JP4306891B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP4306891B2
JP4306891B2 JP24756099A JP24756099A JP4306891B2 JP 4306891 B2 JP4306891 B2 JP 4306891B2 JP 24756099 A JP24756099 A JP 24756099A JP 24756099 A JP24756099 A JP 24756099A JP 4306891 B2 JP4306891 B2 JP 4306891B2
Authority
JP
Japan
Prior art keywords
battery
positive electrode
negative electrode
electrolyte
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24756099A
Other languages
Japanese (ja)
Other versions
JP2001076756A (en
Inventor
竜司 大下
靖幸 樟本
正久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP24756099A priority Critical patent/JP4306891B2/en
Publication of JP2001076756A publication Critical patent/JP2001076756A/en
Application granted granted Critical
Publication of JP4306891B2 publication Critical patent/JP4306891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、正極と負極と非水電解質とを備えた非水電解質電池に係わり、特に、この種の非水電解質電池の正極あるいは負極に用いられる活物質と電解質との組み合わせの改良に関する。
【0002】
【従来の技術】
近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等に用いられる電池として、リチウム−コバルト酸化物(LiCoO2)、リチウム−ニッケル酸化物(LiNiO2)、リチウム−マンガン酸化物(LiMn24)等のリチウム含有遷移金属酸化物などを正極活物質材料とし、リチウム金属、リチウム合金あるいはリチウムイオンを吸蔵・放出できる炭素材料などを負極活物質とするリチウムイオン電池で代表されるリチウム二次電池が注目され、炭素材料を負極活物質とするリチウム二次電池が実用化されるようになった。
【0003】
【発明が解決しようとする課題】
ところで、この種のリチウム二次電池は、過充電状態になると、正極においては正極活物質となるリチウム含有遷移金属酸化物からリチウムが脱離するとともに、正極活物質と電解液とが反応して電解液の分解が起こる。一方、負極においてはリチウムが電解析出するようになる。ここで、正極活物質となるリチウム含有遷移金属酸化物からリチウムが脱離するに伴って正極の構造劣化が生じ、結果として電池が劣化するという問題を生じた。このため、過充電状態にならないようにするための保護回路を設けて、この保護回路により過充電状態にならないようにして、電池の劣化を防止するようにしていた。
【0004】
しかしながら、上述したような保護回路を設けると、電池の構造が複雑になり、かつ製造工程も複雑になるという問題を生じた。また、保護回路自体も複雑で小型化することが困難であり、この種のリチウム二次電池を簡単、容易に製造できないという問題も生じた。
そこで、この種のリチウム二次電池が過充電状態になって、正極の電位が高電位になっても、電解液が分解されなくする方法が、特開平5−47416号公報あるいは特開平4−242074号公報において提案されるようになった。
これらの公報で提案された方法は、電解液中に遷移金属錯体を添加して、遷移金属イオンの酸化反応により、高電位に保たれた正極による電解液の酸化を抑制して、電解液が分解されるのを防止するというものである。
【0005】
しかしながら、特開平5−47416号公報あるいは特開平4−242074号公報において提案され方法であっても、過充電状態が生じれば電解液が分解されて、結果として、電池が劣化するという問題を生じた。
そこで、本発明は上記問題点を解消するべくなされたものであり、過充電状態を生じなくして、正極の構造劣化や電解液の分解が生じない非水電解液電池を提供することを目的とするものである。
