JP4393343B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP4393343B2
JP4393343B2 JP2004308394A JP2004308394A JP4393343B2 JP 4393343 B2 JP4393343 B2 JP 4393343B2 JP 2004308394 A JP2004308394 A JP 2004308394A JP 2004308394 A JP2004308394 A JP 2004308394A JP 4393343 B2 JP4393343 B2 JP 4393343B2
Authority
JP
Japan
Prior art keywords
film
semiconductor device
bonding pad
hole
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004308394A
Other languages
English (en)
Other versions
JP2006120931A (ja
Inventor
浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004308394A priority Critical patent/JP4393343B2/ja
Publication of JP2006120931A publication Critical patent/JP2006120931A/ja
Application granted granted Critical
Publication of JP4393343B2 publication Critical patent/JP4393343B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体装置の製造方法に関する。
フリップチップ実装技術は、高密度で実装できる半導体チップ実装技術として知られており、さらに、BGAとCSPはその半導体チップを高密度にパッケージングする技術として現在の高密度実装における主流技術となっている。しかしながら、こうした実装技術は、一般的には半導体チップを回路配線基板上またはパッケージ基板上に平面的に二次元的に実装する方法であるため、半導体チップを高密度に実装する面積には限界があった。したがって、平面方向のみならず空間領域も実装領域として半導体チップを高密度実装する要求から、最近では3次元実装技術の開発が多く行なわれている。
3次元実装技術の例として、半導体チップのAlボンディングパッドに対応する位置に貫通孔を形成し、この内部に金属を充填して半導体チップ間を相互接続する方法が提案されている。(例えば、特許文献1参照)。この技術は、ボンディングパッド用のAl薄膜が露出される位置で、選択的にシリコン酸化膜エッチングを完了させなければならない。しかも、貫通孔を金属で完全に充填する必要があり、プロセスが煩雑であるという問題があった。したがって、ベアチップの半導体デバイスを3次元積層する場合、半導体素子上で再配列配線を形成し、ダイシングラインなどのボンディングパッド以外の部分に貫通孔を新たに形成して、この部分に金属を充填することが行なわれていた(例えば、特許文献2参照)。
しかしながら、この方法では、半導体素子のAlボンディングパッド部分以外の領域に新たに貫通孔を形成しなければならないため、貫通孔を形成する領域が律速となって、半導体装置としての実装密度を向上することには限界があった。
また、3次元半導体装置の寸法を小さくするため、積層される半導体素子を研削加工して薄型化することが一般的に行なわれている。しかしながら、研削加工により薄型化された半導体素子が、半導体素子上の再配列薄膜配線の熱膨張係数の相違に起因する応力歪によって、凹または凸に反るという現象が生じている。また、再配列配線を形成することにより、平面的に非対称なAlボンディングパッド部分における薄膜配線の端部に応力歪が集中して、その再配列配線が剥離するという問題が発生していた。
特開平6−291250号公報 超高密度3次元LSI積層実装技術研究開発”第5回電子SI研究報告会pp11−75,平成16年2月26日
本発明は上記問題を鑑みてなされたものであり、3次元積層により高密度実装が可能な接続信頼性の高い半導体装置製造方法を提供することを目的とする
本発明の一態様にかかる半導体装置の製造方法は、第1の絶縁膜を介して半導体素子およびAlボンディングパッドが設けられ、前記Alボンディングパッド以外の表面にパッシベーション膜が形成された半導体基板の前記Alボンディングパッドおよび前記第1の絶縁膜に第1の径を有する開口部を設ける工程と、
前記開口部が設けられたAlボンディングパッドのAlをマスクとして、前記半導体基板に第1の径を有する貫通孔を形成する工程と、
前記Alボンディングパッドの前記開口部の径を、前記第1の径より大きな第2の径に拡大する工程と、
前記貫通孔の内周面に、前記第1の絶縁膜と連続するように第2の絶縁膜を形成する工程と、
前記第2の絶縁膜を含む前記半導体基板の表面に、接着性金属膜を形成する工程と、
前記Alボンディングパッドを覆うことなく、前記接着性金属膜の上に電気めっきレジストを形成する工程と、
前記接着性金属膜をカソードメタルとして、前記接着性金属膜および前記電気めっきレジストで囲まれた領域を電気めっき法により金属で充填する工程と、
