JP4407263B2 - Carbon nanotube composition and carbon nanotube dispersion containing the same - Google Patents

Carbon nanotube composition and carbon nanotube dispersion containing the same Download PDF

Info

Publication number
JP4407263B2
JP4407263B2 JP2003406962A JP2003406962A JP4407263B2 JP 4407263 B2 JP4407263 B2 JP 4407263B2 JP 2003406962 A JP2003406962 A JP 2003406962A JP 2003406962 A JP2003406962 A JP 2003406962A JP 4407263 B2 JP4407263 B2 JP 4407263B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
group
dispersion
general formula
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003406962A
Other languages
Japanese (ja)
Other versions
JP2005162578A (en
Inventor
正志 板橋
仁史 西垣
尚久 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003406962A priority Critical patent/JP4407263B2/en
Publication of JP2005162578A publication Critical patent/JP2005162578A/en
Application granted granted Critical
Publication of JP4407263B2 publication Critical patent/JP4407263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

直径が数ナノメートルから数十ナノメートルの筒状炭素材料であるカーボンナノチューブは、高い導電性、機械的強度を有することから、燃料電池、電極、電磁波シールド材、導電性樹脂、電界放出ディスプレー(FED)用部材、水素を始めとする各種ガスの吸蔵材料などの機能性材料として、エレクトロニクス、エネルギー分野等の幅広い分野への利用が期待されている。 Carbon nanotubes, which are cylindrical carbon materials with a diameter of several nanometers to several tens of nanometers, have high electrical conductivity and mechanical strength. Therefore, fuel cells, electrodes, electromagnetic wave shielding materials, conductive resins, field emission displays ( It is expected to be used in a wide range of fields such as electronics and energy as functional materials such as FED) members and various gas storage materials such as hydrogen.

通常、カーボンナノチューブは隣接するカーボンナノチューブ同士が絡まり合った凝集物として得られる。一般に、カーボンナノチューブを使用する場合には、互いに絡まり合うことなく、溶液中に微分散していることが好ましい。しかし、カーボンナノチューブそのものは、親水性液体にも疎水性液体にも分散しない。特に、カーボンナノチューブは疎水性であり、水あるいは親水性溶媒には分散しない。そこで、カーボンナノチューブを分散する技術が検討されている。例えば、[特許文献1]には水中において、活性剤を分散剤として使用する技術、[特許文献2]にはプラズマ処理を行うことによりカーボンナノチューブの分散性を向上させる技術が提案されている。しかし、カーボンナノチューブと活性剤の親和性不足により分散安定化が不十分であったり、プラズマ処理では生産性に欠けるなどの問題があった。 Usually, the carbon nanotube is obtained as an aggregate in which adjacent carbon nanotubes are entangled with each other. In general, when carbon nanotubes are used, it is preferable that they are finely dispersed in the solution without being entangled with each other. However, carbon nanotubes themselves are not dispersed in either hydrophilic or hydrophobic liquids. In particular, carbon nanotubes are hydrophobic and do not disperse in water or hydrophilic solvents. Therefore, techniques for dispersing carbon nanotubes are being studied. For example, [Patent Document 1] proposes a technique of using an activator as a dispersant in water, and [Patent Document 2] proposes a technique of improving the dispersibility of carbon nanotubes by performing plasma treatment. However, there are problems such as insufficient dispersion stabilization due to insufficient affinity between the carbon nanotube and the activator, and lack of productivity in the plasma treatment.

特開2003−238126号報JP 2003-238126 A 特開2003−300716号報Japanese Patent Laid-Open No. 2003-300716

本発明は、これらの欠点がない優れた分散安定性を有する塩基性処理されたカーボンナノチューブ、およびそれを含有するカーボンナノチューブ分散液を工業的に有利に提供することにある。 An object of the present invention is to industrially advantageously provide a basic-treated carbon nanotube having excellent dispersion stability free from these drawbacks, and a carbon nanotube dispersion containing the same.

すなわち、本発明は、カーボンナノチューブ、および塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を含んでなることを特徴とするカーボンナノチューブ組成物に関する。 That is, the present invention relates to a carbon nanotube composition comprising a carbon nanotube and an organic dye derivative having a basic functional group or a triazine derivative having a basic functional group.

更に本発明は、水あるいは有機溶剤、および上記カーボンナノチューブ組成物からなることを特徴とするカーボンナノチューブ分散液に関する。   Furthermore, the present invention relates to a carbon nanotube dispersion liquid comprising water or an organic solvent and the carbon nanotube composition.

更に本発明は、有機溶剤および酸性官能基含有樹脂、および上記カーボンナノチューブ組成物からなることを特徴とするカーボンナノチューブ分散液に関する。   Furthermore, the present invention relates to a carbon nanotube dispersion liquid comprising an organic solvent, an acidic functional group-containing resin, and the carbon nanotube composition.

本発明によって得られるカーボンナノチューブ組成物、分散液は、極めて良好な分散性、保存安定性を示した。 The carbon nanotube composition and dispersion obtained by the present invention showed extremely good dispersibility and storage stability.