【0006】
【課題を解決するための手段およびその作用・効果】
本発明は電極が過充電状態になる前に電解質中のアニオンおよびカチオンが完全に消費されてしまえば、過充電状態には至らないという知見に基づいてなされたものである。
このため、本発明の非水電解質電池においては、正極は正極集電体の表面に黒鉛質炭素層を備え、負極は負極集電体の表面に黒鉛質炭素層を備え、非水電解質は溶媒として少なくともエチレンカーボネートと鎖状カーボネートとを含有するようにしている。
【0007】
このように、黒鉛質炭素を正極および負極に備えていると、この電池を充電することにより、非水電解質中のアニオンが正極の黒鉛質炭素にインターカレートされ、非水電解質中のカチオンが負極の黒鉛質炭素にインターカレートされることにより、起電力が5〜6V程度である非水電解質電池が得られるようになる。
このとき、非水電解質の溶媒にエチレンカーボネートが含有されていると、エチレンカーボネートは負極で分解されにくいため、電解質の分解を抑制できるようになる。また、溶媒に鎖状カーボネートが含有されていると、鎖状カーボネートは高電位領域で黒鉛質炭素との反応を抑制する作用を有するため、高電位領域での電解質の安定性が向上する。このため、非水電解質は溶媒として少なくともエチレンカーボネートと鎖状カーボネートとを含有させる必要がある。
【0008】
また、非水電解質の電解質塩としては、LiX(SO2R)n(式中、XはN、C、OまたはBであり、RはCF3またはC25またはC37またはC49であり、nは1〜3の整数である)と表されるものは過充電後の容量残存率が優れているので特に好ましい。
【0009】
このような非水電解質電池に用いる正極集電体としては、充放電により電解液中に溶け出さない金属集電体を用いる必要があるが、高電位においてタンタルやアルミニウム箔は充放電により電解液中に溶け出しにくいため、正極集電体としはタンタルを含むタンタル箔、タンタル合金箔、アルミニウム箔を用いることが好ましい。
【0010】
そして、このような非水電解質電池を充電することにより、電解液中のアニオンは正極の黒鉛質炭素にインターカレートされ、電解液中のカチオンが負極の黒鉛質炭素にインターカレートされるため、非水電解質の電気化学当量が正極または負極のいずれか少ない方の容量よりも少ないと、電解液中のアニオンとカチオンの全てが正極または負極の黒鉛質炭素にインターカレートされ(厳密に言えば、充電の末期になると充電電圧が上昇するため、電解液中のアニオンとカチオンの全てが正極または負極の黒鉛質炭素にインターカレートされる訳ではなく、次回の放電に必要となるだけのアニオンとカチオンは残存することとなる)るため、これ以上は充電が進行することはない。したがって、このような構成とすることにより、過充電の進行が防止でき、電池容量の劣化がない非水電解質電池が得られるようになる。
【0011】
なお、本発明の非水電解質電池に用いる非水電解質の溶媒としては、エチレンカーボネートを含有させることで負極で溶媒が分解されなくし、鎖状カーボネートを含有させることで高電位領域での電解質の安定性を確保するための必須の要件となるが、このエチレンカーボネートを10重量部以上と、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネートとを混合させて含有されていれば、これらに1、2−ジメトキシエタン、1,2−ジエトキシエタンなどのエーテル系溶媒や、γ−ブチロラクトン(γ−BL)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、テトラヒドロフラン(THF)を混合させるようにしてもよい。
【0012】
【発明の実施の形態】
以下に、本発明の非水電解質電池の実施の形態を詳細に説明するが、本発明はこの実施の形態に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。なお、図1は本発明の非水電解質電池を模式的に示す断面図である。
【0013】
1.正極の作製
平均粒径10μmの天然黒鉛(d=3.354Å)を用い、この天然黒鉛95重量%に、結着剤としてのポリフッ化ビニリデン(PVdF)5重量%とを混合した。この後、この混合物にN−メチル−2−ピロリドン(NMP)を加えて混合・混練して正極用スラリーを作製した。ついで、この正極用スラリーをタンタル箔からなる正極集電体12にドクターブレード法により塗着した後、所定の厚みとなるように圧延した。ついで、130℃の温度で真空乾燥した後、所定寸法に切断して、正極集電体12の表面に正極黒鉛層11を形成した正極を作製した。
【0014】
2.負極の作製
平均粒径10μmの天然黒鉛(d=3.354Å)を用い、この天然黒鉛95重量%に、結着剤としてのポリフッ化ビニリデン(PVdF)5重量%とを混合した。この後、この混合物にN−メチル−2−ピロリドン(NMP)を加えて混合・混練して負極用スラリーを作製した。ついで、この負極用スラリーを銅箔からなる負極集電体14にドクターブレード法により塗着した後、所定の厚みとなるように圧延した。ついで、130℃の温度で真空乾燥した後、所定寸法に切断して、負極集電体14の表面に負極黒鉛層13を形成した負極を作製した。
【0015】
3.電解液の調製
(1)実施例1
環状カーボネートであるエチレンカーボネート(EC:以下、単にECという)と、鎖状カーボネートであるジメチルカーボネート(DMC:以下、単にDMCという)との等体積混合溶媒に、溶質としてLiN(C25SO22(リチウムペルフルオロアルキルスルホン酸イミド)を1モル/リットル溶解して非水電解液を調製した。この非水電解液を実施例1の電解液aとした。
【0016】
(2)実施例2
EC(環状カーボネート)と鎖状カーボネートであるジエチルカーボネート(DEC:以下、単にDECという)との等体積混合溶媒に、溶質としてLiN(C25SO22(リチウムペルフルオロアルキルスルホン酸イミド)を1モル/リットル溶解して非水電解液を調製した。この非水電解液を実施例2の電解液bとした。
【0017】
(3)実施例3
EC(環状カーボネート)と、DMC(鎖状カーボネート)と、エーテル系溶媒である1,2−ジメトキシエタン(DME:以下、単にDMEという)とを体積比で2:1:1の混合比で混合した混合溶媒に、溶質としてLiN(C25SO22(リチウムペルフルオロアルキルスルホン酸イミド)を1モル/リットル溶解して非水電解液を調製した。この非水電解液を実施例3の電解液cとした。
【0018】
(4)比較例1
EC(環状カーボネート)と、DME(エーテル系溶媒)との等体積混合溶媒に、溶質としてLiN(C25SO22(リチウムペルフルオロアルキルスルホン酸イミド)を1モル/リットル溶解して非水電解液を調製した。この非水電解液を比較例1の電解液xとした。
【0019】
(5)比較例2
環状カーボネートであるプロピレンカーボネート(PC:以下、単にPCという)からなる溶媒に、溶質としてLiN(C25SO22(リチウムペルフルオロアルキルスルホン酸イミド)を1モル/リットル溶解して非水電解液を調製した。この非水電解液を比較例2の電解液yとした。
【0020】
(6)比較例3
PC(環状カーボネート)とDMC(鎖状カーボネート)との等体積混合溶媒に、溶質としてLiN(C25SO22(リチウムペルフルオロアルキルスルホン酸イミド)を1モル/リットル溶解して非水電解液を調製した。この非水電解液を比較例3の電解液zとした。
【0021】
4.電池の作製
ついで、上述のようにして作製した正極と、上述のようにして作製した負極と、上述のようにして調製した実施例1〜3の各電解液a,b,cおよび比較例1〜3の各電解液x,y,zとを用いて、図1に示すような非水電解質電池10を作製した。即ち、まず、金属製の正極缶16を用意する。ついで、この正極缶16内に正極集電体12が缶底部に接触するように、正極集電体12が下側で正極黒鉛層11が上側になるように正極を配置した。ついで、この正極黒鉛層11の上部に、上述のようにして調製した電解液をそれぞれ含浸させたポリプロピレン製微多孔膜よりなるセパレータ15を配置した。
【0022】
一方、金属製の負極缶17を用意する。なお、この負極缶17の内周縁には予めポリプロピレン製の絶緑パッキング18が配置されている。この負極缶17内に負極集電体14が缶底部に接触するように、負極集電体14が下側で負極黒鉛層13が上側になるように負極を配置した。ついで、負極缶17を逆さにして、セパレータ15の上部に負極黒鉛層13が配置されるように、正極缶16の上に負極缶17を載置した。ついで、正極缶16の上端部を内方に封口することにより密封して扁平型の非水電解質電池10を作製した。
【0023】
ここで、実施例1の電解液aを用いた非水電解質電池10を実施例1の電池Aとし、実施例2の電解液bを用いた非水電解質電池10を実施例2の電池Bとし、実施例3の電解液cを用いた非水電解質電池10を実施例3の電池Cとした。また、比較例1の電解液xを用いた非水電解質電池10を比較例の電池Xとし、比較例2の電解液yを用いた非水電解質電池10を比較例2の電池Yとし、比較例3の電解液zを用いた非水電解質電池10を比較例3の電池Zとした。
【0024】
5.試験
(1)過充電試験
上述のようにして作製した実施例1〜3の各電池A,B,C、および比較例1〜3の各電池X,Y,Zを用い、これらの各電池を室温(25℃)において1mA/cm2の電流密度で電池電圧が6.0Vになるまで充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から初期放電容量を求めた。この後、1mA/cm2の電流密度で電池電圧が12.0Vになるまで過充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から過充電後の放電容量を求めた。ついで、上述のようにして求めた初期放電容量と、過充電後の放電容量とから下記の(1)式に基づいて過充電後の放電容量残存率(過充電後残存率)を求めると、下記の表1に示すような結果となった。
過充電後残存率(%)=(過充電後の放電容量/初期放電容量)×100%…(1)
【0025】
(2)サイクル特性試験
また、上述のようにして作製した実施例1〜3の各電池A,B,C、および比較例1〜3の各電池X,Y,Zを用い、これらの各電池を室温(25℃)において1mA/cm2の電流密度で電池電圧が6.0Vになるまで充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させるサイクルを1サイクルとする充放電サイクル試験を行った。ついで、各サイクル毎の充電容量と放電容量との比を求めて、これを充放電効率(%)とし、各サイクルに対する充放電効率(%)をグラフで表すと、図2に示すような結果となった。なお、図2において斜線で示した部分は、電池A,B,Cおよび電池Y,Zの充放電効率(%)が斜線の範囲でばらつくことを示している。
また、このような充放電サイクル試験を行った後、500サイクル後の放電容量を求め、初期放電容量との比率から500サイクル後の放電容量残存率(500サイクル後残存率)を求めると、下記の表1に示すような結果となった。
【0026】
【表1】

Figure 0004306891
【0027】
上記表1および図2より明らかなように、実施例1〜3の各電池A,B,Cのサイクル特性(充放電効率)、過充電後残存率および500サイクル後残存率はいずれもが高い値であるのに対して、比較例1〜3の各電池X,Y,Zのサイクル特性(充放電効率)、過充電後残存率および500サイクル後残存率はいずれもが低い値であることが分かる。
【0028】
これは、環状カーボネートであるエチレンカーボネート(EC)は負極で分解されにくいため、負極でのサイクル特性が向上して、結果として充放電特性が向上したと考えられる。また、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)などの鎖状カーボネートは、正極活物質および負極活物質の利用率を向上させるだけでなく、高電位領域で黒鉛正極との反応を抑制する作用を有するため、高電位領域での電解液の安定性が向上し、過充電後残存率が向上したと考えられる。
【0029】
一方、環状カーボネートであるプロピレンカーボネート(PC)は、負極で分解され易いため、負極でのサイクル特性が低下して、結果として充放電特性が低下したと考えられる。また、1,2−ジメトキシエタン(DME)などのエーテル系溶媒は高電位領域で黒鉛正極と反応して分解されて、高電位領域での電解液の不安定性となって、過充電後残存率が低下したと考えられる。
以上のことから、電解液の溶媒としては、環状カーボネートであるエチレンカーボネート(EC)とジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)などの鎖状カーボネートとの混合溶媒とし、これにエーテル系溶媒などを添加して用いるようにするのが好ましいということができる。
【0030】
6.電解質塩の検
ついで、電解質塩の種類による過充電後の放電容量残存率(過充電後残存率)の影響について検討した。上述した実施例1の電池Aを作製する際に用いた電解質塩であるリチウムペルフルオロアルキルスルホン酸イミドとしてのLiN(C25SO2)2に代えて、LiN(CF3SO2)2、LiN(C49SO2)2、LiN(CF3SO2)(C49SO2)、LiC(CF3SO2)3、LiPF6とLiN(CF3SO2)(C49SO2)、LiBF4とLiN(CF3SO2)(C49SO2)、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4、LiCF3SO3を用いたこと以外は上述した実施例1と同様にして、各非水電解質電池10を作製した。
【0031】
