JP4376592B2 - 形状測定装置 - Google Patents

形状測定装置 Download PDF

Info

Publication number
JP4376592B2
JP4376592B2 JP2003373043A JP2003373043A JP4376592B2 JP 4376592 B2 JP4376592 B2 JP 4376592B2 JP 2003373043 A JP2003373043 A JP 2003373043A JP 2003373043 A JP2003373043 A JP 2003373043A JP 4376592 B2 JP4376592 B2 JP 4376592B2
Authority
JP
Japan
Prior art keywords
permanent magnet
contact probe
probe
holder
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003373043A
Other languages
English (en)
Other versions
JP2005134332A (ja
Inventor
浩史 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003373043A priority Critical patent/JP4376592B2/ja
Publication of JP2005134332A publication Critical patent/JP2005134332A/ja
Application granted granted Critical
Publication of JP4376592B2 publication Critical patent/JP4376592B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、レンズ等の光学部品の凹凸形状を高精度に測定するためのサブμmオーダの測定精度を有する、接触式プローブを用いた形状測定装置に関するものである。
従来、被測定物面の凹凸形状を高精度に測定することができる装置に接触式プローブがいくつか提案されている(例えば、特許文献1ないし3参照)。
従来、接触式プローブを用いた形状測定装置による測定は、接触式プローブ先端に固定された先端球によって、被測定面上を走査させることで行われる。接触式プローブは被測定面に押し付けられると、被測定面から受ける反力と、ばねによる力とが釣り合う位置に変位し、それに伴って接触式プローブの変位量を測定する変位計の出力が変化する。
移動ステージを駆動して変位計の出力が常に一定になるように接触式プローブを支持するホルダの位置を制御することにより、接触荷重が一定に保たれる。このようにして接触荷重を一定に保った状態で被測定面を走査し、走査中の移動ステージの動作軌跡と接触式プローブの変位量を測定することにより、被測定面の形状が測定される。
WO00/52419 特開平9−96518号公報 特開2000−298013公報
しかしながら、特許文献2に開示された技術によれば、真球が接触式プローブの一端に固定されている。接触式プローブは、給気孔から給気される静圧空気案内で非接触支持されることにより、半径方向の運動は拘束され、上下方向には摺動抵抗なく運動する。
接触式プローブ先端に固定された先端球が被測定面に押し付けられると、接触式プローブは、被測定面から受ける反力と、引張りばねによる力とが釣り合う位置に変位する。
接触式プローブに対して1軸方向に作用する粘性流体を用いた振動減衰機構を備えている。また、プローブの変位量を測定する変位計が備えられており、接触式プローブは保持したハウジングとともに移動ステージに搭載されている。
ここで粘性流体を用いることで、第1に先端球を被測定面に押しつけようとするさいの振動を抑える作用があり、これにより、被測定面との接触状態を誤検出する可能性が低くなり、被測定面に先端球が激しく衝突するような事故を未然に防ぐことができる。また、第2に走査中の振動を抑える作用があり、被測定面と先端球との間のスティックスリップに起因する接触式プローブの振動を抑えられる。
又、特許文献1に開示の技術では、被測定物と接触するプローブを被測定物へ向かい移動可能に支持し、かつ、これを被測定物に向けて付勢するプローブヘッドとプローブヘッドの変位を非接触で高精度に計測するレーザ干渉変位計とを備えている。
プローブヘッドは、中間部に段差を持つプローブシャフトと、段差の前後を支持する空気軸受とを備えている。空気軸受により半径方向の剛性を高く、摺動抵抗を小さく案内している。段差部に供給する別の圧縮空気により段差部の面積差で被測定物へ向かう付勢力を所定範囲の微小荷重に一定に保持している。
これにより、プローブの軸受剛性を低下させることなく測定圧を微小荷重に一定に調整することができ、かつ測定圧を自由に変化させることができ、0.1μm程度のサブミクロン精度を得ている。
しかしながら、特許文献2に開示された技術では、次のような不具合がある。すなわち、プローブの自重をキャンセルするために、ハウジングに引っ張りばねなどを設けている。