前記電気めっきレジストおよびその下の前記接着性金属膜を除去して、前記パッシベーション膜を露出する工程と、
前記第1の金属の上面および側面に、無電解めっき液を用いて第2の金属膜を形成する工程とを具備することを特徴とする。
本発明の一態様によれば、3次元積層により高密度実装が可能であるとともに、接続信頼性の高い半導体装置製造方法が提供される
図1乃至図13を参照して、本発明の実施形態にかかる半導体装置の製造方法を説明する。
まず、図1に示すように、絶縁膜としてのSiO2膜11が堆積され、その上に100μm四方のAlボンディングパッド12が形成された半導体ウェハー10を用意する。図示するように、この半導体ウェハー10においては、ボンディングパッド12部分を除いて、PSG(リン・シリカ・ガラス)とSiN(窒化シリコン)との積層構造からなるパッシベーション膜13が形成されている。
図には示されていないが、この半導体ウェハー10にはその表面領域部分に素子群が必要な回路を形成して配置されており、Alボンディングパッド12は、この素子の周囲に添って256個配置されている。なお、半導体素子とは、キャパシタなどを回路として構成するトランジスタ素子をさす。半導体ウェハーは、最終的には、ダイシングにより12mm四方の寸法を有する半導体チップに製造され、半導体チップ上のAlボンディングパッドは、チップのエッジ部分から内側1.5mmの位置に配置される。なお、半導体ウェハーは、BSGにより625μmあった初期ウェハー厚が100μmのウェハー厚に研削加工されている。
さらに必要に応じて、この半導体ウェハー10の裏面にSi34を2000Å厚で全面堆積させた後、例えばOFPR−800(東京応化社製)をスピンコート法によりウェハーの表面に全面塗布する。これを、露光現像によりパターンニングして、図2に示すようなレジスト14を形成する。レジストのパターンニングは、素子のボンディングパッド12が配置されている位置を中心にして、30μmφの開口部15が形成されるように行なう。
この半導体ウェハーをリン酸/酢酸/硝酸から構成される混酸に浸漬して、Alボンディングパッド12のレジストにより開口されている部分をエッチング除去する。さらに、フッ酸溶液中に浸漬して図3に示すようにAlボンディングパッド下のSiO2膜11をエッチング除去する。
アセトン/剥離10(東京応化社製)でレジスト14を除去した後、RIEを用いて半導体ウェハー10のAlボンディングパッド12部分に、図4に示すように貫通孔16を形成する。ここで形成される貫通孔16の径(第1の径)は、レジスト14の開口部15のサイズに相当する30μmである。なお、この貫通孔16は、例えばKOH 44g、 H2O 400mL、Isopropylalcohol 50mLの混合溶液85℃中に浸漬して、異方性エッチング技術により形成することもできる。Si34とSiとの選択性が高くないエッチングガスを用いる場合は、必要に応じてレジスト14は、RIEによるエッチングプロセス中において、半導体ウェハー表面に形成して剥離しない状態にしておくことも可能である。
次いで、例えばOFPR−800を半導体ウェハー主面にスピンコート法で塗布した後、50μmφの開口18が形成されるように露光現像を行ない、図5に示すようなレジスト17を形成する。この後、この半導体ウェハーをリン酸/酢酸/硝酸から構成される混酸に浸漬して、ボンディングパッドを構成するAl薄膜を、図6に示すように50μmφの開口寸法でエッチングする。こうして、Alボンディングパッドは、第1の径(30μmφ)より大きな第2の径(50μmφ)で、半導体ウェハー10に設けられた貫通孔16を包囲することになる。
その後、半導体ウェハー10に形成された貫通孔16の壁面に、CVD法により選択的に側壁絶縁膜としてのSiO2膜19を1000Åの膜厚で形成して、図7に示すように表面絶縁膜としてのSiO2膜11と連続して半導体ウェハー10の表面を覆う。この後、レジスト17をアセトン/剥離10(東京応化社製)により除去して、図8に示すようにパッシベーション膜13を露出した後、図9に示すようにスパッタ法によりCu/Ti膜20を10000Å/1000Åの膜厚で、貫通孔16を含む半導体ウェハー10の裏面を除く全面に堆積する。このCu/Ti膜20は、後の工程における電気めっきプロセスにおけるカソード金属としての役割と、このCu/Ti膜上に形成される充填金属との接着性を高める作用を有する接着性金属膜となる。
次いで、電気めっき法で貫通孔16部分に充填金属を配置させるため、30μmφ貫通孔の形成された100μm四方のボンディングパッドに、図10に示すように、膜厚50μmのめっきレジスト膜21を形成する。具体的には、まず、厚膜レジストAZ4903(ヘキストジャパン社製)をスピンコート法により50μmの膜厚で形成する。さらに、露光現像を行ない、30μmφの開口寸法、および50μmφのボンディングパッド除去部分よりも外形寸法の大きい、ボンディングパッドと同一寸法の100μmの開口部を形成する。露光は、レジスト厚みが厚くても充分な量のエネルギーを照射して、現像はAZ400Kデベロッパー(ヘキストジャパン社製)で行なうことが好ましい。
