JP4401281B2 - Lead-free solder alloy and method for producing the powder - Google Patents

Lead-free solder alloy and method for producing the powder Download PDF

Info

Publication number
JP4401281B2
JP4401281B2 JP2004358521A JP2004358521A JP4401281B2 JP 4401281 B2 JP4401281 B2 JP 4401281B2 JP 2004358521 A JP2004358521 A JP 2004358521A JP 2004358521 A JP2004358521 A JP 2004358521A JP 4401281 B2 JP4401281 B2 JP 4401281B2
Authority
JP
Japan
Prior art keywords
lead
solder alloy
free solder
mass
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004358521A
Other languages
Japanese (ja)
Other versions
JP2006159278A (en
Inventor
重信 関根
由利菜 関根
Original Assignee
有限会社ナプラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ナプラ filed Critical 有限会社ナプラ
Priority to JP2004358521A priority Critical patent/JP4401281B2/en
Publication of JP2006159278A publication Critical patent/JP2006159278A/en
Application granted granted Critical
Publication of JP4401281B2 publication Critical patent/JP4401281B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、人体に有害な鉛を含有しない無鉛錫(Sn)−亜鉛(Zn)系ハンダ合金に関し、特に、電子部品関係のガラス、セラミックス接続への適用において有用な無鉛ハンダ合金に関するものである。   The present invention relates to a lead-free tin (Sn) -zinc (Zn) -based solder alloy that does not contain lead harmful to the human body, and more particularly to a lead-free solder alloy that is useful in application to glass and ceramics-related electronic components. .

従来より、セラミックスの接合に対してロウ材を用いる活性金属法によるロウ付けがあるが、800℃以上の作業温度を有する硬ロウ材だけであって、軟ロウ材(ハンダ合金)には、錫(Sn)と鉛(Pb)の共晶組成付近の合金が一般に使用されてきている。特公昭43−20093号、特公昭45−1739号などに示されるPb−Sn−Zn系ハンダ、Pb−Sn−Zn−Sb系ハンダ、特公昭51−4046号に示されるPb(40〜85重量%)−Sn(5〜50重量%)−Bi(3〜12重量%)−Sb(0.5〜10重量%)−Zn(0.5〜10重量%)系ハンダ、特開昭62−252693号に示されるハンダなど各種のハンダについて提案されている。また特開平11−77370号など低融点化が完成しているが合金製造過程において高温溶融などコスト高の要素を含んでいる。
特公昭43−20093号公報 特公昭45−1739号公報 特公昭51−4046号公報 特開昭62−252693号公報 特開平11−77370号公報
Conventionally, there is brazing by an active metal method using a brazing material for joining ceramics, but only a hard brazing material having a working temperature of 800 ° C. or more, and a soft brazing material (solder alloy) is tin. Alloys near the eutectic composition of (Sn) and lead (Pb) have generally been used. Pb-Sn-Zn solders shown in Japanese Patent Publication Nos. 43-20093 and 45-1739, Pb-Sn-Zn-Sb solders, and Pb (40 to 85 weights shown in Japanese Patent Publication No. 51-4046) %)-Sn (5-50% by weight) -Bi (3-12% by weight) -Sb (0.5-10% by weight) -Zn (0.5-10% by weight) solder, JP-A 62- Various solders such as the solder shown in Japanese Patent No. 252693 have been proposed. Further, although lowering of melting point has been completed as disclosed in JP-A-11-77370, the alloy production process includes high-cost elements such as high-temperature melting.
Japanese Patent Publication No. 43-20093 Japanese Patent Publication No. 45-1739 Japanese Patent Publication No.51-4046 JP-A-62-225293 JP-A-11-77370

しかし、上記特許文献に開示されたハンダ合金では比較的柔軟に接続部分を形成でき、接続部の信頼性を確保もできる等の利点を有したが、しかし、このSn−Pb合金に含まれるPbは人体に有害であり、この合金を含有する電子機器が地中に廃棄された場合、環境条件によっては人体に有害なPbが溶出して地下水を汚染することになりかねない。このような観点から、人体に有害なPbを含有せず、従来のSn−Pb合金と同等の性能を有する合金が要望されている。このような観点から、ガラス、セラミックスとの接合強度が高く鉛を含まないばかりか、大気雰囲気下でハンダ付けが出来る、低融点100〜210℃のハンダ合金とその粉末の製造方法が要望されている。したがって、本発明の目的は、人体に有害なPbを含有せず、かつ従来のSn−Pb合金と同等の性能を有し、しかも 使用時は大気中でもリフロー出来、鉛フリー化に伴う設備費用の削減につながるガラス低温接合用無鉛ハンダ合金を提供することにある。 However, the solder alloy disclosed in the above-mentioned patent document has advantages such that the connection portion can be formed relatively flexibly and the reliability of the connection portion can be ensured. However, the Pb contained in this Sn—Pb alloy is included. Is harmful to the human body, and when an electronic device containing this alloy is disposed of in the ground, Pb that is harmful to the human body may be eluted depending on the environmental conditions to contaminate the groundwater. From such a point of view, there is a demand for an alloy that does not contain Pb harmful to the human body and has a performance equivalent to that of a conventional Sn-Pb alloy. From such a point of view, there is a demand for a solder alloy having a low melting point of 100 to 210 ° C. and a powder manufacturing method thereof that has high bonding strength with glass and ceramics and does not contain lead, and can be soldered in an air atmosphere. Yes. Therefore, the object of the present invention is to contain Pb that is harmful to the human body, and has the same performance as a conventional Sn-Pb alloy, and can be reflowed even in the atmosphere when used, and the equipment cost associated with lead-free operation is reduced. It is to provide a lead-free solder alloy for glass low-temperature bonding that leads to reduction.

本発明に関わるガラス又はセラミックス接合用の無鉛ハンダ合金は、ビスマス(Bi)45〜15質量%、亜鉛(Zn)5〜10質量%、アンチモン(Sb)0.01〜1質量%、アルミニウム(Al)0.01〜2質量%、インジウム(In)0.5〜30質量%を含み、残部が錫(Sn)および不可避的に混入する不純物からなり鉛を含有しない組成の無鉛ハンダ合金において、さらにガリウム(Ga)0.001〜10質量%を含有することを特徴とする。 The lead-free solder alloy for bonding glass or ceramics according to the present invention is bismuth (Bi) 45-15 mass %, zinc (Zn) 5-10 mass %, antimony (Sb) 0.01-1 mass %, aluminum (Al ) 0.01-2 wt%, wherein the indium (an in) 0.5 to 30 wt%, the lead-free solder alloy having a composition the balance not containing lead composed of tin (Sn) and inevitably mixed impurities, further It contains 0.001 to 10% by mass of gallium (Ga).

また前記組成の溶融金属を、ガス雰囲気中で高速回転する皿型ディスク上に供給し、遠心場内にて溶融金属を小滴として飛散させ、強制的にガス雰囲気中で急冷して自己組織化させることによりナノコンポジット構造の金属粒子状である無鉛ハンダ合金粉末を製造することができる。ここで自己組織化とは、均一・均質相である溶融金属が、その制御された環境状況化での急速冷却固化過程で、粒径500nm以下の球状粒子内にて均一、均質相を造り、自動的にナノコンポジット構造を形成することをいう。更に具体的には、例えば、球状粉体が微小粒子の集合体であって、個々の微小粒子内が均一・均質で粒径500nm以下のクリスタル単一金属及びクリスタル合金化層または点在物、あるいは空隙により相互に隔離されているナノコンポジット構造を形成することをいう。
ガス雰囲気は、アルゴン、酸素、窒素、水素、ヘリウム又は金属蒸気を含むことができる。具体的には、後で説明するように、主にアルゴンガス(又はヘリウムガス)が用いられる。
In addition, the molten metal having the above composition is supplied onto a plate-type disk that rotates at high speed in a gas atmosphere, and the molten metal is scattered as small droplets in a centrifugal field, and is forcibly quenched in a gas atmosphere to be self-organized. As a result, a lead-free solder alloy powder in the form of metal particles having a nanocomposite structure can be produced. Here, self-organization means that a molten metal that is a homogeneous and homogeneous phase is a rapid cooling and solidification process under controlled environmental conditions, and a uniform and homogeneous phase is created in spherical particles having a particle size of 500 nm or less. This refers to automatically forming a nanocomposite structure. More specifically, for example, a spherical powder is an aggregate of fine particles, and each single fine particle is uniform / homogeneous and has a crystal single metal and crystal alloyed layer or dot having a particle size of 500 nm or less, Alternatively, it refers to forming nanocomposite structures that are separated from each other by voids.
The gas atmosphere can include argon, oxygen, nitrogen, hydrogen, helium or metal vapor. Specifically, as will be described later, argon gas (or helium gas) is mainly used.

人体に有害なPbを含有せず、かつ従来のSn−Pb合金と同等の性能を有し、しかも 使用時は大気中でもリフロー出来、鉛フリー化に伴う設備費用の削減につながるガラス低温接合用無鉛ハンダ合金が得られる。 Lead-free glass for low temperature bonding that does not contain Pb harmful to the human body, has the same performance as conventional Sn-Pb alloys, and can be reflowed in the air when used, leading to reduction in equipment costs associated with lead-free operation A solder alloy is obtained.

本発明に関わる無鉛ハンダ合金の標準的な組成はアルミニウム(Al)0.1質量%、亜鉛(Zn)7.0質量%、アンチモン(Sb)0.3質量%、インジウム(In)3.0質量%、ビスマス(Bi)25質量%をベースとし、ガリウム(Ga)は0.01〜10質量%、錫(Sn)残りの質量%である。 The standard composition of the lead-free solder alloy according to the present invention is 0.1% by mass of aluminum (Al), 7.0% by mass of zinc (Zn), 0.3% by mass of antimony (Sb), and 3.0% of indium (In). Based on mass %, bismuth (Bi) 25 mass %, gallium (Ga) is 0.01 to 10 mass %, and tin (Sn) is the remaining mass %.

本発明に関わるガラス低温接合用無鉛ハンダ合金は、平均粒径が100μm以下の粉末状であることが好ましい。 The lead-free solder alloy for low-temperature glass bonding according to the present invention is preferably in the form of a powder having an average particle size of 100 μm or less.

本発明のガラス低温接合用無鉛ハンダ合金の粉末を製造するのに好適な製造装置の一例を図1を参照して説明する。粒状化室1は上部が円筒状、下部がコーン状になっており、上部に蓋2を有する。蓋2の中心部には垂直にノズル3が挿入され、ノズル3の直下には皿形回転ディスク4が設けられている。符号5は皿形回転ディスク4を上下に移動可能に支持する機構である。また粒状化室1のコーン部分の下端には生成した粒子の排出管6が接続されている。ノズル3の上部は粒状化する金属を溶融する電気炉(高周波炉)7に接続されている。混合ガスタンク8で所定の成分に調整された雰囲気ガスは配管9及び配管10により粒状化室1内部及び電気炉7上部にそれぞれ供給される。粒状化室1内の圧力は弁11及び排気装置12、電気炉7内の圧力は弁13及び排気装置14によりそれぞれ制御される。電気炉7の内圧を大気圧より若干高めに、粒状化室1の内圧を大気圧より若干低めに維持すれば、電気炉7で溶融した金属は差圧によりノズル3から皿形回転ディスク4上に供給される。供給された金属は皿形回転ディスク4による遠心力と回転軸沿いからの吹き上げ気流が作り出す平行気流環境遠心場内での作用で微細な液滴状になって飛散し、冷却されて固体粒子になる。生成した固体粒子は排出管6から自動フィルター15に供給され分別される。符号16は微粒子回収装置である。 An example of a production apparatus suitable for producing the powder of the lead-free solder alloy for low-temperature glass bonding of the present invention will be described with reference to FIG. The granulation chamber 1 has a cylindrical shape at the top and a cone shape at the bottom, and has a lid 2 at the top. A nozzle 3 is inserted vertically in the center of the lid 2, and a dish-shaped rotating disk 4 is provided immediately below the nozzle 3. Reference numeral 5 denotes a mechanism for supporting the dish-shaped rotating disk 4 so as to be movable up and down. The generated particle discharge pipe 6 is connected to the lower end of the cone portion of the granulating chamber 1. The upper part of the nozzle 3 is connected to an electric furnace (high frequency furnace) 7 for melting the metal to be granulated. The atmospheric gas adjusted to a predetermined component in the mixed gas tank 8 is supplied to the inside of the granulating chamber 1 and the upper part of the electric furnace 7 through the pipe 9 and the pipe 10, respectively. The pressure in the granulating chamber 1 is controlled by the valve 11 and the exhaust device 12, and the pressure in the electric furnace 7 is controlled by the valve 13 and the exhaust device 14, respectively. If the internal pressure of the electric furnace 7 is kept slightly higher than the atmospheric pressure and the internal pressure of the granulating chamber 1 is kept slightly lower than the atmospheric pressure, the metal melted in the electric furnace 7 is transferred from the nozzle 3 to the plate-shaped rotating disk 4 by the differential pressure. To be supplied. The supplied metal is scattered in the form of fine droplets due to the centrifugal force generated by the dish-shaped rotating disk 4 and the action in the parallel airflow environment created by the airflow blown up along the rotation axis, and cooled to solid particles. . The generated solid particles are supplied from the discharge pipe 6 to the automatic filter 15 and separated. Reference numeral 16 denotes a fine particle collecting apparatus.

高速回転体が円盤状又は円錐状の場合尚遠心場が無い場合は、溶融金属が回転体のどの位置に供給されるのかによって溶融金属にかかる遠心力が大きく異なるので、粒の揃った球状粉体を得にくい。だが回転シャフト下部から不活性ガスを吹き上げデスク下部に充て遠心力にて均一な気流を造り回転中心から2m範囲内に遠心場を作り出す事にて高速回転する皿形ディスク上に供給した場合は、その皿形の周縁位置における均一な遠心力を受け粒の揃った小滴に分散して飛散する。飛散した小滴は遠心場雰囲気ガス中で急速に冷却し、固化した小粒となって落下し、回収される。 When the high-speed rotating body is disk-shaped or conical, if there is no centrifugal field, the centrifugal force applied to the molten metal varies greatly depending on the position of the molten metal supplied to the rotating body. Hard to get a body. However, when an inert gas is blown up from the lower part of the rotating shaft and filled into the lower part of the desk, a uniform air flow is created by centrifugal force, and a centrifugal field is created within the range of 2 m from the center of rotation to supply it on a dish-shaped disk that rotates at high speed. It receives a uniform centrifugal force at the peripheral edge of the dish and is dispersed and scattered into small droplets with uniform grains. The scattered droplets are rapidly cooled in a centrifugal field gas, fall as solidified particles, and are collected.

本発明者らは、上記のような装置を用いて溶融金属を粉末化する研究を行った結果、溶融金属は急速冷却固化中に自己組織化され、個々の微小粒子が金属酸化物、金属窒化物又は金属珪化物の層、点在物、或いはナノクリスタルにより相互に隔離されているナノコンポジット構造を有する金属粒子になること、及び原料金属の組成及び雰囲気ガスの種類によって、個々の微小粒子は、金属酸化物、金属窒化物又は金属珪化物の層、点在物、或いはナノクリスタルのいずれかにより相互に隔離されたものとなることを見いだした。 As a result of researches for powdering molten metal using the apparatus as described above, the molten metal is self-assembled during rapid cooling and solidification, and individual fine particles are converted into metal oxide and metal nitride. Depending on the material or metal silicide layer, the interstitial material, or the metal particles having a nanocomposite structure separated from each other by nanocrystals, and the composition of the source metal and the type of atmospheric gas, We have found that they are isolated from each other by either metal oxide, metal nitride or metal silicide layers, interspersed materials, or nanocrystals.

皿形ディスクの回転数が高くなるほど、得られた金属粒子の径は小さくなる。内径35mm、深さ5mmの皿形ディスクを用いた場合、平均粒径100μm以下の粒子を得るためには毎分30,000回転以上とすることが望ましい。 The higher the number of revolutions of the dish-shaped disk, the smaller the diameter of the obtained metal particles. In the case of using a dish-shaped disk having an inner diameter of 35 mm and a depth of 5 mm, it is desirable that the rotation is 30,000 revolutions per minute or more to obtain particles having an average particle diameter of 100 μm or less.

粒状化室に供給する雰囲気ガスの温度は室温でよいが、長時間連続操業する場合には、溶融金属小滴の急冷効果を維持するため、粒状化室内温度が100℃以下になるように通気量を制御することが望ましい。 The temperature of the atmospheric gas supplied to the granulation chamber may be room temperature, but in the case of continuous operation for a long time, in order to maintain the rapid cooling effect of the molten metal droplets, ventilate so that the granulation chamber temperature is 100 ° C. or less. It is desirable to control the amount.

亜鉛(Zn)7.0質量%、アンチモン(Sb)0.3質量%、インジウム(In)3.0質量%、ビスマス(Bi)25質量、アルミニウム(Al)0.1質量%を含有し、ガリウム(Ga)含有量を0.01〜1質量%の範囲で変化させ、錫(Sn)が残りの質量%である組成の無鉛ハンダ合金についてガラス接合力強度、固相、液相温度の測定を行った結果を表1に示す。ガリウムの添加により接着強度の向上が認められる。 Zinc (Zn) 7.0 wt%, antimony (Sb) 0.3 wt%, indium (an In) 3.0 wt%, bismuth (Bi) 25 wt%, aluminum (Al) containing 0.1 wt% In the lead-free solder alloy having a composition in which the content of gallium (Ga) is changed in the range of 0.01 to 1% by mass and tin (Sn) is the remaining mass %, the glass bonding strength, the solid phase, and the liquidus temperature The measurement results are shown in Table 1. Adhesion strength is improved by the addition of gallium.

Figure 0004401281
Figure 0004401281

図1に示した装置を使用し、アルゴンガス雰囲気中で、高速回転する内径35mm、深さ5mmの皿形ディスク上に、亜鉛(Zn)7.0質量%、アンチモン(Sb)0.3質量%、インジウム(In)3.0質量%、ビスマス(Bi)25質量%、ガリウム(Ga)0.01〜1質量%、アルミニウム(Al)0.1質量%、および錫(Sn)残りの質量%なる組成の溶融金属を供給して強制的に作られた遠心場内に遠心力等により小滴として飛散させた溶融金属がその制御された環境状況化で急速冷却固化過程で強制的に自己組織化させられたナノコンポジット構造の金属粒子からなる球状金属粉末を得た。 球状粉末及び粉末内部の均質化・均一化をSEM像により確認した。 Using the apparatus shown in FIG. 1, in an argon gas atmosphere, high-speed rotating inner diameter 35 mm, a depth of 5mm on dished disk, zinc (Zn) 7.0 wt%, antimony (Sb) 0.3 Weight %, Indium (In) 3.0 mass %, bismuth (Bi) 25 mass %, gallium (Ga) 0.01-1 mass %, aluminum (Al) 0.1 mass%, and tin (Sn) remaining mass % Of the molten metal dispersed as droplets by centrifugal force etc. in the centrifuge created by supplying the molten metal with the composition of%. A spherical metal powder composed of metal particles having a nanocomposite structure was obtained. Homogenization and homogenization of the spherical powder and the inside of the powder were confirmed by SEM images.

比較例1:特開2000−246483号公報に従ってSn90.3質量%、Zn8質量%、Bi1.5質量%の合金を得、さらにアトマイズして金属粉末を得た。ガラスに対しての接合強度測定を行った結果を表2に示す。 Comparative Example 1: JP Sn90.3 wt% according to JP 2000-246483, Zn8 mass%, to obtain a Bi1.5 weight% of the alloy, to obtain a further atomized to metal powder. Table 2 shows the results of the measurement of bonding strength to glass.

比較例2:特開平11−77370号に従ってSn70質量%、Bi25質量%、Ti5質量%合金を作成しガラス接合力強度測定を行った結果を表2に示す。 Comparative Example 2: Sn70 wt% according to JP-A-11-77370, Bi25 mass%, the create a Ti5 wt% alloy results of glass bonding force strength measurements are shown in Table 2.

実施例2、比較例1、2より得られた金属粒子を用いて 、ソルダーペースト化しリフロー試験をし再凝固の結晶化比較にて接合強度特性を測定したところ、微細結晶化で接合融点温度の低融点化で溶け、尚再凝固にて微細結晶化で接合強度が増している比較結果が得られた。 Using the metal particles obtained from Example 2 and Comparative Examples 1 and 2, a solder paste was converted into a reflow test and the bonding strength characteristics were measured by re-solidification crystallization comparison. A comparative result was obtained in which the melting point was lowered and the bonding strength was increased by recrystallization and fine crystallization.

Figure 0004401281
Figure 0004401281

以上説明してきたように、本発明によれば、鉛フリー化に伴い低品質・高コスト化が避けられない状況を合金及び粉末の内部を結晶粒子均一・均質をナノ構造化した合金球状粉末ハンダ材として製造提供する事で高品質を保ち各部品の不良化を防ぎ尚低コストが達成出来た。 As described above, according to the present invention, the alloy spherical powder solder in which the inside of the alloy and the powder is made into a uniform and uniform nanostructured crystal structure in a situation where low quality and high cost are unavoidable with lead-free. By providing and manufacturing as a material, it was possible to maintain high quality, prevent defective parts, and achieve low costs.

本発明のガラス低温接合用無鉛ハンダ合金の粉末を製造するのに好適な製造装置の一例を示す図である。It is a figure which shows an example of the manufacturing apparatus suitable for manufacturing the powder of the lead-free solder alloy for glass low temperature joining of this invention.

符号の説明Explanation of symbols

1 粒状化室
2 蓋
3 ノズル
4 回転ディスク
5 回転ディスク支持機構
6 粒子排出管
7 電気炉
8 混合ガスタンク
9 配管
10 配管
11 弁
12 排気装置
13 弁
14 排気装置
15 自動フィルター
16 微粒子回収装置
DESCRIPTION OF SYMBOLS 1 Granulation chamber 2 Lid 3 Nozzle 4 Rotating disk 5 Rotating disk support mechanism 6 Particle discharge pipe 7 Electric furnace 8 Mixed gas tank 9 Pipe 10 Pipe 11 Valve 12 Exhaust device 13 Valve 14 Exhaust device 15 Automatic filter 16 Fine particle collection device

Claims (4)

ビスマス(Bi)45〜15質量%、亜鉛(Zn)5〜10質量%、アンチモン(Sb)0.01〜1質量%、アルミニウム(Al)0.01〜2質量%、インジウム(In)0.5〜30質量%を含み、残部が錫(Sn)および不可避的に混入する不純物からなり鉛を含有しない組成の無鉛ハンダ合金であって、さらにガリウム(Ga)0.001〜10質量%を含有することを特徴とする、ガラス又はセラミックス接合用の無鉛ハンダ合金。 Bismuth (Bi) 45-15 mass %, zinc (Zn) 5-10 mass %, antimony (Sb) 0.01-1 mass %, aluminum (Al) 0.01-2 mass %, indium (In) 0. It contains 5 to 30 mass%, the balance being a lead-free solder alloy having a composition not containing lead composed of tin (Sn) and inevitably mixed impurities, further containing gallium (Ga) 0.001 to 10 wt% A lead-free solder alloy for bonding glass or ceramics . 平均粒径が100μm以下の粉末状である請求項1に記載の無鉛ハンダ合金。   The lead-free solder alloy according to claim 1, wherein the lead-free solder alloy is in the form of a powder having an average particle size of 100 µm or less. 100℃〜210℃の温度以内で接合することができる請求項1に記載の無鉛ハンダ合金The lead-free solder alloy of Claim 1 which can be joined within the temperature of 100 to 210 degreeC . 請求項1乃至3の何れかに記載された無鉛ハンダ合金の粉末を製造する方法であって、
アルゴン及びヘリウムの内の少なくとも1種類よりなるガス雰囲気中で、前記無鉛ハンダ合金の組成でなる溶融金属を、高速回転する皿型ディスク上に供給し、遠心場内にて溶融金属を小滴として飛散させ、
ガス雰囲気中で強制的に急冷して自己組織化させ、ナノコンポジット構造の金属粒子を得ること、
を特徴とする、無鉛ハンダ合金粉末の製造方法。
A method for producing a lead-free solder alloy powder according to any one of claims 1 to 3,
In a gas atmosphere consisting of at least one of argon and helium, the molten metal composed of the lead-free solder alloy is supplied onto a high-speed rotating dish disk, and the molten metal is scattered as small droplets in the centrifugal field. Let
Forcibly quenching in a gas atmosphere and self-organizing to obtain metal particles with a nanocomposite structure,
A method for producing a lead-free solder alloy powder.
JP2004358521A 2004-12-10 2004-12-10 Lead-free solder alloy and method for producing the powder Active JP4401281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358521A JP4401281B2 (en) 2004-12-10 2004-12-10 Lead-free solder alloy and method for producing the powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358521A JP4401281B2 (en) 2004-12-10 2004-12-10 Lead-free solder alloy and method for producing the powder

Publications (2)

Publication Number Publication Date
JP2006159278A JP2006159278A (en) 2006-06-22
JP4401281B2 true JP4401281B2 (en) 2010-01-20

Family

ID=36661848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358521A Active JP4401281B2 (en) 2004-12-10 2004-12-10 Lead-free solder alloy and method for producing the powder

Country Status (1)

Country Link
JP (1) JP4401281B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296208A (en) * 2011-08-17 2011-12-28 天津百瑞杰焊接材料有限公司 Lead-free low-temperature alloy for preparing fuse core of temperature fuse and preparation method thereof
JP6029222B1 (en) * 2015-07-08 2016-11-24 有限会社 ナプラ Metal particles, paste, molded body, and laminate
JP6038270B1 (en) * 2015-12-22 2016-12-07 有限会社 ナプラ Electronic equipment
EP3266558A1 (en) 2016-07-05 2018-01-10 Napra Co., Ltd. Multi-layer preform sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101402514B (en) 2007-10-03 2011-09-07 日立金属株式会社 Solder alloy for bonding oxide material, and solder joint using the same
JP2009097026A (en) * 2007-10-12 2009-05-07 Hitachi Global Storage Technologies Netherlands Bv Data storage device
CN103068518A (en) * 2010-06-16 2013-04-24 住友金属矿山股份有限公司 Bi-al-zn-based pb-free solder alloy
KR101438897B1 (en) 2012-08-13 2014-09-17 현대자동차주식회사 Lead free solder composition for glass
CN103740997B (en) * 2013-12-04 2016-04-27 曹帅 A kind of heterogeneous liquid metal heat interface material containing zinc and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296208A (en) * 2011-08-17 2011-12-28 天津百瑞杰焊接材料有限公司 Lead-free low-temperature alloy for preparing fuse core of temperature fuse and preparation method thereof
JP6029222B1 (en) * 2015-07-08 2016-11-24 有限会社 ナプラ Metal particles, paste, molded body, and laminate
EP3225348A1 (en) 2015-07-08 2017-10-04 Napra Co., Ltd. Metal particles having intermetallic compound nano-composite structure crystal
US10016848B2 (en) 2015-07-08 2018-07-10 Napra Co., Ltd. Metal particles having intermetallic compound nano-composite structure crystal
US10478924B2 (en) 2015-07-08 2019-11-19 Napra Co., Ltd. Metal particle and electroconductive paste formed therefrom
US10507551B2 (en) 2015-07-08 2019-12-17 Napra Co., Ltd. Metal particle and articles formed therefrom
JP6038270B1 (en) * 2015-12-22 2016-12-07 有限会社 ナプラ Electronic equipment
EP3266558A1 (en) 2016-07-05 2018-01-10 Napra Co., Ltd. Multi-layer preform sheet
US9950496B2 (en) 2016-07-05 2018-04-24 Napra Co., Ltd. Multi-layer preform sheet

Also Published As

Publication number Publication date
JP2006159278A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
KR100829465B1 (en) Lead-free solder, solder joint product and electronic component
JP4789198B2 (en) Lead-free solder alloy
JP2002057177A (en) Solder ball and its manufacturing method
CN104668807B (en) Spherical low-melting-point brazing filler metal powder manufacturing method
JP4401281B2 (en) Lead-free solder alloy and method for producing the powder
JP6374072B1 (en) Bonding structure
JP6174830B1 (en) Metal particles
EP1357197B1 (en) Minute copper balls and a method for their manufacture
JP2005103645A (en) Solder ball and its manufacturing method
JP6799701B1 (en) Metal particles
JP2015105391A (en) Method for producing lead-free solder alloy powder
KR102048210B1 (en) Lead-free solder composition and method for maunfacturing thereof
KR102040280B1 (en) Lead-free solder composition and manufacturing method of the same, bonding method using lead-free solder composition
CN102248173A (en) Method and equipment for preparing spherical low-oxygen aluminum-based solder powder
Nadia et al. Effects of addition of copper particles of different size to Sn-3.5 Ag solder
JP2005040847A (en) Manufacturing method of solder bowl
JP6205083B1 (en) Bonding structure
CN101952080B (en) Solder alloy and process for producing the same
JP2004268065A (en) Tin-zinc based leadless solder alloy with nanocomposite structure, and production method therefor
JP2005046882A (en) Solder alloy, solder ball, and solder joined body
KR102078329B1 (en) Lead-Free Solder Composition and Method for Manufacturing Thereof
US11453089B2 (en) Bonding structure
US9246167B2 (en) Method for forming zinc alloy powder for use in alkaline battery
JP6430473B2 (en) Semiconductor device
KR102040279B1 (en) High performance lead-free solder composition and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070330

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Ref document number: 4401281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250