JP4014724B2 - Method for producing silica glass - Google Patents

Method for producing silica glass Download PDF

Info

Publication number
JP4014724B2
JP4014724B2 JP08344798A JP8344798A JP4014724B2 JP 4014724 B2 JP4014724 B2 JP 4014724B2 JP 08344798 A JP08344798 A JP 08344798A JP 8344798 A JP8344798 A JP 8344798A JP 4014724 B2 JP4014724 B2 JP 4014724B2
Authority
JP
Japan
Prior art keywords
graphite
silica glass
silica
powder
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08344798A
Other languages
Japanese (ja)
Other versions
JPH11278857A (en
Inventor
眞吉 橋本
孝次 津久間
智幸 秋山
修 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Quartz Corp
Tosoh Corp
Original Assignee
Tosoh Quartz Corp
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Quartz Corp, Tosoh Corp filed Critical Tosoh Quartz Corp
Priority to JP08344798A priority Critical patent/JP4014724B2/en
Publication of JPH11278857A publication Critical patent/JPH11278857A/en
Application granted granted Critical
Publication of JP4014724B2 publication Critical patent/JP4014724B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高純度シリカガラスからなる成形体、特には大型円柱あるいは大型リング等の製造方法に関する。このシリカガラス部材は、半導体用耐熱治具及び各種フランジ類、炉心管部品などに応用できる。
【0002】
【従来の技術】
耐熱金属から構成された空間に結晶質石英粉末を充填し、1700℃以上に加熱溶融してシリカガラスを製造する方法が、すでに特公昭35−791に記載されている。また最近、特開平9−202631、特開平9−202632、特開平9−183623には、黒鉛材からなる容器とシリカ粉末の接触面にシリカガラスを介在させ、加熱溶融してシリカガラスを製造する方法が開示されている。
【0003】
【発明が解決しようとする課題】
特公昭35−791では、モ−ルドとして、耐熱金属であるMoを用いているが、この方法ではMoが高温酸化を受け、ガスとして、得られるシリカガラスに侵入し、汚染するという問題があった。
【0004】
また、モ−ルドとして、黒鉛材を用いた場合、CとSiO2 との高温反応によって、モ−ルドとシリカガラスが融着し相互に損傷したり、融着を避け得た場合でもモールドの耐久性は著しく低い等の問題があった。
【0005】
更に、一般の黒鉛材には、1ppmを遥かに越えるFe,Caなどが含まれており、これら不純物が高温でガス化し、ガラスに侵入し、高純度が保てないという問題もあった。
【0006】
特開平9−202631、特開平9−202632、特開平9−183623には、黒鉛鋳型とシリカ粉末の間にシリカガラスを介在させることにより、上記問題を解決する方法が開示されている。しかし、この方法は介在させるシリカガラスの加工製造に手間を要し、かつ、シリカガラスは高価であるため、経済性に優れた方法とは言い難い。また、これらの方法は、8インチウェーハー処理サイズの中型部材に適用できるが、12インチ以上の大型フランジ部材には適用できない。すなわち溶融加熱時間の延長だけではシリカガラス中の集合気泡は除去できない、という問題があった。
【0007】
本発明の目的は、集合気泡が無く、高純度であり、また外径300〜550mm、高さ200mm程度の大型サイズが可能であるリングを含めたシリカガラスを提供することであり、従来、行われていたシリカガラスブロックから機械加工する方法よりも、極めて材料収率に優れ、高純度黒鉛モ−ルドの耐久性も向上し、経済的にも有利な方法を提供し、特に、半導体製造に使用されるシリカガラス治工具類、例えば、反応管のフランジ、エッチング装置の反応室ライナ−、枚葉式装置部品として有用となるシリカガラスを製造する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記課題を解決するため鋭意検討した結果、黒鉛モ−ルド自身に複数個の貫通孔を設け、シリカ粉末が蒸発溶融しやすくすることにより、集合気泡を除去できることを見出し、本発明に到達した。
【0009】
すなわち、本発明は、黒鉛質モ−ルドから構成された空間にシリカ粉末を充填し、1700℃以上に加熱溶融してシリカガラスを得る方法において、黒鉛質モ−ルドとシリカ粉末の接触面、加熱溶融することを特徴とするシリカガラスの製造方法である。
【0010】
本法では、シリカ粉末として、Na,K,Feの各不純物が1ppm以下の高純度結晶質石英、または、高純度非結晶質シリカを用い、モ−ルドとして、Na,K,Fe,Tiの各不純物が1ppm以下の黒鉛を用いることにより、集合気泡がなく原料とほぼ同純度の高純度シリカガラスを得ることができる。
【0011】
以下、本発明をさらに詳細に説明する。
【0012】
本発明の特徴は、集合気泡の無い透明大型シリカガラスが得られることである。そのためにシリカ粉末の加熱中に発生するガスを外界に逃がすための流路断面積を確実に確保することに留意している。すなわち、一番外側の黒鉛質モールド側面には複数個の貫通孔を設ける必要がある。仕込み形状がリング状の場合には更に中央に配置する黒鉛質モールド外側側面にも同様に複数個の貫通孔を設けることが望ましい。また、この貫通孔は対称的に設けることが望ましい。本発明の検討の結果、貫通孔の総断面積は、仕込み形状の立体の総表面積に対して1%以上にすることが望ましい。また、シリカ粉末が溶融した時、通気用の貫通孔からシリカガラスがにじみ出ないように貫通孔断面が円の場合は、直径3mm未満にすることが望ましい。次に、黒鉛質モールドとシリカ粉末との間には嵩密度0.1〜1.5g/cm3 の高純度黒鉛からなる多孔質層を介在させる必要がある。この多孔質層は、モールドとシリカの接触を防ぎ、ガスの排出を促進する。嵩密度0.1〜1.5g/cm3 の高純度黒鉛からなる多孔質層としては、高純度処理された黒鉛フェルト、黒鉛シ−ト、黒鉛粉末を敷いて堆積させたものなどを用いることができる。
【0013】
黒鉛フェルトとしては、カ−ボン繊維を成形織物とした、嵩密度0.1〜0.4g/cm3 で、厚さ2〜10mmのものを用いることが好ましい。
【0014】
黒鉛シ−トとしては、カ−ボン繊維を成形織物とした、嵩密度0.8〜1.2g/cm3 で、厚さ0.3〜1mmのものを用いることが好ましい。
【0015】
黒鉛粉末としては、粒度0.1〜1mmの高純度処理したものが好ましい。黒鉛フェルト、黒鉛粉末堆積物は、いずれも伸縮性と通気性を有するものであり、モ−ルドの破損を防止すると同時に、発生ガスの逃げ道を与える役割を果たす。黒鉛フェルトは黒鉛シ−トに比較して、伸縮性、通気性とも優れた物であり、上記通気の役割を果たすにはより適している。好適な構成として、粉末充填体の側面あるいは上面に黒鉛フェルトを配置して通気性を確保し、底面には黒鉛シートを敷いてガラス底面の平坦度を出すことが挙げられる。
【0016】
本発明では、集合気泡が無く、Na,K,Feの各不純物が1ppm以下の高純度シリカガラスを得ることができる。そのためには、原料として、Na,K,Fe,の各不純物が1ppm以下のシリカ粉末を用いる必要がある。粉末は、結晶質、非結晶質いずれでもよい。結晶質としては、天然の結晶質石英、いわゆる水晶を精製した粉末が最も好適である。また、非結晶質としては、ケイ酸ソ−ダ、ハロゲン化ケイ素、シリコンアルコキサイドなどのケイ素源から合成された、いわゆる合成シリカ粉末を用いることができる。
【0017】
上記粉末の純度を低下させることなく、本発明のプロセスに従ってシリカガラスとするためには、用いる黒鉛モ−ルド並びに黒鉛多孔質層の純度が極めて重要である。すなわち、モ−ルド並びに多孔質層の黒鉛純度はNa,K,Fe,Tiの各不純物が1ppm以下でなければならず、さらに好ましくは0.5ppm以下がよい。
【0018】
特に、一般の黒鉛材には不純物としてFeが10ppm以上含まれる場合があり、高純度処理をしたものを用いるのが望ましい。
【0019】
シリカ粉末を加熱溶融してシリカガラスとする方法は、特に限定されないが、透明性のよいガラスを得る場合、雰囲気を真空あるいはヘリウムなどの軽元素ガスとし、1800〜1850℃の温度に保持させるのがよい。
【0020】
以下実施例によって、本発明を更に説明するが、本発明は実施例に限定されるものではない。
【0021】
【実施例】
実施例1
シリカガラスリングの製造実験に用いた黒鉛モ−ルド/黒鉛多孔質層/シリカ粉末の構成を図1に示す。その仕込み形状は外径φ530mm、内径φ440mm、高さ200mmとした。外側るつぼ側面と中央るつぼ側面にφ3mmの孔を対称的に同数穿孔し、粉体が成す立体の全表面積に対して通気孔の全断面積を1.3%になるようにした。モ−ルドの内側面および外側面に厚さ5mm、嵩密度0. 2g/cm3 の高純度黒鉛フェルトを装着し、高純度結晶質石英粉末(平均粒径0.2mm)を充填した。粉末上面に同様のフェルトを被せた。更にその上に高純度黒鉛のシートを敷き、高純度黒鉛荷重リング(高さ100mm,12kg)を載せ、粉末上面に17g/cm2 の圧力を加えた。モ−ルド底面には厚さ0.4mm,嵩密度1.0g/cm3 の高純度黒鉛シ−トを敷いた。この試料をカ−ボン抵抗加熱電気炉に入れ、真空に排気した状態で、室温から1700℃まで5℃/分で昇温し、1700℃で3時間保持した後、5℃/分で昇温し、1850℃で40分間保持した後、真空解除し、窒素を導入し、放冷した。この時得られたシリカガラスには筋状集合気泡が全く無かった。
【0022】
比較例1
図1に示す構成でるつぼ、粉末を用意した。この時、外側るつぼ側面及び中央るつぼ側面にはいずれも通気孔を設けなかった。実施例1と同様の焼成条件で水晶粉末の真空溶融を行った。この時得られたシリカガラスには筋状集合気泡が存在した。
【0023】
実施例2
図2に示す構成でるつぼ、粉末を用意した。ここで、実施例1と比較して、外側るつぼと高純度黒鉛外周リングは共通である。焼成するシリカガラスリング幅を更に広いものとするため、中央るつぼの形状を小さくした。実施例1の場合と同様に外側るつぼ側面と中央るつぼ側面に1.3%の通気孔を設けた。水晶粉末の仕込み形状は外径φ520mm、内径φ340mm、高さ200mmとした。側面の高純度フェルトは2重にした。また、底面の高純度黒鉛シートも2重にした。高純度黒鉛荷重は厚み50mm、重量10.1kgで粉体上面への圧力が8g/cm2 かかるようにした。焼成条件は1700℃の保持を10時間とした。昇温速度は5℃/分、最高温度は1850℃で40分は実施例1と同じである。この時得られたシリカガラスには筋状集合気泡が全く無かった。
【0024】
比較例2
図2に示す構成でるつぼ、粉末を用意した。この時、外側るつぼ側面及び中央るつぼ側面にはいずれも通気孔を設けなかった。実施例2と同様の焼成条件で水晶粉末の真空溶融を行った。この時得られたシリカガラスには筋状集合気泡が存在した。
【0025】
実施例3
円柱状のシリカガラスの製造実験に用いた黒鉛モ−ルド/黒鉛多孔質層/シリカ粉末の構成を図3に示す。仕込み形状はφ150mm×高さ200mmとした。蓋、側面外筒、底面板を分離型とした。荷重用円柱は搭載せず、通気孔としては側面外筒及び蓋に2.4%確保した。焼成条件は昇温速度は5℃/分、1700℃の保持を10時間、最高温度は1850℃で40分とした。この時得られたシリカガラスには筋状集合気泡が全く無かった。
【0026】
比較例3
図3に示す構成でるつぼ、粉末を用意した。この時、外側るつぼ側面には通気孔を設けなかった。実施例3と同様の焼成条件で水晶粉末の真空溶融を行った。この時得られたシリカガラスには筋状集合気泡が存在した。
【0027】
実施例1〜3及び比較例1〜3で得られた結果を、まとめて以下の表1に示す。
【0028】
【表1】

Figure 0004014724
【0029】
【発明の効果】
本発明から製造されるシリカガラスは集合気泡が無く、高純度である。従来、行われていたシリカガラスブロックから機械加工する方法に比較すると、極めて材料収率に優れる。高純度黒鉛モ−ルドの耐久性も向上し、経済的にも有利な方法となる。特に、半導体製造に使用されるシリカガラス治工具類、例えば、反応管のフランジ、エッチング装置の反応室ライナ−、枚葉式装置部品として有用となる。
【図面の簡単な説明】
【図1】実施例1で使用した黒鉛モールド、黒鉛多孔質層、シリカ粉末の断面構造を示す。
【符号の説明】
▲1▼:高純度黒鉛モールド
▲2▼:高純度黒鉛荷重
▲3▼:シリカ原料粉末
▲4▼:高純度黒鉛フェルト
▲5▼:高純度黒鉛シート
▲6▼:高純度黒鉛外周リング
▲7▼:通気孔
【図2】実施例2で使用した黒鉛モールド、黒鉛多孔質層、シリカ粉末の断面構造を示す。
【符号の説明】
▲1▼:高純度黒鉛モールド
▲2▼:高純度黒鉛荷重
▲3▼:シリカ原料粉末
▲4▼:高純度黒鉛フェルト
▲5▼:高純度黒鉛シート
▲6▼:高純度黒鉛外周リング
▲7▼:通気孔
【図3】実施例3で使用した黒鉛モールド、黒鉛多孔質層、シリカ粉末の断面構造を示す。
【符号の説明】
▲1▼:高純度黒鉛モールド
▲3▼:シリカ原料粉末
▲4▼:高純度黒鉛フェルト
▲5▼:高純度黒鉛シート
▲7▼:通気孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded body made of high-purity silica glass, in particular, a method for producing a large cylinder or large ring. This silica glass member can be applied to heat-resistant jigs for semiconductors, various flanges, furnace core tube parts, and the like.
[0002]
[Prior art]
Japanese Patent Publication No. 35-791 has already described a method for producing silica glass by filling crystalline quartz powder in a space composed of a refractory metal and heating and melting it to 1700 ° C. or higher. Recently, Japanese Patent Laid-Open Nos. 9-202631, 9-202632, and 9-183623 disclose that silica glass is produced by interposing silica glass on the contact surface between a graphite material container and silica powder, and heating and melting the glass. A method is disclosed.
[0003]
[Problems to be solved by the invention]
In Japanese Examined Patent Publication No. 35-791, Mo, which is a refractory metal, is used as a mold, but this method has a problem that Mo undergoes high-temperature oxidation and enters into the resulting silica glass as a gas and contaminates it. It was.
[0004]
In addition, when a graphite material is used as a mold, even if the mold and silica glass are fused and damaged due to a high temperature reaction between C and SiO 2 , the mold can be avoided. There were problems such as extremely low durability.
[0005]
Furthermore, general graphite materials contain Fe, Ca, and the like far exceeding 1 ppm, and there is a problem that these impurities gasify at a high temperature and penetrate into the glass, so that high purity cannot be maintained.
[0006]
Japanese Patent Application Laid-Open Nos. 9-202631, 9-202632, and 9-183623 disclose methods for solving the above problems by interposing silica glass between a graphite mold and silica powder. However, this method requires time and effort for processing and manufacturing the silica glass to be interposed, and the silica glass is expensive, so it is difficult to say that it is an economical method. In addition, these methods can be applied to a medium-sized member having an 8-inch wafer processing size, but cannot be applied to a large-sized flange member having a size of 12 inches or more. That is, there is a problem that the aggregated bubbles in the silica glass cannot be removed only by extending the melting and heating time.
[0007]
An object of the present invention is to provide a silica glass including a ring which has no aggregate bubbles, has high purity, and can have a large size of an outer diameter of 300 to 550 mm and a height of about 200 mm. Compared to the conventional method of machining from a silica glass block, the material yield is extremely superior, the durability of the high purity graphite mold is improved, and an economically advantageous method is provided. It is an object of the present invention to provide a method for producing silica glass which is useful as a silica glass jig and tool to be used, for example, a flange of a reaction tube, a reaction chamber liner of an etching apparatus, and a single wafer apparatus part.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the aggregated bubbles can be removed by providing a plurality of through holes in the graphite mold itself and facilitating evaporation and melting of the silica powder. The invention has been reached.
[0009]
That is, the present invention is a method of filling silica powder in a space composed of a graphite mold and heating and melting to 1700 ° C. or higher to obtain silica glass. In the method of obtaining contact between the graphite mold and the silica powder, It is a method for producing silica glass, characterized by heating and melting.
[0010]
In this method, high-purity crystalline quartz or high-purity amorphous silica containing 1 ppm or less of each impurity of Na, K, and Fe is used as silica powder, and Na, K, Fe, and Ti are used as molds. By using graphite having 1 ppm or less of each impurity, it is possible to obtain a high purity silica glass having no bubbles and almost the same purity as the raw material.
[0011]
Hereinafter, the present invention will be described in more detail.
[0012]