めっきレジスト膜21の開口部および貫通孔16内部には、金属を充填する。本実施形態では充填金属としてCuを選択し、以下に示す組成のめっき液を用いて、図11に示すように貫通孔16内部とボンディングパッド部分を充填するCu膜22を形成した。詳細には、下記の混合溶液からなる硫酸銅めっき液に浸漬して、浴温度25℃でCu/Tiを陰極として、リン含有(0.03wt%〜0.08wt%)高純度銅板を陽極として電流密度1〜5(A/dm2)で緩やかに撹拌しながらCu膜を15μm電気めっきする。したがって、ボンディングパッド部分には貫通孔部分に充填するCuと同析出量の、15μm厚のCuが形成されることになる。なお、このCu膜は必ずしも15μm厚さに電気めっきする必要はなく、貫通孔16が充填される膜厚であれば問題ない。
硫酸銅5水和物 15g/L
硫酸 225g/L
塩酸 10ppm
チオキサンテート−S−プロパンスルホン酸
(またはチオキサンテートスルホン酸) 20ppm
ポリエチレングリコール(分子量:400,000) 40ppm
ポリエチレンイミン(分子量:600)と塩化ベンジルとの反応生成物
2ppm
または
硫酸銅5水和物 225g/L
硫酸 60g/L
塩酸 30ppm
ジチオカルバメート−S−プロパンスルホン酸 30ppm
ポリプロピレングリコール(分子量:700) 10ppm
ポリエチレンイミンと臭化アリルまたは
ジメチル硫酸との反応生成物 0.3ppm。
なお、貫通孔16の内部に均一に電気めっきを行なうには、差圧式電気めっき装置を使用した。これは、半導体ウェハーを隔壁として電気めっき液に圧力差を発生させるもので、その圧力差により貫通孔16内部の電気めっき液が循環される特徴を有している。その結果、貫通孔16内部におけるイオン濃度の低下した電気めっき液が、貫通孔外部のイオン濃度の高い電気めっき液と十分に交換されて、一般的には困難である貫通孔内部における均一なめっきが実現できるものである。
次いで、めっきレジスト膜21をアセトンで除去して、図12に示すようにCu/Ti膜20と露出した。さらに、クエン酸/過酸化水素水から構成される溶液に半導体ウェハーを浸漬してCu膜をエッチング除去した後、連続して、エチレンジアミン4酢酸/アンモニア/過酸化水素水/純水から構成される混合溶液に半導体ウェハーを浸漬してTi膜をエッチング除去することで、図13に示すような、充填金属としてのCu膜22と接する領域のみにCu/Ti膜20を残置した。
さらに必要に応じて、以下のような組成の無電解めっき液を用いて、Cu膜22の表面にNi薄膜23を形成することも可能である。
(無電解ニッケルめっき液の例)
硫酸ニッケル 20〜30g/L
次亜リン酸ナトリウム 25〜35g/L
グリコール酸 25〜35g/L
酢酸ナトリウム 15〜25g/L
安定剤(チオ尿素) 3〜5ppm
鉛 1〜2mL/L
(無電解ニッケルめっき液の例)
酢酸ニッケル 30g/L
ジメチルアミノボラン 2.5g/L
乳酸 25g/L
クエン酸ナトリウム 25g/L
チオグリコール酸 1.5g/L。
このように、Cu膜22の上にNiを配置した場合には、半導体チップを積層する場合に必要となるバンプ電極と、充填金属のCu膜22との間に発生する金属間化合物の生成を抑制することが可能になる。その結果、ボンディングパッド部分における充填金属の信頼性が著しく高められる。
また、めっきレジスト膜21を除去する前に、次のような操作を行なうことで、半導体チップ上にバンプ電極を配置することも可能である。具体的には、ボンディングパッドに対応する部分のめっきレジスト膜21が開口されている半導体ウェハーを、下記に示すPb/Snめっき液に浸漬する。詳細には、カソードメタルとして形成したCu/Tiを陰極として、さらに、以下の電気めっき液に組成に対応する、例えば高純度共晶はんだ板を陽極としてめっきを行なう。電流密度は1〜4(A/dm2)として、浴温度25℃で緩やかに攪拌しつつ、共晶組成にほぼ等しいPb/Snはんだ合金をCu/Ti上に析出させる。この際の膜厚は、50μm程度とすることができ、はんだ組成はPb側またはSn側にわずかに移行していてもよい。
(スルホン酸はんだめっき液の組成)
錫イオン(Sn2+) 12vol%
鉛イオン(Pb2+) 30vol%
脂肪族スルホン酸 41vol%
ノニオン系界面活性剤 5vol%
カチオン系界面活性剤 5vol%
イソプロピルアルコール 7vol%。
上述したようにパッド部分が完成した後、半導体ウェハーをダイシングして12mm×12mmの半導体チップを得た。この半導体チップは半導体装置とも称され、100μm四方の素子と、この周囲に配置された256個のAlボンディングパッドとを有し、Alボンディングパッド中央部分には、上述したような手法によって金属が充填されている。この充填金属とはんだボールとを用いて複数の半導体チップを積層し、高密度に3次元実装を行なうことができる。
したがって、従来のように貫通孔を形成するための再配列配線と貫通孔を形成するための領域を、半導体素子とボンディングパッド周辺領域に形成する必要はない。その結果、積層される半導体チップの小型化が可能になり、結果的に3次元半導体装置としての高密度化が可能になる。さらに、本発明の実施形態にかかる構成により、ボンディングパッド部分には、再配列配線をボンディングパッド上に配置することに起因する応力歪を防止するように平均的に接着性金属が形成されている。このようにボンディングパッド部分に平均的に金属が積層されることにより、これまで課題となっていた、ボンディングパッド部分における薄膜金属の応力破壊を効果的に防止することができる。また、Alの溶解を防止するといった効果も有する。