このため、プローブシャフトの上下方向の動きに対し、復元力を有するばねでプローブシャフトの自重を支える構成の場合、被測定面を走査するプローブシャフトの位置によって、復元力が変化してしまう。
それによって、正確にプローブシャフトの自重と釣り合う位置にプローブシャフトを移動させることが難しく、プローブシャフトが振動し易くなり、形状測定を高精度に行えなくなるという不具合がある。
粘性流体による振動減衰効果は大きいが、その反面、装置内に流体を包含するものであるがゆえにプローブ周辺部を汚染しやすいという欠点がある。とくに静圧空気案内を用いる場合には、空隙に流体が入り込むとプローブのスムーズな動きを妨げるなどの不具合を生じる。
プローブシャフトは、1軸方向に移動可能となるように空気軸受を介してハウジングに保持される構成となっているが、自重をキャンセルするための引っ張りばね及び振動減衰機構はプローブ上端で作用するようになっているため、プローブシャフトに対し、ラテラル方向に変位する力が作用するため、プローブシャフトが傾いて測定してしまう恐れが生じるという不具合がある。
また、特許文献1に開示された技術では、次のような不具合がある。すなわち、プローブヘッドの自重をキャンセルするために、プローブシャフトの途中に切欠きを設け、そこに加圧気体を供給することで、自重の作用する方向と反対方向に作用する力を発生させている。
しかし、この方法では、プローブシャフトの位置によっては、切り欠き部で発生させるために設けた空気たまり部の容量が変化するために、空気の圧縮性により、自重をキャンセルするための力を発生するまでの応答性が悪い。このため、瞬間的にプローブの移動量が大きい場合、被測定面に作用する押付け力が変動し、最悪の場合、被測定面を傷つけてしまうという不具合がある。
プローブシャフトの自重補償に用いる力も被測定面に押し付けるための付勢力のいずれにも、加圧気体を用いており、プローブシャフトの一軸方向の振動を減衰させる機構を備えていない。
このため、一度、被測定面の形状に起因するような振動がプローブシャフトに生じた場合、これを減衰することができないため、形状測定は不安定なものとなり、高精度な測定を行えなくなるという不具合がある。
プローブシャフトを空気軸受により支持しているが、プローブシャフト中央部に上下対称に切欠きがあるため、プローブシャフトの同軸がでておらず、組み付けしにくいという不具合がある。
そこで、本発明の目的は、上述した実情を考慮してなされたもので、被測定面に過大な接触荷重が掛かるのを防ぎ、被測定面に傷をつけることなく、かつ、被測定面を走査中に、被測定面と先端球との間のスティックスリップに起因して生じるプローブの振動を減衰させることで、被測定面への追従性能を高め、サブμmオーダの測定精度を有する接触式プローブを用いる形状測定装置を提供することにある。
前記の課題を解決するために、請求項1に記載の発明は、接触式プローブと、この接触式プローブを一方向に移動可能に保持するホルダと、このホルダを取り付け三次元的に移動可能な可動部材と、この可動部材に取り付け、前記接触式プローブの変位量を測定する変位計とを備え、前記接触式プローブを被測定面に接触させながら走査することによって、そのときの位置を測定して被測定物の形状を測定する形状測定装置において、前記接触式プローブが被測定面に押し付ける測定圧を一定に保ちながら走査させるにあたり、前記接触式プローブの外周に第1の永久磁石を設け、前記ホルダの内周に第2の永久磁石を設け、復元力を得るために、前記接触式プローブと前記ホルダの相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として用い、このばね力は、その大きさが前記接触式プローブ自重から被測定面に押し付ける押し付け力を差し引いた力だけ発生させるようにし、第1の永久磁石と第2の永久磁石の間に導体板を前記ホルダと内接しないように非導電体を介して配置し、前記磁気吸引力をばね力として用い、前記接触式プローブと前記ホルダの相対的な移動によって、前記導体板を横切る磁束の変化に伴う渦電流を発生させ、これが磁束と作用することにより運動方向と逆方向に働く抵抗力を減衰要素として作用させたことを特徴とする。
求項2に記載の発明は、請求項1記載の形状測定装置において、前記接触式プローブが空気軸受を介して、前記ホルダに支持されていることを特徴とする。
請求項3に記載の発明は、請求項2記載の形状測定装置において、前記空気軸受が上下に分割して前記ホルダに支持されていることを特徴とする。
請求項4に記載の発明は、請求項2または3項記載の形状測定装置において、前記空気軸受が、第1の永久磁石と第2の永久磁石を挟んだ両側に設けられることを特徴とする。
求項5に記載の発明は、請求項1ないし4のいずれか1項記載の形状測定装置において、前記接触式プローブが複数の材質の異なる部材から構成される組み立て構造になっていることを特徴とする。
請求項6に記載の発明は、請求項1ないし5のいずれか1項記載の形状測定装置において、第1の永久磁石、第2の永久磁石、および前記導体板のそれぞれの形状を矩形にしたことを特徴とする。
求項7に記載の発明は、請求項1ないし6のいずれか1項記載の形状測定装置において、第1の永久磁石を軸方向に第1の非磁性体を挟んで複数設け、また、第2の永久磁石を軸方向に第2の非磁性体を挟んで複数設けたことを特徴とする。
求項8に記載の発明は、請求項1ないし7のいずれか1項記載の形状測定装置において、第1の永久磁石および第2の永久磁石の代わりに、前記接触式プローブ外周および前記ホルダ内周自体に、直接、着磁したことを特徴とする。
求項9に記載の発明は、請求項1ないし7のいずれか1項記載の形状測定装置において、第2の永久磁石の位置を調整することができる微調整機構を設け、前記接触式プローブ内周と対向する永久磁石とのギャップの大きさを変えることで、発生する磁気吸引力を調整可能とすることを特徴とする。
本発明によれば、接触式プローブとホルダの相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として用い、接触式プローブの可動範囲をばね力が略一定となる範囲で使用し、このばね力は、その大きさが接触式プローブ自重から被測定面に押し付ける押し付け力を差し引いた力だけ発生させる。
これにより、被測定物に作用する押し付け力を、所定の可動範囲内で略一定にすることができるので、ワークを傷つけることがなく、また、接触式プローブ位置は、所定の可動範囲内の中央に戻るように制御されるが、多少、ずれた位置にあっても良いので、高速な位置決めをする必要がないので、接触式プローブが被測定物の形状によって、高速に位置決め制御しようとして振動的になるような状態にはならなくてすむ。
以下、図面を参照して、本発明の実施形態を詳細に説明する。図1は本発明の接触式プローブを用いた形状測定装置の第1の実施の形態を示す部分断面図である。
図1において、形状測定装置の接触式プローブ1は、ホルダ2に設けたガイド3、4によって、一方向にのみ移動可能に保持されている。本実施の形態の場合は、上下方向に接触式プローブ1を移動可能としている。
接触式プローブ1の外周には第1の永久磁石5が配置され、ホルダ2の内周には第2の永久磁石6が配置されている。復元力を得るために、第1の永久磁石5と第2の永久磁石6は互いに異磁極となるようにして、一定の間隔を空けて対向して配置されている。
このことにより、接触式プローブ1とホルダ2の相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として作用させている。また、接触式プローブ1の先端、すなわち被測定面と接触する部分には真球の接触部材7が取り付けられている。
また、接触式プローブ1の上端には端板8が一体的に取り付けられており、接触式プローブ1が落下しないようにストッパの役割も負っている。端板8には、反射ミラー9が取り付けられている。
本発明による形状測定装置は接触式プローブ1と、この接触式プローブ1を一方向に移動可能に保持するホルダ2と、このホルダ2を取り付け三次元的に移動可能な可動部材11(図3参照)と、この可動部材11に取り付け、前記接触式プローブの変位量を測定する変位計12(図3参照)とを備えている。
その場合に、前記接触式プローブ1を被測定面10(図3参照)に接触させながら走査することによって、そのときの位置を測定して被測定物10の形状を測定する。前記接触式プローブ1が被測定面10に押し付ける測定圧を一定に保ちながら走査させるにあたり、前記接触式プローブ1の外周に第1の永久磁石5を設け、前記ホルダ2の内周に第2の永久磁石6を設けている。
復元力を得るために、前記第1の永久磁石5と第2の永久磁石6が互いに異磁極となるようにして、一定の間隔を空けて対向して配置することによって、前記接触式プローブ1と前記ホルダ2の相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として用いる。
前記接触式プローブ1の可動範囲を前記ばね力が略一定となる範囲で使用し、このばね力は、その大きさが前記接触式プローブ自重から被測定面10に押し付ける押し付力を差し引いた力だけ発生させるようにしている。
また、復元力を得るために、前記第1の永久磁石5と前記第2の永久磁石6が互いに異磁極となるようにして、一定の間隔を空けて対向して配置し、この間に導体板13を前記ホルダ2と内接しないように非導電体14を介して配置することで、前記接触式プローブ1と前記ホルダ2の相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として用いる。
前記接触式プローブ1と前記ホルダ2の相対的な移動によって、導体板13を横切る磁束の変化に伴う渦電流を発生させ、これが磁束と作用することにより運動方向と逆方向に働く抵抗力を減衰要素として作用させる。
図2は本発明による磁気吸引力の発生力を中立点からの位置に応じて示す図である。図2において、磁気吸引力は、第1の永久磁石5と第2の永久磁石6の位置が完全に対抗している場合を磁力の中立点とし、そこから相対的にずれた量によって、生じる大きさが異なることがわかる。
また、この大きさは、ある範囲で略一定の大きさが生じるように設計することができる。本実施の形態の場合、接触式プローブ1の自重が3gfであり、押し付け力が0.1gfとすると、ばね力の大きさとして、略一定の範囲で2.9gfの力が生じるように設計している。
そこで、図1に示す本実施の形態の場合、意図的に、ホルダ2に対して、接触式プローブ1が磁力の中立点より下側になるようにして、測定を行うようにしている。このことにより、接触式プローブ1に作用する磁気吸引力は、必ず、上側に、つまり、接触式プローブ1を押し上げる方向に力が作用することになる。
また、測定に用いる接触式プローブ1の可動範囲を先ほど説明したように、ばね力が略一定となる範囲で使用するようにし、そのばね力の大きさが接触式プローブ1の自重から被測定面10に押し付ける押し付け力を差し引いた力だけ発生させるようにしている。
このことにより、接触式プローブ1の自重は不変であり、ばね力も接触式プローブ1の位置によらず略一定であるため、被測定物10に作用する押し付け力も一定にすることができる。
このとき、接触式プローブ1が、被測定物10と接触していない場合には、押し付け力が作用しないため、接触式プローブ1の自重によって、この接触式プローブ1は最下点まで落ち、端板8によって、脱落しないようになっている。
図3は本発明の接触式プローブを搭載した形状測定ヘッドの構成を示す図である。ホルダ2は三次元的に移動可能な可動部材11に固定されている。この可動部材11には、変位計12が取り付けられている。
この変位計12は、好ましくは、レーザ変位計で構成されており、接触式プローブ1の端板8に取り付けられた反射ミラー9にレーザを照射することで、接触式プローブ1と可動部材11との相対的な変位量を高精度に測定することができる。
可動部材11は、図示しないアクチュエータによって移動することが可能で、また、図示しない他の変位計によってその位置を測定することができる構成となっている。
次に、この形状測定ヘッドを用いた形状測定装置による形状測定動作について説明する。所定の位置に被測定物10がセットされると、接触式プローブ1を搭載した可動部材11は、上方からアプローチし、接触式プローブ1を被測定物10に接触させる。
接触式プローブ1の変位量を測定する変位計12の出力値が所定の値を示すまで、接触式プローブ1を被測定物10に押し付けていく。本実施の形態では、接触式プローブ1に作用するばね力の出力が略一定となる範囲の中央値を接触式プローブ1の基準位置としており、このときの変位計12の出力値を設定している。
接触式プローブ1が基準位置まで移動した後に測定を開始する。被測定物10の形状に応じて、被測定面によって、接触式プローブ1の接触部材7が押し込まれた場合は、接触式プローブ1はホルダ2との基準位置に対して相対的に上昇する。その結果、接触式プローブ1の端板8も変位計12側に移動するため、変位計12の出力が変化する。
このとき、変位計12の出力が所定の値になるように、アクチュエータを制御して、可動部材11を移動させる。これにより、接触式プローブ1はホルダ2との関係が基準位置に戻り、接触部材7の被測定面に押し付ける押し付け力が一定に保たれる。
また、接触式プローブ1の接触部材7が被測定面から離れた場合は、接触式プローブ1は自重が作用し、接触式プローブ1はホルダ2との基準位置に対して相対的に下降する。その結果、接触式プローブ1の端板8も変位計12から離れる側に移動するため、変位計12の出力が変化する。
このとき、変位計12の出力が所定の値になるように、図示しないアクチュエータを制御して、可動部材11を移動させる。これにより、接触式プローブ1はホルダ2との関係が基準位置に戻り、接触部材7の被測定面に押し付ける押し付け力が一定に保たれる。
このように、変位計12の出力が所定の値になるように可動部材11の位置を制御しつつ、被測定面10を走査し、可動部材11の動作軌跡と変位計12の出力値を測定することにより、被測定物10の形状が測定される。
磁気吸引力をばね力として用い、接触式プローブ1の可動範囲をばね力が略一定となる範囲で使用し、このばね力は、その大きさが接触式プローブ1の自重から被測定面に押し付ける押し付け力を差し引いた力だけ発生させている。
そのため、被測定物10に作用する押し付け力を、所定の可動範囲内で略一定にすることができ、接触荷重により、ワークを傷つけることがない。また、接触式プローブ1の位置は、所定の可動範囲内の中央(基準位置)に戻るように制御されるが、多少、位置決め誤差があっても、作用するばね力が略一定させてあるため許容される。
従来技術のように引っ張りばねを用いたものでは、位置決め誤差を許容できないため、高速に位置決めする必要があり、うまく制御できないと、かえって振動的な状態に陥ることがあったが、本発明ではその心配がない。
また、磁力を利用して、接触式プローブ自重を補償しているので、この他に自重を補償するためのカウンターウェイト等を必要としないため、接触式プローブを軽量化でき、作用する慣性力を小さくすることができるので、被測定面10を走査するさいに追従性能を高めることができる。
また、接触式プローブを被測定面に押し付ける押し付け力は、接触式プローブ可動範囲内において、常に一定であるので、引っ張りばね等を設ける必要がなく、それらを配置するためのスペースが不要とり、装置を小型化することができる。
図1のように、接触式プローブ1の外周には第1の永久磁石5が配置され、ホルダ2の内周には第2の永久磁石6が配置されている。復元力を得るために、第1の永久磁石5と第2の永久磁石6は互いに異磁極となるようにして、一定の間隔を空けて対向して配置されている。
このことにより、接触式プローブ1とホルダ2の相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として作用させている。また、第1の永久磁石5と第2の永久磁石6の間に、アルミのような非磁性材料からなる金属の導体板13をホルダ2内周と内接しないよう非導電体14を介してホルダ2と固定する。
このことにより、接触式プローブ1とホルダ2の相対的な移動によって、導体板13を横切る磁束は変化し、この変化に伴い導体板13に渦電流を発生させ、これが磁束と作用することにより運動方向と逆方向に働く抵抗力が生じ(フレミング左手の法則)、これを減衰要素として作用させている。
図4は本発明の接触式プローブ1の振動減衰要素となる抵抗力を発生する原理を模式的に示す、接触式プローブ1とホルダ2の関係が基準位置にある状態における図である。
図5は被測定物の形状測定によって、接触式プローブ1が上方に押し上げられた状態での接触式プローブ内周の第1の永久磁石5とホルダ外周の第2の永久磁石6によって生じる磁束を示す図である。
図6は電磁誘導が生じ、導体板13上での磁束の変化を打ち消すように、渦電流が発生することを示す図である。図7は第1の永久磁石5と反発するように作用する抵抗力を発生させることを示す図である。
図4は接触式プローブ1とホルダ2の関係が基準位置にある状態での、接触式プローブ1内周の第1の永久磁石5とホルダ2外周の第2の永久磁石6によって生じる磁束を示したものである。
図5は、被測定物10の形状測定によって、接触式プローブ1が上方に押し上げられた状態での接触式プローブ1内周の第1の永久磁石5とホルダ2外周の第2の永久磁石6によって生じる磁束を示したものである。
図5から判明するように、接触式プローブ1の移動に伴い、第1の永久磁石5も上昇し、導体板13を貫通する磁束が、導体板13の上方で増えていることがわかる。これにより、図6のように、電磁誘導が生じ、導体板13上での磁束の変化を打消すように、渦電流23が発生する。
この誘導された渦電流23が磁束の影響を受け、磁界ができ、これが、図7のように、第1の永久磁石5と反発するように作用する抵抗力を発生させることができる。
本実施形態では、粘性流体を用いない構成のため、接触式プローブ周辺が汚れることはない。また、接触式プローブ1の外周に第1の永久磁石5とホルダ2の内周に第2の永久磁石6の間に導体を接触しないように配置するだけで、接触式プローブ振動に伴い相対的な移動が生じたさいに、導体板13を横切る磁束の変化に伴う渦電流を発生させ、これが磁束と作用することにより運動方向と逆方向に働く抵抗力を減衰要素として利用することができる。
非常に簡単な構成で、従来と同様の振動減衰効果を得ることができ、コスト低下にも繋がる。このように本発明は、被測定面10と先端球7との間のスティックスリップに起因する接触式プローブの振動によって生じる測定精度の悪化を抑えることができるので、サブミクロン等級の精度を要求される測定にも応用可能である。
図1に示すように、本実施の形態の接触式プローブ1は、断面が円形になっている部分を上下の円筒状であるガイド3、4内の空気軸受を用いて、ホルダ2に支持するようにしている。
上下の空気軸受であるガイド3、4への圧縮空気の供給は、ホルダ2に設けた供給ポート15を用い、連結通路16を通して行っている。これにより、接触式プローブ1は、非接触になるため上下方向には摺動抵抗なく移動することができ、かつ、半径方向に高剛性に支持することができる。
プローブの1軸の移動方向にガイド3、4として空気軸受を用いることで、半径方向の剛性を高められるとともに、摺動抵抗を極めて小さくすることができるので、プローブ1に作用する外乱を小さく抑えることができ、被測定物10にかかる押し付け力を微小な荷重に設定することができ、高精度な測定を行うことができる。
図1に示すように、本実施の形態の接触式プローブ1は上下に分割されたガイド3、4内の空気軸受によって支持されている。したがって、空気軸受の軸受を分割して配置することで、軸受幅を長くした場合とほぼ同程度のラテラル剛性を得ることができるので、被測定物との接触摩擦によって生じる、軸を傾ける力が作用しても、その変形量を極力抑えることができ、高精度な測定を行うことができる。
図1に示すように、本実施の形態の接触式プローブ1を支持するガイド3、4内の空気軸受は、接触式プローブ外周に設けた第1の永久磁石5とホルダ内周に設けた第2の永久磁石6を挟んだ両側に設けるようにしている。
空気軸受の中間に、磁気吸引力をばね力として利用した接触式プローブ1の自重補償などを行う機構と、接触式プローブ1の移動方向と反対方向に作用する振動減衰用の抵抗力を発生させる機構とを効率良く配置することができるので、接触式プローブ1を小型化することができる。
図8は本実施の形態の接触式プローブ1の組み立てた構造および分解した必要な部品を示す概略図である。図9は接触式プローブ外周に設けた第1の永久磁石5を4つの小さな永久磁石から構成することを示す図8のA−A線に沿う概略断面図である。
図8のように、本実施の形態の接触式プローブ1は、パーツ(a)〜(e)までの5つのパーツからなる組み立て構造にすることができる。必要な部品精度に応じて組み付け後の修正加工を施すことで、高精度な寸法精度を得ることもできる。
また、各パーツを異なる材質にすることもできる。例えば、本発明の第1の実施の形態では、(a)、(b)、(d)、(e)のパーツをアルミ製とし、(c)のパーツのみをアルミ製シャフトに永久磁石を固定したものとすることで、接触式プローブ1の軽量化を行うことができる。
また、本発明の第3の実施の形態では、(a)、(b)、(d)、(e)のパーツをアルミ製とし、(c)のパーツのみ磁性材料とすることで、接触式プローブ1の軽量化を行うことができる。
プローブ1は複数の材質の異なる部材から構成された組み立て構造にすることによって、接触式プローブの自重補償機構や振動減衰機構の配置を容易とすることができる。
また、接触式プローブ1の支持する部分は、例えば、アルミのような軽量な材質を用い、接触式プローブ1の自重補償機構や振動減衰機構に局所的に磁性体を配置するようにすることで、全て磁性体で製作したものに比べ、格段に軽量な接触式プローブを製作することができる。接触式プローブ1を軽量化することは、被測定物形状への追従性を高めることができ、安定した測定を行うことができる。
図9のように、接触式プローブ外周に設けた第1の永久磁石5は、4つの小さな永久磁石から構成することができる。これにより、永久磁石部の形状を矩形にすることができ、これと対抗する、ホルダ2内周の第2の永久磁石との作用により、接触式プローブ1に磁気吸引力を作用させるとともに、接触式プローブ1が測定中に回転しないように保持することができる。
また、第1の永久磁石5および第2の永久磁石6、および導体板13の形状は円筒状にしても良い。この場合は、第1の永久磁石5および、第2の永久磁石6の円周方向に分割して、異磁極を配置することで、接触式プローブ1の回転方向を規制することができる。
接触式プローブ1の外周に設けた永久磁石の形状を矩形にし、それと対抗するホルダ内周に設けた永久磁石の形状も矩形とすることで、発生する磁気吸引力のバランスにより、接触式プローブ1の回転方向を規制することができる。
これにより、接触式プローブ1が回転しないので、この接触式プローブ1と被測定物10との接触点が変わることがなく、測定誤差を生じさせなくすることが可能である。
図10は本発明の接触式プローブ1の第2の実施の形態を示す部分断面図である。図のように、接触式プローブ1外周に設けた第1の永久磁石5a、5bを軸方向に第1の非磁性体17aを挟むように配置し、ホルダ2内周に設けた第2の永久磁石6a、6bを軸方向に第2の非磁性体17bを挟むように配置した。
このことにより、接触式プローブ1に作用する磁気吸引力をアップさせることができる。
図11は本発明の第1の実施の形態によって発生する磁気吸引力を模式的に示した図である。図のように、軸方向に作用する磁気吸引力は、各永久磁石の端部にて発生している。
図12は本発明の第2の実施の形態によって発生する磁気吸引力を模式的に示した図である。図からわかるように、各永久磁石の長さを短くし、その間に、非磁性体17a、17bを配置するだけで、軸方向に作用する磁気吸引力をおよそ2倍発生させることができる。
接触式プローブ外周に永久磁石を軸方向に非磁性体を挟み複数設けることで、発生する磁気吸引力を大きくすることができる。これにより、トータルとして、永久磁石の大きさを小さくすることができ、接触式プローブを軽量化させることができる。
図13は本発明の接触式プローブの第3の実施の形態を示す部分断面図である。図のように、接触式プローブ1外周、およびホルダ2内周を必要な箇所だけ磁性材料で製作し、直接、着磁させることができる。これにより、接触式プローブ1を製作しやすい丸棒形状に、ホルダ2を本来の円筒に抜いた形状にすることができる。
接触式プローブ外周およびホルダ内周に、永久磁石の代わりに、それ自体を着磁するようにすることで、永久磁石を別途配置することないので、接触式プローブ形状を製作しやすい丸棒形状にすることができるので、非常に高精度な接触式プローブを安価に提供することができる。
図14は本発明の接触式プローブのプローブ押し付け力調整例を示した図である。図のように、本発明の第1の実施の形態のホルダ2内周に設けた、第2の永久磁石6の位置を調整できるギャップ調整機構18を用いて、磁気吸引力を微調整することができる。
このプローブ押し付け力調整によれば、接触式プローブが被測定面に押し付ける押し付け力を微調整することができるので、被測定物の材質に応じて最適な押し付け力で測定を行うことができる。
本発明の接触式プローブを用いた形状測定装置の第1の実施の形態を示す部分断面図である。 本発明による磁気吸引力を中立点からの位置に応じて示す図である。 本発明の接触式プローブを搭載した形状測定ヘッドの構成を示す図である。 本発明の接触式プローブの振動減衰要素となる抵抗力を発生する原理を模式的に示す、接触式プローブとホルダの関係が基準位置にある状態における図である。 被測定物の形状測定によって、接触式プローブが上方に押し上げられた状態での接触式プローブ内周の第1の永久磁石とホルダ外周の第2の永久磁石によって生じる磁束を示す図である。 電磁誘導が生じ、導体板上での磁束の変化を打ち消すように、渦電流が発生することを示す図である。 第1の永久磁石と反発するように作用する抵抗力を発生させることを示す図である。 本実施の形態の接触式プローブの組み立てた構造および分解した必要な部品を示す概略図である。 接触式プローブ外周に設けた第1の永久磁石を4つの小さな永久磁石から構成することを示す図8の線A−Aに沿う概略断面図である。 本発明の接触式プローブの第2の実施の形態を示す部分断面図である。 本発明の第1の実施の形態によって発生する磁気吸引力を模式的に示した図である。 本発明の第2の実施の形態によって発生する磁気吸引力を模式的に示した図である。 本発明の接触式プローブの第3の実施の形態を示す部分断面図である。 本発明の接触式プローブのプローブ押し付け力調整例を示した図である。
符号の説明
1 プローブ
2 ホルダ
3 ガイド
4 ガイド
5 第1の永久磁石
5a 第1の永久磁石
5b 第1の永久磁石
6 第2の永久磁石
6a 第2の永久磁石
6b 第2の永久磁石
9 反射ミラー
10 被測定物
11 可動部材
12 変位計
13 導体板
14 非導電体
15 供給ポート
17a、17b 非磁性体
18 ギャップ調整機構

Claims (9)

  1. 接触式プローブと、この接触式プローブを一方向に移動可能に保持するホルダと、このホルダを取り付け三次元的に移動可能な可動部材と、この可動部材に取り付け、前記接触式プローブの変位量を測定する変位計とを備え、前記接触式プローブを被測定面に接触させながら走査することによって、そのときの位置を測定して被測定物の形状を測定する形状測定装置において、前記接触式プローブが被測定面に押し付ける測定圧を一定に保ちながら走査させるにあたり、前記接触式プローブの外周に第1の永久磁石を設け、前記ホルダの内周に第2の永久磁石を設け、復元力を得るために、前記接触式プローブと前記ホルダの相対的な位置関係のずれによって生じる磁束の剪断方向に働く磁気吸引力をばね力として用い、このばね力は、その大きさが前記接触式プローブ自重から被測定面に押し付ける押し付け力を差し引いた力だけ発生させるようにし、第1の永久磁石と第2の永久磁石の間に導体板を前記ホルダと内接しないように非導電体を介して配置し、前記磁気吸引力をばね力として用い、前記接触式プローブと前記ホルダの相対的な移動によって、前記導体板を横切る磁束の変化に伴う渦電流を発生させ、これが磁束と作用することにより運動方向と逆方向に働く抵抗力を減衰要素として作用させたことを特徴とする形状測定装置。
  2. 前記接触式プローブが空気軸受を介して、前記ホルダに支持されていることを特徴とする請求項1記載の形状測定装置。
  3. 前記空気軸受が上下に分割して前記ホルダに支持されていることを特徴とする請求項記載の形状測定装置。
  4. 前記空気軸受が、第1の永久磁石と第2の永久磁石を挟んだ両側に設けられることを特徴とする請求項2または3項記載の形状測定装置。
  5. 前記接触式プローブが複数の材質の異なる部材から構成される組み立て構造になっていることを特徴とする請求項1ないし4のいずれか1項記載の形状測定装置。
  6. 第1の永久磁石、第2の永久磁石、および前記導体板のそれぞれの形状を矩形にしたことを特徴とする請求項1ないしのいずれか1項記載の形状測定装置。
  7. 第1の永久磁石を軸方向に第1の非磁性体を挟んで複数設け、また、第2の永久磁石を軸方向に第2の非磁性体を挟んで複数設けたことを特徴とする請求項1ないし6のいずれか1項記載の形状測定装置。
  8. 第1の永久磁石および第2の永久磁石の代わりに、前記接触式プローブ外周および前記ホルダ内周自体に、直接、着磁したことを特徴とする請求項1ないし7のいずれか1項記載の形状測定装置。
  9. 第2の永久磁石の位置を調整することができる微調整機構を設け、前記接触式プローブ内周と対向する永久磁石とのギャップの大きさを変えることで、発生する磁気吸引力を調整可能とすることを特徴とする請求項1ないし7のいずれか1項記載の形状測定装置。
JP2003373043A 2003-10-31 2003-10-31 形状測定装置 Expired - Fee Related JP4376592B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003373043A JP4376592B2 (ja) 2003-10-31 2003-10-31 形状測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003373043A JP4376592B2 (ja) 2003-10-31 2003-10-31 形状測定装置

Publications (2)

Publication Number Publication Date
JP2005134332A JP2005134332A (ja) 2005-05-26
JP4376592B2 true JP4376592B2 (ja) 2009-12-02

Family

ID=34649251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003373043A Expired - Fee Related JP4376592B2 (ja) 2003-10-31 2003-10-31 形状測定装置

Country Status (1)

Country Link
JP (1) JP4376592B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000266B2 (en) 2020-03-13 2024-06-04 Geonomic Technologies Inc. Method and apparatus for measuring a wellbore

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004011730A1 (de) * 2004-03-05 2005-09-22 Carl Zeiss Industrielle Messtechnik Gmbh Tastkopf für ein Koordinatenmessgerät
JP4557657B2 (ja) * 2004-09-28 2010-10-06 キヤノン株式会社 接触式プローブおよび形状測定装置
JP4933775B2 (ja) * 2005-12-02 2012-05-16 独立行政法人理化学研究所 微小表面形状測定プローブ
JP2007218881A (ja) * 2006-02-20 2007-08-30 Konica Minolta Opto Inc 形状測定装置
JP4291849B2 (ja) 2006-12-20 2009-07-08 パナソニック株式会社 三次元測定プローブ
JP5154149B2 (ja) * 2007-06-20 2013-02-27 パナソニック株式会社 三次元測定プローブ
JP5255422B2 (ja) * 2008-12-16 2013-08-07 独立行政法人理化学研究所 形状測定プローブ
JP6938130B2 (ja) * 2016-10-31 2021-09-22 株式会社東京精密 光学式測定器の回り止め
JP7478039B2 (ja) 2020-06-25 2024-05-02 高松機械工業株式会社 ツールプリセッタ及び加工工具の補正算出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000266B2 (en) 2020-03-13 2024-06-04 Geonomic Technologies Inc. Method and apparatus for measuring a wellbore

Also Published As

Publication number Publication date
JP2005134332A (ja) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4376592B2 (ja) 形状測定装置
EP2251635B1 (en) Probe for three-dimensional shape measuring apparatus and three-dimensional shape measuring apparatus.
WO2008103611A2 (en) Decoupled, multiple stage positioning system
EP0273367A2 (en) Objective lens driving apparatus
US20120235516A1 (en) Vertical Actuator Drive Having Gravity Compensation
JP5834171B2 (ja) 形状測定装置
JP6613162B2 (ja) 三次元座標測定機用プローブヘッド及び接触検出方法
JP7016289B2 (ja) ステージ装置、荷電粒子線装置および真空装置
JP2007526465A (ja) 座標測定装置用プローブ
JP2016161526A (ja) 接触型プローブ
JP6458334B1 (ja) リニア駆動機構及び形状測定機
CN110514136B (zh) 形状测定用探头
JP4557657B2 (ja) 接触式プローブおよび形状測定装置
JP2008298857A (ja) スキャナ装置及びレーザ加工装置
JP5292668B2 (ja) 形状測定装置及び方法
JP2002162219A (ja) 高精度移動機構
JP2005169523A (ja) テーブル位置決め装置
JPH05215133A (ja) 静圧流体軸受およびその位置決め制御装置
JP7223223B2 (ja) リニア駆動機構
JP2010084814A (ja) 振動除去装置
JP2542595B2 (ja) 対物レンズ駆動装置
JP2747254B2 (ja) 流体軸受装置
JP2001249018A (ja) 表面機械特性測定装置及びその測定方法
JP2008298506A (ja) 形状測定装置
JP2007218881A (ja) 形状測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees