JP4393786B2 - 冷凍または空気調和装置及びその更新方法 - Google Patents

冷凍または空気調和装置及びその更新方法 Download PDF

Info

Publication number
JP4393786B2
JP4393786B2 JP2003106523A JP2003106523A JP4393786B2 JP 4393786 B2 JP4393786 B2 JP 4393786B2 JP 2003106523 A JP2003106523 A JP 2003106523A JP 2003106523 A JP2003106523 A JP 2003106523A JP 4393786 B2 JP4393786 B2 JP 4393786B2
Authority
JP
Japan
Prior art keywords
refrigerant
connection pipe
heat source
pipe
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003106523A
Other languages
English (en)
Other versions
JP2004309088A (ja
Inventor
修 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003106523A priority Critical patent/JP4393786B2/ja
Publication of JP2004309088A publication Critical patent/JP2004309088A/ja
Application granted granted Critical
Publication of JP4393786B2 publication Critical patent/JP4393786B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷凍または空気調和装置、特に熱源機と室内機とを接続する冷媒配管に、旧冷媒用の既設の冷媒配管を流用し、熱源機と室内機を新冷媒用の機器に更新する冷凍または空気調和装置に関するものである。
【0002】
【従来の技術】
従来のこの種冷凍または空気調和装置は、おおむね次のような装置及び作用を有する冷媒回路を備えている。即ち、圧縮機と、この圧縮機から吐出された高温高圧のガス冷媒を冷房運転時と暖房運転時とで流れる方向を切り換える四方切換弁と、冷房時には凝縮器として作用し、暖房時には蒸発器として作用する熱源側熱交換器と、蒸発器から戻ってきたガス冷媒を気液分離して圧縮機に戻すアキュムレータとから構成される熱源機、及び冷房時には蒸発器として作用し、暖房時には凝縮器として作用する負荷側熱交換器と、この負荷側熱交換器に接続された絞り装置等の流量制御装置とからなる室内機、並びに熱源機と室内機とを接続する第1、第2の接続配管により冷媒回路が構成されている。
【0003】
このような冷媒回路を有する冷凍または空気調和装置において、冷房運転を実施する場合の冷媒の流れについて説明する。圧縮機から吐出された高温、高圧のガス冷媒は四方切換弁を経て熱源側熱交換器に流入し、ここで凝縮、液化する。
液化した冷媒は液管である第1の接続配管を経て室内機の絞り装置に流入し、ここで低圧まで絞られた後、負荷側熱交換器に流入し、蒸発、気化する。
負荷側熱交換器を出た低圧のガス冷媒は、ガス管である第2の接続配管を経て熱源機の四方切換弁に至り、ここからアキュムレータを経て圧縮機に戻る。
【0004】
次に、暖房運転を実施する場合の冷媒の流れについて説明する。圧縮機から吐出された高温、高圧のガス冷媒は四方切換弁で流路が切り換えられ、ガス管である第2の接続配管を経て室内機の負荷側熱交換器に流入し、ここで凝縮、液化する。液化した冷媒は絞り装置で低圧まで絞られて低圧の二相冷媒となり、液管である第1の接続配管を経て熱源機の熱源側熱交換器に流入する。ここで二相冷媒は蒸発、気化した後、低圧のガス冷媒が四方切換弁及びアキュムレータを経て圧縮機に戻るようにされている。(例えば特許文献1参照)。
【0005】
【特許文献1】
特許第3361765号公報(段落0063−0073、図1)
【0006】
【発明が解決しようとする課題】
従来の冷凍または空気調和装置は以上のように構成されているため、冷房運転時と暖房運転時とでは四方切換弁が切り換わり、室内機へ流れる冷媒の流れが逆転する。この結果、熱源機と室内機を接続する第1、第2の接続配管は、冷房時は液管である第1の接続配管が高圧、ガス管である第2の接続配管が低圧となるのに対し、暖房時は液管である第1の接続配管が低圧、ガス管である第2の接続配管が高圧となる。ここで、一般に市場で使用されている空気調和装置用の冷媒配管の許容圧力は配管径により異なり、表1に一例を示すように、配管径が太い程、許容圧力は低くなる。