ここで、図17を参照して従来の3次元積層半導体装置における応力破壊の問題を説明する。図示するように、半導体装置(半導体チップ)31を積層して3次元半導体装置30を構成する場合、半導体装置31の裏面から貫通孔36を開口して、Alボンディングパッド34との接続を行なっていた。具体的には、ウェハー上でパッシベーション膜32上に再配列配線33を形成して、Alボンディングパッド34以外の部分に貫通孔36を形成していた。このため、この貫通孔36を配置する領域の確保により、半導体装置31の実装密度の向上には限界があった。さらに、半導体装置30の積層寸法を小さくするために3次元積層厚を薄くすると、熱膨張係数の相違に起因する反りにより再配列配線33に応力ひずみが集中して、Alボンディングパッド34の端部で応力剥離35が生じるという問題があった。
本発明の実施形態においては、ボンディングパッド部分に金属を充填するにあたって、まず、ボンディングパッドのAlをエッチングマスクとして、半導体ウェハーに貫通孔を形成する。その後、パッシベーション開口よりも小さなSiO2露出領域を形成して、ボンディングパッド部分に残したAl膜をバリアメタルで完全に被覆している。このため、貫通孔の形成に伴なうAlボンディングパッド領域におけるAl溶解に起因した配線の断線を、防止することができる。したがって、接続信頼性の高い金属充填された貫通孔を、ボンディングパッド部分に直接形成することが可能となった。
こうして製造された半導体装置は、以下のように積層して3次元積層半導体装置を作製することができる。
まず、積層される2層目となる半導体装置の主面に、半導体装置接続用のバンプ電極を配置する。次いで、ハーフミラーを有して位置合わせを行なうフリップチップボンダーを用いて、1層目の半導体装置裏面の貫通孔と、2層目の半導体装置の主面上のバンプ電極が形成された部分の位置合わせを行なう。なお、1層目の半導体装置は加熱機構を有するコレットに保持され、2層目の半導体装置は第1層目の半導体装置と共に、350℃の窒素雰囲気中で予備加熱されている。
さらに、1層目の半導体装置裏面の貫通孔露出部分と2層目の半導体装置主面のバンプ電極とが接触された状態で、コレットをさらに下方移動して、圧力30kg/mm2を加え、貫通孔を充填する金属露出部分と、バンプ電極とを機械的な圧力が加わった状態で接触させる。この状態で温度を370℃まで上昇させてはんだを溶融させ、1層目の半導体装置の貫通孔金属と2層目の半導体装置のバンプ電極とを接続する。
こうした工程を少なくとも複数回繰り返すことにより、3次元積層された半導体装置が作製される。得られた3次元半導体装置の一例の断面図を、図14に示す。図示する3次元半導体装置25においては、半導体装置が3層に積層されており、各半導体装置の構造の詳細は図13に示したものと同様である。それぞれの半導体装置は、ボンディングパッド部に設けた貫通孔に充填された金属22と、バンプ電極24とによって接続されているため、高い接続信頼性を確保することができている。
また、図14には明確に示していないが、最下層の半導体装置は、裏面に設けられたボール電極により、BGA(Ball Grid Array)として回路配線基板に実装されている。このボール電極の配置には、例えば、はんだペースト印刷法、はんだボール配置法などを採用することができる。このボール電極は、回路配線基板との電気的・機械的な接続を行なうため、最下層の半導体装置に配置するボール電極の代替接続方法として、最上層の半導体装置上にバンプ電極として配置して、このバンプ電極を用いて回路配線基板と接続する電極とすることも可能である。なお、この回路配線基板としては、任意のものを用いることができる。例えば、米国特許4811082号公報に記載されている基板、あるいは、ガラスエポキシ基板上に絶縁層と導体層を相互にビルドアップさせた方式のプリント基板SLC(Surface Laminar Circuit)基板などが挙げられる。さらに、例えばポリイミド樹脂を基板主材として表面に銅配線が形成されているフレキシブル基板を用いることも可能である。
さらに必要に応じて、積層された半導体装置の隙間部分に封止樹脂を配置してもよい。この場合には、積層される半導体装置の熱膨張係数差に起因するバンプ電極の変形による応力歪を緩和することができるため、半導体装置の信頼性を向上させることが可能となる。封止に用いる樹脂は特に限定されるものではないが、例えば、ビスフェノール系エポキシとイミダゾール効果触媒、酸無水物硬化剤と球状の石英フィラを重量比で45wt%含有するエポキシ樹脂などを用いることができる。
また、積層用樹脂を配置して熱硬化させることによって、3次元半導体装置を構成する半導体チップ間の接続信頼性を高めることもできる。積層用絶縁樹脂としては、特に限定されず、例えば、クレゾールノボラックタイプのエポキシ樹脂(ECON195−XL;住友化学社製)100重量部、硬化剤としてのフェノール樹脂54重量部、充填剤としての熔融シリカ100重量部、触媒としてのベンジルジメチルアミン0.5重量部、その他添加剤としてカーボンブラック3重量部、シランカップリング剤3重量部を粉砕し、混合、溶融したエポキシ樹脂溶融体、または、ビスフェノール系エポキシとイミダゾール硬化触媒、酸無水物硬化剤と球状の石英フィラを重量比で45wt%含有するエポキシ樹脂等を用いることができ、その材料は限定されるものではない。
