JP4310430B2 - Strontium titanate thin film laminate - Google Patents

Strontium titanate thin film laminate Download PDF

Info

Publication number
JP4310430B2
JP4310430B2 JP2003278677A JP2003278677A JP4310430B2 JP 4310430 B2 JP4310430 B2 JP 4310430B2 JP 2003278677 A JP2003278677 A JP 2003278677A JP 2003278677 A JP2003278677 A JP 2003278677A JP 4310430 B2 JP4310430 B2 JP 4310430B2
Authority
JP
Japan
Prior art keywords
thin film
strontium titanate
dielectric constant
high dielectric
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003278677A
Other languages
Japanese (ja)
Other versions
JP2005045077A (en
Inventor
浩 高島
彰 東海林
順司 伊藤
瑞平 王
満 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003278677A priority Critical patent/JP4310430B2/en
Publication of JP2005045077A publication Critical patent/JP2005045077A/en
Application granted granted Critical
Publication of JP4310430B2 publication Critical patent/JP4310430B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、YBaCu7−δ薄膜を中心とする酸化物超伝導デバイスや低温で実用する半導体デバイス等に使用されるチタン酸ストロンチウム積層体に関する。 The present invention, YBa 2 Cu 3 O 7- δ films about the strontium titanate laminates used in a semiconductor device or the like for practical use in an oxide superconducting devices and low-temperature around the.

バルク単結晶のチタン酸ストロンチウム(以下「STO」という。)は、量子常誘電体として知られ、その誘電率は、4.2Kで20,000以上の値を示す。また、その誘電率は、バイアス依存性、ストレス依存性を持ち、それらによって低下する特長を持っている。   Bulk single crystal strontium titanate (hereinafter referred to as “STO”) is known as a quantum paraelectric, and has a dielectric constant of 20,000 or more at 4.2K. Further, the dielectric constant has a bias dependency and a stress dependency, and has a feature of decreasing by them.

STOの格子定数は、酸化物超伝導体と非常に近い値を持つことから、該超伝導体のエピタキシャル成長下地基板として用いられ、超伝導デバイスの開発には重要な材料である。実際に、STO薄膜は、デバイスに使用されているが、その誘電率(ε)は、10,000以下(4.2K)であり、バルク単結晶で得られている 20,000には達していない。   Since the lattice constant of STO has a value very close to that of an oxide superconductor, it is used as an underlying substrate for epitaxial growth of the superconductor and is an important material for the development of superconducting devices. Actually, although the STO thin film is used in the device, its dielectric constant (ε) is 10,000 or less (4.2K), and does not reach 20,000 obtained in the bulk single crystal.

図1に、例として、M. Lippmaa, M. Kawasakiらの報告(下記「非特許文献1」参照)によるものを示す。この場合の誘電率は、8,200にしか達していない。
図2に、Hong-Cheng Li, X. X. Xi(下記「非特許文献2」)らの報告を示す。この場合は、誘電率は、1,000にも達していない。上記2件の例の様に現在のところ、STO薄膜の誘電率は10,000にも達していない。
FIG. 1 shows, as an example, a report by M. Lippmaa, M. Kawasaki et al. (See “Non-Patent Document 1” below). In this case, the dielectric constant reaches only 8,200.
FIG. 2 shows a report of Hong-Cheng Li, XX Xi (hereinafter “Non-Patent Document 2”) and the like. In this case, the dielectric constant does not reach 1,000. At present, the dielectric constant of the STO thin film does not reach 10,000 as in the above two examples.

Appl. Phys. Lett. 74, 3543(1999)Appl. Phys. Lett. 74, 3543 (1999) Appl. Phys. Lett. 73, 464(1998)Appl. Phys. Lett. 73, 464 (1998)

上述したように、バルク単結晶STOは、低温で高い誘電率を示すため、超伝導や低温デバイスの実用化で極めて有用な誘電体であるにも関わらず、薄膜化すると誘電率が低下してしまうという欠点があり、現在に至るもこの欠点は、克服されていない。   As described above, bulk single crystal STO exhibits a high dielectric constant at low temperatures. Therefore, although it is a very useful dielectric for superconductivity and practical use of low-temperature devices, the dielectric constant decreases when the film thickness is reduced. This defect has not been overcome to date.

本発明では、基板上に粉末微粒子を塗布し、その上にSTO薄膜を形成することにより、薄膜のSTOにおいても、高誘電率とすることに成功した。   In the present invention, by applying fine powder particles on a substrate and forming an STO thin film thereon, the present invention succeeded in achieving a high dielectric constant even in the thin film STO.

第3図に、本願発明のイメージ図を示す。下部の基板の上に、微粒子を塗布し、その微粒子が塗布された基板の上に、STO膜を形成すると、薄膜のSTOにおいても、高誘電率とすることができる。   FIG. 3 shows an image diagram of the present invention. When fine particles are coated on the lower substrate and an STO film is formed on the substrate coated with the fine particles, a high dielectric constant can be obtained even in a thin STO.

図8に作製した平行平板コンデンサの抵抗率の温度依存性を示す。抵抗率は、半導体的挙動が確認され、その急激な減少が解消されたことが分かる。   FIG. 8 shows the temperature dependence of the resistivity of the manufactured parallel plate capacitor. It can be seen that the resistivity has been confirmed to be semiconducting and its rapid decrease has been eliminated.

図9に誘電率の温度依存性を示す。100kHzで温度4.2Kにおいて20,000以上の誘電率が確認された。この誘電率の温度依存性は単結晶で得られた特性と一致していることから、優れた誘電特性を持つSTO薄膜がYBCO薄膜上に作製されていることを示している。   FIG. 9 shows the temperature dependence of the dielectric constant. A dielectric constant of 20,000 or more was confirmed at a temperature of 4.2 K at 100 kHz. The temperature dependence of this dielectric constant is consistent with the characteristics obtained with a single crystal, indicating that an STO thin film having excellent dielectric characteristics is produced on the YBCO thin film.

以下に、発明を実施するため好ましい条件及び最良の形態を示す。   In the following, preferred conditions and best modes for carrying out the invention are shown.

図4は、本願発明に係るSTO薄膜の断面図である。該薄膜は、STO基板上に、下部YBCO電極を形成し、該下部電極の上に、図3において示した微粒子を塗布し、該塗布された電極上に第2のSTO層を形成する。該第2のSTO層表面のCMP研磨を行い、滑らかにする。該滑らかになった表面の上に第1のSTO層を形成し、該層の上に上部YBCO電極を形成する。   FIG. 4 is a cross-sectional view of an STO thin film according to the present invention. In the thin film, a lower YBCO electrode is formed on an STO substrate, fine particles shown in FIG. 3 are applied on the lower electrode, and a second STO layer is formed on the applied electrode. CMP polishing is performed on the surface of the second STO layer to make it smooth. A first STO layer is formed on the smoothed surface, and an upper YBCO electrode is formed on the layer.

このようにして、積層されたSTO膜は、薄膜ではあるが、バルク単結晶STOと同様に、低温においても高い誘電率を示し、超伝導や低温デバイスの実用化において極めて有用な誘電体となる。   Thus, although the laminated STO film is a thin film, like a bulk single crystal STO, it exhibits a high dielectric constant even at a low temperature, and becomes an extremely useful dielectric in the practical application of superconductivity and low temperature devices. .

上記微粒子の粒径は、上記STO薄膜の厚さ以下であることが望ましい。該薄膜以上であると、CMP研磨の量が多くなり、製作工程上好ましくない。   The particle size of the fine particles is desirably equal to or less than the thickness of the STO thin film. If it is more than this thin film, the amount of CMP polishing increases, which is not preferable in the production process.

また、上記微粒子の粒径は、上記STO薄膜の厚さの1/2〜1/10であることが望ましい。この程度であれば、該薄膜を突き抜ける確率が少なくなり好ましい。
また、上記微粒子の粒径は、具体的な大きさで表現すると、1〜100nm程度である。
The particle diameter of the fine particles is preferably 1/2 to 1/10 of the thickness of the STO thin film. This level is preferable because the probability of penetrating the thin film is reduced.
The particle diameter of the fine particles is about 1 to 100 nm when expressed in a specific size.

上記微粒子の材質は、STO、上記基板と同じ物質、ダイヤモンド、半導体又は該半導体の酸化物が好ましい。   The material of the fine particles is preferably STO, the same material as the substrate, diamond, a semiconductor, or an oxide of the semiconductor.

上記微粒子塗布後の微粒子面密度は、形成するSTO膜が基板上にエピタキシャル成長可能となる程度であることが好ましい。微粒子が多すぎると、STOがエピタキシャル成長することができなくなり、逆に少ないと、誘電率が高くならない。   The fine particle surface density after the fine particle application is preferably such that the STO film to be formed can be epitaxially grown on the substrate. If the amount of fine particles is too large, STO cannot be epitaxially grown. Conversely, if the amount is small, the dielectric constant will not increase.

上記微粒子塗布後の微粒子面密度は、具体的には、106〜108個/cm2程度であることが好ましい。 Specifically, the fine particle surface density after the fine particle coating is preferably about 10 6 to 10 8 particles / cm 2 .

上記基板は、ABa2Cu3O7-δ(A=Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb;δは1以下の正数)、MgO、LaAlO3又は半導体ウェーハ基板に前記物質が形成されたものであるのが好ましい。 The substrate is ABa 2 Cu 3 O 7-δ (A = Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb; δ is a positive number of 1 or less), MgO, LaAlO 3 or the semiconductor wafer substrate. It is preferable that the substance is formed.

微粒子塗布を用いたSTO薄膜の作製プロセスを図4に示す。パルスレーザ成長法(以下「PLD法」という。)を用いて、STO(100)基板上に下部YBCO膜としてc軸配向YBCO(00n)薄膜を厚さ300nm成膜後、真空を破ることなく連続してSTO(001)薄膜を厚さ10nm成膜して、STO/YBCO構造を作製する。その後、ダイヤモンドからなる微粒子(粒径100nm)をその薄膜表面に、面密度107個/cm2で一様に塗布する。 A process for producing an STO thin film using fine particle coating is shown in FIG. Using a pulse laser growth method (hereinafter referred to as “PLD method”), a c-axis oriented YBCO (00n) thin film having a thickness of 300 nm is continuously formed as a lower YBCO film on an STO (100) substrate, and then continuous without breaking the vacuum. Then, an STO (001) thin film is formed to a thickness of 10 nm to produce an STO / YBCO structure. Thereafter, fine particles (diameter 100 nm) made of diamond are uniformly applied to the surface of the thin film at a surface density of 10 7 particles / cm 2 .

この厚さ10nmのSTO薄膜は、カバーSTO薄膜とよばれ、作製プロセスでYBCOが直接、大気や純水にさらされることを防ぎ、YBCO本来の超伝導特性を低下させないために成膜されている。   This STO thin film with a thickness of 10 nm is called a cover STO thin film, and is formed in order to prevent YBCO from being directly exposed to the atmosphere and pure water in the manufacturing process, and not to deteriorate YBCO's original superconducting properties. .

図5に、YBCO薄膜の成膜条件、図6に、STO薄膜の成膜条件を示す。   FIG. 5 shows the film forming conditions for the YBCO thin film, and FIG. 6 shows the film forming conditions for the STO thin film.

次に半導体技術で利用されているフォトリソグラフィー法を用いて、レジストにより下部パターンを作製し、低エネルギーイオンミリングを用いてエッチングを行い、下部YBCOのパターンを形成する。次に、PLD法により、STO(100)薄膜厚さ1μm成膜を行う。   Next, using a photolithography method used in semiconductor technology, a lower pattern is formed with a resist, and etching is performed using low energy ion milling to form a lower YBCO pattern. Next, an STO (100) thin film having a thickness of 1 μm is formed by the PLD method.

次に、成膜手順について説明する。まず、基板を200℃に保持し、真空度が10-4Paに到達した後、酸素ガス雰囲気中(酸素圧100Pa)において温度上昇を行い、810℃に到達した後、STO薄膜を成長する。このSTO薄膜表面上に存在する突起物を除去し、下部YBCO薄膜の作るパターンの段差を平坦化するためCMPにより研磨する。 Next, a film forming procedure will be described. First, the substrate is held at 200 ° C., and after the degree of vacuum reaches 10 −4 Pa, the temperature is increased in an oxygen gas atmosphere (oxygen pressure 100 Pa), and after reaching 810 ° C., an STO thin film is grown. The protrusions present on the surface of the STO thin film are removed, and polishing is performed by CMP in order to flatten the level difference of the pattern formed by the lower YBCO thin film.

下部YBCO薄膜を直接研磨すると超伝導特性を劣化させる原因になるため、STO薄膜の研磨を行った。その後、CMPプロセスによって表面に付着したSi粒子等の不純物を、アセトン中でサンプルを超音波洗浄による表面クリーニングによって取り除いた。   Since polishing the lower YBCO thin film directly causes deterioration of the superconducting properties, the STO thin film was polished. Thereafter, impurities such as Si particles adhering to the surface by the CMP process were removed by surface cleaning by ultrasonic cleaning in acetone.

CMPプロセス後、RHEED観測で観測した結果、試料表面は、アモルファス的であることが分かった。アモルファス結晶上にはエピタキシャル成長は、期待できない。   As a result of observation by RHEED observation after the CMP process, it was found that the sample surface was amorphous. Epitaxial growth cannot be expected on amorphous crystals.

このため、酸素圧100Pa雰囲気中、温度600℃、2時間の熱処理を行った。原子間力顕微鏡(AFM)を用いて表面構造の観察を行った。その結果を図7に示す。この写真に見られるように、CMP前においては、かなり大きな突起が観察されるが、CMP後においては、上記突起に比べるとはるかに小さな突起が見られる程度に表面が滑らかになっている。   For this reason, a heat treatment was performed at a temperature of 600 ° C. for 2 hours in an atmosphere having an oxygen pressure of 100 Pa. The surface structure was observed using an atomic force microscope (AFM). The result is shown in FIG. As can be seen in this photograph, fairly large protrusions are observed before CMP, but after CMP, the surface is smooth enough to have much smaller protrusions than the above protrusions.

典型的に、200nm程度の高さの円錐状形状の突起物は、CMPにより、高さで1/10以下の20nm以下に減少し、底面の面積で0.04μm2以下と1/10以下になっていることが確認され、CMPによって突起物の形状が小さくなっていることが確認され、超伝導マイクロショートが解消するであろうことが期待された。 Typically, a cone-shaped projection having a height of about 200 nm is reduced to 20 nm or less, which is 1/10 or less in height, by CMP, and the area of the bottom surface is 0.04 μm 2 or less and 1/10 or less. It was confirmed that the shape of the protrusion was reduced by CMP, and it was expected that the superconducting micro-short would be eliminated.

熱処理後、PLDを用いて絶縁層STO薄膜を200nm成膜し、真空を破ることなく連続して上部YBCO薄膜を250nm成膜する。このSTO薄膜は、CMPによって下部YBCO薄膜から成長している突起物の上部を切断した後、上部平面がSTO研磨表面に出現していることで生じるマイクロショートによる絶縁性の低下を防ぐためである。   After the heat treatment, an insulating layer STO thin film is formed to 200 nm using PLD, and an upper YBCO thin film is continuously formed to 250 nm without breaking the vacuum. This STO thin film is for preventing the deterioration of insulation due to the micro-short caused by the upper plane appearing on the STO polished surface after cutting the upper part of the protrusion growing from the lower YBCO thin film by CMP. .

成膜した上部YBCOのパターンをフォトリソグラフィー法及び低エネルギーイオンミリングを用いて行い、平行平板コンデンサを作製した。HF5%を用いて、下部YBCOに作製した電極部分のSTO薄膜をエッチングにより取り除いた。   The formed upper YBCO pattern was formed using a photolithography method and low energy ion milling to produce a parallel plate capacitor. The STO thin film of the electrode part produced in the lower YBCO was removed by etching using 5% of HF.

上部YBCOと下部YBCO薄膜のパターンは、クロスオーバーした構造であり、クロスした部分は、上部YBCO/絶縁層STO/CMP−STO/capped−STO/下部YBCOの積層構造である。   The pattern of the upper YBCO and the lower YBCO thin film has a crossover structure, and the crossed portion has a laminated structure of upper YBCO / insulating layer STO / CMP-STO / capped-STO / lower YBCO.

超伝導や低温デバイスの実用化で極めて有用な誘電体である。   It is a very useful dielectric for the practical application of superconductivity and low-temperature devices.

M. LippmaaらによるSTO薄膜の誘電率Dielectric constant of STO thin film by M. Lippmaa et al. Hong-Cheng Li, X. X. XiらによるSTO薄膜の誘電率Dielectric constant of STO thin film by Hong-Cheng Li, X. X. Xi et al. 本願発明の概念図Conceptual diagram of the present invention 本願発明を利用した平行コンデンサの作製工程図Manufacturing process diagram of parallel capacitor using the present invention YBCO薄膜の成膜条件YBCO thin film deposition conditions STO薄膜の成膜条件STO thin film deposition conditions 原子間力顕微鏡を用いて観察したSTO表面構造STO surface structure observed with atomic force microscope 本願発明を利用した平行平板コンデンサの抵抗率の温度依存性Temperature dependence of resistivity of parallel plate capacitor using the present invention 本願発明を利用した平行平板コンデンサの誘電率の温度依存性Temperature dependence of dielectric constant of parallel plate capacitors using the present invention

Claims (8)

超伝導や低温デバイス用の高誘電率チタン酸ストロンチウム薄膜積層体であって
基板上に粉末微粒子を塗布し、その上にチタン酸ストロンチウム薄膜が形成されてなり、上記チタン酸ストロンチウム薄膜の上に、絶縁層チタン酸ストロンチウム薄膜が積層されていることを特とする高誘電率チタン酸ストロンチウム薄膜積層体。
A high dielectric constant strontium titanate thin film laminate for superconducting and low temperature devices ,
High dielectric of the powder particles is applied to a substrate, thereon will be strontium titanate thin film is formed, on strontium thin titanate, and feature an insulating layer of strontium titanate thin film are laminated Strontium titanate thin film laminate.
上記微粒子の粒径は、上記チタン酸ストロンチウム薄膜の厚さ以下であることを特とする請求項1記載の高誘電率チタン酸ストロンチウム薄膜積層体。 Particle size of the fine particles, high dielectric constant of strontium titanate thin film lamination according to claim 1, feature to or less than the thickness of the strontium film titanate. 上記微粒子の粒径は、上記チタン酸ストロンチウム薄膜の厚さの1/2〜1/10であることを特とする請求項1記載の高誘電率チタン酸ストロンチウム薄膜積層体。 Particle size of the fine particles, high dielectric constant of strontium titanate thin film lamination according to claim 1, feature that it is 1 / 2-1 / 10 of the thickness of the strontium film titanate. 上記微粒子の粒径は、1〜100nmであることを特とする請求項1記載の高誘電率チタン酸ストロンチウム薄膜積層体。 Particle size of the fine particles, high dielectric constant of strontium titanate thin film lamination according to claim 1, feature that it is 1 to 100 nm. 上記微粒子は、チタン酸ストロンチウム、上記基板と同じ物質、ダイヤモンド、半導体又は該半導体の酸化物であることを特とする請求項1乃至4のいずれか一つに記載の高誘電率チタン酸ストロンチウム薄膜積層体。 The fine particles are strontium titanate, the same material as the substrate, a diamond, a high dielectric constant strontium titanate according to any one of claims 1 to 4, feature that the oxide semiconductor or the semiconductor Thin film laminate. 上記微粒子塗布後の微粒子面密度は、形成するチタン酸ストロンチウム膜が基板上にエピタキシャル成長が可能となる程度であることを特とする請求項1乃至5のいずれか一つに記載の高誘電率チタン酸ストロンチウム薄膜積層体。 High dielectric constant according to any one of claims 1 to 5 the fine particle surface density after fine particle coating is strontium titanate film to be formed is a feature that the degree to which it is possible to epitaxially grown on the substrate Strontium titanate thin film laminate. 上記微粒子塗布後の微粒子面密度は、10〜10個/cmであることを特とする請求項1乃至6のいずれか一つに記載の高誘電率チタン酸ストロンチウム薄膜積層体。 The fine particle surface density after fine particle coating is 10 6 to 10 8 / cm 2 a high dielectric constant of strontium titanate thin film lamination according to any one of claims 1 to 6, feature that. 上記基板は、ABaCu7−δ(A=Y,Nd,Sm,Eu,Gd,Dy,Ho,Yb;δは1以下の正数)、MgO若しくはLaAlO 又は半導体ウェーハ基板に、ABa Cu 7−δ (A=Y,Nd,Sm,Eu,Gd,Dy,Ho,Yb;δは1以下の正数)、MgO若しくはLaAlO が形成されたものであることを特とする請求項1乃至7のいずれか一つに記載の高誘電率チタン酸ストロンチウム薄膜積層体。 The substrate is ABa 2 Cu 3 O 7-δ (A = Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb; δ is a positive number of 1 or less), MgO or LaAlO 3 , or a semiconductor wafer substrate. , ABa 2 Cu 3 O 7-δ (A = Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb; δ is a positive number of 1 or less), that MgO or LaAlO 3 is formed. high dielectric constant of strontium titanate thin film lamination according to any one of claims 1 to 7, feature.
JP2003278677A 2003-07-23 2003-07-23 Strontium titanate thin film laminate Expired - Lifetime JP4310430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278677A JP4310430B2 (en) 2003-07-23 2003-07-23 Strontium titanate thin film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278677A JP4310430B2 (en) 2003-07-23 2003-07-23 Strontium titanate thin film laminate

Publications (2)

Publication Number Publication Date
JP2005045077A JP2005045077A (en) 2005-02-17
JP4310430B2 true JP4310430B2 (en) 2009-08-12

Family

ID=34265017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278677A Expired - Lifetime JP4310430B2 (en) 2003-07-23 2003-07-23 Strontium titanate thin film laminate

Country Status (1)

Country Link
JP (1) JP4310430B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461386B2 (en) * 2005-10-31 2010-05-12 Tdk株式会社 Thin film device and manufacturing method thereof
JP2009280416A (en) * 2008-05-19 2009-12-03 Taiyo Yuden Co Ltd Method for manufacturing dielectric thin film and thin film electronic component

Also Published As

Publication number Publication date
JP2005045077A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
Mazet et al. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications
CN101276791B (en) Semiconductor wafer and process for its production
US6312819B1 (en) Oriented conductive oxide electrodes on SiO2/Si and glass
Srikant et al. Crystallographic orientation of epitaxial BaTiO3 films: The role of thermal‐expansion mismatch with the substrate
US9255347B2 (en) Voltage tunability of thermal conductivity in ferroelectric materials
EP0576633A1 (en) Grain boundary junctions in high temperature superconductor films
Li Ferroelectric/superconductor heterostructures
JPH04305016A (en) Alligned superconductive film and epitaxial method of growing said film
Wang et al. Preparation and properties of Bi4Ti3O12 single‐crystal thin films by atmospheric pressure metalorganic chemical vapor deposition
JP2001172100A (en) Epitaxial composite structure and element utilizing the same
Molaei et al. Thin film epitaxy and near bulk semiconductor to metal transition in VO2/NiO/YSZ/Si (001) heterostructures
JP4022620B2 (en) Strontium titanate thin film laminate and method for producing the same
JP4310430B2 (en) Strontium titanate thin film laminate
JPH1117126A (en) Deposition of ferroelectric film and ferroelectric capacitor element
Wang et al. Electron microscopy of step-flow grown c-axis YBa2Cu3O7− δ thin films on vicinal substrates
JP2000281494A (en) Crystal growth of oxide and oxide laminate structure
JP4362581B2 (en) Manufacturing method of parallel plate capacitor
JP2005156194A (en) Capacitance temperature sensor
JPH03250622A (en) Forming method for thin semiconductor film
Endo et al. New growth approach of high-quality oxide thin films for future device applications: Independent control of supersaturation and migration
JP2000344599A (en) Method for growing oxide crystal, cerium oxide, promethium oxide, oxide laminated structure, production of field effect transistor, field effect transistor, production of ferroelectric non-volatile memory and ferroelectric non-volatile memory
JP3735604B2 (en) Superconducting element manufacturing method
JPH04334074A (en) Superconducting device
Koinuma Crystal engineering of high-T c and related oxide films for future electronics
JP2000086400A (en) Production of oxide single crystal substrate nd electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4310430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term