JP4022620B2 - Strontium titanate thin film laminate and method for producing the same - Google Patents

Strontium titanate thin film laminate and method for producing the same Download PDF

Info

Publication number
JP4022620B2
JP4022620B2 JP2003145086A JP2003145086A JP4022620B2 JP 4022620 B2 JP4022620 B2 JP 4022620B2 JP 2003145086 A JP2003145086 A JP 2003145086A JP 2003145086 A JP2003145086 A JP 2003145086A JP 4022620 B2 JP4022620 B2 JP 4022620B2
Authority
JP
Japan
Prior art keywords
thin film
strontium titanate
sto
titanate thin
dielectric constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003145086A
Other languages
Japanese (ja)
Other versions
JP2004349481A (en
Inventor
浩 高島
彰 東海林
順司 伊藤
瑞平 王
満 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003145086A priority Critical patent/JP4022620B2/en
Publication of JP2004349481A publication Critical patent/JP2004349481A/en
Application granted granted Critical
Publication of JP4022620B2 publication Critical patent/JP4022620B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、YBa2Cu3O7- δ薄膜を中心とする酸化物超伝導デバイスや低温で実用する半導体デバイス等に使用されるチタン酸ストロンチウム積層体及びその製造方法に関する。
【0002】
【従来の技術】
バルク単結晶のチタン酸ストロンチウム(以下「STO」という。)は、量子常誘電体として知られ、その誘電率は、4.2Kで20,000以上の値を示す。また、その誘電率は、バイアス依存性、ストレス依存性を持ち、それらによって低下する特長を持っている。
【0003】
STOの格子定数は、酸化物超伝導体と非常に近い値を持つことから、該超伝導体のエピタキシャル成長下地基板として用いられ、超伝導デバイスの開発には重要な材料である。
【0004】
実際に、STO薄膜は、デバイスに使用されているが、その誘電率(ε)は、10,000以下(4.2K)であり、バルク単結晶で得られている 20,000には達していない。
【0005】
図1に、例として、M. Lippmaa, M. Kawasakiらの報告によるものを示す。この場合の誘電率は、8,200にしか達していない。
【0006】
図2に、Hong-Cheng Li, X. X. Xiらの報告をに示す。この場合は、誘電率は、1,000にも達していない。上記2件の例の様に現在のところ、STO薄膜の誘電率は10,000にも達していない。
【0007】
【非特許文献1】
Appl. Phys. Lett. 74, 3543(1999)
【非特許文献2】
Appl. Phys. Lett. 73, 464(1998)
【0008】
【発明が解決しようとする課題】
上述したように、バルク単結晶STOは、低温で高い誘電率を示すため、超伝導や低温デバイスの実用化で極めて有用な誘電体であるにも関わらず、薄膜化すると誘電率が低下してしまうという欠点があり、現在に至るもこの欠点は、克服されていない。
【0009】
【課題を解決するための手段】
本発明では、STO膜を第1と第2の2層構造とし、その2つの層の界面を化学的機械研磨(以下「CMP」という。)面とすることにより、薄膜のSTOにおいても、高誘電率とすることに成功した。
【0010】
図3に、本願発明の概念図を示す。図3において、基板の上に下部イットリウム系酸化物超伝導(以下「YBCO」という。)層を積層し、該下部YBCO層の上に、第1のSTO層を堆積する。該第1層のSTO層の表面をCMP処理する。この後、該表面に第2のSTO層を形成し、該第2のSTO層の上にYBCO層を形成する。該基板は、ABa Cu 7−δ (A=Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb;δは1以下の正数)、MgO、LaAlO 又は半導体ウェーハ基板に前記物質が形成されたものである。
【0011】
【実施例】
CMPを用いた3層構造の作製プロセスを図4に示す。パルスレーザ成長法(以下「PLD法」という。)を用いて、STO(100)基板上に下部YBCO膜としてc軸配向YBCO(00n)薄膜を厚さ300nm成膜後、真空を破ることなく連続してSTO(001)薄膜を厚さ10nm成膜して、STO/YBCO構造を作製する。
【0012】
この厚さ10nmのSTO薄膜は、カバーSTO薄膜とよばれ、作製プロセスでYBCOが直接、大気や純水にさらされることを防ぎ、YBCO本来の超伝導特性を低下させないために成膜されている。
【0013】
図5に、YBCO薄膜の成膜条件、図6に、STO薄膜の成膜条件を示す。
【0014】
次に半導体技術で利用されているフォトリソグラフィー法を用いて、レジストにより下部パターンを作製し、低エネルギーイオンミリングを用いてエッチングを行い、下部YBCOのパターンを形成する。次に、PLD法により、STO(100)薄膜厚さ1μm成膜を行う。
【0015】
次に、成膜手順について説明する。まず、基板を200℃に保持し、真空度が10- 4Paに到達した後、酸素ガス雰囲気中(酸素圧100Pa)において温度上昇を行い、810℃に到達した後、STO薄膜を成長する。このSTO薄膜表面上に存在する突起物を除去し、下部YBCO薄膜の作るパターンの段差を平坦化するためCMPにより研磨する。
【0016】
下部YBCO薄膜を直接研磨すると超伝導特性を劣化させる原因になるため、STO薄膜の研磨を行った。その後、CMPプロセスによって表面に付着したSi粒子等の不純物を、アセトン中でサンプルを超音波洗浄による表面クリーニングによって取り除いた。
【0017】
CMPプロセス後、RHEED観測で観測した結果、試料表面は、アモルファス的であることが分かった。アモルファス結晶上にはエピタキシャル成長は、期待できない。
【0018】
このため、酸素圧100Pa雰囲気中、温度600℃、2時間の熱処理を行った。原子間力顕微鏡(AFM)を用いて表面構造の観察を行った。その結果を図7に示す。この写真に見られるように、CMP前においては、かなり大きな突起が観察されるが、CMP後においては、上記突起に比べるとはるかに小さな突起が見られる程度に表面が滑らかになっている。
【0019】
典型的に、200nm程度の高さの円錐状形状の突起物は、CMPにより、高さで1/10以下の20nm以下に減少し、底面の面積で0.04μm2以下と1/10以下になっていることが確認され、CMPによって突起物の形状が小さくなっていることが確認され、超伝導マイクロショートが解消するであろうことが期待された。
【0020】
熱処理後、PLDを用いて絶縁層STO薄膜を200nm成膜し、真空を破ることなく連続して上部YBCO薄膜を250nm成膜する。このSTO薄膜は、CMPによって下部YBCO薄膜から成長している突起物の上部を切断した後、上部平面がSTO研磨表面に出現していることで生じるマイクロショートによる絶縁性の低下を防ぐためである。
【0021】
成膜した上部YBCOのパターンをフォトリソグラフィー法及び低エネルギーイオンミリングを用いて行い、平行平板コンデンサを作製した。HF5%を用いて、下部YBCOに作製した電極部分のSTO薄膜をエッチングにより取り除いた。
【0022】
上部YBCOと下部YBCO薄膜のパターンは、クロスオーバーした構造であり、クロスした部分は、上部YBCO/絶縁層STO/CMP−STO/capped−STO/下部YBCOの積層構造である。
【0023】
【発明の効果】
作製した平行平板コンデンサの抵抗率の温度依存性を図8に示す。CMP研磨によって、抵抗率は、半導体的挙動が確認され、その急激な減少が解消されたことが分かる。
【0024】
図9に誘電率の温度依存性を示す。100kHzで温度4.2Kにおいて20,000以上の誘電率が確認された。この誘電率の温度依存性は単結晶で得られた特性と一致していることから、優れた誘電特性を持つSTO薄膜がYBCO薄膜上に作製されていることを示している。
【図面の簡単な説明】
【図1】 M. LippmaaらによるSTO薄膜の誘電率
【図2】 Hong-Cheng Li, X. X. XiらによるSTO薄膜の誘電率
【図3】 本願発明の概念図
【図4】 本願発明を利用した平行コンデンサの作製工程図
【図5】 YBCO薄膜の成膜条件
【図6】 STO薄膜の成膜条件
【図7】 原子間力顕微鏡を用いて観察したSTO表面構造
【図8】 本願発明を利用した平行平板コンデンサの抵抗率の温度依存性
【図9】 本願発明を利用した平行平板コンデンサの誘電率の温度依存性
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a strontium titanate laminate used for an oxide superconducting device centering on a YBa 2 Cu 3 O 7- δ thin film, a semiconductor device put to practical use at a low temperature, and the like, and a method for producing the same.
[0002]
[Prior art]
Bulk single crystal strontium titanate (hereinafter referred to as “STO”) is known as a quantum paraelectric, and has a dielectric constant of 20,000 or more at 4.2K. Further, the dielectric constant has a bias dependency and a stress dependency, and has a feature of decreasing by them.
[0003]
Since the lattice constant of STO has a value very close to that of an oxide superconductor, it is used as an underlying substrate for epitaxial growth of the superconductor and is an important material for the development of superconducting devices.
[0004]
In fact, STO thin films are used in devices, but their dielectric constant (ε) is 10,000 or less (4.2K), which does not reach 20,000 obtained with bulk single crystals.
[0005]
FIG. 1 shows an example reported by M. Lippmaa, M. Kawasaki et al. In this case, the dielectric constant reaches only 8,200.
[0006]
FIG. 2 shows a report by Hong-Cheng Li, XX Xi et al. In this case, the dielectric constant does not reach 1,000. At present, the dielectric constant of the STO thin film does not reach 10,000 as in the above two examples.
[0007]
[Non-Patent Document 1]
Appl. Phys. Lett. 74, 3543 (1999)
[Non-Patent Document 2]
Appl. Phys. Lett. 73, 464 (1998)
[0008]
[Problems to be solved by the invention]
As described above, bulk single crystal STO exhibits a high dielectric constant at low temperatures. Therefore, although it is a very useful dielectric material for practical use of superconductivity and low-temperature devices, the dielectric constant decreases when the film thickness is reduced. This defect has not been overcome to date.
[0009]
[Means for Solving the Problems]
In the present invention, the STO film has a first and second two-layer structure, and the interface between the two layers is a chemical mechanical polishing (hereinafter referred to as “CMP”) surface. We succeeded in setting the dielectric constant.
[0010]
FIG. 3 shows a conceptual diagram of the present invention. In FIG. 3, a lower yttrium-based oxide superconducting (hereinafter referred to as “YBCO”) layer is stacked on a substrate, and a first STO layer is deposited on the lower YBCO layer. The surface of the first STO layer is subjected to CMP treatment. Thereafter, a second STO layer is formed on the surface, and a YBCO layer is formed on the second STO layer. The substrate is made of ABa 2 Cu 3 O 7-δ (A = Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb; δ is a positive number of 1 or less), MgO, LaAlO 3, or a semiconductor wafer substrate formed with the substance.
[0011]
【Example】
A manufacturing process of a three-layer structure using CMP is shown in FIG. Using a pulse laser growth method (hereinafter referred to as “PLD method”), a c-axis oriented YBCO (00n) thin film having a thickness of 300 nm is continuously formed as a lower YBCO film on an STO (100) substrate, and then continuous without breaking the vacuum. Then, an STO (001) thin film is formed to a thickness of 10 nm to produce an STO / YBCO structure.
[0012]
This STO thin film having a thickness of 10 nm is called a cover STO thin film, and is formed in order to prevent YBCO from being directly exposed to the atmosphere and pure water in the manufacturing process and not to deteriorate the YBCO's original superconducting characteristics. .
[0013]
FIG. 5 shows the film forming conditions for the YBCO thin film, and FIG. 6 shows the film forming conditions for the STO thin film.
[0014]
Next, using a photolithography method used in semiconductor technology, a lower pattern is formed with a resist, and etching is performed using low energy ion milling to form a lower YBCO pattern. Next, an STO (100) thin film having a thickness of 1 μm is formed by the PLD method.
[0015]
Next, a film forming procedure will be described. First, the substrate is held in a 200 ° C., vacuum degree of 10 - After reaching 4 Pa, subjected to temperature rise in an oxygen gas atmosphere (oxygen pressure 100 Pa), after reaching 810 ° C., to grow a STO thin film. The protrusions present on the surface of the STO thin film are removed, and polishing is performed by CMP in order to flatten the level difference of the pattern formed by the lower YBCO thin film.
[0016]
Since polishing the lower YBCO thin film directly causes deterioration of the superconducting properties, the STO thin film was polished. Thereafter, impurities such as Si particles adhering to the surface by the CMP process were removed by surface cleaning by ultrasonic cleaning in acetone.
[0017]
As a result of observation by RHEED observation after the CMP process, it was found that the sample surface was amorphous. Epitaxial growth cannot be expected on amorphous crystals.
[0018]
For this reason, a heat treatment was performed at a temperature of 600 ° C. for 2 hours in an atmosphere having an oxygen pressure of 100 Pa. The surface structure was observed using an atomic force microscope (AFM). The result is shown in FIG. As can be seen in this photograph, fairly large protrusions are observed before CMP, but after CMP, the surface is smooth enough to have much smaller protrusions than the above protrusions.
[0019]
Typically, a cone-shaped protrusion having a height of about 200 nm is reduced by CMP to 20 nm or less, which is 1/10 or less in height, and the bottom surface area is 0.04 μm 2 or less and 1/10 or less. It was confirmed that the shape of the protrusion was reduced by CMP, and it was expected that the superconducting micro-short would be eliminated.
[0020]
After the heat treatment, an insulating layer STO thin film is formed to 200 nm using PLD, and an upper YBCO thin film is formed to 250 nm continuously without breaking the vacuum. This STO thin film is for preventing the deterioration of the insulation due to the micro-short caused by the upper plane appearing on the STO polished surface after cutting the upper part of the protrusion growing from the lower YBCO thin film by CMP. .
[0021]
The formed upper YBCO pattern was formed using a photolithography method and low energy ion milling to produce a parallel plate capacitor. The STO thin film of the electrode part produced in the lower YBCO was removed by etching using 5% of HF.
[0022]
The pattern of the upper YBCO and the lower YBCO thin film has a crossover structure, and the crossed portion has a stacked structure of upper YBCO / insulating layer STO / CMP-STO / capped-STO / lower YBCO.
[0023]
【The invention's effect】
FIG. 8 shows the temperature dependence of the resistivity of the manufactured parallel plate capacitor. It can be seen that by CMP polishing, the semiconductor behavior was confirmed and the rapid decrease was eliminated.
[0024]
FIG. 9 shows the temperature dependence of the dielectric constant. A dielectric constant of over 20,000 was confirmed at 100 kHz and at a temperature of 4.2 K. The temperature dependence of this dielectric constant is consistent with the characteristics obtained with a single crystal, indicating that an STO thin film having excellent dielectric characteristics is produced on the YBCO thin film.
[Brief description of the drawings]
[Fig. 1] Dielectric constant of STO thin film by M. Lippmaa et al. [Fig. 2] Dielectric constant of STO thin film by Hong-Cheng Li, XX Xi et al. [Fig. 3] Conceptual diagram of the present invention [Fig. 4] Utilizing the present invention Production process diagram of parallel capacitor [FIG. 5] Film formation condition of YBCO thin film [FIG. 6] Film formation condition of STO thin film [FIG. 7] STO surface structure observed with atomic force microscope [FIG. 8] Utilizing the present invention Temperature Dependence of Resistivity of Conducted Parallel Plate Capacitor FIG. 9 Temperature Dependence of Dielectric Constant of Parallel Plate Capacitor Utilizing the Present Invention

Claims (4)

基板上に第1のチタン酸ストロンチウム薄膜を形成し、該薄膜表面を化学的機械研磨により研磨した後、該研磨された表面上に第2のチタン酸ストロンチウム薄膜が形成されていることを特長とする高誘電率チタン酸ストロンチウム薄膜積層体。  A first strontium titanate thin film is formed on a substrate, the surface of the thin film is polished by chemical mechanical polishing, and then a second strontium titanate thin film is formed on the polished surface. High dielectric constant strontium titanate thin film laminate. 上記基板は、ABaCu7−δ(A=Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb;δは1以下の正数)、MgO若しくはLaAlO又は半導体ウェーハ基板に該ABa Cu 7−δ 、該MgO若しくは該LaAlO が形成されたものであることを特長とする請求項1に記載の高誘電率チタン酸ストロンチウム薄膜積層体。The substrate, ABa 2 Cu 3 O 7- δ; said (A = Y, Nd, Sm , Eu, Gd, Dy, Ho, Yb δ is a positive number of less than 1) to, MgO or LaAlO 3 or the semiconductor wafer substrate 2. The high dielectric constant strontium titanate thin film laminate according to claim 1 , wherein ABa 2 Cu 3 O 7-δ , MgO, or LaAlO 3 is formed. 基板上に第1のチタン酸ストロンチウム薄膜を形成し、該薄膜表面を化学的機械研磨により研磨した後、該研磨された表面上に第2のチタン酸ストロンチウム薄膜を形成することを特長とする高誘電率チタン酸ストロンチウム薄膜積層体の作製方法。  A first strontium titanate thin film is formed on a substrate, the surface of the thin film is polished by chemical mechanical polishing, and then a second strontium titanate thin film is formed on the polished surface. A method for producing a dielectric strontium titanate thin film laminate. 上記基板は、ABaCu7−δ(A=Y, Nd, Sm, Eu, Gd, Dy, Ho, Yb;δは1以下の正数)、MgO若しくはLaAlO又は半導体ウェーハ基板に該ABa Cu 7−δ 、該MgO若しくは該LaAlO が形成されたものであることを特長とする請求項3に記載の高誘電率チタン酸ストロンチウム薄膜積層体の作製方法。The substrate, ABa 2 Cu 3 O 7- δ; said (A = Y, Nd, Sm , Eu, Gd, Dy, Ho, Yb δ is a positive number of less than 1) to, MgO or LaAlO 3 or the semiconductor wafer substrate ABa 2 Cu 3 O 7-δ , a method for manufacturing a high dielectric constant of strontium titanate thin film lamination according to claim 3, featuring that those said MgO or the LaAlO 3 is formed.
JP2003145086A 2003-05-22 2003-05-22 Strontium titanate thin film laminate and method for producing the same Expired - Lifetime JP4022620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145086A JP4022620B2 (en) 2003-05-22 2003-05-22 Strontium titanate thin film laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145086A JP4022620B2 (en) 2003-05-22 2003-05-22 Strontium titanate thin film laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004349481A JP2004349481A (en) 2004-12-09
JP4022620B2 true JP4022620B2 (en) 2007-12-19

Family

ID=33532363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145086A Expired - Lifetime JP4022620B2 (en) 2003-05-22 2003-05-22 Strontium titanate thin film laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4022620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064413A (en) * 2003-08-20 2005-03-10 National Institute Of Advanced Industrial & Technology Parallel flat plate capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216365A (en) * 2005-02-03 2006-08-17 Sumitomo Electric Ind Ltd Superconductive thin film material, superconductive wire and manufacturing method thereof
JP2006234574A (en) * 2005-02-24 2006-09-07 National Institute Of Advanced Industrial & Technology Capacitance thermometer
WO2011125657A1 (en) * 2010-03-31 2011-10-13 日立ツール株式会社 Process for production of coated article having excellent corrosion resistance, and coated article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005064413A (en) * 2003-08-20 2005-03-10 National Institute Of Advanced Industrial & Technology Parallel flat plate capacitor

Also Published As

Publication number Publication date
JP2004349481A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
Mazet et al. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications
CN101276791B (en) Semiconductor wafer and process for its production
US6743292B2 (en) Oriented conductive oxide electrodes on SiO2/Si and glass
JP3310881B2 (en) Laminated thin film, substrate for electronic device, electronic device, and method of manufacturing laminated thin film
EP0576633A1 (en) Grain boundary junctions in high temperature superconductor films
Li Ferroelectric/superconductor heterostructures
JP2006117505A (en) Bismuth-based oxide superconductor thin film and method of manufacturing the same
JP4022620B2 (en) Strontium titanate thin film laminate and method for producing the same
Ji et al. A review on recent advances in fabricating freestanding single-crystalline complex-oxide membranes and its applications
JP3994468B2 (en) Oxide multilayer structure, method for manufacturing the same, and ferroelectric nonvolatile memory
JP4310430B2 (en) Strontium titanate thin film laminate
JP4362581B2 (en) Manufacturing method of parallel plate capacitor
JPH11330569A (en) Thermoelectric transducer and its manufacture
JP4357224B2 (en) Semiconductor device
JP2005156194A (en) Capacitance temperature sensor
JP4239343B2 (en) Oxide crystal growth method, field effect transistor manufacturing method, and ferroelectric nonvolatile memory manufacturing method
KR102590568B1 (en) Heterojunction semiconductor substrate, manufactring method thereof and electronic devices using the same
Endo et al. New growth approach of high-quality oxide thin films for future device applications: Independent control of supersaturation and migration
JPH01117376A (en) Edge junction type single crystal thin film superconductor tunnel junction element and manufacture thereof
JP3735604B2 (en) Superconducting element manufacturing method
JP2662908B2 (en) Manufacturing method of oxide superconducting device
JPH04334074A (en) Superconducting device
Gong Synthesis and Functionality of Freestanding Perovskite Oxide Sheets Using Amorphous Oxide Protection Layer
Koinuma Crystal engineering of high-T c and related oxide films for future electronics
Jia et al. Biaxially oriented conductive La 0.5 Sr 0.5 CoO 3 thin films on SiO 2/Si

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Ref document number: 4022620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term