得られた3次元半導体装置について温度サイクル試験を行い、その接続信頼性を評価した。温度サイクル条件は(−55℃(30min)〜25℃(5min)〜125℃(30min)〜25℃(5min))で行ない、256ピンの中で1箇所でも接続がオープンになった場合を不良として評価した。
いずれの場合も、1000個のサンプルについて温度サイクル試験を行なった。得られた結果を図15のグラフに示す。図15のグラフ中、曲線aおよびbは、本発明の実施形態にかかる方法により製造された3次元半導体装置についての結果であり、特に曲線bは半導体装置の隙間部分に封止樹脂を配置した半導体装置についての結果である。また、曲線cは、従来の手法により3次元化された半導体装置についての結果であり、具体的には、半導体素子のボンディングパッド裏面から貫通孔を形成した構造を有している。さらに、曲線dは、従来の手法により3次元積層された半導体装置において、半導体装置の隙間部分に封止樹脂を配置した構造を有する3次元半導体装置についての結果である。
曲線cに示されるように、従来構造の3次元半導体装置は、1500サイクルで接続不良が発生して、2000サイクルで接続不良が100%になった。この接続不良は、主として半導体装置のボンディングパッドと半導体装置裏面から貫通孔に充填される金属との接続不良と、半導体装置間を相互接続するバンプ電極の接続不良に起因するものであった。
曲線dに示されるように、封止樹脂を配置した従来の3次元半導体装置は、2500サイクルまでは接続不良が発生せず、接続信頼性は幾分向上したものの、3000サイクルで50%が不良となった。この接続不良は、半導体素子上における再配列薄膜配線が応力歪により破壊されたことに起因するものであった。
これに対し、本発明の実施形態にかかる方法により製造された3次元半導体装置では、曲線aに示されるように3000サイクルまでは不良が発生せず、接続信頼性が高められた。さらに、封止樹脂を配置した場合には、曲線bに示されるように、接続不良の発生は3500サイクルまで発生せず、その接続信頼性が極めて向上することが確認された。
図16には、3次元半導体装置における貫通孔の接続率の評価結果を示す。貫通孔の接続率は、半導体装置主面上のボンディングパッドと半導体装置裏面から貫通孔に充填される金属との接続率を、温度サイクル試験などの接続信頼性試験を行わない初期状態で評価した。曲線eは本発明の実施形態にかかる方法により製造された3次元半導体装置についての結果を表わし、曲線fは、従来の3次元半導体装置についての結果である。従来の3次元半導体装置は、半導体装置のボンディングパッドに対応する位置の裏面からエッチングによりウェハーに貫通孔を形成し、この貫通孔に金属充填することにより製造したものである。
曲線fに示されるように、従来の3次元半導体装置では、ボンディングパッド数が増加するにしたがって、貫通孔の接続率も低下している。この接続率の低下は、裏面からのエッチングをアルミニウム薄膜部分で正確に完了できないことに起因するアルミニウム薄膜溶解と、凹部分の底部に形成されるアルミニウム薄膜部分まで電気めっき法で金属を完全充填できないことに起因する充填金属の接続不良であった。
一方、本発明の実施形態にかかる方法により製造された3次元半導体装置では、曲線eに示されるように、ボンディングパッドが1000ピンを超える超多ピンの半導体素子に対しても接続率100%を実現できており、極めて接続信頼性が向上できていることが確認された。
以上の結果から、本発明の実施形態にかかる方法により製造された半導体装置の接続信頼性は、これまでの半導体装置と比較して極めて向上できることが明らかになり、有効性の高いものであることが確認された。
なお、本発明は上述した具体例に限定されるものではなく、その要旨を逸脱しない範囲で種々に変更することが可能である。例えば、半導体素子は、その外形寸法、ボンディングパッド形状などに関して特に限定されるものではなく、当然ながら貫通孔寸法も限定されるものではない。さらに、積層化される半導体装置数についても特に限定されるものではなく、厚み方向に複数の半導体装置が積層されている構造であればよい。当然ながら、半導体装置間に配置する封止樹脂、回路配線基板と接続するバンプ電極についても限定されるものではない。
本発明に係る半導体装置の製造方法の工程を表わす工程面図 図1に続く工程を表わす断面図。 図2に続く工程を表わす断面図。 図3に続く工程を表わす断面図。 図4に続く工程を表わす断面図。 図5に続く工程を表わす断面図。 図6に続く工程を表わす断面図。 図7に続く工程を表わす断面図。 図8に続く工程を表わす断面図。 図9に続く工程を表わす断面図。 図10に続く工程を表わす断面図。 図11に続く工程を表わす断面図。 図12に続く工程を表わす断面図。 本発明の実施形態にかかる方法により製造された3次元半導体装置の断面図。 温度サイクル数と累積不良率との関係を表わすグラフ図。 3次元半導体装置における貫通孔接続率の評価結果を示すグラフ図。 従来の3次元半導体装置の断面図。
符号の説明
10…半導体ウェハー; 11…SiO2膜; 12…Alボンディングパッド
13…パッシベーション膜; 14…レジスト; 15…開口部
16…貫通孔; 17…レジスト; 18…開口; 19…SiO2
20…Cu/Ti膜; 21…めっきレジスト膜; 22…Cuめっき膜
24…バンプ電極; 25…3次元半導体装置; 30…従来の3次元半導体装置
31…半導体装置; 32…パッシベーション膜; 33…再配列配線
34…ボンディングパッド; 35…応力剥離。

Claims (1)

  1. 第1の絶縁膜を介して半導体素子およびAlボンディングパッドが設けられ、前記Alボンディングパッド以外の表面にパッシベーション膜が形成された半導体基板の前記Alボンディングパッドおよび前記第1の絶縁膜に第1の径を有する開口部を設ける工程と、
    前記開口部が設けられたAlボンディングパッドのAlをマスクとして、前記半導体基板に第1の径を有する貫通孔を形成する工程と、
    前記Alボンディングパッドの前記開口部の径を、前記第1の径より大きな第2の径に拡大する工程と、
    前記貫通孔の内周面に、前記第1の絶縁膜と連続するように第2の絶縁膜を形成する工程と、
    前記第2の絶縁膜を含む前記半導体基板の表面に、接着性金属膜を形成する工程と、
    前記Alボンディングパッドを覆うことなく、前記接着性金属膜の上に電気めっきレジストを形成する工程と、
    前記接着性金属膜をカソードメタルとして、前記接着性金属膜および前記電気めっきレジストで囲まれた領域を電気めっき法により第1の金属で充填する工程と、
    前記電気めっきレジストおよびその下の前記接着性金属膜を除去して、前記パッシベーション膜を露出する工程と、
    前記第1の金属の上面および側面に、無電解めっき液を用いて第2の金属膜を形成する工程と
    を具備することを特徴とする半導体装置の製造方法
JP2004308394A 2004-10-22 2004-10-22 半導体装置の製造方法 Active JP4393343B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308394A JP4393343B2 (ja) 2004-10-22 2004-10-22 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308394A JP4393343B2 (ja) 2004-10-22 2004-10-22 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2006120931A JP2006120931A (ja) 2006-05-11
JP4393343B2 true JP4393343B2 (ja) 2010-01-06

Family

ID=36538512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308394A Active JP4393343B2 (ja) 2004-10-22 2004-10-22 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4393343B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
KR100889553B1 (ko) * 2007-07-23 2009-03-23 주식회사 동부하이텍 시스템 인 패키지 및 그 제조 방법
KR101002680B1 (ko) 2008-10-21 2010-12-21 삼성전기주식회사 반도체 패키지 및 그 제조 방법
JP5794147B2 (ja) 2009-12-15 2015-10-14 三菱瓦斯化学株式会社 エッチング液及びこれを用いた半導体装置の製造方法
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US8847380B2 (en) 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US8587126B2 (en) 2010-12-02 2013-11-19 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US8736066B2 (en) 2010-12-02 2014-05-27 Tessera, Inc. Stacked microelectronic assemby with TSVS formed in stages and carrier above chip

Also Published As

Publication number Publication date
JP2006120931A (ja) 2006-05-11

Similar Documents

Publication Publication Date Title
JP4568337B2 (ja) 集積半導体装置
US6808962B2 (en) Semiconductor device and method for fabricating the semiconductor device
JP3548082B2 (ja) 半導体装置及びその製造方法
US11211261B2 (en) Package structures and methods for forming the same
JP4504434B2 (ja) 集積半導体装置
JP4522574B2 (ja) 半導体装置の作製方法
JP2004055628A (ja) ウエハレベルの半導体装置及びその作製方法
JP2000228420A (ja) 半導体装置及びその製造方法
KR100622514B1 (ko) 회로 장치의 제조 방법
JP2010272737A (ja) 半導体装置の製造方法
JP2009033153A (ja) 半導体素子パッケージ用の相互接続構造およびその方法
JP3285919B2 (ja) 半導体装置
JP4393343B2 (ja) 半導体装置の製造方法
JP4352294B2 (ja) 半導体装置の製造方法
JP2001345336A (ja) 半導体装置の作製方法と、それに用いられる配線部材
JP2004363573A (ja) 半導体チップ実装体およびその製造方法
JP2013093499A (ja) 接続基板、半導体装置、接続基板の製造方法
JP6319013B2 (ja) 電子装置及び電子装置の製造方法
JP5171726B2 (ja) 半導体装置
JP5277788B2 (ja) 半導体装置およびその製造方法
US11942434B2 (en) Method of manufacturing a semiconductor package
JP3544902B2 (ja) 半導体装置およびその製造方法
JP4638614B2 (ja) 半導体装置の作製方法
JP7347440B2 (ja) 半導体パッケージ用配線基板の製造方法
CN114171467A (zh) 一种半导体封装结构

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091013

R151 Written notification of patent or utility model registration

Ref document number: 4393343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121023

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131023

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350