A feature of the present invention is that a transparent large silica glass free from aggregated bubbles is obtained. Therefore, it is noted that the flow path cross-sectional area for allowing the gas generated during the heating of the silica powder to escape to the outside is ensured. That is, it is necessary to provide a plurality of through holes on the side surface of the outermost graphite mold. When the charged shape is a ring shape, it is desirable to provide a plurality of through holes in the same manner on the outer side surface of the graphite mold disposed at the center. Further, it is desirable to provide the through holes symmetrically. As a result of the study of the present invention, it is desirable that the total cross-sectional area of the through-hole is 1% or more with respect to the total surface area of the charged solid. In addition, when the silica powder is melted, the diameter of the through-hole cross section is preferably less than 3 mm so that the silica glass does not ooze out from the through-hole for ventilation. Next, it is necessary to interpose a porous layer made of high-purity graphite having a bulk density of 0.1 to 1.5 g / cm 3 between the graphite mold and the silica powder. This porous layer prevents contact between the mold and the silica and promotes gas discharge. As a porous layer made of high-purity graphite having a bulk density of 0.1 to 1.5 g / cm 3 , a high-purity-treated graphite felt, a graphite sheet, or a material deposited with graphite powder is used. Can do.
[0013]
As the graphite felt, it is preferable to use a carbon fiber having a bulk density of 0.1 to 0.4 g / cm 3 and a thickness of 2 to 10 mm.
[0014]
As the graphite sheet, it is preferable to use a carbon fiber made of carbon fiber having a bulk density of 0.8 to 1.2 g / cm 3 and a thickness of 0.3 to 1 mm.
[0015]
As the graphite powder, a high-purity treated particle having a particle size of 0.1 to 1 mm is preferable. Both the graphite felt and the graphite powder deposit have stretchability and air permeability, and prevent the mold from being damaged, and at the same time provide a escape path for the generated gas. Graphite felt is superior in both stretchability and air permeability as compared with graphite sheet, and is more suitable for the above-mentioned role of ventilation. As a preferred configuration, a graphite felt is disposed on the side surface or top surface of the powder filler to ensure air permeability, and a graphite sheet is laid on the bottom surface to increase the flatness of the glass bottom surface.
[0016]
In the present invention, it is possible to obtain a high-purity silica glass having no aggregated bubbles and containing 1 ppm or less of Na, K, and Fe impurities. For this purpose, it is necessary to use silica powder having Na, K and Fe impurities of 1 ppm or less as raw materials. The powder may be either crystalline or amorphous. As the crystalline material, natural crystalline quartz, that is, a powder obtained by purifying so-called quartz is most preferable. As the amorphous material, so-called synthetic silica powder synthesized from a silicon source such as soda silicate, silicon halide, silicon alkoxide, or the like can be used.
[0017]
In order to obtain silica glass in accordance with the process of the present invention without reducing the purity of the powder, the purity of the graphite mold used and the graphite porous layer is extremely important. That is, the graphite purity of the mold and the porous layer must be 1 ppm or less for Na, K, Fe, and Ti impurities, and more preferably 0.5 ppm or less.
[0018]
Particularly, a general graphite material may contain 10 ppm or more of Fe as an impurity, and it is desirable to use a material that has been subjected to a high purity treatment.
[0019]
The method of heating and melting the silica powder to form silica glass is not particularly limited. However, when obtaining a glass with good transparency, the atmosphere is a light element gas such as vacuum or helium, and the temperature is maintained at 1800 to 1850 ° C. Is good.
[0020]
EXAMPLES Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to the examples.
[0021]
【Example】
Example 1
The structure of the graphite mold / graphite porous layer / silica powder used in the production experiment of the silica glass ring is shown in FIG. The charged shape was an outer diameter of 530 mm, an inner diameter of 440 mm, and a height of 200 mm. The same number of holes of 3 mm in diameter were drilled symmetrically on the outer crucible side surface and the central crucible side surface so that the total cross-sectional area of the vent hole was 1.3% with respect to the total surface area of the solid formed by the powder. A high-purity graphite felt having a thickness of 5 mm and a bulk density of 0.2 g / cm 3 was attached to the inner and outer surfaces of the mold and filled with high-purity crystalline quartz powder (average particle size 0.2 mm). A similar felt was placed on the upper surface of the powder. Further, a high purity graphite sheet was laid thereon, a high purity graphite load ring (height 100 mm, 12 kg) was placed thereon, and a pressure of 17 g / cm 2 was applied to the upper surface of the powder. A high purity graphite sheet having a thickness of 0.4 mm and a bulk density of 1.0 g / cm 3 was laid on the bottom of the mold. The sample was placed in a carbon resistance heating electric furnace and evacuated to a vacuum, the temperature was raised from room temperature to 1700 ° C. at 5 ° C./minute, held at 1700 ° C. for 3 hours, and then heated at 5 ° C./minute. After holding at 1850 ° C. for 40 minutes, the vacuum was released, nitrogen was introduced, and the mixture was allowed to cool. The silica glass obtained at this time had no streak-like air bubbles.
[0022]
Comparative Example 1
A crucible and powder were prepared in the configuration shown in FIG. At this time, neither the outer crucible side surface nor the central crucible side surface was provided with a vent hole. The crystal powder was vacuum-melted under the same firing conditions as in Example 1. In the silica glass obtained at this time, streak-like air bubbles were present.
[0023]
Example 2
A crucible and powder were prepared in the configuration shown in FIG. Here, compared with Example 1, the outer crucible and the high purity graphite outer peripheral ring are common. In order to make the silica glass ring to be fired wider, the shape of the central crucible was reduced. As in the case of Example 1, 1.3% vent holes were provided on the outer crucible side surface and the central crucible side surface. The crystal powder was charged in an outer diameter of 520 mm, an inner diameter of 340 mm, and a height of 200 mm. The high purity felt on the side was doubled. Also, the high-purity graphite sheet on the bottom was doubled. The high-purity graphite load was 50 mm in thickness and 10.1 kg in weight, and the pressure on the upper surface of the powder was 8 g / cm 2 . The firing condition was set at 1700 ° C. for 10 hours. The heating rate was 5 ° C./min, the maximum temperature was 1850 ° C., and 40 minutes was the same as in Example 1. The silica glass obtained at this time had no streak-like air bubbles.
[0024]
Comparative Example 2
A crucible and powder were prepared in the configuration shown in FIG. At this time, neither the outer crucible side surface nor the central crucible side surface was provided with a vent hole. The crystal powder was vacuum-melted under the same firing conditions as in Example 2. In the silica glass obtained at this time, streak-like air bubbles were present.
[0025]
Example 3
FIG. 3 shows the structure of graphite mold / graphite porous layer / silica powder used in the production experiment of cylindrical silica glass. The charged shape was φ150 mm × height 200 mm. The lid, side outer cylinder, and bottom plate were separated. The loading cylinder was not mounted, and 2.4% was secured as a ventilation hole in the side outer cylinder and the lid. The firing conditions were a temperature rising rate of 5 ° C./min, a holding at 1700 ° C. for 10 hours, and a maximum temperature of 1850 ° C. for 40 minutes. The silica glass obtained at this time had no streak-like air bubbles.
[0026]
Comparative Example 3
A crucible and powder were prepared in the configuration shown in FIG. At this time, no vent hole was provided on the side surface of the outer crucible. The quartz powder was vacuum melted under the same firing conditions as in Example 3. In the silica glass obtained at this time, streak-like air bubbles were present.
[0027]
The results obtained in Examples 1 to 3 and Comparative Examples 1 to 3 are collectively shown in Table 1 below.
[0028]
[Table 1]
Figure 0004014724
[0029]
【The invention's effect】
The silica glass produced from the present invention has no aggregated bubbles and is highly pure. Compared to the conventional method of machining from a silica glass block, the material yield is extremely excellent. The durability of the high purity graphite mold is also improved, and this is an economically advantageous method. In particular, it is useful as a silica glass tool used in semiconductor manufacturing, for example, a flange of a reaction tube, a reaction chamber liner of an etching apparatus, and a single wafer type apparatus part.
[Brief description of the drawings]
1 shows a cross-sectional structure of a graphite mold, a graphite porous layer, and silica powder used in Example 1. FIG.
[Explanation of symbols]
(1): High purity graphite mold (2): High purity graphite load (3): Silica raw material powder (4): High purity graphite felt (5): High purity graphite sheet (6): High purity graphite outer ring (7) ▼: Ventilation hole FIG. 2 shows a cross-sectional structure of the graphite mold, graphite porous layer, and silica powder used in Example 2.
[Explanation of symbols]
(1): High purity graphite mold (2): High purity graphite load (3): Silica raw material powder (4): High purity graphite felt (5): High purity graphite sheet (6): High purity graphite outer ring (7) ▼: Ventilation hole FIG. 3 shows a cross-sectional structure of the graphite mold, graphite porous layer, and silica powder used in Example 3.
[Explanation of symbols]
(1): High purity graphite mold (3): Silica raw material powder (4): High purity graphite felt (5): High purity graphite sheet (7): Vent

Claims (4)

シリカ粉末を黒鉛製耐熱モ−ルドに充填し、真空雰囲気下1700℃以上に加熱して透明シリカガラスを得る方法において、黒鉛製モ−ルドとシリカ粉末の接触面に多孔質黒鉛材を介在させ、かつ、黒鉛モールドとして、複数個の貫通孔を有するものを使用することを特徴とする集合気泡のないシリカガラスの製造方法。In a method of filling a silica heat-resistant mold with a silica powder and heating to 1700 ° C. or higher in a vacuum atmosphere to obtain a transparent silica glass, a porous graphite material is interposed on the contact surface between the graphite mold and the silica powder. And the manufacturing method of the silica glass without an aggregate bubble characterized by using what has a some through-hole as a graphite mold. 請求項1に記載のシリカガラスの製造方法において、シリカ粉末の仕込み形状の表面積に対してこれを囲む黒鉛製モ−ルドの総通気断面積を1%以上にすることを特徴とする集合気泡のないシリカガラスの製造方法。2. The method for producing silica glass according to claim 1, wherein the total aeration cross section of the graphite mold surrounding the surface area of the charged shape of the silica powder is 1% or more. Silica glass manufacturing method. 請求項1に記載のシリカガラスの製造方法において、黒鉛製耐熱モ−ルドとして、Na,K,Fe,Tiの各不純物が1ppm以下の高純度黒鉛を用いることを特徴とするシリカガラスの製造方法。2. The method for producing silica glass according to claim 1, wherein high-purity graphite having 1 ppm or less of each impurity of Na, K, Fe and Ti is used as the graphite heat-resistant mold. . 請求項1〜3のいずれかの請求項に記載のシリカガラスの製造方法において、Na,K,Feの各不純物が1ppm以下の高純度シリカガラスが製造できることを特徴とするシリカガラスの製造方法。The method for producing silica glass according to any one of claims 1 to 3, wherein a high-purity silica glass having 1 ppm or less of each of Na, K, and Fe impurities can be produced.
JP08344798A 1998-03-30 1998-03-30 Method for producing silica glass Expired - Fee Related JP4014724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08344798A JP4014724B2 (en) 1998-03-30 1998-03-30 Method for producing silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08344798A JP4014724B2 (en) 1998-03-30 1998-03-30 Method for producing silica glass

Publications (2)

Publication Number Publication Date
JPH11278857A JPH11278857A (en) 1999-10-12
JP4014724B2 true JP4014724B2 (en) 2007-11-28

Family

ID=13802704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08344798A Expired - Fee Related JP4014724B2 (en) 1998-03-30 1998-03-30 Method for producing silica glass

Country Status (1)

Country Link
JP (1) JP4014724B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1227176C (en) 2000-07-31 2005-11-16 信越石英株式会社 Mandrel for producing quartz glass and optical fibre matrix using said mandrel, optical fibre, production method for quartz glass element
JP2007223845A (en) * 2006-02-23 2007-09-06 Toshiba Ceramics Co Ltd METHOD OF PRODUCING SiO2-TiO2 BASED GLASS
KR101498740B1 (en) 2006-07-14 2015-03-04 토요 탄소 가부시키가이샤 Protective sheet for crucible and crucible device using the same
JP4388041B2 (en) 2006-07-31 2009-12-24 東洋炭素株式会社 Release sheet and usage of release sheet
JP5749700B2 (en) * 2012-11-06 2015-07-15 東ソー・クォーツ株式会社 Black quartz glass manufacturing method and manufacturing jig
JP5767197B2 (en) * 2012-11-09 2015-08-19 東ソー・クォーツ株式会社 Method for producing black quartz glass

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10618833B2 (en) 2015-12-18 2020-04-14 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a synthetic quartz glass grain
US10676388B2 (en) 2015-12-18 2020-06-09 Heraeus Quarzglas Gmbh & Co. Kg Glass fibers and pre-forms made of homogeneous quartz glass
US10730780B2 (en) 2015-12-18 2020-08-04 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11053152B2 (en) 2015-12-18 2021-07-06 Heraeus Quarzglas Gmbh & Co. Kg Spray granulation of silicon dioxide in the preparation of quartz glass
US11236002B2 (en) 2015-12-18 2022-02-01 Heraeus Quarzglas Gmbh & Co. Kg Preparation of an opaque quartz glass body
US11299417B2 (en) 2015-12-18 2022-04-12 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a melting crucible of refractory metal
US11339076B2 (en) 2015-12-18 2022-05-24 Heraeus Quarzglas Gmbh & Co. Kg Preparation of carbon-doped silicon dioxide granulate as an intermediate in the preparation of quartz glass
US11492285B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies from silicon dioxide granulate
US11492282B2 (en) 2015-12-18 2022-11-08 Heraeus Quarzglas Gmbh & Co. Kg Preparation of quartz glass bodies with dew point monitoring in the melting oven
US11708290B2 (en) 2015-12-18 2023-07-25 Heraeus Quarzglas Gmbh & Co. Kg Preparation of a quartz glass body in a multi-chamber oven
US11952303B2 (en) 2015-12-18 2024-04-09 Heraeus Quarzglas Gmbh & Co. Kg Increase in silicon content in the preparation of quartz glass

Also Published As

Publication number Publication date
JPH11278857A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JP4014724B2 (en) Method for producing silica glass
JP5314429B2 (en) Synthetic opaque quartz glass and method for producing the same
KR101313647B1 (en) Silica Vessel and Process for Producing Same
JP4815003B2 (en) Crucible for silicon crystal growth, crucible manufacturing method for silicon crystal growth, and silicon crystal growth method
EP0258457B1 (en) Process for manufacturing glass
US6699401B1 (en) Method for manufacturing Si-SiC member for semiconductor heat treatment
JP4161296B2 (en) Method for producing quartz glass crucible
JP2004262690A (en) Method of manufacturing quartz glass crucible for pulling up silicon single crystal and quartz glass crucible manufactured by the same method
JP3723396B2 (en) High purity crystalline inorganic fiber and method for producing the same
WO2000044678A1 (en) Method and device for forming quartz glass
JPH1111956A (en) Production of quartz glass crucible and device therefor
JPS62212236A (en) Production of glass
JP3770566B2 (en) Method for producing cylindrical quartz glass
JP3693772B2 (en) Method for producing opaque quartz glass cylinder
JP3449654B2 (en) Method for producing opaque quartz glass
JP3128007B2 (en) Quartz glass mold
JP4270477B2 (en) Method for producing transparent quartz glass
JP3665664B2 (en) Method for producing opaque quartz glass
JP4256955B2 (en) High purity transparent quartz glass and method for producing the same
JPH0568433B2 (en)
JP3649801B2 (en) Method for producing transparent quartz glass ingot
JP3469688B2 (en) Method for manufacturing semiconductor heat treatment member
JP2002053332A (en) Method and device for molding synthetic quartz glass
JP3875780B2 (en) Manufacturing method of high purity powder
JPH0761839A (en) Production of opaque quarts glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees