JP4359100B2 - 円筒型アルカリ蓄電池 - Google Patents

円筒型アルカリ蓄電池 Download PDF

Info

Publication number
JP4359100B2
JP4359100B2 JP2003286329A JP2003286329A JP4359100B2 JP 4359100 B2 JP4359100 B2 JP 4359100B2 JP 2003286329 A JP2003286329 A JP 2003286329A JP 2003286329 A JP2003286329 A JP 2003286329A JP 4359100 B2 JP4359100 B2 JP 4359100B2
Authority
JP
Japan
Prior art keywords
positive electrode
electrode plate
negative electrode
battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003286329A
Other languages
English (en)
Other versions
JP2005056682A (ja
Inventor
泰史 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003286329A priority Critical patent/JP4359100B2/ja
Priority to US10/909,312 priority patent/US7378182B2/en
Priority to CNB2004100558688A priority patent/CN1301564C/zh
Publication of JP2005056682A publication Critical patent/JP2005056682A/ja
Application granted granted Critical
Publication of JP4359100B2 publication Critical patent/JP4359100B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)

Description

本発明は高容量化に好適した円筒型アルカリ蓄電池に関する。
アルカリ蓄電池としては、含まれる活物質の種類によって、例えばニッケルカドミウム二次電池、ニッケル水素二次電池等をあげることができ、これらアルカリ蓄電池には、セパレータを間に挟んでそれぞれ帯状の負極板と正極板とを渦巻状に巻回し、最外周に負極板の一部が巻回された電極群を、最外周の負極板が内周壁に接した状態で円筒状の外装缶内にアルカリ電解液とともに収容した円筒型のものがある。
正極板は、ニッケル極といわれるものであり、3次元網目状の構造を有するニッケル製の金属体に正極合剤を充填して形成される。正極合剤は、正極活物質である水酸化ニッケル粒子と、添加剤粒子と、これら粒子を結着する結着剤とからなる。また、負極板は、負極芯体としての金属シートの両面を水素吸蔵合金層で被覆して形成され、水素吸蔵合金層は、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子と、水素吸蔵合金粒子を結着する結着剤とからなる。これら正極板及び負極板の容量は、それぞれに含まれる活物質量で規定されるが、この種の円筒型アルカリ蓄電池にあっては、過充電時に正極板で発生した酸素ガスを負極板で還元して内圧上昇を防止すべく、正極容量よりも負極容量の方が大きく、電池容量は正極容量により規定される。
ところで近年、この種の円筒型アルカリ蓄電池、とりわけ乾電池単3サイズ互換型のAAサイズの円筒型アルカリ蓄電池は、これを電源として用いる電子電気機器、例えばデジタルカメラの普及に伴ない需要が拡大し、機器の長時間連続使用を可能とするべく高容量化つまり体積エネルギー密度の向上が強く求められている。電池容量を高めるためには、電池容量を規定している正極容量を高めればよく、具体的には、正極活物質の増量や利用率を向上すればよい。前者の正極活物質増量のためには、正極板の長さ、厚み、面積及び正極合剤の金属体への充填密度を大きくすることが知られている。なかでも、正極板の厚みを増大した場合や、正極合剤の金属体への充填密度を高めた場合には、セパレータや負極芯体を長くする必要が無いので、効率的に正極活物質量を増加させることができ、例えば特許文献1は、厚みを0.8mm以上にして高容量化を達成したニッケル極を開示している。
特開平10−199520号公報(例えば、特許請求の範囲等。)
しかしながら、特許文献1の円筒型アルカリ蓄電池を、外装缶の外径が13.5mm以上14.5mm以下のAAサイズの円筒型アルカリ蓄電池に適用し、体積エネルギー密度が340Wh/l以上となるよう正極板を厚くした場合、以下にあげる問題が生じる。
まず、正極板の厚み増大にともない電池寿命が短くなる。
正極板の厚み増大にともない、電極群の横断面でみて、正極板及び負極板により描かれる渦巻形状の歪みが大きくなり、正極板と負極板との間隔が、正極板及び負極板の長手方向に亘って不均一となる。とりわけ、正極板の厚みが0.95mm以上になると、この極板間隔のばらつきが大きくなる。極板間隔のばらつきが大きくなると、充電時に酸素ガスが局所的に発生して電池内圧が上昇するので、安全弁が作動してアルカリ電解液が外部へ漏出し、電池の寿命が短くなる。
次に、負極巻始め端部が、正極板の外面側で電極群の周方向に正極板巻始め端部を超えて延出している場合、正極巻始め端部を超えて延出している負極板の部分から負極合剤が剥離し、負極容量が低下する。
電極群の巻回後、電極群の周方向でみて正極巻始め端面の前方には、正極巻始め端面と、正極板の内面側及び外面側からそれぞれ正極巻始め端面を超えて延出したセパレータの部分とによって隙間が区画され、この隙間の大きさは、正極板の厚みに応じた大きさで形成される。このような隙間を有する電極群を用いた円筒型アルカリ蓄電池では、初期充放電後、この隙間に対してセパレータを介して電極群の径方向外側に位置付けられた負極板の部分が、この隙間を縮小するように正極巻始め端面に向かって折れ曲がる。とりわけ、正極板の厚みが0.95mm以上になると、正極巻始め端面前方における負極板の折れ曲がりが大きくなり、この折れ曲がった負極板の部分から負極合剤が剥離し、負極容量が低下してしまう。
そして、負極巻終わり端部が、正極板の外面側で電極群の周方向に正極板の巻終わり端部を超えて延出している場合、セパレータを介して正極巻終わり端部の外面側エッジに重ね合わされた負極板の部分で、負極芯体が破断して内部抵抗が増大したり、あるいは、負極合剤が剥離して負極容量が低下する。
電極群の巻回時、セパレータを介して正極巻終わり端部の外面側エッジに重ね合わされた負極板の部分が折れ曲がる。その上、この折れ曲がった負極板の部分で電極群の外径が大きくなり、電極群の巻回時や外装缶への挿入時に、折れ曲がった負極板の部分は電極群の巻回装置や外装缶と摺動する。とりわけ、正極板の厚みが0.95mm以上になると、正極巻終わり端部の外面側エッジに重ね合わされた負極板の部分の折れ曲がりが大きくなるとともに、この折れ曲がった負極板の部分と巻回装置や外装缶との摺動も激しくなり、この折れ曲がった負極板の部分で負極芯体が破断して内部抵抗が増大したり、あるいはこの部分から負極合剤が剥離して負極容量が低下してしまう。
更に、電極群の巻回時、正極板の厚みが0.95mm以上になると正極板に破断が生じて、この破断した部分がセパレータを突き破って負極板と接触し短絡が発生する。
そして、体積エネルギー密度が340Wh/l以上となるよう正極板を厚くした場合、負極板、アルカリ電解液及びセパレータの体積が減少するとともに、これらの体積と正極板の体積とを除いた電池内の余剰空間が減少するので、以下にあげる問題が生じる。
まず、負極板の体積減少つまり負極活物質量の減少は、電池寿命の低下を引き起こす。
正極板を厚くして正極容量を増大すると、正極容量に対する負極容量の比率(容量比)が減少し、セパレータを介して正極板と対向する負極活物質層(水素吸蔵合金層)の正極対向部分に含まれる負極活物質量(水素吸蔵合金量)が減少する。充放電時、正極活物質と負極活物質層の正極対向部分との間で電池反応が主に進行するので、正極対向部分に含まれる負極活物質量が少ないと、電池反応が円滑に進まなくなる。
例えば、負極非対向部率(正極非対向部に含まれる負極活物質量の総負極活物質量に占める割合)が29%の電池においては、容量比(正極容量に対する負極板全体の容量の比)が1.41以下になると、対向容量比(正極容量に対する正極対向部の負極容量の比)が1.00以下となって、負極容量が正極容量を実質的に下回る。
このように対向容量比が1.00を下回った場合、電池反応時の最短距離でのプロトンの受渡しが不可能となって反応が不均一化し、放電性能が低下する。また、充電時に正極板で発生した酸素ガスが、セパレータを通過して負極板に達して還元されるまでの時間が長くなって電池内圧が上昇するので、安全弁が作動してアルカリ電解液が外部に漏出してしまう。このため、充放電を繰返して行なった場合、反応の不均一化による局所的な活物質の早期劣化、電池内圧上昇によるアルカリ電解液の漏出という二つの要因で電池寿命が低下する。
次に、アルカリ電解液量が減少すると、容量液比(0.2C容量に対するアルカリ電解液体積の比率)が低下するけれども、容量液比が0.85ml/Ah以下となる場合、正極板と負極板とがセパレータを介して対向する部分で電解液量が不足し、電気抵抗が高くなり放電特性が低下する。
電池内において、主にアルカリ電解液は、正極板、負極板及びセパレータの全体に亘って含まれたかたちで存在するので、アルカリ電解液は電池反応に直接寄与しない負極板の正極非対向部や、この正極非対向部に隣接するセパレータにも含まれてしまう。このため、電池反応の場となる正極板、負極板の正極対向部分及びこれらの間に挟まれたセパレータに含まれる電解液量は、総電解液量から、負極板の正極非対向部に含まれる電解液量を差し引いた量となるが、容量液比が0.85ml/Ah以下となる場合、負極板の正極非対向部分にアルカリ電解液の一部が含まれてしまうと、電池反応の場に存在するアルカリ電解液量が不足し、正極板と負極板との間で電気抵抗が高くなり放電特性が低下する。
また、低温で連続充電を行なった場合、正極板が膨化して電解液を吸収するため、電解液量の少ない電池では連続充電後の放電性能が低下し、放電初期に大きな電圧降下が発生する。この低温連続充電特性についても、容量液比が0.85ml/Ah以下となった場合に著しく低下する。
そして、セパレータの体積を減少をさせるべく、厚みや目付量の小さいセパレータを用いた場合、正極板と負極板との間で短絡が発生しやすくなって品質が低下する。とりわけ、正極巻終わり端部が配置された周方向位置で電極群は最も外径が大きくなるので、正極巻終わり端部は外装缶の内周壁によって径方向両側から圧縮されるが、正極巻終わり端部の端縁にはばりが存在するので、圧縮されたばりがセパレータを突き破るので短絡の発生頻度が高くなる。
更に、余剰空間が減少した場合、正極板で発生した酸素ガスを一時的に貯めておく空間がなくなるので、充電時、正極板で酸素ガスが発生するとすぐに内圧が上昇して安全弁が作動してアルカリ電解液が外部に漏出してしまう。
本発明は上記の問題を解決し、電池寿命や放電特性の低下が抑制された、高い体積エネルギー密度を有するAAサイズの円筒型アルカリ蓄電池を提供することを目的とする。
上記した目的を達成するために、請求項1の発明では、導電性の円筒状外装缶と、前記外装缶内にアルカリ電解液とともに収容され、帯状の負極芯体及びこの負極芯体に保持された負極活物質層を含む負極板並びに正極板をセパレータを介して前記負極板が最外周に位置付けられるように渦巻状に巻回してなり、前記最外周部の負極板が前記外装缶の内周壁に接している電極群とを備えた円筒型アルカリ蓄電池において、340Wh/l以上450Wh/l以下の体積エネルギー密度を有し、前記外装缶の外径は13.5mm以上14.5mm以下であり、前記正極板の体積比率は48%以上60%以下であり、前記負極板は、負極芯体及び負極芯体に保持された負極活物質層からなり、前記負極芯体は、複数の貫通孔を有するシート状の金属導電体からなり、前記負極活物質層は、前記負極芯体の径方向内面を覆う内面層と、前記負極芯体の径方向外面を覆う外面層と、前記負極芯体の貫通孔に充填された充填層とを含み、前記電極群の最外周部にて前記セパレータを介して前記正極板と対向していない前記負極活物質層のうち少なくとも前記外面層の正極非対向部分に、前記セパレータを介して前記正極板と対向している前記内面層及び外面層の正極対向部分の厚みに対して1/2以下で且つ0を超える厚みの薄肉非対向部が形成されていることを特徴としている。
上記した構成の電池は、外装缶の外径が13.5mm以上14.5mm以下に設定されるとともに正極板の体積比率は48%以上60%以下に設定され、340Wh/l以上450Wh/l以下の高い体積エネルギー密度を有する。
また、上記した構成では、電極群の最外周部にてセパレータを介して正極板と対向していない負極活物質層のうち少なくとも外面層の正極非対向部分に、セパレータを介して正極板と対向している内面層及び外面層の正極対向部分の厚みに対して1/2以下の厚みの薄肉非対向部を形成することで、電池寿命の低下が抑制されている。
電極群の最外周部にてセパレータを介して正極板と対向していない負極活物質層の正極非対向部分は、正極対向部分に比べて電池反応への寄与が低い。そこで、上記した構成では、負極板の体積を減少させるのに際し、負極活物質層のうち、少なくとも、内面層の正極非対向部分よりも電極群の周方向に長い外面層の正極非対向部分に薄肉非対向部を形成して、正極対向部分に含まれる負極活物質量を確保している。その故、上記した構成の円筒型アルカリ蓄電池では、充放電時に、正極板全体で電池反応が均一に進むので、局所的な活物質の早期劣化や、酸素ガス還元反応の遅れによる電池内圧上昇に伴なうアルカリ電解液の漏出が防止され、電池寿命の低下が抑制される。
この正極板の体積比率とは、セパレータを除いた電極群の軸線方向での長さに、外装缶の内周壁により囲まれる円柱状の空間の横断面積を乗じて得られる円柱の体積で、正極板の体積を除した値の百分率である。
ここで、正極板の体積とは、外装缶内に収容された状態での体積であって、以下のようにして求めることができる。まず、X線CT装置により撮影した電池の横断面像上で正極板の電極群径方向内面の周方向長さ、つまり巻回前の正極板の長さにほぼ相当する値と、正極板の電極群径方向厚みとを測定する。それから、電池Aを解体して正極板を取り出して乾燥させ、定規等を用いて正極板の電極群軸線方向での長さ、つまり、巻回前の幅にほぼ相当する値を測定する。そして、得られた正極板の電極群径方向内面の周方向長さ、径方向厚み及び軸線方向長さを互いに乗じて求められる。
上記した構成の好適な態様として、請求項2の発明では、前記正極板は、3次元網目状の骨格を有する金属体に正極合剤を充填して形成され、0.95mm以上の厚みを有することを特徴としている。
この態様によれば、正極板の厚みを0.95mm以上に設定することで、セパレータや負極芯体の長さの増加を伴なうことなく効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。
なお、この正極板の厚みとは、外装缶内に収容された状態での電極群径方向での厚みであって、X線CT装置により撮影した電池の横断面像上で測定して求められる値のことをいう。
請求項3の発明では、前記正極板は、3次元網目状の骨格を有する金属体に正極合剤を充填して形成され、前記金属体への前記正極合剤の充填密度は2.95g/cm 以上であることを特徴としている。
上記した構成では、正極板における金属体への正極合剤の充填密度を2.95g/cm以上に設定し、充放電を繰り返す間、正極板がアルカリ電解液を吸収して膨化しづらくすることで、電池反応に寄与するアルカリ電解液量を確保して電池寿命の低下を抑制している。
上記した構成の好適な態様として、請求項4の発明では、前記正極板の厚みは、前記負極板の平均厚みに対して2.5倍以上であることを特徴としている。
この態様によれば、正極板の厚みを負極板の平均厚みの2.5倍以上に設定することで、効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。
なお、この負極板の平均厚みとは、電池Aを解体して負極板を取り出して乾燥させた後、マイクロメータで負極板長手方向に複数個所で厚みを測定して求めた平均厚みのことをいう。例えば、長さx1で厚みy1の区間と、長さx2で厚みy2の区間とが負極板にあるとき、負極板の平均厚みYは、次式:
Y=((x1×y1)+(x2×y2))/(x1+x2)
より求められる。
上記した構成の好適な態様として、請求項5の発明では、前記正極板の厚みは、前記セパレータの平均厚みに対して9倍以上であることを特徴としている。
この態様によれば、正極板の厚みをセパレータの平均厚みの9倍以上に設定することで、効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。
なお、このセパレータの平均厚みとは、電池Aを解体してセパレータを取り出して乾燥させた後、マイクロメータでセパレータ長手方向に複数個所で厚みを測定して求めた平均厚みのことをいう。そして、厚みの異なる2枚以上の複数のセパレータが電極群に巻回されているときは、これら複数のセパレータに亘って平均した厚みのことをいう。
請求項6の発明では、前記正極板は、前記電極群の巻始め及び巻終わりのそれぞれに対応する端部と、前記正極板の両端部間に厚み一定の正極本体部とを有し、前記正極板の両端部のうち少なくとも一方は、前記正極本体部よりも薄く形成されていることを特徴としている。
上記した構成では、正極板の巻始め端部及び巻終わり端部のうち少なくとも一方を、正極本体部に比べて薄く形成したので、横断面でみたときに正極板及び負極板がきれいな渦巻状に巻回される。このため、長手方向でみてこれら極板間隔が一定になっており、充電時、正極板において局所的に充電反応が終了して酸素ガスが発生することが抑制される。この結果、上記した構成では、安全弁作動によるアルカリ電解液の外部への漏出が防止され、電池寿命の低下が抑制される。これに加えて、正極板がきれいに渦巻状に巻回されると、たとえ正極本体部が0.95mm以上の厚みを有していても、巻回時に正極本体部に破断が生じづらいので、短絡の発生も防止される。
また、上記した構成では、正極板が0.95mm以上の厚みを有する正極本体部を有しているけれども、正極板の巻始め端部及び巻終わり端部のうち少なくとも一方は、正極本体部に比べて薄く形成されているので、負極板の巻始め端部及び巻終わり端部が、正極板の外面側にて電極群の周方向に正極板の巻始め端部及び巻終わり端部を超えて延出してたとしても、負極容量低下や内部抵抗の増大が防止される。
正極巻始め端部を薄く形成した場合、正極巻始め端部の先端における正極板の厚みが薄くなるので、電極群の周方向でみて正極巻始め端面の前方にて、正極巻始め端面と、正極板の内面側及び外面側からそれぞれ正極巻始め端面を超えて延出したセパレータの部分とによって区画される隙間が小さくなる。その故、この円筒型アルカリ蓄電池の初期充放電後、この隙間に対してセパレータを介して電極群の径方向外側に位置付けられた負極板の部分が、この隙間を縮小するように正極巻始め端面に向かって折れ曲がったとしても、この折れ曲がりが小さいことから、この折れ曲がった負極板の部分で負極芯体から負極芯体が剥離するのが防止され、もって、負極容量低下が防止されている。
一方、正極巻終り端部を薄く形成した場合、セパレータを介して正極巻終わり端部の外面に重ね合わされた負極板の部分は、正極板の巻終り端部の外面側エッジよりもむしろ、正極本体部と正極巻終わり端部との境界で折り曲げられる。このように正極板の境界で負極が折れ曲がった場合、正極巻終り端部を薄く形成せずに正極巻終り端部の外面側エッジで負極が折れ曲がった場合に比べて負極の折れ曲がりが小さく、また、負極の折れ曲がった部分の電極群の径方向外側への突出量も小さいので、折れ曲がった負極板の部分と電極群巻回装置や外装缶との摺動が抑制される。その故、この円筒型アルカリ蓄電池は、セパレータを介して正極板の境界に重ね合わされた負極板の部分で負極芯体が破断して内部抵抗が増大したり、あるいはこの部分から負極合剤が剥離して容量が低下することが防止されている。
請求項7の発明では、前記正極板の内面側にて、前記正極本体部と薄肉化された前記正極板の端部とは面一をなし、前記正極板の径方向外面側に重ね合わされた前記セパレータと前記正極板との間に、前記正極板の本体部と薄肉化された前記正極板の端部との間の境界上に絶縁性の保護部材が配置されていることを特徴としている。
上記した構成では、電極群の外装缶への挿入時、薄肉化された正極巻始め端部及び巻終わり端部と正極本体部との間の境界には厚み方向に大きな押圧力が加えられるが、境界と正極板の径方向外面側に位置付けられたセパレータとの間には保護部材が介装されているので、稜のばりがセパレータを突き破って負極板と接触し、短絡するのが防止されている。また電極群の外装缶への挿入時、稜とは反対側の正極板径方向内面の部分に加わる厚み方向の押圧力も大きいが、この径方向内面の部分は面一をなして平坦であるため、セパレータを突き破って負極板と短絡することはない。従って、この円筒型アルカリ蓄電池は、正極巻始め端部及び巻終わり端部における正極板の両面側にて正極板と負極板との接触が防止され、もって短絡が防止されている。
上記した構成の好適な態様として、請求項8の発明では、前記正極板の正極合剤は、正極活物質としての水酸化ニッケル粒子及び添加剤粒子を含む混合粒子と、前記混合粒子を結着するバインダとからなり、前記混合粒子は2.1g/cm3以上2.3g/cm3以下のタップ密度を有することを特徴としている。
この態様によれば、正極活物質としての水酸化ニッケル粒子及び添加剤粒子を含む混合粒子のタップ密度が2.1g/cm3以上なので、正極活物質密度が高く、高容量化に好適する一方、短絡の発生や過充電特性の低下が防止されている。
説明を簡単にするため、例えば、容量及び体積が互いに等しい2つの正極板を作製したときに、これら正極板間で混合粒子のタップ密度を変化させた場合を考える。この場合、タップ密度が低い混合粒子を含む正極板の方が、金属体へ充填される正極合剤の体積が大きくなるので、金属体の連通孔に占める正極合剤の体積割合が大きくなって、金属体における残余空間が小さくなる。このため、タップ密度が低すぎると、過充電時に正極で酸素ガスが発生すると、すぐに内圧が上昇して安全弁が作動し、酸素ガスとともにアルカリ電解液が電池外部へ漏出する。かくしてタップ密度が低い場合、電池質量が減少し、過充電特性が低下する。
そこで、この態様では、混合粒子のタップ密度を2.1g/cm3以上に設定することで、金属体の連通孔に占める正極合剤の体積割合を制限して金属体における残余空間を確保し、この残余空間にアルカリ電解液を保持させることで過充電時のセパレータにおけるガス透過性を向上させ、早期の内圧上昇を防止して安全弁作動によるアルカリ電解液の漏出し、つまり、過充電特性の低下を防止している。
その上、この態様によれば、混合粒子のタップ密度が2.3g/cm3以下なので、ハイレート充電特性の低下が防止されている。
タップ密度が2.3g/cm3を超えて高くなると、正極合剤における混合粒子、つまり水酸化ニッケル粒子の分布にばらつきが生じ、ハイレート充電時に、正極における水酸化ニッケル粒子の少ない個所では、水酸化ニッケル粒子の多い個所に比べて充電反応が早く終了するので、酸素ガスが発生する。この酸素ガスは負極で還元されるが、この還元反応により電池温度が上昇してしまう。
そこで、この態様では、混合粒子のタップ密度を2.3g/cm3以下に設定することで、正極合剤における混合粒子の分布のばらつきを抑制し、正極板の全体に亘って水酸化ニッケル粒子を均一に分布させることで、ハイレート充電時の局所的な酸素ガス発生及びその還元反応に伴なう電池温度の上昇を防止している。
上記した構成の好適な態様として、請求項9の発明では、前記正極板の金属体の骨格は、前記正極板の外面側に比べて内面側で太くなるよう形成されていることを特徴としている。
電極群においては、正極板の径方向内面側と負極板の径方向外面側との間の方が、正極板の外面側と負極板の内面側との間よりも、極板間隔が近くなるので、正極板では外面側よりも内面側で電池反応がよく進む。そこで、この態様では、金属体の骨格を外面側よりも内面側で太くして、正極板内面側での導電性を高めてハイレート充電時における正極板内面側での発熱を抑制し、電池温度の上昇を抑制している。
請求項10の発明では、前記負極板は、負極芯体及び負極芯体に保持された負極活物質層からなり、前記負極芯体は、複数の貫通孔を有するシート状の金属導電体からなり、前記負極活物質層は、前記負極芯体の径方向内面を覆う内面層と、前記負極芯体の径方向外面を覆う外面層と、前記負極芯体の貫通孔に充填された充填層とを含み、前記セパレータを介して前記正極板と対向している前記内面層及び外面層の正極対向部分並びに前記充填層に含まれる負極活物質量は、前記負極板に含まれる全体の負極活物質量の75%以上100%以下であることを特徴としている。
上記した構成では、負極板に含まれる全体の負極活物質量に対する、セパレータを介して正極板と対向している内面層及び外面層の正極対向部分並びに充填層に含まれる負極活物質量の割合(以下、負極活物質量対向比という)を、75%以上100%以下に設定することで、電池寿命や放電特性等の電池特性の低下が抑制されている。
負極板には、セパレータを介して一方の面側にしか正極板が配置されていない部分や、いずれの面側にも正極板が配置されていない部分がある。従って、負極芯体の各面を被覆する内面層及び外面層には、セパレータを介して正極板と対向する正極対向部分と対向していない正極非対向部分とがあるけれども、正極非対向部分は、正極対向部分に比べて電池反応への寄与が低い。そこで、上記した構成では、特許文献1の電池においては70%程度であった負極活物質量対向比を75%以上100%以下に設定することで、正極非対向部分に含まれる負極活物質量を制限し、前記正極対向部に含まれる負極活物質量を確保している。その故、上記した構成の円筒型アルカリ蓄電池では、充放電時に、正極板全体で電池反応が均一に進むので、局所的な活物質の早期劣化や、酸素ガス還元反応の遅れによる電池内圧上昇に伴なうアルカリ電解液の漏出が防止され、電池寿命の低下が抑制される。
請求項1の発明では、前記負極板は、前記電極群の巻始め及び巻終わりのそれぞれに対応する端部を有し、前記負極板の巻始め端部側は、前記正極板の径方向外面側で前記電極群の周方向に前記正極板の巻始め端部を超えて延出し、前記負極板の巻始め端部側にて前記セパレータを介して前記正極板と対向していない前記負極活物質層のうち少なくとも前記内面層の正極非対向部分に、前記薄肉非対向部が更に形成されていることを特徴としている。
上記した構成では、負極板の巻始め端部側にてセパレータを介して正極板と対向していない負極活物質層のうち、少なくとも、外面層の正極非対向部分よりも電極群の周方向に長い内面層の正極非対向部分に、薄肉非対向部を更に形成して、正極対向部分に含まれる負極活物質量をより多く確保しているので、電池寿命の低下がより確実に抑制される。
上記した構成の好適な態様として、請求項1の発明では、前記負極芯体における前記貫通孔の開口率は、前記内面層及び外面層の正極対向部分により覆われた領域と前記内面層又は外面層の薄肉非対向部により覆われた領域とで異なることを特徴としている。
この態様では、正極対向部分よりも薄く形成された内面層又は外面層の薄肉非対向部により被覆された負極芯体の領域にて貫通孔の開口率を変化させることで、負極板の薄い部分で負極芯体を補強し、もって巻回時に負極板の薄くした部分で負極芯体にひび割れや破断が発生するのを防止している。その故、この円筒型アルカリ蓄電池は、負極板の薄い部分のひび割れや破断による内部抵抗の増大、それに基づく充放電時の発熱、あるいは、ひび割れや破断した箇所がセパレータを突き破って正極板と接触して生じる短絡が防止されている。
上記した構成の好適な態様として、請求項1の発明では、前記正極板の体積に対して前記負極板の体積が65%以下であることを特徴としている。
この態様によれば、正極板の体積に対して負極板の体積を65%以下に設定して、効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。
なお、この負極板の体積とは、電池Aを解体して負極板を取り出して乾燥させた後、マイクロメータで負極板長手方向に複数個所で厚みを測定するとともに、長さ及び幅を定規等を用いて測定し、これらの値から算出された体積をいう。
上記した構成の好適な態様として、請求項1の発明では、0.2C容量で前記アルカリ電解液の体積を除した容量液比が0.85ml/Ah以下であることを特徴としている。
体積エネルギー密度が340Wh/l以上となるよう正極板を厚くした場合、負極板、セパレータ及びアルカリ電解液の体積が減少するとともに、これらの体積と正極板の体積とを除いた電池内の余剰空間が減少する。電池寿命を確保すべく、アルカリ電解液をもともと小さくなっている余剰空間にまで注液した場合、正極板で発生した酸素ガスを一時的に貯めておく空間がなくなるので、充電時、正極板で酸素ガスが発生するとすぐに内圧が上昇して安全弁が作動してアルカリ電解液が外部に漏出してしまう。そこで、この態様では、容量液比を0.85ml/Ah以下に設定して、安全弁作動によるアルカリ電解液の外部に漏出しを防止している。
上記した構成の好適な態様として、請求項1の発明では、前記電極群は巻芯を用いて巻回され、前記巻芯の外径は、前記外装缶の外径の30%以下であることを特徴としている。
この態様では、電極群の巻回に用いられる巻芯の外径が外装缶の外径の30%以下なので、電池寿命の低下がより確実に防止されている。
外装缶の外径に対する巻芯の外径の比率が30%を超えると、電極群の中心軸近傍に存在する空洞が大きくなり、充電時、正極板で発生した酸素ガスがこの空洞内にたまりやすくなり、負極板での酸素ガス還元反応に遅れが生じる。酸素ガス還元反応が遅れると内圧が上昇し、安全弁が作動してアルカリ電解液が漏出して電池寿命が低下してしまう。そこで、この態様では、正極板、負極板及びセパレータ等を外装缶内に収容するにあたり、外装缶の外径に対して30%以下の外径を有する巻芯を用いて電極群を巻回し、電極群の中心軸近傍の空洞を小さくする一方、空洞を小さくした分だけ酸素ガスを一時的に蓄える空間を電池内部に分散させることで、負極板の全体で酸素ガス還元反応を効率的に進行させて酸素ガス還元反応の遅れを防止している。その故、この態様では、内圧上昇に伴なう安全弁の作動によるアルカリ電解液の漏出が防止され、電池寿命の低下がより確実に防止される。
また、上記した構成の好適な態様として、請求項1の発明では、前記電極群の一端と前記外装缶の蓋体との間に配置され、前記正極板の一方の面に溶接された端部及び前記電極群と前記蓋体との間で折曲された折曲部を有する帯状の正極リードを備え、前記電極群は前記巻芯形状に対応した空洞部を有し、横断面でみたときに、前記空洞部の断面積を差し引いた前記電極群の断面積を、前記外装缶の内側の断面積から前記電極群の空洞部の断面積を差し引いた値で除した値の百分率(以下、電極群断面積比率という)が90%以上100%以下であることを特徴としている。
この態様によれば、電極群断面積比率が90%以上に設定されているので、更に、内部抵抗の増大が防止されている。
電極群断面積比率が低い場合、外装缶の内周壁により径方向両側から電極群に加えられる圧縮力は小さくなるので、電極群における緊縛度が低くなる。緊縛度が低い状態で、正極板の一方の面に溶接された正極リードを折曲げて外装缶の開口内に蓋体を配置した場合、正極リードの端部が溶接された正極板の個所に大きな負荷がかかり、正極板のこの個所で破断が生じて内部抵抗が高くなる。そこで、この態様では、電極群断面積比率を90%以上にすることで、電極群に加えられる圧縮力を大きくして電極群の緊縛度を高め、正極リードの端部が溶接された正極板の個所を、セパレータを介して径方向両側から負極で押圧して挟持し、正極リードの折曲時における正極板のこの個所での変形を防止している。その故、この態様では、正極板の正極リード端部を溶接した個所での破断が防止され、内部抵抗の増大が防止される。
本発明の円筒型アルカリ蓄電池は、340Wh/l以上450Wh/l以下の高い体積エネルギー密度を有するとともに、電池寿命や放電特性等の低下が防止されており、市場価値が極めて高い。
以下に添付の図面を参照して、本発明の一実施形態のAAサイズの円筒型ニッケル水素二次電池(以下、電池A)を詳細に説明する。
図1に示したように、電池Aは一端が開口した有底円筒形状をなす外装缶10を備え、外装缶10は13.5mm以上14.5mm以下の外径Dを有する。外装缶10は導電性を有して負極端子として機能し、外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性の蓋板14が配置され、開口縁をかしめ加工することにより絶縁パッキン12及び蓋板14は開口内に固定されている。
蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に蓋板14の外面上には、弁体18を覆う帽子状の正極端子20が同軸上に固定され、正極端子20は開口端側にて外装缶10から軸線方向に突出している。正極端子20は弁体18を蓋板14に押圧しており、通常時、外装缶10は絶縁パッキン12及び弁体18とともに蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生してその内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、所定の内圧で作動する安全弁を形成している。
ここで、正極端子20の先端から外装缶10の底面までの長さ、すなわち電池Aの高さHは49.2mm以上50.5mm以下の範囲内にあり、電池Aの体積Vbは、外径D及び高さHの円柱体の体積に等しいものとして、次式:
Vb=π(D/2)2×H
により規定される。
外装缶10内には、略円柱状の電極群22が軸線方向を互いに揃えた状態収容され、電極群22はその最外周部が外装缶10の内周壁に直接接触している。電極群22は、正極板24、負極板26及びセパレータ28からなり、セパレータ28を介して正極板24及び負極板26を渦巻状に巻回して形成される。つまり、正極板24と負極板26とはセパレータ28を介して電極群22の径方向に交互に重ね合わされている。電極群22の最外周には負極板26が巻回され、電極群22の最外周部において、負極板26と外装缶10とは互いに電気的に接続されている。
更に外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極板24及び蓋板14に溶接されている。従って、正極端子20と正極板24との間は、正極リード30及び蓋板14を介して電気的に接続されている。より詳しくは、正極リード30は帯状をなし、蓋板14を外装缶10の開口内に配置する時に、電極群22と蓋板14との間にて折り曲げられて収容され、正極リード30の電極群22側の端部は、正極板24の一方の面に面接触した状態で溶接されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。
電極群22は、それぞれ帯状の正極板24、負極板26及びセパレータ28を用意し、これら正極板24及び負極板26を、セパレータ28を介してそれらの一端側から巻芯を用いて渦巻状に巻回して形成される。このため、図2に示したように、正極板24及び負極板26の一端部(巻始め端部)36,38が電極群22の中心軸側に位置付けられる一方、正極板24及び負極板26の他端部(巻終わり端部)40,42が電極群22の外周側に位置付けられている。また、負極板26は、正極板24に比べて長く、負極巻始め端部38側は、電極群22の径方向でみて正極巻始め端部36側よりも内側に巻かれるとともに、負極巻終わり端部42側は、正極巻終わり端部40側よりも外側に巻かれている。そして、負極巻始め端部38は、電極群22の中心軸側を向いた正極板24の内面側で電極群22の周方向に正極巻始め端部36を超えて延出し、一方、負極巻終わり端部42は、電極群22の外周側を向いた正極板24の外面側で、電極群22の周方向に正極巻終わり端部40を超えて延出している。従って、負極板26は、セパレータ28を介して正極板24を長手方向全域に亘って径方向両側から挟んでいる。電極群22の最外周にはセパレータ28は巻回されておらず、負極板26が電極群22の最外周に巻回され、電極群22の最外周部において、負極板26と外装缶10とは互いに電気的に接続されている。なお、巻回後に巻芯は電極群22から引き抜かれるので、電極群22はその中心に、巻芯の形状に対応した空洞部44を有する。ここで、電極群22の横断面積は、図3(a)に斜線で示したように、外装缶10の内側の断面積から、空洞部44の断面積と、電極群22と外装缶10との間に生じた隙間46の断面積とを差し引いた値となるが、この電極群22の横断面積を、外装缶10の内周壁内側の断面積から空洞部44の断面積を差し引いた値、つまり図3(b)に斜線で示した横断面積で除した値の百分率、つまり電極群断面積比率が90%以上100%以下の範囲内に入っていることが好ましい。
セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものをあげることができる。
本実施形態では好適な態様として、図4に示したように、セパレータ28として、正極板24の径方向外面と負極板26の径方向内面との間に介挿された第1セパレータ50と、正極板24の径方向内面と負極板26の径方向外面との間に介挿された第2セパレータ52とが巻回されており、第1セパレータ50と第2セパレータ52とでは、厚み及び長さが互いに異なっており、第1セパレータ50の方が第2セパレータ52よりも厚い。第1セパレータ50の長さに厚みを乗じた値と、第2セパレータ52の厚みに長さを乗じた値とを足し合わせた値を、第1セパレータ50の長さと第2セパレータ52の長さとを足し合わせた値で除して求められる第1及び第2セパレータ50,52の2枚に亘る平均厚み、つまりセパレータ28としての平均厚みは、後述する正極板24の厚みの2.5倍以下に設定されている。
ここで、第1及び第2セパレータ50,52の厚みとは、電池Aを解体してこれら第1及び第2セパレータ50,52を取り出して乾燥させた後、マイクロメータでそれぞれ長手方向に複数個所で厚みを測定して求めた平均厚みのことをいう。また、第1及び第2セパレータ50,52の長さについても、電池Aを解体してこれら第1及び第2セパレータ50,52を取り出して乾燥させた後、定規等を用いて測った長さのことをいう。
なお、セパレータ28としては、正極板24の径方向外面と負極板26の径方向内面との間に介挿された部分と、正極板24の径方向内面と負極板26の径方向外面との間に介挿された部分とが、電極群22の中心軸側で繋がった1枚のセパレータを用いてもよい。
正極板24は、正極板24の体積比率が65%以上となる形状及び寸法を有する。
ここで、正極板24の体積比率とは、セパレータ28を除いた電極群22の軸線方向での長さに、外装缶10の内周壁により囲まれる円柱状の空間の横断面積を乗じて得られる円柱の体積で、正極板24の体積を除した値の百分率である。そして、この正極板24の体積とは、外装缶10内に収容された状態での正極板24の体積であって、正極板24の電極群径方向内面の周方向長さ、つまり巻回前の正極板24の長さにほぼ相当する値と、正極板24の電極群径方向厚み、及び正極板24の電極群軸線方向長さ、つまり巻回前の正極板24の幅にほぼ相当する値を、X線CT装置により撮影した電池の縦断面像及び横断面像上で測定して求め、これら周方向長さ、径方向厚み及び軸線方向長さを互いに乗じて求められる値である。
図5及び図6に展開して示したように、正極板24は、好適な態様として、長手方向に亘って一定の厚みT1を有する正極本体部60を有し、この厚みT1は0.95mm以上に設定されている。正極巻始め端部36及び巻終わり端部40は、正極本体部60の両端に一体に形成され、正極巻始め端部36及び巻終わり端部40は、それぞれ正極本体部60から先端(端面62)に向かって先細り状に形成されている。より詳しくは、正極巻始め端部36及び巻終わり端部40は、正極本体部60との境界である稜64から先端側の径方向外面が傾斜面66として形成され、正極板24の厚みは稜64から先端に向かって一定の変化率で漸減している。この傾斜面66は、後述するように削り落としやプレスによって正極巻始め端部36及び正極巻き終わり端部40の外面に形成されるが、稜64及び稜64の周辺部分には、この形成時に生じたばりが存在することから、稜64は後述する保護部材76でカバーされている。一方、正極板24の径方向内面は、好適な態様として、正極巻始め端部36及び巻終わり端部40と正極本体部60との境界にて面一をなしており、径方向内面の境界には、ばりは存在していない。
なお、正極板24の厚み、つまり正極本体部60の厚みとは、上述したように正極板24が外装缶10内に収容された状態での厚みであって、X線CT装置により撮影した電池の横断面像上で測定して求められる値のことをいう。
ここで、本実施形態では好適な態様として、傾斜面66の傾斜角度θ1を、0°を超えて60°以下の範囲内に設定するとともに、正極本体部60の厚みT1に対する、正極巻始め端部36及び巻終わり端部40の先端における厚みT2の割合を、10%以上70%以下の範囲内に設定し、図6に模式的に示したように、外装缶10内に挿入された電極群22において、正極板24の径方向外面側にセパレータ28を介して沿わされ、稜64で折れ曲がった負極板26の部分の内角θ2を160°以上に保っている。
一方、正極板24は、導電性の正極芯体と、正極芯体に保持された正極合剤とからなり、正極合剤は、正極活物質粒子と、正極板の特性を改善するための種々の添加剤粒子と、これら正極活物質粒子及び添加剤粒子の混合粒子を正極芯体に結着するための結着剤とからなる。
ここで、正極板24の正極合剤に含まれる正極活物質量は、電池Aの体積エネルギー密度が340Wh/l以上450Wh/l以下となるように設定されている。電池Aの体積エネルギー密度とは、電池Aの0.2C容量に作動電圧として1.2Vをかけた値を、上述した電池Aの体積Vbで除して求められる値である。電池Aの0.2C容量とは、JIS C 8708−1997に規定され、周囲温度20±5℃にて、まず、電池Aを0.1C相当の電流量で16時間充電してから、1〜4時間休止した後、0.2C相当の電流量で1.0Vの放電終止電圧まで放電させたときの容量のことをいう。
またここで、本実施形態では好適な態様として、正極活物質粒子及び添加剤粒子の混合粒子においては、JIS K 5101に規定されたタップ法による見掛け密度(以下、単にタップ密度という)が2.1g/cm3以上2.3g/cm3以下の範囲内に入るよう設定されている。なおより詳しくは、タップ密度は、任意量の混合粒子を入れて栓をしたメスシリンダーを、一定の高さから所定回数落下させてから混合粒子の容量及び質量を測定し、得られた質量を容量で除して求められる。従って、同じ質量で比べた場合、タップ密度が高い混合粒子は、タップ密度が低い混合粒子に比べて体積が小さくなる。
なお、正極活物質粒子は、電池Aがニッケル水素二次電池なので水酸化ニッケル粒子であるけれども、水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がコバルト化合物で表面が被覆されていてもよい。また、いずれも特に限定されることはないが、添加剤としては、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。
上記した正極合剤を保持する正極芯体として、本実施形態では好適な態様として、ニッケル製の金属体が用いられ、図7(a)及び(b)に正極合剤を除いて示したように、金属体は3次元網目状の骨格70と、この骨格70によって形成された連通孔72を内部に有する。従って、正極芯体には、この連通孔72に正極合剤が充填される。
ここで、図7(b)は正極板24の径方向内面側における金属体を拡大して示した模式図であり、一方、図7(a)は正極板24の径方向外面側における金属体を拡大して示した模式図である。本実施形態では好適な態様として、金属体の骨格70は、正極板24の厚み方向略中央の位置を境にして、正極板24の外面側よりも内面側の方で太くなっている。
より詳しくは、金属体は、発泡ウレタンにニッケルめっきを施したものを、焙焼、還元処理して作製され、図8(a)及び(b)に示したように、骨格70は内部が中空であって、骨格70のめっき厚みが、正極板24の径方向外面側よりも内面側の方で厚くなっている。換言すれば、骨格70は、外面側よりも内面側でニッケルめっき量(目付量)が大きくなっている。
上記した正極芯体には、連通孔72に所定の充填密度Dにて正極合剤が充填され、本実施形態では好適な態様として、充填密度Dは2.95g/cm3以上に設定されている。ここで、充填密度Dは、正極芯体における連通孔72の単位体積当りに充填された正極合剤の質量であり、以下のようにして求められる。
まず、正極板24の重量Wp及び体積Vpを測定し、それから、正極合剤を正極芯体から除去し、正極芯体の質量Wsを測定する。次いで、正極板24の質量Wpから正極芯体の質量Wsを差し引いて、正極合剤の質量Waを求める一方、正極芯体の重量Wsを正極芯体の材料であるニッケルの真比重ρで除して正極芯体の骨格70の体積Vsを求め、この骨格体積Vsを正極板24の体積Vpから差し引いて正極芯体における連通孔72の体積Vcを求める。そして、正極合剤の質量Waを正極芯体の連通孔体積Vcで除して正極合剤の充填密度Dが求められる。なお、いずれの質量Wp、Ws、Waも乾燥質量であり、正極合剤を正極芯体から除去するには、例えば、超音波洗浄器を用いて正極板24を溶媒中で振動させればよい。
保護部材76は、正極板24と、正極板24の径方向外面に隣接する第1セパレータ50との間に介挿され、正極本体部60と、正極巻始め端部36及び巻終わり端部40との境界をカバーしている。保護部材76は、絶縁性を有し、図9及び図10に展開して示したように、シート状をなして正極板24の稜64全体を被覆可能である。
各保護部材76の寸法は、電極群22を外装缶10内へ挿入した時、稜64及びその周辺部分のばりが保護部材76及び第1セパレータ50を貫通しないよう設定されるけれども、特に限定されることはない。ただし、保護部材76の厚みT3は、10μm以上200μm以下の範囲内に入っていることが好ましく、また、正極板24の長手方向でみた保護部材76の長さL1は、1mm以上30mm以下の範囲内に入っていることが好ましい。1mm未満の場合、稜64を確実にカバーすることが困難となり、また30mmを超えると、電池Aにおける保護部材76の占有体積が大きくなって、体積エネルギー密度の低下をもたらすからである。
また、保護部材76の材質及び形態についても、電極群22を外装缶10内へ挿入した時に、稜64及びその周辺部分のばりが保護部材76及びセパレータ28を貫通しないよう設定されるけれども、特に限定されることはない。ただし、保護部材76の材質としては、耐アルカリ性及び親水性の両方を有するポリオレフィン系のポリマー、例えばPP(ポリプロピレン)が好ましく、また保護部材76の形態は、不織布、シート又はテープが好ましい。
負極板26は、例えば、図11及び図12に展開して示したように、帯状をなす導電性の負極芯体80を有し、この負極芯体80には負極合剤が保持されている。
負極合剤は、電池Aがニッケル水素二次電池であることから、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子及び結着剤からなるが、水素吸蔵合金に代えて、例えばカドミウム化合物を用いて電池Aをニッケルカドミウム二次電池としてもよく、特に限定されないが、電池の高容量化には、ニッケル水素二次電池が好適する。なお、活物質が水素の場合、負極容量は水素吸蔵合金量により規定されるので、本発明では、水素吸蔵合金のことを負極活物質ともいう。
水素吸蔵合金粒子は、電池Aの充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えば、LaNi5やMmNi5(Mmはミッシュメタル)等のAB5型系のものをあげることができる。また、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれあげることができる。
負極芯体80は、一定厚みの金属シートからなり、自身を厚み方向に貫通する貫通孔82が、全面に亘って所定の配置にて形成されている。なお、負極芯体80の材料としては、例えば、パンチングメタル、金属粉末焼結体基板、エキスパンデッドメタル及びニッケルネット等をあげることができる。とりわけ、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板は負極芯体80に好適する。
上記した負極合剤は、負極芯体80の貫通孔82内に充填されるとともに、負極芯体80がシート状であることから、負極芯体80の両面上に層状にして保持されている。以下では、貫通孔82内に充填された負極合剤を充填層84といい、負極芯体80の内面を被覆し、電極群22の中心軸側を向いた負極合剤の層を内面負極活物質層86又は内面層86といい、そして、負極芯体80の外面を被覆し、電極群22の径方向外周側を向いた負極合剤の層を外面活物質層88又は外面層88という。
ここで、図13及び14にセパレータ28及び負極芯体80を省略して模式的に示したように、負極板26には、セパレータ28を介して両側に正極板24が配置されている領域がある一方、負極巻始め端部38側及び負極巻終わり端部42側に、セパレータ28を介して正極板24が配置されていない領域がある。このため、再び図12を参照すれば、内及び外面層86,88には、自身の表面に隣接するセパレータ28を介して正極板24と対向していない正極非対向部90と、自身の表面に隣接するセパレータ28を介して正極板24と対向している正極対向部92とがあり、本実施形態では、内及び外面層86,88の正極非対向部90のほぼ全体が、正極対向部92よりも薄く形成されている。以下では、この薄く形成された正極非向部90のことを薄肉非対向部94という。
より詳しくは、負極板26の負極巻終わり端部42側では、外面層88が負極巻終り端部42から長さXdに亘り薄く形成され、この外面層88の薄肉非対向部94は、電極群22の最外周に巻回されて外装缶10の内周壁と接する一方、内面層86は、正極板24の径方向外面側にて電極群22の周方向に正極巻終わり端部40を超えて延出した負極板26の領域内で、負極巻終り端部42から長さL2に亘り薄く形成され、この内面層86の薄肉非対向部94は、セパレータ28を介して径方向内側の負極板26の部分と対向している。つまり、負極巻終わり端部42側にて、内面層86の薄肉非対向部94の長さL2は、外面層88の薄肉非対向部94の長さXdよりも短い。また、負極巻始め端部38側では、正極板24の径方向内面側にて電極群22の周方向に正極巻終わり端部36を超えて延出した負極板26の領域の外面層88に、長さL3に亘り薄肉非対向部94が形成される一方、正極板24の径方向外面側にて電極群22の周方向に正極巻終わり端部36を超えて延出した負極板26の領域の内面層86に、長さL4に亘り薄肉非対向部94が形成され、この内面層86の薄肉非対向部94の径方向内側には、セパレータ28を介して外面層88の薄肉非対向部94が位置付けられるとともに空洞44が存在している。つまり、負極巻始め端部38側にて、内面層86の薄肉非対向部94の長さL4は、外面層88の薄肉非対向部94の長さL3よりも長い。
かくして、負極板26は、負極巻始め端部38と巻終わり端部42との間に厚み一定の負極本体部96を有し、負極本体部96の長手方向両側、つまり、負極巻始め端部38側及び巻終わり端部42側は、負極本体部96よりも薄肉となっている。これに加えて、負極板26は、好適な態様として、負極本体部96と一定厚みにて薄肉な負極巻終わり端部42側との間に、長手方向でみて厚みが変化する長さL5の負極境界部98を有する。負極境界部98において外面層88の厚みは、負極本体部96から負極巻終わり端部42側に向かって略一定の変化率にて徐々に減少し、厚みT5から厚みT4まで変化する。負極境界部98は、電極群22として巻回されたとき、電極群22の周方向でみて正極巻終わり端部40とは異なる位置に位置付けられていることが好ましく、図13に模式的に示したように、負極巻終わり端部42は、電極群22の周方向に正極巻終わり端部40を超えて延出する長さL6は、2mm以上6mm以下の範囲内に設定されるのが好ましい。ただし、負極境界部98と正極巻終わり端部40との周方向位置は特には限定されず、図15に模式的に示したように、正極巻終わり端部40は、電極群22の周方向に負極境界部98を超えて延出していてもよい。
ここで、好適な態様として正極板24の体積に対する負極板26の体積は、65%以下に設定されている。負極板26の体積とは、電池Aを解体して負極板26を取り出して乾燥させた後、マイクロメータで長手方向に複数個所で厚みを測定するとともに、定規等を用いて測定した長さ及び幅から求められる体積である。
また、好適な態様として、負極板26の平均厚みは、正極本体部60の厚みが負極本体部96の厚みの2.5倍以上となるように設定されている。負極板26の平均厚みとは、負極板26の体積の場合と同様に、電池Aを解体して負極板26を取り出して乾燥させた後、マイクロメータで長手方向に複数個所で厚みを測定して求められる平均厚みのことをいう。
また、負極巻始め端部38側及び巻終わり端部42側における薄肉非対向部94の長さXd,L2,L3,L4及び厚みT4は、互いに異なっていてもよいが、好適な態様として、負極板26の全体に含まれる負極活物質量に対する、内及び外面層86,88の正極対向部92並びに充填層84に含まれる水素吸蔵合金量(負極活物質量)の比率、つまり負極活物質量対向比が、75%以上100%以下となるように設定されている。
また一方では、負極巻始め端部38及び巻終わり端部42における薄肉非対向部94の厚みT4は、正極対向部92の厚みT5の1/2以下に設定することが好ましく、あるいは、薄肉非対向部94の単位面積当りに含まれる水素吸蔵合金量を、正極対向部92の単位面積当りに含まれる水素吸蔵合金量の1/2以下に設定することが好ましい。
なお、内及び外面層86,88における薄肉非対向部94及び正極対向部92の厚みは、負極板26の体積の場合と同様、電池Aを解体して負極板26を取り出して乾燥させた後、マイクロメータで実測される厚みのことをいう。具体的には、内及び外面層86,88における薄肉非対向部94及び正極対向部92の厚みは、乾燥した負極板26の厚みを測定後、薄肉非対向部94又は正極対向部92を掻き落としたものの厚みを測定し、これらの値の差から求められる厚みのことをいう。
また、負極板26の負極芯体80においては、貫通孔82の開口率が、内及び外面層86,88の厚みに応じて異なることが好ましく、具体的には、正極対向部92により覆われた領域と、薄肉非対向部94により覆われた領域及び外面層88の厚みが変化する負極境界部98とで異なることが好ましく、薄肉非対向部94により覆われた領域及び負極境界部98よりも正極対向部92により覆われた領域で開口率が高いことがより好ましい。このような負極芯体80としては、具体的には、図16に示したように単位面積当りの貫通孔82の数を変化させたものをあげることができ、また、図17に示したように各貫通孔82の開口径を変えた負極芯体81を用いてもよい。
上記した電極群22を収容した外装缶10内には、所定量のアルカリ電解液(図示せず)が注液され、セパレータ28に含まれたアルカリ電解液を介して正極板24と負極板26との間での充放電反応が進行する。本実施形態では好適な態様として、アルカリ電解液の外装缶10への注液量、つまり電池Aに含まれるアルカリ電解液の体積Veは、上述した電池Aの0.2C容量に対する比(以下、容量液比という)が、0.85ml/Ah以下となるよう設定されている。
なお、アルカリ電解液の種類としては、特に限定されないけれども、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等をあげることができ、またアルカリ電解液の濃度についても特には限定されず、例えば8Nのものが用いられる。
上述した電池Aは、通常の方法を適用して製造することができるけれども、以下では、正極板24及び負極板26の作製方法及び電極群の巻回方法についてそれぞれ一例を説明する。
正極板24の作製にあたっては、まず、正極芯体としてのニッケル金属体のシート及び正極合剤ペーストを用意する。このとき、上述した厚み方向で目付量が異なるニッケル金属体は、例えば、特開昭63−81767号公報に記載された方法により作製することができる。すなわち、一般にニッケル金属体は、所定厚みのスポンジウレタンに無電解めっき及び電解めっき処理を順次施してニッケルめっきしたものを、焙焼してから還元処理して形成されるが、目付量が異なるニッケル金属体は、電解めっき時のめっき電流量を、スポンジウレタンの両面側で変えることで作製することができる。また、正極合剤ペーストの作製にあたっては、正極活物質粒子及び添加剤粒子の粒径を適当に調整して、混合粒子のタップ密度が2.1g/cm3以上2.3g/cm3以下の範囲内に入るよう調整する。
次に、用意した金属体に正極合剤ペーストを充填して乾燥させ、乾燥状態の正極合剤が充填された金属体を、一対の圧延ロール間のギャップに通してその厚み方向両側から圧縮して厚みを調整した後、所定寸法に裁断する。本実施形態では好適な態様として、この乾燥状態の正極合剤が充填され且つ厚み等の調整された金属体74に対して、後述するレベリング処理を施す。そして、レベリング処理された金属体74に対して、正極巻始め端部36及び正極巻終わり端部40となる箇所を削るか又はプレスして傾斜面66を形成するテーパ処理を施して、正極板24が得られる。
レベリング処理は、例えば、図18に概略構成を示した装置により行われ、このレベリング装置は、金属体74が自身の長手方向に移動する移動経路を有し、金属体74を厚み方向に挟んで移動経路の両側には、移動経路に沿って並べられた3本づつのアッパロール100及びロアロール102が配置されている。アッパロール100とロアロール102とは、金属体74の移動方向に互いに位置が異なるとともに、金属体74の厚み方向でみた中心間距離がアッパ及びロアロール100,102の外径よりも小さい。従って、アッパロール100間にはロアロール102の移動経路側の一部が突出しているとともに、ロアロール102間にはアッパロール100の移動経路側の一部が突出している。そして、アッパ及びロアロール100,102には、それぞれ、環状のゴム製ベルト104,106が架け渡されており、これらベルト104,106はアッパ及びロアロール100,102の突出量に応じて蛇行しながら金属体74の移動方向に延びている。金属体74は、これらベルト104,106に挟まれた状態で移動するけれども、この移動の間、ベルト104,106を介してアッパ及びロアロール100,102によって厚み方向両側から押圧され、アッパ及びロアロール100,102の突出量に応じて厚み方向両側に交互に変位させられる。そして、ベルト104,106間を通過した後は、金属体74は再び平坦となって下流側に向かって移動する。
負極板26の製造にあたっては、まず、負極芯体80となる例えばパンチングメタル及び負極合剤のスラリーを用意し、薄肉非対向部94となる部分には薄く且つ正極対向部92となる部分には厚くなるように、パンチングメタルにスラリーを塗着して乾燥する。次いで、乾燥した負極合剤を保持したパンチングメタルを、一対の圧延ロール間のギャップに通してその厚み方向両側から圧縮する。この圧延時、ロールの押圧力を一定に保ちながらギャップの大きさを可変させて、正極対向部92となる部分に比べて薄肉非対向部94となる部分を薄くする。それから、この圧延したものを所定の寸法に裁断して、帯状の負極板26が製造される。なお、負極境界部98の長さL5は、塗着するスラリーの厚みやロール押圧力の制御等により調整可能である。
電極群22は、円柱状の巻芯110を一定方向に回転させながら、巻芯110に向かって、正極板24、負極板26、第1セパレータ50及び第2セパレータ52を連続的に繰り出して巻回される。ここで、巻芯の外径Pは、特に限定されないが、外装缶10の外径D(図2参照)の0%以上30%以下の範囲内に入っているのが好ましい。
なお、図19中、線の錯綜をさけるため図2の場合と同様に、第1及び第2セパレータ50,52のハッチングを省略するとともに、金属体及び負極芯体80を図示しなかった。
上記した構成の電池Aは、外装缶10の外径が13.5mm以上14.5mm以下に設定されるとともに正極板24の体積比率は48%以上60%以下に設定され、340Wh/l以上450Wh/l以下の高い体積エネルギー密度を有する。
そして、上記した構成の電池Aによれば、好適な態様として正極板24の厚み、つまり正極本体部60の厚みT1を0.95mm以上に設定することで、セパレータ28や負極芯体80の長さの増加を伴なうことなく効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。なお、正極板24の厚みが1.50mmを超えると正極板24の巻回性が低下し、電極群22の巻回時、正極板24に破断が生じて短絡の発生頻度が高くなるので、正極板24の厚みは1.50mm以下に設定されるのが好ましい。
また、電池Aでは、好適な態様として、正極板24における金属体への正極合剤の充填密度Dが2.95g/cm3以上に設定されているので、充放電を繰り返す間、正極板24がアルカリ電解液を吸収して膨化しづらく、電池反応に寄与するアルカリ電解液量が確保され、電池寿命の低下が抑制されている。
更に、電池Aでは、好適な態様として正極板24の厚みが、負極板26の平均厚みに対して2.5倍以上に設定されているので、効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。
そして、電池Aでは、好適な態様として、正極板24の厚みをセパレータの平均厚みの9倍以上に設定することで、効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。なお、体積エネルギー密度が450Wh/lを超えると、電池寿命の低下を抑制することが難しくなるので、体積エネルギー密度は450Wh/l以下に設定するのが好ましい。
また、電池Aでは、好適な態様として、正極巻始め端部及び巻終わり端部36,40のうち少なくとも一方を、負極本体部96に比べて薄く形成したので、横断面でみたときに正極板24及び負極板26がきれいな渦巻状に巻回される。このため、長手方向でみてこれら極板間隔が一定になっており、充電時、正極板24において局所的に充電反応が終了して酸素ガスが発生することが抑制される。この結果、電池Aでは、安全弁作動によるアルカリ電解液の外部への漏出が防止され、電池寿命の低下が抑制される。これに加えて、正極板24がきれいに渦巻状に巻回されると、たとえ正極本体部60が0.95mm以上の厚みT1を有していても、巻回時に正極本体部60に破断が生じづらいので、短絡の発生も防止される。なお、正極巻始め端部及び巻終わり端部36,40の両方を薄肉に形成すれば、一方のみを薄肉に形成した場合よりも正極板24及び負極板26がきれいな渦巻状に巻回されるのでより好ましい。
そして、電池Aでは、好適な態様として、正極板24にレベリング処理を施したので、短絡の発生がより確実に防止されている。
レベリング処理を施すと(図21参照)、移動経路を上流側から下流側に向かって進行中、厚み方向に変位させられた金属体74にはクラックが生じる。このクラックの部分で破断して刺状になった骨格70は、金属体74の両面からベルト100,102に向かって突出するが、ベルト100,102によって、金属体74の厚み方向両側から押圧される。このときベルト100,102は、ゴム等の弾性体からなるので、突出した刺状の骨格70の1本1本ずつを確実にとらえて金属体74の両面に沿うようねかせるか又は面内に押し込み、金属体74の両面は、クラックの存在にもかかわらず滑らかとなる。かくして、一部で骨格70が破断しているけれども両面が滑らかとなった正極板24を用いて電極群22を巻回した時、既に破断している骨格70が正極板24の径方向内面及び外面から突出しないのは勿論、既にクラックを内包していることから正極板24に新たにクラックが生じることも防止される。その故、電池Aでは、刺状の骨格が正極板24の径方向内面及び外面から突出してセパレータを突き破ることが防止され、この結果、短絡が防止される。
また、電池Aでは、好適な態様として、正極本体部60が0.95mm以上の厚みT1を有しているけれども、正極巻始め端部及び巻終わり端部36,40のうち少なくとも一方を、正極本体部60に比べて薄く形成したので、負極巻始め端部及び巻終わり端部38,42が、正極板24の径方向外面側にて電極群22の周方向に正極板巻始め端部及び巻終わり端部36,40を超えて延出してたとしても、負極容量低下や内部抵抗の増大が防止される。
正極板24を正極巻始め端部36にて薄肉に形成した場合、正極巻始め端部36の先端における正極板24の厚みが薄くなるので、電極群22の周方向でみて正極巻始め端面62の前方にて、正極巻始め端面62と、正極板24の径方向内面側及び外面側からそれぞれ正極巻始め端面62を超えて延出したセパレータ28の部分とによって区画される隙間が小さくなる。その故、電池Aの初期充放電後、この隙間に対してセパレータ28を介して電極群22の径方向外側に位置付けられた負極板26の部分が、図6中矢線67で示したように、この隙間を縮小するように正極巻始め端面62に向かって折れ曲がったとしても、この折れ曲がりが小さいことから、この折れ曲がった負極板26の部分で負極芯体80から負極合剤が剥離するのが防止され、もって、負極容量低下が防止されている。
一方、正極板24を正極巻終り端部40にて薄肉に形成した場合、セパレータ28を介して正極巻終わり端部40の外面に重ね合わされた負極板26の部分は、正極巻終り端部40の外面側エッジよりもむしろ、正極本体部60と正極巻終わり端部40との境界で折り曲げられる。このように正極板24の境界で負極板26が折れ曲がった場合、正極巻終り端部40を薄肉に形成せずに正極巻終り端部40の外面側エッジで負極板26が折れ曲がった場合に比べて負極板26の折れ曲がりが小さく、また、負極板26の折れ曲がった部分の電極群22の径方向外側への突出量も小さいので、折れ曲がった負極板26の部分と電極群22の巻回装置や外装缶10との摺動が抑制される。その故、この電池Aは、セパレータ28を介して正極板24の境界に重ね合わされた負極板26の部分で負極芯体80が破断して内部抵抗が増大したり、あるいはこの部分から負極合剤が剥離して容量が低下することが防止されている。
なお、正極巻始め端部及び巻終わり端部36,40の径方向外面を傾斜面66として先細り状に形成し、傾斜面66の傾斜角度θ1を、0°を超えて60°以下の範囲内に設定するとともに、正極本体部60の厚みT1に対する、正極巻始め端部36及び巻終わり端部40の先端における厚みT2の割合を、0%以上70%以下の範囲内に設定すれば、図6に模式的に示したように、外装缶10内に挿入された電極群22において、正極板24の径方向外面側にセパレータ28を介して沿わされ、稜64で折れ曲がった負極板26の部分の内角θ2を160°以上に保つことができ、この負極板26の部分から負極合剤が剥離して容量が低下することをより確実に防止することができる。
また、電池Aでは、正極巻始め端部及び巻終わり端部36,40を薄肉に形成したときに、径方向内面の端縁から垂直に立ち上がる正極巻始め端面及び巻終わり端面62を残存させているので、正極巻始め端部及び巻終わり端部の先端を尖らせた場合に比べ、正極巻始め端部及び巻終わり端部36,40から正極合剤が脱落しづらい。その故、電池Aでは、電池組立て工程で正極板24を取り扱う時に、正極巻始め端部及び巻終わり端部36,40から正極合剤が不所望に脱落することが防止され、もって電池容量の低下が防止されている。従って、正極本体部60の厚みT1に対する、正極巻始め端部36及び巻終わり端部40の先端における厚みT2の割合を、5%以上70%以下の範囲内に設定することがより好ましい。
また、電池Aでは、電極群22の外装缶10への挿入時、薄肉化された正極巻始め端部及び巻終わり端部36,40と正極本体部60との間の境界には径方向(厚み方向)に大きな押圧力が加えられるが、境界と正極板24の径方向外面側に位置付けられたセパレータ28との間には保護部材76が介装されているので、稜64のばりがセパレータ28を突き破って負極板26と接触し、短絡するのが防止されている。また電極群22の外装缶10への挿入時、稜64とは反対側にて正極板24の径方向内面の部分に加わる厚み方向の押圧力も大きいが、この径方向内面の部分は面一をなして平坦であるため、セパレータ28を突き破って負極板26と短絡することはない。従って、この電池Aは、正極巻始め端部及び巻終わり端部36,40における正極板24の径方向両面側にて正極板24と負極板26との接触が防止され、もって短絡が防止されている。
そして、電池Aでは、正極活物質としての水酸化ニッケル粒子及び添加剤粒子を含む混合粒子のタップ密度が2.1g/cm3以上なので、正極活物質密度が高く、高容量化に好適する一方、短絡の発生や過充電特性の低下が防止されている。
説明を簡単にするため、例えば、容量及び体積が互いに等しい2つの正極板を作製したときに、これら正極板間で混合粒子のタップ密度を変化させた場合を考える。この場合、タップ密度が低い混合粒子を含む正極板の方が、金属体へ充填される正極合剤の体積が大きくなる。従って、タップ密度が低くなると、金属体の連通孔に占める正極合剤の体積割合が大きくなって、金属体における残余空間が小さくなる。このため、タップ密度が低すぎると、過充電時に正極で酸素ガスが発生すると、すぐに内圧が上昇して安全弁が作動し、酸素ガスとともにアルカリ電解液が電池外部へ漏出する。かくしてタップ密度が低すぎると、電池質量が減少し、過充電特性が低下する。
そこで、電池Aでは、好適な態様として、混合粒子のタップ密度を2.1g/cm3以上に設定することで、金属体の連通孔72に占める正極合剤の体積割合を制限して金属体における残余空間を確保し、この残余空間にアルカリ電解液を保持させることで過充電時のセパレータにおけるガス透過性を向上させ、早期の内圧上昇を防止して安全弁作動によるアルカリ電解液の漏出し、つまり、過充電特性の低下を防止している。
その上、電池Aでは、好適な態様として、混合粒子のタップ密度を2.3g/cm3以下に設定しているので、ハイレート充電特性の低下が防止されている。
タップ密度が2.3g/cm3を超えて高くなると、正極合剤における混合粒子、つまり水酸化ニッケル粒子の分布にばらつきが生じ、ハイレート充電時に、正極板における水酸化ニッケル粒子の少ない個所では、水酸化ニッケル粒子の多い個所に比べて充電反応が早く終了するので、酸素ガスが発生する。この酸素ガスは負極板で還元されるが、この還元反応により電池温度が上昇してしまう。
そこで、電池Aでは、混合粒子のタップ密度を2.3g/cm3以下に設定することで、正極合剤における混合粒子の分布のばらつきを抑制し、正極板24の全体に亘って水酸化ニッケル粒子を均一に分布させることで、ハイレート充電時の局所的な酸素ガス発生及びその還元反応に伴なう電池温度の上昇を防止している。
また、電池Aでは、好適な態様として、正極板24の金属体の骨格70を、正極板24の径方向外面側に比べて径方向内面側で太くなるよう形成して、ハイレート充電時の局所的な酸素ガス発生及びその還元反応に伴なう電池温度の上昇を防止している。
電極群22においては、正極板24の径方向内面側と負極板26の径方向外面側との間の方が、正極板24の外面側と負極板26の内面側との間よりも、極板間隔が近くなるので、正極板24では外面側よりも内面側で電池反応がよく進む。そこで、電池Aでは、金属体の骨格70を外面側よりも内面側で太くして、正極板24の内面側での導電性を高めてハイレート充電時における正極板24の内面側での発熱を抑制し、電池温度の上昇を抑制している。なお、径方向外面側の骨格70の太さに対して、径方向内面側の骨格70の太さは、0.4〜0.8倍であることがより好ましい。
そして、電池Aでは好適な態様として、負極活物質量対向比を75%以上100%以下に設定することで、電池寿命や放電特性等の電池特性の低下が抑制されている。
負極板26には、セパレータ28を介して一方の面側にしか正極板24が配置されていない部分や、いずれの面側にも正極板24が配置されていない部分がある。従って、負極芯体80の各面を被覆する内面層86及び外面層88には、セパレータを介して正極板24と対向する正極対向部92と対向していない正極非対向部90とがあるけれども、正極非対向部90は、正極対向部92に比べて電池反応への寄与が低い。そこで、電池Aでは、特許文献1の電池においては70%程度であった負極活物質量対向比を75%以上100%以下に設定することで、正極非対向部90に含まれる負極活物質量を制限し、正極対向部92に含まれる負極活物質量を確保している。その故、電池Aでは、充放電時に、正極板24全体で電池反応が均一に進むので、局所的な活物質の早期劣化や、酸素ガス還元反応の遅れによる電池内圧上昇に伴なうアルカリ電解液の漏出が防止され、電池寿命の低下が抑制される。
また、電池Aでは、好適な態様として、電極群22の最外周部にてセパレータ28を介して正極板24と対向していない負極活物質層のうち少なくとも外面層88の正極非対向部90に、セパレータ28を介して正極板24と対向している内面層86及び外面層88の正極対向部92の厚みに対して1/2以下の厚みの薄肉非対向部94を形成することで、電池寿命の低下が抑制されている。
電極群22の最外周部にてセパレータ28を介して正極板24と対向していない負極活物質層の正極非対向部90は、正極対向部92に比べて電池反応への寄与が低い。そこで、電池Aでは、電極群22の最外周部にて負極板26の体積を減少させるのに際し、負極活物質層のうち、少なくとも、内面層86の正極非対向部90よりも電極群22の周方向に長い外面層88の正極非対向部90に薄肉非対向部94を形成して、正極対向部92に含まれる負極活物質量を確保している。その故、電池Aでは、充放電時に、正極板24全体で電池反応が均一に進むので、局所的な活物質の早期劣化や、酸素ガス還元反応の遅れによる電池内圧上昇に伴なうアルカリ電解液の漏出が防止され、電池寿命の低下が抑制される。
また、電池Aにおいて、好適な態様として、負極巻始め端部38側にてセパレータ28を介して正極板24と対向していない負極活物質層のうち、少なくとも、外面層88の正極非対向部90よりも電極群22の周方向に長い内面層86の正極非対向部90に、薄肉非対向部94を更に形成して、正極対向部92に含まれる負極活物質量をより多く確保しているので、電池寿命の低下がより確実に抑制される。
なお、電池Aでは、好適な態様として、薄肉非対向部94の厚みを正極対向部92の厚みの1/2以下に設定しているけれども、薄肉非対向部94の厚みを0mmにした場合、つまり、負極芯体80が露出している場合、この露出部分の存在により酸素ガス還元反応に遅れが生じて電池寿命の低下を招くので、正極非対向90であっても、負極芯体80を露出させないことが好ましい。
そして、電池Aでは、好適な態様として、負極境界部98と正極巻終わり端部40とを、電極群22の周方向に異なる位置に配置しているので、負極境界部98でのひび割れや破断の発生、それに伴う内部抵抗の増大又は短絡の発生が防止されている。
負極境界部98は外面層88の厚みが変化しているので強度が低い一方、正極巻終わり端部40と電極群22の中心軸とを結ぶ方向で外装缶10の内周壁により電極群22は最も強く押圧される。このため、負極境界部98にセパレータ28を介して正極巻終わり端部40が重なり合うと、正極巻終わり端部40によって押圧されて負極境界部98にひび割れや破断が発生するおそれがある。そこで、電池Aでは、好適な態様として、負極境界部98と正極巻終わり端部40とを、電極群22の周方向に異なる位置に配置して、負極境界部98でのひび割れや破断の発生、それに伴う内部抵抗の増大又は短絡の発生を防止している。なお、この場合、電極群22の周方向に正極巻終わり端部40よりも負極境界部98が引込んでいると、負極境界部98に隣接する薄肉非対向部94にセパレータ28を介して正極板24が対向してしまうので(図15参照)、電極群22の周方向に、正極巻終わり端部40を超えて2mm以上6mm以下の長さL6だけ負極境界部98を延出させるのがより好ましい(図13参照)。2mm未満の場合、巻回時の誤差により負極境界部98にセパレータ28を介して正極巻終わり端部40が重なり合うおそれがあり、また6mmを超えると、負極本体部96の外面層88にセパレータを介して正極板24と対向していない領域が多く存在するようになるからである。
また電池Aでは、好適な態様として、内及び外面層86,88の厚みに応じて、貫通孔82の開口率を変化させることで、負極板26の薄い部分で負極芯体80を補強し、もって巻回時に負極板26の薄くした部分で負極芯体80にひび割れや破断が発生するのを防止している。その故、電池Aでは、負極板26の薄い部分のひび割れや破断による内部抵抗の増大、それに基づく充放電時の発熱、あるいは、ひび割れや破断した箇所がセパレータを突き破って正極板24と接触して生じる短絡が防止されている。
更に、電池Aによれば、好適な態様として、正極板24の体積に対して負極板26の体積を65%以下に設定しているので、効率的に正極活物質量を増大し、340Wh/l以上の体積エネルギー密度を達成している。
そして、電池Aでは、好適な態様として、容量液比を0.85ml/Ah以下に設定して、漏液防止性の低下を抑制している。
体積エネルギー密度が340Wh/l以上の体積エネルギー密度を有する電池Aでは、負極板、セパレータ及びアルカリ電解液の体積が減少するとともに、これらの体積と正極板の体積とを除いた電池内の余剰空間が減少する。電池寿命を確保すべく、アルカリ電解液をこの小さくなった余剰空間にまで注液した場合、正極板で発生した酸素ガスを一時的に貯めておく空間がなくなるので、充電時、正極板で酸素ガスが発生するとすぐに内圧が上昇して安全弁が作動してアルカリ電解液が外部に漏出してしまう。そこで、電池Aでは、容量液比を0.85ml/Ah以下に設定して、電池内の状空間を確保し、安全弁作動によるアルカリ電解液の外部に漏出しを防止している。
また、電池Aでは、好適な態様として、前記電極群を、前記外装缶の外径と比べて30%以下の外径を有する巻芯を用いて巻回して、安全弁作動によるアルカリ電解液の外部に漏出しを防止している。
外装缶10の外径Dに対する巻芯の外径の比率が30%を超えると、電極群の中心軸近傍に存在するの空洞が大きくなり、充電時、正極板で発生した酸素ガスが空洞にたまりやすくなり、負極板での還元反応に遅れが生じる。そこで、電池Aでは、正極板24,負極板26及びセパレータ28等を外装缶10内に収容するにあたり、外装缶10の外径Dに対する外径の比率が30%以下の巻芯110を用いて電極群22を巻回し、電極群22の空洞44を小さくする一方、空洞44を小さくした分だけ酸素ガスを一時的に蓄える空間を電池内部に均一に分散させて、酸素ガス還元反応の遅れを防止し、もって内圧上昇による安全弁の作動を防止している。
そして、電池Aでは、電極群断面積比率が90%以上に設定されているので、更に、内部抵抗の増大が防止されている。
電極群断面積比率が低い場合、外装缶10の内周壁により径方向両側から電極群22に加えられる圧縮力は小さくなるので、電極群22における緊縛度が低くなる。緊縛度が低い状態で、正極板24の一方の面に端部が溶接された正極リード30を折曲げて外装缶10の開口内に蓋板14を配置した場合、正極リード30の端部が溶接された正極板24の個所に大きな負荷がかかり、正極板24のこの個所で破断が生じて内部抵抗が高くなる。そこで、電池Aでは、電極群断面積比率を90%以上にすることで、電極群22に加えられる圧縮力を大きくして電極群22の緊縛度を高め、正極リード30の端部が溶接された正極板24の個所を、セパレータ28を介して径方向両側から負極板26で押圧して挟持し、正極リード30の折曲時における正極板24のこの個所での変形を防止している。その故、電池Aでは、正極板24の正極リード端部30を溶接した個所での破断が防止され、内部抵抗の増大が防止される。
本発明は、上記した一実施形態に限定されることはなく、種々変形が可能であって、例えば、安全弁には弾性体として圧縮コイルばねを用いてもよい。
そして、正極板24は、正極巻始め端部36及び巻終わり端部40の両方にて先細り状に形成されていることが好ましいが、どちらか一方のみであってもよく、或いは正極巻始め端部36及び巻終わり端部40を含む長手方向全体に亘って厚みが一定であってもよい。
また、正極板24に代えて、図20及び21に示した正極板25を用いてもよい。正極板25は、径方向外面側にて、正極本体部60と正極巻始め端部36及び巻終わり端部40との境界に段差面67が形成され、正極巻始め端部36及び巻終わり端部40が厚み一定にして正極本体部60よりも薄く形成されているととともに、この境界で正極板24の径方向内面が面一に形成されている。
また、正極板24のレベリング処理方法及びその装置についても特に限定されることはなく、図18に示した装置に代えて、図22に示した装置を用いてもよい。この装置では、外周がゴム製カバー120で覆われた大ロール122が金属体74の移動経路の両側に1つずつ配置されている。これら大ロール122, 122は、金属体74の移動方向で異なる位置に配置されるとともに、金属体74の厚み方向でも異なる位置に配置され、そして、厚み方向での大ロール122,122間の中心間距離は、これら大ロール122,122の外径よりも小さい。各大ロール78には、所定幅のギャップを存してガイドロール124が隣接して配置され、このギャップの厚み方向位置は、移動方向上流側の大ロール122と下流側の大ロール122とで異なっている。従って、ギャップの厚み方向位置の差に対応して、移動経路を移動する金属体74には、カバー120を介して大ロール122によって厚み方向両側から厚み方向の変位が加えられる。そして変位が加えられた金属体74は、再び平坦となって下流側へと向かって移動する。
実施例1〜5、比較例1
1.正極板の作製
まず、以下のようにして正極活物質を作製した。
硫酸コバルト13.1gの水溶液1リットルに、亜鉛:2.5重量%、コバルト:1重量%が固溶した水酸化ニッケル粉末を入れ、これを攪拌しながら1Mの水酸化ナトリウム水溶液を徐々に滴下し、反応中pHを11に保持することによって、水酸化ニッケル粒子を核とし、その表面に水酸化コバルトの被覆層が形成された粒状物を作製した。この粒状物を分取して洗浄、乾燥させ、そして、ビーカ中で攪拌しながら、25重量%の水酸化ナトリウム水溶液を重量比で10倍量加えて含浸させ、8時間、攪拌しながら空気中、85℃で加熱処理(アルカリ熱処理)した。このアルカリ熱処理により、被覆層の水酸化コバルトはナトリウムを含有するとともに、一部が高次化される。それから、アルカリ熱処理した粒状物を分取、水洗および脱水して65℃で乾燥することによって、亜鉛及びコバルトが固溶した水酸化ニッケル粒子を核とし、1重量%のナトリウムを含有し且つ一部高次化された水酸化コバルトの被覆層で表面が覆われた複合粒子を活物質として作製した。
次に、得られた正極活物質粉末97重量部に、添加剤を3重量部混合し、そこに結着剤としてのセルメチルロースを0.2重量%含む水溶液を50重量部添加して混合し、正極合剤スラリーとした。ここで、正極活物質粒子及び添加剤粒子の粒径を変化させて、各実施例及び比較例における正極活物質粒子及び添加剤粒子からなる混合粒子のタップ密度を調整した。
それから、実施例1〜4では、正極合剤スラリーを、厚み方向両側で骨格太さの異なる多孔度95%のニッケル金属体に充填して乾燥させた後、乾燥状態の正極合剤が充填されたニッケル金属体を圧延した。それから、この圧延したニッケル金属体に対して、所定寸法に切断してからレベリング処理を施した後、正極巻始め端部36及び正極巻終わり端部40を削って傾斜面66を形成し、図5に示した正極板24を作製した。
一方、比較例1については、正極合剤スラリーを、厚み方向両側で骨格太さが同じ多孔度95%のニッケル金属体に充填して乾燥された後、乾燥状態の正極合剤が充填されたニッケル金属体を圧延した。そして、この圧延したニッケル金属体をそのまま所定の寸法に切断し、厚み一定の正極板を作製した。
なお、正極合剤スラリー充填前において異なる厚みを有するニッケル金属体を用いるとともに圧延後の正極板の厚みを変化させて、各実施例及び比較例において正極板の容量及び金属体への正極合剤の充填密度Dを調整した。
2.負極の作製
まず、市販の金属元素をMm1.0Ni3.7Co0.8Al0.3Mn0.2となるように秤量して混合したものを高周波溶解炉にて溶解し、この溶湯を鋳型に流し込んで水素吸蔵合金インゴットを作製した。そして、このインゴットを予め粗粉砕してから、不活性ガス雰囲気中で平均粒径が50μm程度になるまで機械的に粉砕を行った。
次に、得られた水素吸蔵合金粉末に、結着剤としてのポリエチレンオキサイド等、および、適量の水を加えて混合して負極合剤スラリーを作製し、この負極合剤スラリーをパンチングメタルからなる負極芯体の両面に塗着して乾燥させた。そして、乾燥した負極合剤が両面に保持されたパンチングメタルを、一定の押圧力にて圧延した後、所定の寸法に切断して負極板を作製した。
ここで、実施例1及び2については、負極巻終わり端部42側の外面層88にて正極非対向部90となる部分のほとんどを、負極合剤スラリーを薄く塗着して薄肉非対向部94として形成し、また、実施例3〜5では、負極巻始め端部38及び巻終わり端部42の内及び外面層86,88にて正極非対向部90となる部分のほどんとを薄肉非対向94として形成した。一方、比較例1については、負極巻始め端部38から巻終わり端部42に亘って厚み一定の負極板を作成した。
なお、実施例1〜5の負極芯体80としては、薄肉非対向部94及び負極境界部98を形成する領域での単位体積当りの貫通孔82の数が、負極本体部96を形成する領域での単位体積当りの貫通孔82の開口面積の数の0.5倍となっているパンチングメタルを用いた。比較例1については、全面に亘り単位面積当りの貫通孔82の数が一定なパンチングメタルを用いた。
3.電池の組立て
得られた正極板及び負極板を、ポリオレフィン系不織布の第1及び第2セパレータを介して渦巻状に巻回して電極群を作製し、表1に示した外径Dを有するAAサイズの外装缶にこの電極群を挿入した。そして、LiOHおよびNaOHを含有した8NのKOH水溶液を表1に示した容量液比となるように外装缶内に注液し、図1に示した安全弁の構造を有するAAサイズのニッケル水素二次電池を、各実施例及び比較例につき100個ずつ作製した。なお、表1には、正極板の体積比率、正極板の厚み、正極芯体である金属体における径方向内面側の骨格太さに対する外面側の骨格太さの比、負極板の平均厚みに対する正極板の厚みの比、セパレータの平均厚みに対する正極板の厚みの比、および、正極板の体積に対する負極板の体積の比率も示した。
4.電池評価試験
(1)0.2C容量の測定
JIS C 8708−1997に規定されているように、周囲温度20±5℃にて、実施例1〜5及び比較例1の電池を0.1C相当の電流量で16時間充電してから、1〜4時間休止した後、0.2C相当の電流量で1.0Vの放電終止電圧まで放電させたときの容量(0.2C容量)を測定した。そして、この0.2C容量に作動電圧として1.2Vを乗じてから電池の体積で除して体積エネルギー密度を求め、これらの結果を表1に示した。なお、これらの結果は100個の平均値である。
(2)電池寿命の評価
実施例1〜5、比較例1の各電池について、まず初充放電を施し、電池質量を測定した。次に、これらの各電池に、1C相当の電流量で−ΔV充電した後に1時間の休止をおき、1C相当の電流量で電池電圧が1.0Vに達するまで放電する充放電を1サイクルとして、この充放電を200サイクル行なった。そして、200サイクル目の放電後に、電池質量を測定し、200サイクル前後での電池質量(電解液)の減少量(mg)を求めた。得られた各実施例及び比較例の減少量を逆数にし、これら減少量の逆数を、比較例1の減少量の逆数を100とした指数にて表1に示した。なお、減少量は、それぞれ100個の平均値である。
Figure 0004359100
表1から明らかなように、比較例1の体積エネルギー密度が330Wh/lであるのに比べ、実施例1〜5では、体積エネルギー密度が360Wh/l〜447Wh/lとなっており、体積エネルギー密度が明らかに高い。一方、電池寿命については、実施例1は比較例1と同等の電池寿命を有し、最も体積エネルギー密度が高い実施例5であっても、電池寿命の低下は25程度であり、電池寿命の低下が抑制されていることがわかる。
本発明の実施形態に係る円筒型ニッケル水素二次電池の部分切欠き斜視図である。 図1の電池の横断面を示した概略図である。 図1の電池における(a)電極群の横断面積を示した模式図、および(b)外装缶の内側の断面積から電極群の空洞部の断面積を差し引いた横断面積を示した模式図である。 図1の電池において電極群に巻回された正極板、負極板、第1セパレータ及び第2セパレータの一部を拡大して示した模式図である。 図1の電池に用いられる正極板を展開して示した斜視図である。 図5の正極板の側面図に、電極群において、正極巻始め端部及び巻終わり端部近傍で折れ曲がる負極板を模式的に示した、負極板の折れ曲がりの説明図である。 (a)は図4中、領域VII(a)における正極板の金属体を拡大して示した模式図であり、(b)は図4中領域VII(b)における正極板の金属体を拡大して示した模式図である。 (a)は、図7(a)中、VIII(a)−VIII(a)線に沿う金属体の骨格の断面を示した模式図であり、(b)は、図7(b)中、VIII(b)−VIII(b)線に沿う金属体の骨格の断面を示した模式図である。 図5の正極板の一部と保護部材とを展開して示した斜視図である。 図9の正極板と保護部材とを重ね合わせて示した側面図である。 図1の電池に用いられる負極板を展開して示した斜視図である。 図11中、XII−XII線に沿う断面図である。 正極巻終わり端部と負極巻終わり端部及び負極境界部との電極群周方向の位置関係を説明するための電極群の模式図である。 正極巻始め端部と負極巻始め端部との電極群周方向の位置関係を説明するための電極群の模式図である。 正極巻終わり端部と負極巻終わり端部及び負極境界部との電極群周方向の位置関係を説明するための電極群の模式図である。 図3の負極板に用いられる負極芯体を展開して示した平面図である。 図3の負極板に用いられる他の負極芯体を展開して示した平面図である。 図5の正極板の作製に好適なレベリング装置の概略構成図である。 図1の電池に用いられる電極群の巻回方法の説明図である。 図1の電池に用いられる他の正極板の一部を保護部材とともに展開して示した斜視図である。 図20の正極板と保護部材とを重ね合わせて示した側面図である。 図5の正極板の作製に好適な他のレベリング装置の概略構成図である。
符号の説明
10 外装缶
22 電極群
24 正極板
26 負極板
28 セパレータ
D 外装缶の外径

Claims (16)

  1. 導電性の円筒状外装缶と、
    前記外装缶内にアルカリ電解液とともに収容され、帯状の負極芯体及びこの負極芯体に保持された負極活物質層を含む負極板並びに正極板をセパレータを介して前記負極板が最外周に位置付けられるように渦巻状に巻回してなり、前記最外周部の負極板が前記外装缶の内周壁に接している電極群と
    を備えた円筒型アルカリ蓄電池において、
    340Wh/l以上450Wh/l以下の体積エネルギー密度を有し、
    前記外装缶の外径は13.5mm以上14.5mm以下であり、
    前記正極板の体積比率は48%以上60%以下であり、
    前記負極板は、負極芯体及び負極芯体に保持された負極活物質層からなり、
    前記負極芯体は、複数の貫通孔を有するシート状の金属導電体からなり、
    前記負極活物質層は、
    前記負極芯体の径方向内面を覆う内面層と、
    前記負極芯体の径方向外面を覆う外面層と、
    前記負極芯体の貫通孔に充填された充填層と
    を含み、
    前記電極群の最外周部にて前記セパレータを介して前記正極板と対向していない前記負極活物質層のうち少なくとも前記外面層の正極非対向部分に、前記セパレータを介して前記正極板と対向している前記内面層及び外面層の正極対向部分の厚みに対して1/2以下で且つ0を超える厚みの薄肉非対向部が形成されている
    ことを特徴とする円筒型アルカリ蓄電池。
  2. 前記正極板は、3次元網目状の骨格を有する金属体に正極合剤を充填して形成され、0.95mm以上の厚みを有することを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  3. 前記正極板は、3次元網目状の骨格を有する金属体に正極合剤を充填して形成され、前記金属体への前記正極合剤の充填密度は2.95g/cm 以上であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  4. 前記正極板の厚みは、前記負極板の平均厚みに対して2.5倍以上であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  5. 前記正極板の厚みは、前記セパレータの平均厚みに対して9倍以上であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  6. 前記正極板は、
    前記電極群の巻始め及び巻終わりのそれぞれに対応する端部と、
    前記正極板の両端部間に厚み一定の正極本体部と
    を有し、
    前記正極板の両端部のうち少なくとも一方は、前記正極本体部よりも薄く形成されていることを特徴とする請求項2記載の円筒型アルカリ蓄電池。
  7. 前記正極板の内面側にて、前記正極本体部と薄肉化された前記正極板の端部とは面一をなし、
    前記正極板の径方向外面側に重ね合わされた前記セパレータと前記正極板との間に、前記正極板の本体部と薄肉化された前記正極板の端部との間の境界上に絶縁性の保護部材が配置されていることを特徴とする請求項6記載の円筒型アルカリ蓄電池。
  8. 前記正極板の正極合剤は、
    正極活物質としての水酸化ニッケル粒子及び添加剤粒子を含む混合粒子と、前記混合粒子を結着するバインダと
    からなり、
    前記混合粒子は2.1g/cm以上2.3g/cm以下のタップ密度を有することを特徴とする請求項2記載の円筒型アルカリ蓄電池。
  9. 前記正極板の金属体の骨格は、前記正極板の外面側に比べて内面側で太くなるよう形成されていることを特徴とする請求項2記載の円筒型アルカリ蓄電池。
  10. 記セパレータを介して前記正極板と対向している前記内面層及び外面層の正極対向部分並びに前記充填層に含まれる負極活物質量は、前記負極板に含まれる全体の負極活物質量の75%以上100%未満であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  11. 前記負極板は、前記電極群の巻始め及び巻終わりのそれぞれに対応する端部を有し、
    前記負極板の巻始め端部側は、前記正極板の径方向外面側で前記電極群の周方向に前記正極板の巻始め端部を超えて延出し、
    前記負極板の巻始め端部側にて前記セパレータを介して前記正極板と対向していない前記負極活物質層のうち少なくとも前記内面層の正極非対向部分に、前記薄肉非対向部が更に形成されていることを特徴とする請求項記載の円筒型アルカリ蓄電池。
  12. 前記負極芯体における前記貫通孔の開口率は、前記内面層及び外面層の正極対向部分により覆われた領域と前記内面層又は外面層の薄肉非対向部により覆われた領域とで異なることを特徴とする請求項又は記載の円筒型アルカリ蓄電池。
  13. 前記正極板の体積に対して前記負極板の体積が65%以下であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  14. 0.2C容量で前記アルカリ電解液の体積を除した容量液比が0.85ml/Ah以下であることを特徴とする請求項1に記載の円筒型アルカリ蓄電池。
  15. 前記電極群は、前記外装缶の外径と比べて30%以下の外径を有する巻芯を用いて巻回されたことを特徴とする請求項1記載の円筒型アルカリ蓄電池。
  16. 前記電極群の一端と前記外装缶の蓋体との間に配置され、前記正極板の一方の面に溶接された端部及び前記電極群と前記蓋体との間で折曲された折曲部を有する帯状の正極リードを備え、
    前記電極群は巻芯を用いて巻回され、前記巻芯形状に対応した空洞部を有し、
    横断面でみたときに、前記空洞部の断面積を差し引いた前記電極群の断面積を、前記外装缶の内側の断面積から前記電極群の空洞部の断面積を差し引いた値で除した値の百分率が90%以上100%以下であることを特徴とする請求項1記載の円筒型アルカリ蓄電池。
JP2003286329A 2003-08-04 2003-08-04 円筒型アルカリ蓄電池 Expired - Lifetime JP4359100B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003286329A JP4359100B2 (ja) 2003-08-04 2003-08-04 円筒型アルカリ蓄電池
US10/909,312 US7378182B2 (en) 2003-08-04 2004-08-03 Cylindrical alkaline storage battery
CNB2004100558688A CN1301564C (zh) 2003-08-04 2004-08-04 圆筒形碱性蓄电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286329A JP4359100B2 (ja) 2003-08-04 2003-08-04 円筒型アルカリ蓄電池

Publications (2)

Publication Number Publication Date
JP2005056682A JP2005056682A (ja) 2005-03-03
JP4359100B2 true JP4359100B2 (ja) 2009-11-04

Family

ID=34113952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286329A Expired - Lifetime JP4359100B2 (ja) 2003-08-04 2003-08-04 円筒型アルカリ蓄電池

Country Status (3)

Country Link
US (1) US7378182B2 (ja)
JP (1) JP4359100B2 (ja)
CN (1) CN1301564C (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4359098B2 (ja) * 2003-08-04 2009-11-04 三洋電機株式会社 円筒型アルカリ蓄電池
JP4868809B2 (ja) * 2005-09-27 2012-02-01 三洋電機株式会社 円筒型アルカリ蓄電池
JP2007123244A (ja) * 2005-09-28 2007-05-17 Sanyo Electric Co Ltd 円筒型アルカリ蓄電池
JP2007213820A (ja) * 2006-02-07 2007-08-23 Hitachi Vehicle Energy Ltd 二次電池
JP5016238B2 (ja) * 2006-03-07 2012-09-05 プライムアースEvエナジー株式会社 電池、及びその製造方法
JP2008059954A (ja) * 2006-08-31 2008-03-13 Seiko Epson Corp 二次電池の製造方法
CN100442576C (zh) * 2006-10-13 2008-12-10 深圳市豪鹏科技有限公司 一种氢镍电池负极片以及采用其的氢镍电池制造方法
JP5456333B2 (ja) * 2009-02-17 2014-03-26 三洋電機株式会社 密閉型アルカリ蓄電池
KR101049282B1 (ko) * 2009-03-03 2011-07-13 주식회사 네스캡 전기에너지 저장장치
US20100237084A1 (en) * 2009-03-18 2010-09-23 Jerry Russell Freed Rolling Transport Container
US8088658B2 (en) * 2009-04-28 2012-01-03 E. I. Du Pont De Nemours And Company Thin film capacitor and method of fabrication thereof
JP5598650B2 (ja) * 2009-12-10 2014-10-01 ソニー株式会社 非水電解質二次電池
CN101944607B (zh) * 2010-02-09 2012-12-12 湖南科力远新能源股份有限公司 一种化学电池负极片的制备方法
CN101944633B (zh) * 2010-09-29 2012-11-07 广东正飞移动照明有限公司 一种锂离子电池及应用该锂离子电池的充电器
JP5569971B2 (ja) * 2010-12-24 2014-08-13 Fdkトワイセル株式会社 負極板の製造方法、負極板、該負極板を備えた円筒形電池
CN102088082A (zh) * 2010-12-28 2011-06-08 深圳市量能科技有限公司 一种卷绕式电池极组及其制备方法以及包括该极组的电池
TWI426644B (zh) * 2011-09-09 2014-02-11 Metal Ind Res & Dev Ct 電極極板的金屬沉積防護裝置及其防護方法
JP5822094B2 (ja) * 2012-02-24 2015-11-24 株式会社Gsユアサ 電極板、巻回電極群及び円筒形電池
RU2641547C2 (ru) * 2016-05-06 2018-01-18 Акционерное Общество "Научно-Исследовательский Институт Микроприборов Им. Г.Я. Гуськова" Гальванический элемент для эндоскопической капсулы
US20210036380A1 (en) * 2018-02-22 2021-02-04 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP7197251B2 (ja) * 2019-02-22 2022-12-27 Fdk株式会社 アルカリ二次電池
WO2021066360A1 (ko) * 2019-10-02 2021-04-08 주식회사 엘지화학 원통형 전지 및 이를 포함하는 전지 팩
JP7421038B2 (ja) 2020-02-17 2024-01-24 Fdk株式会社 アルカリ蓄電池、及びアルカリ蓄電池の製造方法
CN113659105B (zh) * 2021-08-17 2022-12-27 宁德新能源科技有限公司 电化学装置和电子装置
EP4329083A1 (de) * 2022-08-25 2024-02-28 VARTA Microbattery GmbH Elektrochemische energiespeicherzelle und verfahren zur herstellung
WO2024077602A1 (zh) * 2022-10-14 2024-04-18 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752647B2 (ja) * 1986-09-26 1995-06-05 松下電器産業株式会社 電池用電極とその製造方法
JPH0250964A (ja) 1988-08-12 1990-02-20 Canon Inc CVD法によるAl膜形成方法
US4929519A (en) 1989-07-20 1990-05-29 Gates Energy Products, Inc. Wound electrode assembly for an electrochemical cell
JPH03274676A (ja) 1990-03-23 1991-12-05 Sanyo Electric Co Ltd ニッケル―水素電池
JPH05190158A (ja) 1992-01-14 1993-07-30 Matsushita Electric Ind Co Ltd 蓄電池
JP3737534B2 (ja) 1995-02-15 2006-01-18 東芝電池株式会社 アルカリ二次電池の製造方法
JP3557063B2 (ja) 1997-01-10 2004-08-25 三洋電機株式会社 アルカリ蓄電池用非焼結式ニッケル極
JP3819570B2 (ja) * 1997-11-18 2006-09-13 三洋電機株式会社 非焼結電極を用いた円筒状アルカリ蓄電池
JPH11329480A (ja) 1998-05-14 1999-11-30 Toshiba Battery Co Ltd アルカリ二次電池
JP2000113904A (ja) 1998-10-07 2000-04-21 Matsushita Electric Ind Co Ltd アルカリ蓄電池
JP3695978B2 (ja) * 1999-03-16 2005-09-14 三洋電機株式会社 渦巻状電極体を備えたアルカリ蓄電池
JP2000285956A (ja) * 1999-03-30 2000-10-13 Sanyo Electric Co Ltd 円筒型アルカリ蓄電池
JP2000357519A (ja) 1999-06-15 2000-12-26 Katayama Tokushu Kogyo Kk 金属多孔体、該金属多孔体からなる電池用電極板、および該電極板を備えた電池
JP2001006723A (ja) 1999-06-23 2001-01-12 Toshiba Battery Co Ltd アルカリ二次電池およびアルカリ二次電池の製造方法
JP2001068146A (ja) 1999-08-27 2001-03-16 Yuasa Corp ニッケル水素蓄電池
JP4710225B2 (ja) 2001-09-03 2011-06-29 株式会社Gsユアサ ニッケル電極材料の製造方法
US6946220B2 (en) * 2001-10-19 2005-09-20 Wilson Greatbatch Technologies, Inc. Electrochemical cell having a multiplate electrode assembly housed in an irregularly shaped casing
JP4428905B2 (ja) * 2002-02-01 2010-03-10 日本電気株式会社 扁平型電池およびそれを用いた組電池
US6887618B2 (en) * 2002-08-09 2005-05-03 The Gillette Company Electrochemical cell with flat casing and vent
US6991872B2 (en) * 2003-03-26 2006-01-31 The Gillette Company End cap seal assembly for an electrochemical cell

Also Published As

Publication number Publication date
CN1581556A (zh) 2005-02-16
CN1301564C (zh) 2007-02-21
US20050031948A1 (en) 2005-02-10
US7378182B2 (en) 2008-05-27
JP2005056682A (ja) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4359100B2 (ja) 円筒型アルカリ蓄電池
JP5602092B2 (ja) アルカリ二次電池用負極板を適用したアルカリ二次電池
JP3943822B2 (ja) 電池用渦巻状電極群及び電池
JP4868809B2 (ja) 円筒型アルカリ蓄電池
JP4179943B2 (ja) 円筒型アルカリ蓄電池
JP4439220B2 (ja) 円筒型アルカリ蓄電池及び円筒型ニッケル水素二次電池
JP4359098B2 (ja) 円筒型アルカリ蓄電池
US6551737B1 (en) Cylindrical alkaline storage battery
EP1037297B1 (en) Alkaline storage battery with group of spiral electrodes
JP4836351B2 (ja) アルカリ蓄電池用極板およびそれを用いたアルカリ蓄電池
JP3738125B2 (ja) 非焼結式電極を用いたアルカリ蓄電池およびその製造方法
JP4359099B2 (ja) 円筒型アルカリ蓄電池
JP4201664B2 (ja) 円筒型アルカリ蓄電池
JP4967229B2 (ja) アルカリ二次電池用負極板およびその負極板を適用したアルカリ二次電池。
JP4413294B2 (ja) アルカリ二次電池
JP2005056680A (ja) 円筒型アルカリ蓄電池
JP2002110171A (ja) 電池極板用の導電性芯体とこれを用いた電池
JP2005056675A (ja) 円筒型アルカリ蓄電池
JP5258375B2 (ja) 円筒形アルカリ二次電池
JP2005056679A (ja) 円筒型アルカリ蓄電池
JP2013134940A (ja) 円筒形電池
JP2009026622A (ja) アルカリ蓄電池およびその製造法
JP2001006724A (ja) 円筒形アルカリ二次電池
JP2008181774A (ja) 円筒型非焼結式アルカリ蓄電池
JP2001176540A (ja) ニッケル水素二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4359100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term