating cylindrical sealed container at this time was 1 rpm. Next, in order to produce a grooved ring, the high-concentration slurry was introduced into a mold in which the upper mold was made of porous carbon and the lower mold was made of silicone rubber. Casting is performed by attaching a funnel to the casting port, and then pouring and filling it naturally. After that, leave it under reduced pressure of 1 × 10 4 Pa from the decompression port provided on the upper mold for 1 hour, and then apply compressed air from the decompression port. The mold was blown away. The obtained molded body was allowed to stand for 4 hours every 50 ° C. from room temperature to 200 ° C. with air passed through HEPA and dried. Purified by flowing HCl-containing gas at 1 L / min through the dried molded body and heat-treating at 1200 ° C. for 1 hour. Next, hold for 2 hours every 100 ° C increase from 1200 to 1400 ° C in a 10Pa vacuum atmosphere, and further heat to 1400–1500 ° C in a 1 × 10 5 Pa N 2 gas atmosphere, then hold at 1500 ° C for 10 minutes for vitrification did. The obtained grooved ring had a good shape, and the bulk purity was measured. As shown in Table 4, the concentration of all elements was 0.05 ppm or less.

(単位ppm) (Unit: ppm)

実施例2
実施例1においてシリカガラス粒子を84質量%含有する高濃度スラリーを用い微細な振動を与えながら型に鋳込んだ以外は実施例1と同様にして形状のよい溝付リングを製造した。
Example 2
A grooved ring having a good shape was produced in the same manner as in Example 1 except that a high-concentration slurry containing 84% by mass of silica glass particles in Example 1 was cast into a mold while giving fine vibrations.

比較例1
廃シリコン微粒子を熱酸化して得られた平均粒径が3μmのシリカガラス1次粒子130kgと5μsの電気伝導度をもつ水70kgとを内面が高純度ポリウレタンでライニングされ給排気を備えた回転円筒形容器に入れ、更にシリカガラスボール45kgを導入し撹拌した。撹拌開始から1時間後に、130℃に暖められた空気を10m3/minを流し水分を徐々に蒸発した。約30時間後に含有水分が1質量%、粒径範囲が1〜100μmのシリカガラス顆粒を得た。このシリカガラス顆粒を直径300mmの複数のシリカガラス製るつぼ中に振とうしながら120kg充填した。シリカガラス顆粒の充填密度は0.6g/cm3であった。シリカガラス顆粒を充填したるつぼを大気炉内に設置し加熱した。加熱処理は1300℃、10時間保持の条件で行った。次いで得られたシリカガラス焼結粉100kgとイオン交換水33kg、及びシリカガラスボール40kgを高純度ポリウレタンでライニングされ、直径500mm長さ500mmの回転円筒形密閉容器に入れ、回転数18rpmで5日間操業し、シリカガラス粒子をおよそ75質量%含むスラリーを製造した。回転円筒形密閉容器の傾斜は垂直軸に対し45°であった。このスラリー中のシリカガラス粒子の粒度分布は図2に示す1峰型であった。得られたスラリーを開放型回転容器内で25℃の清浄空気中で加温しつつシリカガラス粒子濃度83質量%の固形分をもつ高濃度スラリーとした。前記水分除去は初期には1kgあたり40g/時間、終期には4g/時間と勾配を持って行った。また、この時の開放型回転容器の回転速度は1rpmであった。
Comparative Example 1
Rotating cylinder equipped with 130 kg of silica glass primary particles with an average particle size of 3 μm obtained by thermal oxidation of waste silicon fine particles and 70 kg of water with electrical conductivity of 5 μs, and the inner surface is lined with high-purity polyurethane Into a shaped container, 45 kg of silica glass balls were further introduced and stirred. One hour after the start of stirring, air heated to 130 ° C. was allowed to flow at 10 m 3 / min to gradually evaporate water. After about 30 hours, silica glass granules having a water content of 1% by mass and a particle size range of 1 to 100 μm were obtained. 120 kg of this silica glass granule was filled while shaking in a plurality of silica glass crucibles having a diameter of 300 mm. The packing density of the silica glass granules was 0.6 g / cm 3 . A crucible filled with silica glass granules was placed in an atmospheric furnace and heated. The heat treatment was performed at 1300 ° C. for 10 hours. Next, 100 kg of the resulting silica glass sintered powder, 33 kg of ion-exchanged water, and 40 kg of silica glass balls were lined with high-purity polyurethane, placed in a rotating cylindrical sealed container with a diameter of 500 mm and a length of 500 mm, and operated for 5 days at a rotation speed of 18 rpm. Thus, a slurry containing about 75% by mass of silica glass particles was produced. The inclination of the rotating cylindrical airtight container was 45 ° with respect to the vertical axis. The particle size distribution of the silica glass particles in this slurry was a unimodal type as shown in FIG. The obtained slurry was heated in clean air at 25 ° C. in an open rotary container to obtain a high-concentration slurry having a solid content of silica glass particle concentration of 83% by mass. The water removal was performed with a gradient of 40 g / hour per kg at the beginning and 4 g / hour at the end. At this time, the rotation speed of the open-type rotating container was 1 rpm.

次に高濃度スラリーを溝付リングを作製するため型に導入した。この時上型の材料として石膏を用い、1時間経過後に4kg/cm2の圧縮空気を用いて離型した。高濃度スラリーの成形型への付着が強く離型が困難であった。無理に離型した製品にはクラックが多く発生していた。 The high concentration slurry was then introduced into a mold to make a grooved ring. At this time, gypsum was used as the material of the upper mold, and after 1 hour, the mold was released using 4 kg / cm 2 of compressed air. The high-concentration slurry was strongly adhered to the mold and was difficult to release. There were many cracks in the product that was forcibly released.

比較例2
高濃度スラリーの固形分を75質量%とした以外、実施例1と同様にして溝付リングを製造した。高純度スラリーの成形型への付着が大きく離型が困難であった。乾燥、ガラス化処理後の製品にはクラックが多くみられた。
Comparative Example 2
A grooved ring was produced in the same manner as in Example 1 except that the solid content of the high-concentration slurry was 75% by mass. The high-purity slurry adhered to the mold and was difficult to release. Many cracks were found in the product after drying and vitrification.

本発明の製造方法は、半導体産業で使用される比較的大型形状の熱処理用冶具などのシリカガラス製品を安価に、かつ生産性よく製造し、その価値は工業的に高いものがある。   The production method of the present invention produces a silica glass product such as a heat treatment jig having a relatively large shape used in the semiconductor industry at low cost and with high productivity, and its value is industrially high.

本発明の高濃度スラリー中のシリカガラス粒子の粒度分布を示す。The particle size distribution of the silica glass particle in the high concentration slurry of this invention is shown. 比較例の高濃度スラリー中のシリカガラス粒子の粒度分布を示す。The particle size distribution of the silica glass particle in the high concentration slurry of a comparative example is shown. 本発明のプロセスフロー図である。It is a process flow figure of the present invention.

Claims (18)

(A)1μm以下のシリカガラス1次粒子と純水とを混合し、乾燥してシリカガラス顆粒を作成する工程、(B) シリカガラス顆粒を分級後純化処理する工程、(C)純化顆粒を焼結処理して焼結粉とする工程、(D)焼結粉を純水と混合し、粉砕して70〜78質量%のスラリーとした後、乾燥してシリカガラス粒子の濃度が80〜85質量%の高濃度スラリーとする工程、(E)高濃度スラリーを成形型に鋳込む工程、及び(F)成形体を成形型から取り出し、乾燥、純化処理し、さらにガラス化処理する工程、の各工程を清浄雰囲気で行うことを特徴とするシリカガラス製品の製造方法。 (A) A step of mixing silica glass primary particles of 1 μm or less and pure water and drying to prepare silica glass granules, (B) a step of purifying silica glass granules after classification, and (C) purified granules. A step of sintering to obtain a sintered powder; (D) the sintered powder is mixed with pure water, pulverized into a slurry of 70 to 78% by mass, and dried to have a silica glass particle concentration of 80 to 80; A step of making a high-concentration slurry of 85% by mass, (E) a step of casting the high-concentration slurry into a mold, and (F) taking out the molded body from the mold, drying, purifying, and further vitrifying, A process for producing a silica glass product, characterized in that each step is performed in a clean atmosphere. シリカガラス1次粒子の粒径が10〜500nmであることを特徴とする請求項1記載のシリカガラス製品の製造方法。 2. The method for producing a silica glass product according to claim 1, wherein the primary particle size of the silica glass is 10 to 500 nm. (A)工程において、清浄空気で乾燥しシリカガラス顆粒の水分濃度を5質量%以下、粒径を0.5〜5000μmの範囲の顆粒とすることを特徴とする請求項1記載のシリカガラス製品の製造方法。 The silica glass product according to claim 1, wherein in the step (A), the silica glass product is dried with clean air to obtain a granule having a moisture concentration of 5% by mass or less and a particle size in the range of 0.5 to 5000 μm. Production method. (B)工程において、シリカガラス顆粒を粒径100〜1000μmに分級した後、該分級顆粒をHCl含有ガス流量が1L/分以上、温度が1100〜1200℃、スループットが100g/min以下で純化処理することを特徴とする請求項1に記載のシリカガラス製品の製造方法。 In step (B), after the silica glass granules are classified to a particle size of 100 to 1000 μm, the classified granules are purified at an HCl-containing gas flow rate of 1 L / min or more, a temperature of 1100 to 1200 ° C., and a throughput of 100 g / min or less. 2. The method for producing a silica glass product according to claim 1, wherein: (C)工程において、石英ガラス製容器にシリカガラス顆粒を充填密度0.6g/cm3以上に充填し、充填シリカガラス容器の外側に一回り大きいシリカガラス容器を被せ、清浄空気下で加熱処理することを特徴とする請求項1記載のシリカガラス製品の製造方法。 In step (C), silica glass granules are filled in a silica glass container to a packing density of 0.6 g / cm 3 or more, and a larger silica glass container is placed outside the filled silica glass container and heat-treated in clean air. 2. The method for producing a silica glass product according to claim 1, wherein: (D)工程において、焼結粉と純水とに加えてさらにシリカガラスボールを混合し、粉砕して70〜78質量%のスラリーとした後、スラリーからシリカガラスボールを取り除き、清浄空気下で乾燥することを特徴とする請求項1記載のシリカガラス製品の製造方法。 In the step (D), in addition to the sintered powder and pure water, silica glass balls are further mixed and pulverized to make a slurry of 70 to 78% by mass. Then, the silica glass balls are removed from the slurry, and under clean air 2. The method for producing a silica glass product according to claim 1, wherein the method is dried. 上記乾燥を室温〜50℃の清浄空気下で初期の水分蒸発速度が1kgあたり50g/時間以下、終期の水分蒸発速度が5g/時間以下の勾配ある乾燥で行い、終期にシリカガラス粒子濃度を80〜85質量%とすることを特徴とする請求項6記載のシリカガラス製品の製造方法。 The above drying is performed under clean air at room temperature to 50 ° C. with a gradient of drying at an initial moisture evaporation rate of 50 g / hour or less per kg and a final moisture evaporation rate of 5 g / hour or less. The method for producing a silica glass product according to claim 6, wherein the content is ˜85 mass%. 高濃度スラリー中のシリカガラス粒子の粒度分布が1〜6μm及び15〜40μmに肩をもち、6〜15μmにピークをもつことを特徴とする請求項6又は7記載のシリカガラス製品の製造方法。 The method for producing a silica glass product according to claim 6 or 7, wherein the particle size distribution of the silica glass particles in the high-concentration slurry has shoulders at 1 to 6 µm and 15 to 40 µm, and has a peak at 6 to 15 µm. (D)工程の高濃度スラリー化を内側が高純度のポリウレタン又はシリカガラスで被覆され、中心軸が垂直軸に対し30°〜60°の傾斜をもち、かつ回転速度が1〜100rpmの開放型回転円筒形容器内で行うことを特徴とする請求項1記載のシリカガラス製品の製造方法。 (D) The high concentration slurry of the step is coated with high-purity polyurethane or silica glass, the central axis has an inclination of 30 ° -60 ° with respect to the vertical axis, and the rotation speed is 1-100 rpm. 2. The method for producing a silica glass product according to claim 1, wherein the method is performed in a rotating cylindrical container. (E)工程において、鋳込みを重力鋳込みで行うことを特徴とする請求項1に記載のシリカガラス製品の製造方法。 2. The method for producing a silica glass product according to claim 1, wherein in the step (E), casting is performed by gravity casting. 重力鋳込み時に振動を与えることを特徴とする請求項10記載のシリカガラス製品の製造方法。 The method for producing a silica glass product according to claim 10, wherein vibration is applied during gravity casting. (E)工程の成形型が一体成形の上型と下型からなり、上型が1〜5μmの気孔径をもつ高純度多孔体であり、下型が気泡のないゴム弾性体からなることを特徴とする請求項1記載のシリカガラス製品の製造方法。 (E) The mold in the process is composed of an upper mold and a lower mold, and the upper mold is a high-purity porous body having a pore diameter of 1 to 5 μm, and the lower mold is composed of a rubber elastic body without bubbles. 2. The method for producing a silica glass product according to claim 1, wherein (E)工程の成形型が一体成形の上型と下型からなり、1〜5μmの気孔径をもつ高純度多孔体からなることを特徴とする請求項1記載のシリカガラス製品の製造方法。 2. The method for producing a silica glass product according to claim 1, wherein the molding die in the step (E) comprises an upper die and a lower die which are integrally formed, and comprises a high purity porous body having a pore diameter of 1 to 5 [mu] m. (F)工程の成形型から取り出した成形体の乾燥を清浄空気下で行うことを特徴とする請求項1記載のシリカガラス製品の製造方法。 2. The method for producing a silica glass product according to claim 1, wherein the molded body taken out from the mold in the step (F) is dried under clean air. (F)工程の純化処理が、HCl含有ガスを流量0.5L/分以上で流す容器内で、温度900〜1200℃に加熱する処理であることを特徴とする請求項1に記載のシリカガラス製品の製造方法。 2. The silica glass product according to claim 1, wherein the purification treatment in the step (F) is a treatment in which an HCl-containing gas is heated to a temperature of 900 to 1200 ° C. in a vessel in which a flow rate of 0.5 L / min or more is flowed. Manufacturing method. (F)工程のガラス化処理において、該処理を最高温度が1600℃までで行い、1200〜1400℃までの処理を10Pa未満の減圧雰囲気下で、1400〜1600℃の処理を不活性ガス雰囲気下、圧力2×105Pa以下で行うことを特徴とする請求項1記載のシリカガラス製品の製造方法。 (F) In the vitrification treatment of the process, the treatment is carried out at a maximum temperature of 1600 ° C., the treatment from 1200 to 1400 ° C. is performed under a reduced pressure atmosphere of less than 10 Pa, and the treatment at 1400 to 1600 ° C. is conducted under an inert gas atmosphere. 2. The method for producing a silica glass product according to claim 1, wherein the method is performed at a pressure of 2 × 10 5 Pa or less. 清浄空気下での処理工程をナトリウム、カリウム、リチウム、カルシウム、マグネシウム、アルミニウム、鉄、チタン、銅、ニッケル、ホウ素の各元素が50ng/m3以下である空気下で行うことを特徴とする請求項3、5、7又は14記載のシリカガラス製品の製造方法。 The treatment step under clean air is performed under air in which each element of sodium, potassium, lithium, calcium, magnesium, aluminum, iron, titanium, copper, nickel, and boron is 50 ng / m 3 or less. Item 15. A method for producing a silica glass product according to Item 3, 5, 7, or 14. (F)工程のガラス化処理後のシリカガラスバルク体の不純物濃度がナトリウム、カリウム、リチウム、カルシウム、マグネシウム、アルミニウム、鉄、チタン、銅、ニッケル、ホウ素の各元素が0.05ppm以下であることを特徴とする請求項1記載のシリカガラス製品の製造方法。
(F) Impurity concentration of the silica glass bulk body after vitrification treatment in the step is 0.05 ppm or less for each element of sodium, potassium, lithium, calcium, magnesium, aluminum, iron, titanium, copper, nickel, and boron. 2. The method for producing a silica glass product according to claim 1, wherein
JP2005112195A 2005-04-08 2005-04-08 Method for producing silica glass product Active JP4484748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112195A JP4484748B2 (en) 2005-04-08 2005-04-08 Method for producing silica glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112195A JP4484748B2 (en) 2005-04-08 2005-04-08 Method for producing silica glass product

Publications (2)

Publication Number Publication Date
JP2006290666A JP2006290666A (en) 2006-10-26
JP4484748B2 true JP4484748B2 (en) 2010-06-16

Family

ID=37411646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112195A Active JP4484748B2 (en) 2005-04-08 2005-04-08 Method for producing silica glass product

Country Status (1)

Country Link
JP (1) JP4484748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210057220A (en) 2016-06-01 2021-05-20 신에쯔 세끼에이 가부시키가이샤 Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006060561C5 (en) * 2006-12-21 2015-09-10 Schott Ag Process for producing a quartz glass molded body
EP2014622B1 (en) * 2007-07-06 2017-01-18 Evonik Degussa GmbH Method for Producing a Quartz Glass granulate
CN102161563B (en) * 2010-12-14 2012-12-05 维苏威太阳能坩埚(苏州)有限公司 Production system for quartz crucible

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234528A (en) * 1988-07-22 1990-02-05 Toshiba Ceramics Co Ltd Production of quartz glass
JPH07267724A (en) * 1993-11-12 1995-10-17 Heraeus Quarzglas Gmbh Shape having high content of silicon dioxide and its production
JPH10502324A (en) * 1994-06-30 1998-03-03 アルバート ロクスリィ、テッド Sintered quartz glass product and method for producing the same
JP2001089168A (en) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd Production of synthetic silica glass powder of high purity
JP2004131378A (en) * 2002-09-21 2004-04-30 Heraeus Quarzglas Gmbh & Co Kg Process for manufacturing opaque quartz glass material
JP2006232582A (en) * 2005-02-23 2006-09-07 Shinetsu Quartz Prod Co Ltd Method for producing transparent silica glass product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234528A (en) * 1988-07-22 1990-02-05 Toshiba Ceramics Co Ltd Production of quartz glass
JPH07267724A (en) * 1993-11-12 1995-10-17 Heraeus Quarzglas Gmbh Shape having high content of silicon dioxide and its production
JPH09506324A (en) * 1993-11-12 1997-06-24 信越石英株式会社 Molded body made of quartz glass and manufacturing method thereof
JPH10502324A (en) * 1994-06-30 1998-03-03 アルバート ロクスリィ、テッド Sintered quartz glass product and method for producing the same
JP2001089168A (en) * 1999-09-28 2001-04-03 Shinetsu Quartz Prod Co Ltd Production of synthetic silica glass powder of high purity
JP2004131378A (en) * 2002-09-21 2004-04-30 Heraeus Quarzglas Gmbh & Co Kg Process for manufacturing opaque quartz glass material
JP2006232582A (en) * 2005-02-23 2006-09-07 Shinetsu Quartz Prod Co Ltd Method for producing transparent silica glass product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210057220A (en) 2016-06-01 2021-05-20 신에쯔 세끼에이 가부시키가이샤 Silica glass member for hermetic sealing of ultraviolet smd led element and method for manufacturing quarts glass member for ultraviolet led

Also Published As

Publication number Publication date
JP2006290666A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP6129293B2 (en) Method for producing a molded body from electrically fused synthetic quartz glass
CN1221471C (en) Highly filled SiO2 dispersion, methods for production thereof and its use
US6849242B1 (en) Porous silica granule, method for producing the same, and method for producing synthetic quartz glass powder using the porous silica granule
JP4157933B2 (en) Method for producing SiO2-containing composite material and use of composite material obtained by the production method
JP5801407B2 (en) Method for producing synthetic quartz glass granules
EP2463246A1 (en) Silica vessel and process for producing same
JP5462423B1 (en) Silica container for pulling single crystal silicon and manufacturing method thereof
CN107417071B (en) Method for producing opaque quartz glass containing pores
JP2001354438A (en) Method for manufacturing member made from opaque synthetic quartz glass and quartz glass tube manufactured by this method
JP2004131378A (en) Process for manufacturing opaque quartz glass material
JP4446448B2 (en) Method for producing transparent silica glass product
JP4484748B2 (en) Method for producing silica glass product
JP4014724B2 (en) Method for producing silica glass
JP2001130972A (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
KR20130122682A (en) Silica container for pulling up single crystal silicon, and method for manufacturing same
EP2460772B1 (en) Method of manufacturing granulated silica powder, method of manufacturing vitreous silica crucible
JP5108803B2 (en) Method for producing silica container
JP4498173B2 (en) Method for producing silica glass product
JPH03275527A (en) Porous silica glass powder
WO2006089754A1 (en) Method for the manufacture of a silica glass product
RU2170715C2 (en) Method of preparing products from sintered glass crystalline lithium alumosilicate material
CN112707731A (en) Graphite crucible for purifying polycrystalline silicon
JP2733860B2 (en) Manufacturing method of wear-resistant silica media
JPH0948623A (en) Production of quartz glass
JPH0776100B2 (en) Method for manufacturing glass molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Ref document number: 4484748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250