【表1】
Figure 0004393786
【0007】
一方、冷媒にR22やR407Cを使用するビル用マルチエアコンでは、表2に示すように高圧の設計圧力はガス管の許容圧力に近いため、熱源機と室内機を更新する場合には、更新後の熱源機と室内機が、更新前の熱源機と室内機の動作圧力に近い冷媒を用いるものに限られていた。
【表2】
Figure 0004393786
既設の冷凍または空気調和装置の動作圧力よりも高い動作圧力の冷媒(例えばR410A)を用いるシステムへの更新では、既設の冷媒配管が使用できないため工期が長くなり、また、コストも大きくなるという問題点があった。
更に、年々、省エネ性への要求が高まる中、機器に使用される要素の性能改善だけでは、これらの要求を満足することができず、また、機器のコスト耐力が低下するなどの問題点があった。
【0008】
この発明は、上記のような問題点を解消するためになされたもので、既設冷媒配管を流用して更新工事の工期を短縮し、更新コストを低減すると共に、冷媒配管での圧力損失を低減して装置の効率を改善し、地球環境保護にも役立つ冷凍または空気調和装置及びその更新方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明に係る冷凍または空気調和装置は、圧縮機と、この圧縮機から吐出された冷媒の流路を切り換える四方切換弁と、この四方切換弁に接続された熱源側熱交換器とを有する熱源機、負荷側熱交換器と、これに接続された流量制御装置とを有する複数の室内機、上記熱源機使用前に、所定の旧冷媒の高圧側流路と低圧側流路との双方をそれぞれ構成していた第1の接続配管及び第2の接続配管、を備え、上記旧冷媒より動作圧力が高い新冷媒を使用すると共に、上記熱源機、上記新冷媒用の更新機である冷凍または空気調和装置において、上記熱源機と上記室内機とを上記第1の接続配管及び上記第2の接続配管を介して接続すると共に、上記負荷側熱交換器の一方の端部を、その端部毎に上記第1の接続配管及び上記第2の接続配管に切り換え可能に接続する弁装置を有する分流コントローラを備え、上記第1の接続配管は、上記分流コントローラの機能による冷暖房同時運転時を含め、常時高圧冷媒の流路を構成し、上記第2の接続配管は、上記第1の接続配管よりも太い径の管からなり、上記分流コントローラの機能による冷暖房同時運転時を含め、常時低圧冷媒の流路を構成するものである。
また、この発明に係る冷凍または空気調和装置の更新方法は、上記冷凍または空気調和装置において、上記熱源機更新時に、上記第1の接続配管及び上記第2の接続配管を洗浄するものである。
【0010】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による冷凍または空気調和装置の構成を示す冷媒回路図で、熱源機1台に対して複数台の室内機を接続する多室型ヒートポンプ空気調和装置の例を示しており、各室内機毎に冷暖房を選択的に行なうことができ、冷房を行なう室内機と、暖房を行なう室内機とを同時に運転することができる例を示している。なお、図1では熱源機1台に室内機2台、分流コントローラ1台を接続した場合について説明するが、3台以上の室内機、及び2台以上の分流コントローラを接続した場合でも同様に実施できることは云うまでもない。
【0011】
図1において、Aは熱源機、B、Cは後述するように互いに並列接続された室内機で、それぞれ同じ構成とされている。Dは熱源機Aと室内機B、Cとを接続する分流コントローラで、構成については後述する。
熱源機Aは以下に述べる各構成要素によって構成されている。即ち、圧縮機1と、この圧縮機1に接続され、冷媒の流通方向を切り換える四方切換弁2と、熱源側熱交換器3と、四方切換弁2及び圧縮機1の間に接続されたアキュムレータ4と、熱源側熱交換器3及び後述する第1の接続配管6の間に設けられ、熱源側熱交換器3から第1の接続配管6の方向へのみ冷媒流通を許容する第1の逆止弁5aと、四方切換弁2及び後述する第2の接続配管7の間に設けられ、第2の接続配管7から四方切換弁2の方向へのみ冷媒流通を許容する第2の逆止弁5bと、四方切換弁2及び第1の接続配管6の間に設けられ、四方切換弁2から第1の接続配管6の方向へのみ冷媒流通を許容する第3の逆止弁5cと、熱源側熱交換器3及び第2の接続配管7の間に設けられ、第2の接続配管7から熱源側熱交換器3の方向へのみ冷媒流通を許容する第4の逆止弁5dとから構成されている。
【0012】
また、室内機B、Cは、それぞれ負荷側熱交換器11b、11cと、各負荷側熱交換器11b、11cに直列接続された絞り装置等の流量制御装置12b、12cとで構成されている。なお、各流量制御装置12b、12cは、冷房時は負荷側熱交換器11b、11cの出口側の過熱度により、暖房時は同じく出口側の過冷却度により開閉状態が制御されるようにされている。更に、分流コントローラDは四方切換弁2と接続された太い第2の接続配管7及び熱源側熱交換器3と接続され、第2の接続配管7より細い第1の接続配管6によって熱源機Aと接続され、室内機B、Cの負荷側熱交換器11b、11cと接続された負荷側の第2の接続配管7b、7c及び室内機B、Cの流量制御装置12b、12cに接続された負荷側の第1の接続配管6b、6cによって各室内機B、Cと接続されると共に、以下に述べるような内部構成を有する。
【0013】
即ち、13は負荷側の第2の接続配管7b、7cを、第1の接続配管6または第2の接続配管7に切り換え可能に接続する弁装置で、一端が負荷側の第2の接続配管7b、7cにそれぞれ接続され、他端が一括接続されて第1の接続配管6に接続された2個の第1の弁装置13aと、一端が負荷側の第2の接続配管7b、7cにそれぞれ接続され、他端が一括接続されて第2の接続配管7に接続された2個の第2の弁装置13bとから構成され、第1の弁装置13aを開路、第2の弁装置13bを閉路することにより、負荷側の第2の接続配管7b、7cを第1の接続配管6に接続し、また、第1の弁装置13aを閉路、第2の弁装置13bを開路することにより、負荷側の第2の接続配管7b、7cを第2の接続配管7に接続するものである。
【0014】
また、第1の接続配管6の途中に気液分離器14が設けられ、その気相部が、第1の接続配管6の後半部を経て第1の弁装置13aに接続され、その液相部が第1の熱交換部15、開閉自在な第2の流量制御装置16及び第2の熱交換部17を介して負荷側の第1の接続配管6b、6cに接続されている。また、バイパス配管18に設けられた第3の流量制御装置19を経て気液分離器14からの液冷媒の一部が第2の熱交換部17及び第1の熱交換部15で熱交換し、気液分離器14からの液冷媒を過冷却して第2の接続配管7に戻るようにされている。
【0015】
このように構成された実施の形態1の冷凍または空気調和装置によって、上述したように大きく分けて3つの形態の運転が行なわれる。即ち、複数の室内機の総てで冷房運転を行なう場合と、複数の室内機の総てで暖房運転を行なう場合と、複数の室内機のうち一部は冷房運転を行ない、他の一部は暖房運転を行なう場合(冷暖房同時運転)とである。更に、冷暖房同時運転については、2つの形態の運転が行なわれる。即ち、複数の室内機のうち大部分の室内機が暖房運転を行なう場合(暖房主体運転)と、複数の室内機のうち大部分の室内機が冷房運転を行なう場合(冷房主体運転)とである。
【0016】
まず、図2を用いて総ての室内機を冷房運転する全冷房運転について説明する。即ち、図2に冷媒の流れを実線矢印で示すように、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、熱源側熱交換器3で熱交換して凝縮された後、第1の逆止弁5a、第1の接続配管6を通り、分流コントローラDへ流入する。分流コントローラDへ流入した冷媒は気液分離器14、第2の流量制御装置16の順に通り、負荷側の第1の接続配管6b、6cを通り、各室内機B、Cに流入し、各負荷側熱交換器11b、11cの出口の過熱度により制御される流量制御装置12b、12cにより低圧まで減圧されて負荷側熱交換器11b、11cで室内空気と熱交換して蒸発しガス化され室内を冷房する。
そして、ガス状態となった冷媒は、負荷側の第2の接続配管7b、7c、第2の弁装置13bを通り、第2の接続配管7、第2の逆止弁5b、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房運転を行なう。この時、第1の弁装置13aは閉路、第2の弁装置13bは開路されている。
【0017】
また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第1の逆止弁5a、第2の逆止弁5bへ冷媒が流通する。
更に、このサイクルの時、第2の流量制御装置16を通過した冷媒の一部が第2の熱交換部17及び第3の流量制御装置19を経てバイパス配管18へ入り、第3の流量制御装置19で低圧まで減圧されて、第2の熱交換部17で負荷側の第1の接続配管6b、6cに流入する冷媒との間で熱交換を行ない、また、第1の熱交換部15で第2の流量制御装置16に流入する冷媒との間で熱交換を行ない蒸発した冷媒は、第2の接続配管7へ入り、第2の逆止弁5b、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。一方、第1の熱交換部15で熱交換し、過冷却度が増大された冷媒は、負荷側の第1の接続配管6b、6cを経由して冷房しようとしている室内機B、Cへ流入する。
【0018】
次に、図3を用いて総ての室内機を暖房運転する全暖房運転について説明する。この場合は、四方切換弁2が切り換えられ、冷媒の流れが図3に実線矢印で示すようになる。即ち、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、第3の逆止弁5c、第1の接続配管6を通り、分流コントローラDへ流入する。分流コントローラDへ流入した冷媒は気液分離器14、第1の接続配管6の後半部を経て第1の弁装置13a、負荷側の第2の接続配管7b、7cを通り、各室内機B、Cに流入し、室内空気と熱交換して凝縮液化し、室内を暖房する。
【0019】
そして、液状態となった冷媒は、各負荷側熱交換器11b、11cの出口の過冷却度により制御される流量制御装置12b、12cを通り、負荷側の第1の接続配管6b、6cからバイパス配管18の第3の流量制御装置19に流入して低圧の気液二相状態まで減圧される。低圧まで減圧された冷媒は、第2の熱交換部17、第1の熱交換部15を経た後、第2の接続配管7を通り、第4の逆止弁5d、熱源側熱交換器3に流入し熱交換して蒸発しガス状態となった冷媒は、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房運転を行なう。この時、第1の弁装置13aは開路、第2の弁装置13bは閉路されている。また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第3の逆止弁5c、第4の逆止弁5dへ冷媒が流通する。
【0020】
次に、冷暖房同時運転における暖房主体の場合について図4を用いて説明する。ここでは、室内機Bが暖房、室内機Dが冷房しようとしている場合について説明する。即ち、図4に冷媒の流れを実線矢印で示すように、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2、第3の逆止弁5c、第1の接続配管6を通り、分流コントローラDに流入する。分流コントローラDに流入した冷媒は気液分離器14、第1の接続配管6の後半部を経て第1の弁装置13a、負荷側の第2の接続配管7bの順に通り、暖房しようとしている室内機Bに流入し、負荷側熱交換器11bで室内空気と熱交換して凝縮液化し、室内を暖房する。
そして、液状態となった冷媒は、負荷側熱交換器11bの出口の過冷却度により制御され、ほぼ全開状態の流量制御装置12bを通り少し減圧されて高圧と低圧の中間の圧力(中間圧)になり、負荷側の第1の接続配管6bに流入した冷媒の一部が矢印Rのように第2の熱交換部17を経て冷房しようとしている室内機Cに接続された負荷側の第1の接続配管6cを通り、負荷側熱交換器11cの出口の過熱度により制御される流量制御装置12cにより減圧された後に室内機Cの負荷側熱交換器11cに入り熱交換して蒸発しガス状態となって室内を冷房し、室内機Cに接続された第2の弁装置13bを介して第2の接続配管7に流入する。
【0021】
一方、室内機Bから分流コントローラDの第2の熱交換部17に流入した室内機Bの暖房用の冷媒の他の一部は、バイパス配管18を経て第1の接続配管6の高圧と流量制御装置12bの出口の中間圧との差を一定にするように制御される開閉自在な第3の流量制御装置19を通って上述のように第2の接続配管7に至るため、ここで室内機Cを冷房した冷媒と合流して太い第2の接続配管7に流入し、第4の逆止弁5d、熱源側熱交換器3に流入し熱交換して蒸発しガス状態となった冷媒は、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、暖房主体運転を行なう。
【0022】
この時、暖房しようとしている室内機Bに接続されている第1の弁装置13aは開路、第2の弁装置13bは閉路され、冷房しようとしている室内機Cに接続されている第1の弁装置13aは閉路、第2の弁装置13bは開路されている。また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第3の逆止弁5c、第4の逆止弁5dへ冷媒が流通する。
【0023】
また、このサイクルの時、バイパス配管18へ入った冷媒は、第3の流量制御装置19で低圧まで減圧されて、第2の熱交換部17で負荷側の第1の接続配管6cへ流入する冷媒との間で熱交換を行ない、更に第1の熱交換部15で第2の流量制御装置16へ流入する冷媒との間で熱交換を行ない蒸発した冷媒は、第2の接続配管7へ入り、第4の逆止弁5dを経て、熱源側熱交換器3に流入し熱交換して蒸発しガス状態となる。そして、この冷媒は四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される。一方、第2の熱交換部17で熱交換し過冷却度が増大された冷媒は、上述のように、冷房しようとしている室内機Cへ流入する。
【0024】
次に、冷暖房同時運転における冷房主体の場合について図5を用いて説明する。ここでは、室内機Bが暖房、室内機Cが冷房しようとしている場合について説明する。即ち、図5に冷媒の流れを実線矢印で示すように、圧縮機1より吐出された高温高圧の冷媒ガスは四方切換弁2を通り、熱源側熱交換器3で任意量熱交換して気液2相の高温高圧冷媒となり、第1の逆止弁5a、第1の接続配管6を通り、分流コントローラDに流入する。分流コントローラDに流入した冷媒は気液分離器14へ送られ、ここで、ガス冷媒と液冷媒に分離される。分離されたガス冷媒は、第1の接続配管6の後半部を経て分流コントローラDの弁装置13の第1の弁装置13a、負荷側の第2の接続配管7bの順に通り、暖房しようとしている室内機Bに流入し、負荷側熱交換器11bで室内空気と熱交換して凝縮液化し、室内を暖房する。
【0025】
更に、負荷側熱交換器11bの出口の過冷却度により制御されほぼ全開状態の流量制御装置12bを通り少し減圧されて、高圧と低圧の中間の圧力(中間圧)となり、負荷側の第1の接続配管6bを経てバイパス配管18に流入し、第3の流量制御装置19で低圧まで減圧されて、第2の熱交換部17で負荷側の第1の接続配管6cに流入する冷媒との間で熱交換を行ない、また、第1の熱交換部15で第2の流量制御装置16へ流入する冷媒との間で熱交換を行ない蒸発した冷媒は、第2の接続配管7に至る。一方、分流コントローラDの気液分離器14で分離された残りの液冷媒は、第1の熱交換部15で熱交換して過冷却度が増大された後、高圧と中間圧の差を一定にするように制御される第2の流量制御装置16を通って矢印で示すように、負荷側の第1の接続配管6cを通り、室内機Cに流入する。そして、この冷媒は、室内機Cの負荷側熱交換器11cの出口の過熱度により制御される流量制御装置12cにより低圧まで減圧されて負荷側熱交換器11cで室内空気と熱交換して蒸発しガス化され室内を冷房する。
そして、ガス状態となった冷媒は、負荷側の第2の接続配管7c、第2の弁装置13bを経て第2の接続配管7へ流入し、バイパス配管18を経て第2の接続配管7に流入する上述の室内機Bの暖房用冷媒と合流した後、第2の逆止弁5b、四方切換弁2、アキュムレータ4を経て圧縮機1に吸入される循環サイクルを構成し、冷房主体運転を行なう。
【0026】
この時、冷房しようとしている室内機Cに接続されている第1の弁装置13aは閉路、第2の弁装置13bは開路され、暖房しようとしている室内機Bに接続されている第1の弁装置13aは開路、第2の弁装置13bは閉路されている。また、第2の接続配管7は低圧、第1の接続配管6は高圧のため必然的に第1の逆止弁5a、第2の逆止弁5bへ冷媒が流通する。
【0027】
この実施の形態による冷凍または空気調和装置は、以上のように構成されているため、液冷媒が流通する冷媒配管である第1の接続配管6は常に高圧で使用され、ガス冷媒が流通する冷媒配管である第2の接続配管7は常に低圧で使用される。従って、第1の接続配管6は高圧の設計圧力、第2の接続配管7は低圧の設計圧力で設計することができる。なお、一般にビル用マルチエアコンで使用されている冷媒としてR22があるが、この冷媒は高圧の設計圧力が約3MPa、低圧側で約1.6MPaであるため、冷媒にR22を使用する空気調和装置の既設配管として、市場で使用されている銅配管の許容圧力は表2に示されるようになっている。この空気調和装置の熱源機と室内機を例えばR410Aを冷媒に使用する空気調和装置に更新する場合には、高圧の設計圧力は表2に示すように、約4.2MPa、低圧の設計圧力は約2.2MPaである。
【0028】
このため、この発明における空気調和装置において、第1の接続配管6として径が15.88のものを、また、第2の接続配管7として径が28.6のものを使用すれば、両接続配管は、各々、設計圧力が配管の許容値以下となり、使用が可能である。従って、冷媒にR22を使用する冷凍または空気調和装置で使用していた既設配管がR410Aを使用する空気調和装置で流用可能となるので、空気調和装置の更新時に生じる既設の冷媒配管の廃材化や新規の冷媒配管を施工するための既設構造物の取り壊し等をなくすることができる他、工事期間も短縮することができる。
【0029】
また、一般に、動作圧力が高い冷媒では、配管を流れる冷媒の密度が大きくなり、同じ径の冷媒配管を使用しても、動作圧力が低い冷媒よりも動作圧力が高い冷媒の方が、圧力損失が小さくなる傾向がある。図6は、配管長に対する能力の低下比率を動作圧力の異なる冷媒に関して比較した図である。この図から、動作圧力が低い冷媒(R407C)よりも動作圧力が高い冷媒(R410A)の方が、能力が高くなることが分かる。従って、既設の冷媒配管を流用して動作圧力が高い冷媒を使用する冷凍または空気調和装置に更新することにより、冷凍または空気調和装置の効率を向上させることができる。
【0030】
更に、このような冷凍または空気調和装置を施工する場合の施工フローを図7に示す。手順は、まず、ステップS1で既設ユニット内の旧冷媒を回収する。
次に、ステップS2で既設の熱源機と室内機を撤去する。その後、ステップS3で既設の冷媒配管を洗浄する。次に、ステップS4で新規の熱源機と室内機を据え付ける。続いてステップS5で熱源機と室内機を既設もしくは新規の冷媒配管で接続する。次にステップS6で冷媒配管内を真空引きし、冷媒チャージを行なう。その後、ステップS7で試運転を実施し、更新工事を終了する。
これによって、既設配管内に残留するコンタミを除去した状態で既設配管を流用することができるので、冷凍または空気調和装置におけるコンタミ物質による装置の劣化や膨張弁の詰まりを防止し、機器の信頼性を高めることができる。
【0031】
また、冷媒としてR410Aを使用する場合には、冷凍または空気調和装置の運転を行なう時の動作圧力が高いため、上述のように、圧力損失が小さくなる。
この結果、熱源機と室内機とを接続する冷媒配管での圧力損失が小さくなることで、ロスが削減され、冷凍または空気調和装置の効率を向上させることができる。この効果は、更新前の冷凍または空気調和装置に使用される冷媒の動作圧力が更新後の装置に使用される冷媒の動作圧力よりも低いものであれば、R407C、R134a、R12、R13等、どのような冷媒を使用した場合にも期待することができる。また、R22は塩素を含む冷媒であるが、R410Aに置き換えることでオゾン破壊係数が0の冷媒となるので、地球環境保護にも役立つものである。
【0032】
更に、更新後の冷媒をR32とすることによって、地球温暖化係数を小さくすることができるので、この場合にも地球環境保護に役立つものである。
また、流用する既設冷媒配管を装置の更新時に洗浄することにより、既設システムで発生し既設冷媒配管中に残留していた冷凍機油の劣化物等のコンタミを除去した状態で、新しいシステムを構成することができるので、冷凍または空気調和装置の信頼性を高めることができる。
【0033】
【発明の効果】
この発明に係る冷凍または空気調和装置によれば、既設の冷媒配管を用いて更新前の冷凍または空気調和装置の設計圧力よりも高い設計圧力を持つ冷凍または空気調和装置に更新するようにしているため、熱源機更新する場合における更新工事の工期を短縮し、更新コストを低減することができる。また、冷媒配管での圧力損失を低減することで冷凍または空気調和装置の効率を改善することができる。更に、R22のように塩素を含む冷媒をR410のようにオゾン破壊係数が0の冷媒と置き換えれば地球環境保護にも役立つことができ、さらに、更新後の冷媒をR32とすれば、地球温暖化係数を小さくすることができ、地球環境保護に役立つものである。
また、流用する既設冷媒配管を洗浄することにより、既設システムで発生し既設冷媒配管中に残留していた冷凍機油の劣化物等のコンタミを除去した状態で新しいシステムを構成することができるので、冷凍または空気調和装置の信頼性を高めることができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による冷凍または空気調和装置の構成を示す冷媒回路図である。
【図2】 実施の形態1における全冷房運転時の冷媒の流れを示す説明図である。
【図3】 実施の形態1における全暖房運転時の冷媒の流れを示す説明図である。
【図4】 実施の形態1における暖房主体運転時の冷媒の流れを示す説明図である。
【図5】 実施の形態1における冷房主体運転時の冷媒の流れを示す説明図である。
【図6】 配管長に対する冷媒の性能比率を示す説明図である。
【図7】 この発明における装置更新時の手順を示すフロー図である。
【符号の説明】
1 圧縮機、 2 四方切換弁、 3 熱源側熱交換器、
4 アキュムレータ、 5a 第1の逆止弁、 5b 第2の逆止弁、5c 第3の逆止弁、 5d 第4の逆止弁、 6 第1の接続配管、6b、6c 負荷側の第1の接続配管、 7 第2の接続配管、
7b、7c 負荷側の第2の接続配管、
11b、11c 負荷側熱交換器、 12b、12c 流量制御装置、
13 弁装置、 13a 第1の弁装置、 13b 第2の弁装置、14 気液分離器、 15 第1の熱交換部、
16 第2の流量制御装置、 17 第2の熱交換部、
18 バイパス配管、 19 第3の流量制御装置、 A 熱源機、
B、C 室内機、 D 分流コントローラ。

Claims (3)

  1. 圧縮機と、この圧縮機から吐出された冷媒の流路を切り換える四方切換弁と、この四方切換弁に接続された熱源側熱交換器とを有する熱源機、
    負荷側熱交換器と、これに接続された流量制御装置とを有する複数の室内機、
    上記熱源機使用前に、所定の旧冷媒の高圧側流路と低圧側流路との双方をそれぞれ構成していた第1の接続配管及び第2の接続配管、
    を備え、
    上記旧冷媒より動作圧力が高い新冷媒を使用すると共に、上記熱源機、上記新冷媒用の更新機である冷凍または空気調和装置において、
    上記熱源機と上記室内機とを上記第1の接続配管及び上記第2の接続配管を介して接続すると共に、上記負荷側熱交換器の一方の端部を、その端部毎に上記第1の接続配管及び上記第2の接続配管に切り換え可能に接続する弁装置を有する分流コントローラ
    を備え、
    上記第1の接続配管は、上記分流コントローラの機能による冷暖房同時運転時を含め、常時高圧冷媒の流路を構成し、
    上記第2の接続配管は、上記第1の接続配管よりも太い径の管からなり、上記分流コントローラの機能による冷暖房同時運転時を含め、常時低圧冷媒の流路を構成する
    ことを特徴とする冷凍または空気調和装置。
  2. 上記弁装置は、負荷側熱交換器の一方の端部に並列的に接続された2つの弁を有し、一方の弁は上記第1の接続配管に接続され、他方の弁は上記第2の接続配管に接続されることを特徴とする請求項1記載の冷凍または空気調和装置。
  3. 請求項1又は請求項2に記載の冷凍または空気調和装置において、上記熱源機更新時に、上記第1の接続配管及び上記第2の接続配管を洗浄することを特徴とする冷凍または空気調和装置の更新方法。
JP2003106523A 2003-04-10 2003-04-10 冷凍または空気調和装置及びその更新方法 Expired - Lifetime JP4393786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003106523A JP4393786B2 (ja) 2003-04-10 2003-04-10 冷凍または空気調和装置及びその更新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003106523A JP4393786B2 (ja) 2003-04-10 2003-04-10 冷凍または空気調和装置及びその更新方法

Publications (2)

Publication Number Publication Date
JP2004309088A JP2004309088A (ja) 2004-11-04
JP4393786B2 true JP4393786B2 (ja) 2010-01-06

Family

ID=33468689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003106523A Expired - Lifetime JP4393786B2 (ja) 2003-04-10 2003-04-10 冷凍または空気調和装置及びその更新方法

Country Status (1)

Country Link
JP (1) JP4393786B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298335A (ja) * 2007-05-30 2008-12-11 Fujitsu General Ltd 冷凍装置および同冷凍装置に用いられる冷媒追加充填キット並びに冷凍装置の冷媒追加充填方法
JP2009299910A (ja) * 2008-06-10 2009-12-24 Hitachi Appliances Inc 空気調和機
WO2010082325A1 (ja) 2009-01-15 2010-07-22 三菱電機株式会社 空気調和装置
JP5832636B2 (ja) * 2012-03-29 2015-12-16 三菱電機株式会社 分流コントローラー及びそれを備えた空気調和装置
JP6003635B2 (ja) 2012-12-28 2016-10-05 ダイキン工業株式会社 空気調和装置及び空気調和装置の施工方法

Also Published As

Publication number Publication date
JP2004309088A (ja) 2004-11-04

Similar Documents

Publication Publication Date Title
JP5611353B2 (ja) ヒートポンプ
JP4888500B2 (ja) 冷凍装置
JP5239824B2 (ja) 冷凍装置
WO2017006596A1 (ja) 冷凍サイクル装置
KR102373851B1 (ko) 공기조화기
CN109386909B (zh) 室外机、回油控制方法及空调器
JP6003635B2 (ja) 空気調和装置及び空気調和装置の施工方法
JP2007240025A (ja) 冷凍装置
WO2017138108A1 (ja) 空気調和装置
US11519640B2 (en) Air conditioner
WO2015063846A1 (ja) 空気調和装置
JP5125611B2 (ja) 冷凍装置
JP4274123B2 (ja) 冷凍装置
KR20100032200A (ko) 공기조화기
JP4393786B2 (ja) 冷凍または空気調和装置及びその更新方法
JP5186398B2 (ja) 空気調和機
JP6539560B2 (ja) 空気調和装置
JP2001317832A (ja) 空気調和装置
JP3719296B2 (ja) 冷凍サイクル装置
KR100526204B1 (ko) 공기조화장치
JP2010014343A (ja) 冷凍装置
JP2006125762A (ja) 室内機およびこれを備えた空気調和装置ならびにその運転方法
KR100702040B1 (ko) 냉난방 동시형 멀티 공기조화기
CN214039017U (zh) 空调装置和室外机
JP2006177619A (ja) 空気調和装置およびその運転方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

R150 Certificate of patent or registration of utility model

Ref document number: 4393786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term