以下本発明について詳細に説明する。本発明に用いるカーボンナノチューブは、筒状の形状を持った炭素材料であり、その直径は数nmから100nmで、長さは数nmから1mmである。特性、機能性を発揮するには直径50nm以下、特に、10nm以下が好ましい。長さは100nmから1mmが好ましく、特に500nmから1mmが好ましい。カーボンナノチューブには単層のものや多層構造になったものがあるが、本発明に使用するカーボンナノチューブは、これらいずれの構造であってもよい。 The present invention will be described in detail below. The carbon nanotube used in the present invention is a carbon material having a cylindrical shape, and has a diameter of several nm to 100 nm and a length of several nm to 1 mm. In order to exhibit characteristics and functionality, the diameter is preferably 50 nm or less, particularly preferably 10 nm or less. The length is preferably from 100 nm to 1 mm, particularly preferably from 500 nm to 1 mm. There are single-walled carbon nanotubes and multi-walled carbon nanotubes, and the carbon nanotubes used in the present invention may have any of these structures.

通常このようなカーボンナノチューブは凝集力が著しく強く、容易に樹脂、活性剤等で分散できるものではなかった。 Usually, such carbon nanotubes have a remarkably strong cohesive force and cannot be easily dispersed with a resin, an activator or the like.

そこで、鋭意検討した結果、塩基性官能基を持つ有機色素誘導体またはトリアジン誘導体がカーボンナノチューブの分散剤として有効であり、このカーボンナノチューブ組成物が、水や有機溶媒あるいは水系樹脂溶液や油系樹脂溶液に、極めて良好に分散することを見出した。また、この処理方法は、簡便で、工業的に有利である。 Therefore, as a result of intensive studies, an organic dye derivative or triazine derivative having a basic functional group is effective as a dispersant for carbon nanotubes, and this carbon nanotube composition is composed of water, an organic solvent, an aqueous resin solution, or an oil resin solution. And found to be very well dispersed. Moreover, this processing method is simple and industrially advantageous.

本発明に用いる、塩基性官能基を有する有機色素誘導体および、塩基性官能基を有するトリアジン誘導体は、下記一般式(1)または(3)で表される。
一般式(1)
The organic dye derivative having a basic functional group and the triazine derivative having a basic functional group used in the present invention are represented by the following general formula (1) or (3).
General formula (1)

Figure 0004407263
Figure 0004407263

式中の記号は下記の意味を表す。
1;有機色素残基、アントラキノン残基またはアミノ基を有するアリール基
;直接結合,−CONH−Y−,−SO2 NH−Y- または−CH2 NHCOCH2 NH−Y−(Y;置換基を有してもよいアルキレン基またはアリーレン基を表す。)
;−NH−または−O−
;水酸基、アルコキシ基または下記一般式(2)で示される基で、nは1〜4の整数を表す。またn=1の場合、−NH−X−Qであってもよい。
、R;それぞれ独立に置換もしくは無置換のアルキル基
m;1〜6の整数
一般式(2)
The symbol in a formula represents the following meaning.
Q 1 ; aryl group having an organic dye residue, anthraquinone residue or amino group X 1 ; direct bond, —CONH—Y 2 —, —SO 2 NH—Y 2 — or —CH 2 NHCOCH 2 NH—Y 1 — (Y 2 represents an alkylene group or an arylene group which may have a substituent.)
Y 1 ; —NH— or —O—
Z 1 ; a hydroxyl group, an alkoxy group or a group represented by the following general formula (2), and n represents an integer of 1 to 4. In the case of n = 1, it may be —NH—X 1 -Q 1 .
R 1 and R 2 ; each independently a substituted or unsubstituted alkyl group m; an integer of 1 to 6 (2)

Figure 0004407263
Figure 0004407263

式中の記号は下記の意味を表す。
3;−NH−または−O−
、R;それぞれ独立に置換もしくは無置換のアルキル基またはRとRとが一体となって形成されたヘテロ環。
o;1〜6の整数。
一般式(3)
2−(−X−Y
式中の記号は下記の意味を表す。
2;有機色素残基またはアントラキノン残基
;直接結合、−CONH−Y−,−SO2NH−Y−または−CH2NHCOCH2NH−Y−(Yは置換基を有してもよいアルキレン基またはアリーレン基を表す。)
;下記一般式(4)で示される基
p;1〜4の整数。
一般式(4)
The symbol in a formula represents the following meaning.
Y 3 ; —NH— or —O—
R 3 and R 4 each independently a substituted or unsubstituted alkyl group or a heterocycle formed by combining R 3 and R 4 together.
o; an integer of 1-6.
General formula (3)
Q 2 - (- X 2 -Y 4) p
The symbol in a formula represents the following meaning.
Q 2; organic pigment residue or anthraquinone residue X 2; direct bond, -CONH-Y 5 -, - SO 2 NH-Y 5 - or -CH 2 NHCOCH 2 NH-Y 5 - a (Y 5 are substituents Represents an alkylene group or an arylene group which may have.)
Y 4 ; group p represented by the following general formula (4); an integer of 1 to 4.
General formula (4)

Figure 0004407263
Figure 0004407263

式中の記号は下記の意味を表す。
、R;それぞれ独立に置換もしくは無置換のアルキル基。
q;1〜6の整数。
The symbol in a formula represents the following meaning.
R 5 and R 6 each independently represents a substituted or unsubstituted alkyl group.
q; an integer of 1-6.

上記一般式(1)のQ、(3)のQにおける有機色素残基としてはフタロシアニン系色素、アゾ系色素、キナクリドン系色素、ジオキサジン系色素、アントラピリミジン系色素、アンサンスロン系色素、インダンスロン系色素、フラバンスロン系色素、ペリレン系色素、ペリノン系色素、チオインジコ系色素、イソインドリノン系色素、トリフェニルメタン系色素等の顔料または染料が挙げられる。上記一般式(1)のQ1 におけるアミノ基を有するアリール基としては、例えばアミノフェニル基、アミノナフチル基などが挙げられ、この時ベンゼン環にはアミノ基に加え、他の置換可能な場所にハロゲン基、アミノ基、ニトロ基、水酸基、カルボキシル基、スルホン酸基、アルコキシ基、置換または無置換のアルキル基の何れかの置換基を有してもよい。 Examples of the organic dye residue in Q 1 of the general formula (1) and Q 2 of (3) include phthalocyanine dyes, azo dyes, quinacridone dyes, dioxazine dyes, anthrapyrimidine dyes, anthanthrone dyes, Examples thereof include pigments or dyes such as danslon dyes, flavanthrone dyes, perylene dyes, perinone dyes, thioindico dyes, isoindolinone dyes, and triphenylmethane dyes. Examples of the aryl group having an amino group in Q 1 of the general formula (1) include an aminophenyl group, an aminonaphthyl group, and the like. You may have a substituent in any one of a halogen group, an amino group, a nitro group, a hydroxyl group, a carboxyl group, a sulfonic acid group, an alkoxy group, a substituted or unsubstituted alkyl group.

塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体の添加量は、カーボンナノチューブの比表面積に比例するが、カーボンナノチューブに対して、1〜40wt%添加することが好ましい。より好ましくは10〜20wt%である。 The addition amount of the organic dye derivative having a basic functional group or the triazine derivative having a basic functional group is proportional to the specific surface area of the carbon nanotube, but it is preferable to add 1 to 40 wt% with respect to the carbon nanotube. More preferably, it is 10-20 wt%.

塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体がカーボンナノチューブ表面に吸着することにより、水やアルコールのような極性溶剤中では、静電的な反発力により分散安定化が図れると考えられる。効果的な静電的反発力を与える為には、誘電率として15以上溶剤系が好ましく、例えば、2−プロパノール、エタノール、メタノール、水等の単独溶剤あるいはその混合系が好ましい。 By adsorbing organic dye derivatives with basic functional groups or triazine derivatives with basic functional groups on the surface of carbon nanotubes, dispersion can be stabilized by electrostatic repulsion in polar solvents such as water and alcohol. It is thought that it can plan. In order to give an effective electrostatic repulsive force, a solvent system having a dielectric constant of 15 or more is preferable. For example, a single solvent such as 2-propanol, ethanol, methanol, water, or a mixed system thereof is preferable.

また、誘電率の低い有機溶剤系では、カーボンナノチューブ分散液をより安定に保つ為に、分散液中に酸性官能基を持った樹脂を添加することは、塩基性処理カーボンナノチューブと強い親和性を持ち、立体障害での反発力が期待できるので好ましい。ここでいう誘電率の低い有機溶剤とは一般に塗料、インキで使用される溶剤を指し、セロソルブ系、カルビトート系、グライム系、セロソルブアセテート系、アルコール系、芳香族炭化水素系、ケトン系、エーテル系等の単独溶剤あるいは混合系をあげることができる。一般に誘電率が15以下では静電反発力だけでの分散安定化は難しく、立体障害での安定化が望ましいと考えられる。酸性官能基含有樹脂は、カルボン酸、リン酸、スルホン酸等の酸性官能基を持つアクリル系重合体、スチレン−アクリル酸系共重合体、スチレン−マレイン酸系共重合体、アルキド系、エポキシ系、ポリエステル系、ウレタン系等の通常の樹脂、アニオン系活性剤、市販の樹脂型分散剤等である。特に、重量平均分子量5000以上の樹脂が好ましい。また、酸価としては塩基性処理カーボンナノチューブとより強い親和性を持たせる為、20以上が好ましい。 In addition, in an organic solvent system with a low dielectric constant, in order to keep the carbon nanotube dispersion liquid more stable, adding a resin having an acidic functional group to the dispersion liquid has a strong affinity with the basic treated carbon nanotube. It is preferable because it can be expected to have a repulsive force due to steric hindrance. The organic solvent having a low dielectric constant here refers to a solvent generally used in paints and inks. Cellosolve, carbitoto, glyme, cellosolve acetate, alcohol, aromatic hydrocarbon, ketone, ether Examples thereof include a single solvent such as a system or a mixed system. In general, when the dielectric constant is 15 or less, it is difficult to stabilize the dispersion only by electrostatic repulsion, and it is considered desirable to stabilize by steric hindrance. Acidic functional group-containing resins are acrylic polymers having acidic functional groups such as carboxylic acid, phosphoric acid, and sulfonic acid, styrene-acrylic acid copolymers, styrene-maleic acid copolymers, alkyds, and epoxy resins. Normal resins such as polyester and urethane, anionic activators, and commercially available resin-type dispersants. In particular, a resin having a weight average molecular weight of 5000 or more is preferable. Further, the acid value is preferably 20 or more in order to have stronger affinity with the basic treated carbon nanotube.

勿論、水やアルコールのような高い誘電率を持つ系でも、酸性官能基を持った樹脂を添加することは、静電的な反発力に、立体障害の反発力をプラスすることができるので好ましい。塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体と、酸性官能基含有樹脂との親和性を強める為には、中和剤がない方が好ましく、特に、水系においては、中和剤なしの酸性官能基含有樹脂を用いた方が好ましい。 Of course, even in a system having a high dielectric constant such as water or alcohol, it is preferable to add a resin having an acidic functional group because the repulsive force of steric hindrance can be added to the electrostatic repulsive force. . In order to enhance the affinity between the organic dye derivative having a basic functional group or the triazine derivative having a basic functional group and the acidic functional group-containing resin, it is preferable that there is no neutralizer, particularly in an aqueous system. It is preferable to use an acidic functional group-containing resin without a neutralizing agent.

本発明の塩基性処理カーボンナノチューブ組成物の調整法としては、カーボンナノチューブと塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を単に混合しても十分な分散効果が得られるが、ニーダー、ロール、アトライター、スーパーミル、各種粉砕機、分散機等により乾式あるいは湿式で機械的に混合するか、カーボンナノチューブの水または有機溶媒によるサスペンジョン系に塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を添加し、カーボンナノチューブ表面に塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を沈着させる等の方法を選べば、更に良好な結果を得る事ができる。この場合、水または有機溶媒を除去して使用しても良いが、使用目的の系とカーボンナノチューブの凝集なしに良好に混和するときは、消泡剤、レベリング剤、活性剤、硬化剤、樹脂、防腐剤等の各種添加剤を添加して使用した方がコスト的に有利である。 As a method for preparing the basic treated carbon nanotube composition of the present invention, a sufficient dispersion effect can be obtained by simply mixing a carbon nanotube and an organic dye derivative having a basic functional group or a triazine derivative having a basic functional group. However, organic dyes that have a basic functional group in the suspension system of carbon nanotubes with water or organic solvent are mixed mechanically dry or wet with a kneader, roll, attritor, super mill, various pulverizers, dispersers, etc. If a method such as adding a derivative or a triazine derivative having a basic functional group and depositing an organic dye derivative having a basic functional group or a triazine derivative having a basic functional group on the surface of the carbon nanotube is selected, even better results Can be obtained. In this case, it may be used after removing water or organic solvent. However, when mixing well with the intended system without aggregation of carbon nanotubes, antifoaming agent, leveling agent, activator, curing agent, resin The use of various additives such as preservatives is advantageous in terms of cost.

本発明の塩基性処理カーボンナノチューブ分散液は以下のような方法で製造することができる。
・ カーボンナノチューブと塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を予め混合して得られるカーボンナノチューブ組成物を、水または有機溶媒または水系樹脂溶液または油系樹脂溶液に添加して分散する。
・ 水または有機溶媒または水系樹脂溶液または油系樹脂溶液に、カーボンナノチューブと塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を添加して分散する。
等の方法があり、いずれの方法でも目的とする効果が得られる。
The basic treated carbon nanotube dispersion of the present invention can be produced by the following method.
・ Add carbon nanotube composition obtained by mixing carbon nanotubes and organic dye derivative having basic functional group or triazine derivative having basic functional group in advance to water, organic solvent, aqueous resin solution or oil-based resin solution. And disperse.
Add and disperse carbon nanotubes and organic dye derivative having basic functional group or triazine derivative having basic functional group in water, organic solvent, aqueous resin solution or oil-based resin solution.
Any of these methods can achieve the intended effect.

カーボンナノチューブの分散に使用する分散機としては、特に限定されるものではないが、例えば、ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノーミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、コボールミル、バスケットミル、ホモミキサー、ホモジナイザー(エム・テクニック社製「クレアミックス」等)、湿式ジェットミル(ジーナス社製「ジーナスPY」、ナノマイザー社製「ナノマイザー」等)等を用いることができる。コスト、処理能力等を考えた場合、メディア型分散機を使用するのが好ましい。また、メディアとしてはガラスビーズ、ジルコニアビーズ、アルミナビーズ、磁性ビーズ、ステンレスビーズ等を用いることができる。 The disperser used for dispersing the carbon nanotubes is not particularly limited. For example, a paint conditioner (manufactured by Red Devil), a ball mill, a sand mill (such as “Dynomill” manufactured by Shinmaru Enterprises), an attritor Pearl mills (Eirich “DCP mill”, etc.), coball mills, basket mills, homomixers, homogenizers (M-Technique “Creamix”, etc.), wet jet mills (Genus “Genus PY”, Nanomizer) "Nanomizer" etc.) can be used. In view of cost, processing capability, etc., it is preferable to use a media type dispersing machine. As the media, glass beads, zirconia beads, alumina beads, magnetic beads, stainless beads, etc. can be used.

以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に特に限定されるものではない。実施例中、部および%は、それぞれ重量部および重量%を表す。なお、実施例、比較例で得られたカーボンナノチューブの分散粒度の測定は、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)を用いて平均粒子径(D50の値)を測定した。希釈溶媒には水あるいはMEKを使用した。また、貯蔵安定性は、分散液を40℃で10日間保存した後、分散粒度を測定し、評価した。(詳細については表1を参照)。 EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not specifically limited to a following example, unless the summary is exceeded. In the examples, parts and% represent parts by weight and% by weight, respectively. In addition, the measurement of the dispersed particle size of the carbon nanotubes obtained in Examples and Comparative Examples was performed using a dynamic light scattering type particle size distribution meter (“Microtrac UPA” manufactured by Nikkiso Co., Ltd.) and the average particle size (D50 value). Was measured. Water or MEK was used as a dilution solvent. The storage stability was evaluated by measuring the dispersion particle size after storing the dispersion at 40 ° C. for 10 days. (See Table 1 for details).

本実施例および比較例で使用した有機色素誘導体および、トリアジン誘導体の化学構造式を以下に示す。 The chemical structural formulas of the organic dye derivatives and triazine derivatives used in the examples and comparative examples are shown below.

製造例1
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、一般式(7)で示されるベンズイミダゾロン誘導体0.1g、イオン交換水28.9gを70ccのガラス瓶に仕込み、混合した後、pH=5.0になるように酢酸を添加し、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、水を加熱蒸発させ、本発明のカーボンナノチューブ組成物を得た。
一般式(7)
Production Example 1
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g, benzimidazolone derivative 0.1 g represented by general formula (7) and ion-exchanged water 28.9 g were charged into a 70 cc glass bottle, mixed, and then pH = 5 Acetic acid was added so as to be 0.0, and dispersion was performed for 1 hour using a paint shaker using zirconia beads as a medium, and water was heated and evaporated to obtain the carbon nanotube composition of the present invention.
General formula (7)

Figure 0004407263
Figure 0004407263

実施例1
製造例1で得られたカーボンナノチューブ組成物1.0g、BYK111(ビックケミー社製)1.0g、MEK28.0gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
Example 1
1.0 g of the carbon nanotube composition obtained in Production Example 1, 1.0 g of BYK111 (manufactured by Big Chemie), and 28.0 g of MEK were charged into a 70 cc glass bottle, and dispersed for 1 hour using a paint shaker using zirconia beads as a medium. The carbon nanotube dispersion liquid of the present invention was obtained. This dispersion was diluted with MEK, and the dispersion particle size was measured.

実施例2
製造例1で得られたカーボンナノチューブ組成物1.0g、BYK190(ビックケミー社製)2.0g、イオン交換水27.0gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をイオン交換水で希釈し、分散粒度を測定した。
Example 2
Using a paint shaker, 1.0 g of the carbon nanotube composition obtained in Production Example 1, 2.0 g of BYK190 (manufactured by Big Chemie) and 27.0 g of ion-exchanged water are charged into a 70 cc glass bottle, and zirconia beads are used as media. Time dispersion was performed to obtain a carbon nanotube dispersion of the present invention. This dispersion was diluted with ion-exchanged water, and the dispersion particle size was measured.

実施例3
製造例1で得られたカーボンナノチューブ組成物1.0g、IPA29.0gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
Example 3
The carbon nanotube composition obtained in Production Example 1 (1.0 g) and IPA (29.0 g) were charged into a 70 cc glass bottle and dispersed using a paint shaker with zirconia beads as a medium for 1 hour. Obtained. This dispersion was diluted with MEK, and the dispersion particle size was measured.

実施例4
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、一般式(8)で示されるフタロシアニン誘導体0.15g、イオン交換水28.85gを70ccのガラス瓶に仕込み、混合した後、pH=5.0になるように酢酸を添加し、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。これをイオン交換水で希釈し、分散粒度を測定した。
一般式(8)
Example 4
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g, phthalocyanine derivative 0.15 g represented by the general formula (8) and ion-exchanged water 28.85 g were charged into a 70 cc glass bottle and mixed, and then pH = 5.0 Then, acetic acid was added, and dispersion was performed for 1 hour using a paint shaker using zirconia beads as a medium to obtain a carbon nanotube dispersion of the present invention. This was diluted with ion-exchanged water, and the dispersed particle size was measured.
General formula (8)

Figure 0004407263
Figure 0004407263

実施例5
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、一般式(9)で示されるトリアジン誘導体0.2g、ジョンクリル683(ジョンソンポリマー社製)1.0g、イオン交換水27.8gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をイオン交換水で希釈し、分散粒度を測定した。
一般式(9)
Example 5
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g, triazine derivative 0.2 g represented by the general formula (9), Jonkrill 683 (manufactured by Johnson Polymer) 1.0 g, ion-exchanged water 27.8 g A glass bottle was charged and dispersed for 1 hour using a paint shaker using zirconia beads as a medium to obtain a carbon nanotube dispersion of the present invention. This dispersion was diluted with ion-exchanged water, and the dispersion particle size was measured.
General formula (9)

Figure 0004407263
Figure 0004407263

実施例6
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、一般式(9)で示されるトリアジン誘導体0.15g、ジョンクリル611(ジョンソンポリマー社製)1.0g、MEK27.85gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
Example 6
A carbon nanotube (diameter 10 nm, length 10 μm) 1.0 g, triazine derivative 0.15 g represented by the general formula (9), Jonkrill 611 (manufactured by Johnson Polymer) 1.0 g, and MEK 27.85 g were charged into a 70 cc glass bottle. Then, dispersion was performed for 1 hour using a paint shaker using zirconia beads as a medium to obtain a carbon nanotube dispersion of the present invention. This dispersion was diluted with MEK, and the dispersion particle size was measured.

実施例7
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、一般式(10)で示されるキナクリドン誘導体0.1g、BYK111(ビックケミー社製)1.0g、MEK27.9gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
一般式(10)
Example 7
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g, 0.1 g of quinacridone derivative represented by the general formula (10), 1.0 g of BYK111 (by Big Chemie) and 27.9 g of MEK were charged into a 70 cc glass bottle, and zirconia beads Was dispersed for 1 hour using a paint shaker as a medium to obtain a carbon nanotube dispersion of the present invention. This dispersion was diluted with MEK, and the dispersion particle size was measured.
General formula (10)

Figure 0004407263
Figure 0004407263

実施例8
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、一般式(11)で示されるトリアジン誘導体0.15g、BYK111(ビックケミー社製)1.0g、トルエン27.85gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、本発明のカーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
一般式(11)
Example 8
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g, triazine derivative 0.15 g represented by general formula (11), BYK111 (by Big Chemie) 1.0 g, toluene 27.85 g were charged into a 70 cc glass bottle, and zirconia Dispersion was performed for 1 hour using a paint shaker using beads as a medium to obtain a carbon nanotube dispersion of the present invention. This dispersion was diluted with MEK, and the dispersion particle size was measured.
Formula (11)

Figure 0004407263
Figure 0004407263

比較例
表に示した通り、本発明のカーボンブラック分散体は、比較例に対して微細な分散粒径、良好な経時安定性を示した。
Comparative Example As shown in the table, the carbon black dispersion of the present invention showed a fine dispersed particle size and good stability over time with respect to the comparative example.

比較例1
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、イオン交換水29.0gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、カーボンナノチューブ分散液を得た。この分散液をイオン交換水で希釈し、分散粒度を測定した。
Comparative Example 1
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g and ion-exchanged water 29.0 g are charged into a 70 cc glass bottle and dispersed for 1 hour using a paint shaker using zirconia beads as a medium to obtain a carbon nanotube dispersion. It was. This dispersion was diluted with ion-exchanged water, and the dispersion particle size was measured.

比較例2
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、MEK29.0gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、カーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
Comparative Example 2
Carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g and MEK 29.0 g were charged into a 70 cc glass bottle and dispersed using a paint shaker with zirconia beads as a medium for 1 hour to obtain a carbon nanotube dispersion. This dispersion was diluted with MEK, and the dispersion particle size was measured.

比較例3
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、ジョンクリル683(ジョンソンポリマー社製)1.0g、イオン交換水28.0gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、カーボンナノチューブ分散液を得た。この分散液をイオン交換水で希釈し、分散粒度を測定した。
Comparative Example 3
A carbon nanotube (diameter 10 nm, length 10 μm) 1.0 g, Johncrill 683 (manufactured by Johnson Polymer Co., Ltd.) 1.0 g, and ion-exchanged water 28.0 g were charged into a 70 cc glass bottle, and a zirconia bead was used as a medium using a paint shaker For 1 hour to obtain a carbon nanotube dispersion. This dispersion was diluted with ion-exchanged water, and the dispersion particle size was measured.

比較例4
カーボンナノチューブ(直径10nm、長さ10μm)1.0g、BYK111(ビックケミー社製)1.0g、MEK27.9gを70ccのガラス瓶に仕込み、ジルコニアビーズをメディアとしてペイントシェカーを用いて1時間分散を行い、カーボンナノチューブ分散液を得た。この分散液をMEKで希釈し、分散粒度を測定した。
Comparative Example 4
Charge carbon nanotubes (diameter 10 nm, length 10 μm) 1.0 g, BYK111 (by Big Chemie) 1.0 g, and MEK 27.9 g into a 70 cc glass bottle and perform dispersion for 1 hour using a paint shaker with zirconia beads as media. A carbon nanotube dispersion was obtained. This dispersion was diluted with MEK, and the dispersion particle size was measured.

Figure 0004407263
Figure 0004407263

本発明は、塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を含んでなることを特徴とするカーボンナノチューブ組成物、およびそれを含有するカーボンナノチューブ分散液に関する。 The present invention relates to a carbon nanotube composition comprising an organic dye derivative having a basic functional group or a triazine derivative having a basic functional group, and a carbon nanotube dispersion containing the carbon nanotube composition.

Claims (3)

カーボンナノチューブ、および一般式(1)または(3)で表される塩基性官能基を有する有機色素誘導体または塩基性官能基を有するトリアジン誘導体を含んでなることを特徴とするカーボンナノチューブ組成物。
一般式(1)
Figure 0004407263
式中の記号は下記の意味を表す。
1;有機色素残基、アントラキノン残基またはアミノ基を有するアリール基
;直接結合,−CONH−Y−,−SO2 NH−Y- または−CH2 NHCOCH2 NH−Y−(Y;置換基を有してもよいアルキレン基またはアリーレン基を表す。)
;−NH−または−O−
;水酸基、アルコキシ基または下記一般式(2)で示される基で、nは1〜4の整数を表す。またn=1の場合、−NH−X−Qであってもよい。
、R;それぞれ独立に置換もしくは無置換のアルキル基
m;1〜6の整数
一般式(2)
Figure 0004407263
式中の記号は下記の意味を表す。
3;−NH−または−O−
、R;それぞれ独立に置換もしくは無置換のアルキル基またはRとRとが一体となって形成されたヘテロ環。
o;1〜6の整数。
一般式(3)
2−(−X−Y
式中の記号は下記の意味を表す。
2;有機色素残基またはアントラキノン残基
;直接結合、−CONH−Y−,−SO2NH−Y−または−CH2NHCOCH2NH−Y−(Yは置換基を有してもよいアルキレン基またはアリーレン基を表す。)
;下記一般式(4)で示される基
p;1〜4の整数。
一般式(4)
Figure 0004407263
式中の記号は下記の意味を表す。
、R;それぞれ独立に置換もしくは無置換のアルキル基。
q;1〜6の整数。
A carbon nanotube composition comprising a carbon nanotube and an organic dye derivative having a basic functional group represented by the general formula (1) or (3) or a triazine derivative having a basic functional group.
General formula (1)
Figure 0004407263
The symbol in a formula represents the following meaning.
Q 1 ; aryl group having an organic dye residue, anthraquinone residue or amino group X 1 ; direct bond, —CONH—Y 2 —, —SO 2 NH—Y 2 — or —CH 2 NHCOCH 2 NH—Y 1 — (Y 2 represents an alkylene group or an arylene group which may have a substituent.)
Y 1 ; —NH— or —O—
Z 1 ; a hydroxyl group, an alkoxy group or a group represented by the following general formula (2), and n represents an integer of 1 to 4. In the case of n = 1, it may be —NH—X 1 -Q 1 .
R 1 and R 2 ; each independently a substituted or unsubstituted alkyl group m; an integer of 1 to 6 (2)
Figure 0004407263
The symbol in a formula represents the following meaning.
Y 3 ; —NH— or —O—
R 3 and R 4 each independently a substituted or unsubstituted alkyl group or a heterocycle formed by combining R 3 and R 4 together.
o; an integer of 1-6.
General formula (3)
Q 2 - (- X 2 -Y 4) p
The symbol in a formula represents the following meaning.
Q 2 ; organic dye residue or anthraquinone residue X 2 ; direct bond, —CONH—Y 5 —, —SO 2 NH—Y 5 — or —CH 2 NHCOCH 2 NH—Y 5 — (Y 5 represents a substituent) Represents an alkylene group or an arylene group which may have.)
Y 4 ; group p represented by the following general formula (4); an integer of 1 to 4.
General formula (4)
Figure 0004407263
The symbol in a formula represents the following meaning.
R 5 and R 6 each independently represents a substituted or unsubstituted alkyl group.
q; an integer of 1-6.
水あるいは有機溶剤、および請求項1記載のカーボンナノチューブ組成物からなることを特徴とするカーボンナノチューブ分散液。   A carbon nanotube dispersion liquid comprising water or an organic solvent and the carbon nanotube composition according to claim 1. 有機溶剤および酸性官能基含有樹脂、および請求項1記載のカーボンナノチューブ組成物からなることを特徴とするカーボンナノチューブ分散液。
A carbon nanotube dispersion liquid comprising an organic solvent, an acidic functional group-containing resin, and the carbon nanotube composition according to claim 1.
JP2003406962A 2003-12-05 2003-12-05 Carbon nanotube composition and carbon nanotube dispersion containing the same Expired - Lifetime JP4407263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406962A JP4407263B2 (en) 2003-12-05 2003-12-05 Carbon nanotube composition and carbon nanotube dispersion containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406962A JP4407263B2 (en) 2003-12-05 2003-12-05 Carbon nanotube composition and carbon nanotube dispersion containing the same

Publications (2)

Publication Number Publication Date
JP2005162578A JP2005162578A (en) 2005-06-23
JP4407263B2 true JP4407263B2 (en) 2010-02-03

Family

ID=34729157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406962A Expired - Lifetime JP4407263B2 (en) 2003-12-05 2003-12-05 Carbon nanotube composition and carbon nanotube dispersion containing the same

Country Status (1)

Country Link
JP (1) JP4407263B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501445B2 (en) * 2004-02-06 2010-07-14 東洋インキ製造株式会社 Carbon nanotube composition and carbon nanotube dispersion containing the same
JP5076319B2 (en) * 2005-08-19 2012-11-21 東レ株式会社 Carbon nanotube dispersion
JP2007169121A (en) * 2005-12-22 2007-07-05 The Inctec Inc Dispersion liquid of carbon nanotube
JP2007169120A (en) * 2005-12-22 2007-07-05 The Inctec Inc Method for dispersing carbon nanotube
KR100773551B1 (en) 2006-04-14 2007-11-07 삼성전자주식회사 Carbon Nanotube dispersion solution and method for preparing the same
JP2007297255A (en) * 2006-05-03 2007-11-15 The Inctec Inc Dispersion containing carbon nanotubes
JP2008174602A (en) * 2007-01-17 2008-07-31 Toyo Ink Mfg Co Ltd Resin composition
JP4420123B2 (en) * 2007-06-18 2010-02-24 東洋インキ製造株式会社 Battery composition
CN102099947A (en) * 2008-06-04 2011-06-15 东洋油墨制造股份有限公司 Composition for battery
WO2010013786A1 (en) * 2008-07-30 2010-02-04 東洋インキ製造株式会社 Positive mix paste for lithium secondary battery
JP5071310B2 (en) * 2008-09-03 2012-11-14 東洋インキScホールディングス株式会社 Negative electrode composite and lithium secondary battery using the same
JP5470780B2 (en) * 2008-09-03 2014-04-16 東洋インキScホールディングス株式会社 Battery composition
JP5446178B2 (en) * 2008-09-03 2014-03-19 東洋インキScホールディングス株式会社 Positive electrode mixture paste for lithium secondary battery
WO2017052087A1 (en) 2015-09-25 2017-03-30 주식회사 엘지화학 Carbon nanotube dispersion liquid and manufacturing method thereof
JP2020107642A (en) * 2018-12-26 2020-07-09 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element using the same
JP2020107643A (en) * 2018-12-26 2020-07-09 東洋インキScホールディングス株式会社 Thermoelectric conversion material and thermoelectric conversion element using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2546114B2 (en) * 1992-12-22 1996-10-23 日本電気株式会社 Foreign substance-encapsulated carbon nanotubes and method for producing the same
CA2247820C (en) * 1996-03-06 2009-02-24 Hyperion Catalysis International, Inc. Functionalized nanotubes
ATE514804T1 (en) * 1999-07-21 2011-07-15 Hyperion Catalysis Int METHOD FOR OXIDATION OF MULTI-WALLED CARBON NANOTUBE
JP2003327523A (en) * 2002-05-13 2003-11-19 Nonogawa Shoji Kk External preparation for skin

Also Published As

Publication number Publication date
JP2005162578A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4501445B2 (en) Carbon nanotube composition and carbon nanotube dispersion containing the same
JP4407263B2 (en) Carbon nanotube composition and carbon nanotube dispersion containing the same
JP6005620B2 (en) Low viscosity, high particulate content dispersion
US9238736B2 (en) Surface modified organic black pigments, surface modified carbon blacks, pigment mixtures using them, and low dielectric black dispersions, coatings, films, black matrices, and devices containing same
KR101676505B1 (en) Pigment granulate, method for producing the same and use thereof
JP5799486B2 (en) Carbon material dispersion
JP4218352B2 (en) Method for producing carbon black by dry treatment
JP2009537663A5 (en)
JP3900161B2 (en) Method for producing carbon black dispersion
CN111171216B (en) Water-based dispersant, preparation method and application
US8728223B2 (en) Low viscosity, high particulate loading dispersions
JP3858825B2 (en) Method for producing adsorption-treated carbon black
WO2019107166A1 (en) Dioxazine pigment and colorant
JPH0873787A (en) Aqueous pigment dispersion and its production
JP4069873B2 (en) Method for producing organic pigment dispersion
JPH11256068A (en) Carbon black dispersion
JP2017100116A (en) Dispersant
CN112920621A (en) Method for preparing easily-dispersible pigment from graphene modified C.I. pigment red 179
JP2005060512A (en) Method for producing carbon-black alcoholic dispersion
JP2005213403A (en) Method for producing dispersion of carbon black and organic pigment
JP3882358B2 (en) Pigment composition and aqueous pigment dispersion using the same
JPH11189736A (en) Aqueous dispersion of carbon black
TWI588129B (en) Aromatic dispersant composition and use
JP2007154097A (en) Carbon black dispersion
JP2023134180A (en) Pigment dispersion liquid and coating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R150 Certificate of patent or registration of utility model

Ref document number: 4407263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250