ここで、電解質塩として、LiN(CF3SO2)2を用いた非水電解質電池10を実施例4の電池Dとし、LiN(C49SO2)2を用いた非水電解質電池10を実施例5の電池Eとし、LiN(CF3SO2)(C49SO2)を用いた非水電解質電池10を実施例6の電池Fとし、LiC(CF3SO2)3を用いた非水電解質電池10を実施例7の電池Gとし、LiPF6とLiN(CF3SO2)(C49SO2)をそれぞれ0.5モル/リットル混合した電解質塩を用いた非水電解質電池10を実施例8の電池Hとした。
【0032】
また、LiBF4とLiN(CF3SO2)(C49SO2)をそれぞれ0.5モル/リットル混合した電解質塩を用いた非水電解質電池10を実施例9の電池Iとした。また、LiPF6を用いた非水電解質電池10を参考例1の電池Jとし、LiBF4を用いた非水電解質電池10を参考例2の電池Kとし、LiAsF6を用いた非水電解質電池10を参考例3の電池Lとし、LiSbF6を用いた非水電解質電池10を参考例4の電池Mとし、LiClO4を用いた非水電解質電池10を参考例5の電池Nとし、LiCF3SO3を用いた非水電解質電池10を参考例6の電池Oとした。
【0033】
上述のようにして作製した各電池D〜Oを用い、これらの各電池を室温(25℃)において1mA/cm2の電流密度で電池電圧が6.0Vになるまで充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から初期放電容量を求めた。この後、1mA/cm2の電流密度で電池電圧が12.0Vになるまで過充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から過充電後の放電容量を求めた。ついで、上述のようにして求めた初期放電容量と、過充電後の放電容量とから上述した(1)式に基づいて過充電後残存率を求めると、下記の表2に示すような結果となった。なお、表2には実施例1の電池Aの結果も併せて示している。
【0034】
【表2】
Figure 0004306891
【0035】
上記表2から明らかなように、LiCF3SO3を電解質塩とする電池Oは多少低い過充電後残存率を示しているが、LiN(C25SO2)2、LiN(CF3SO2)2、LiN(C49SO2)2、LiN(CF3SO2)(C49SO2)、LiC(CF3SO2)3、LiPF6とLiN(CF3SO2)(C49SO2)、LiBF4とLiN(CF3SO2)(C49SO2)、LiPF6、LiBF4、LiAsF6、LiSbF6、LiClO4等の電解質塩を用いると、高い過充電後残存率を維持できることが分かる。
【0036】
そして、これらの電解質塩の内、LiN(C25SO2)2、LiN(CF3SO2)2、LiN(C49SO2)2、LiN(CF3SO2)(C49SO2)等のリチウムペルフルオロアルキルスルホン酸イミド、あるいはLiC(CF3SO2)3等のリチウムペルフルオロアルキルスルホン酸メチドが極めて高い過充電後残存率を維持できることが分かる。このことから、本発明の非水電解質電池に用いる電解質塩としては、LiX(SO23n(式中、XはN、C、OまたはBであり、R3はCF3またはC25またはC37またはC49であり、nは1〜3の整数である)で表される電解質塩を用いることが好ましいということができる。
【0037】
7.正極集電体材料の検討
ついで、正極集電体材料による過充電後残存率に対する影響を検討した。ここで、正極集電体12として、実施例1のタンタル箔に代えてアルミニウム箔を用いること以外は上述の実施例1と同様にして非水電解質電池10を作製し、これを実施例10の電池Pとした。また、実施例1のタンタル箔に代えてステンレススチール(SUS304)箔を用いること以外は上述の実施例1と同様にして非水電解質電池10を作製し、これを比較例4の電池Wとした。
【0038】
ついで、これらの電池P,Wを用い、これらの各電池を室温(25℃)において1mA/cm2の電流密度で電池電圧が6.0Vになるまで充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から初期放電容量を求めた。この後、1mA/cm2の電流密度で電池電圧が12.0Vになるまで過充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から過充電後の放電容量を求めた。ついで、上述のようにして求めた初期放電容量と、過充電後の放電容量とから上述した(1)式に基づいて過充電後残存率を求めると、下記の表3に示すような結果となった。なお、表3には実施例1の電池Aの結果も併せて示している。
【0039】
【表3】
Figure 0004306891
【0040】
上記表3より明らかなように、ステンレススチール(SUS304)箔からなる正極集電体12を用いた比較例4の電池Wの過充電後残存率が極めて低いのに対して、タンタル箔からなる正極集電体12を用いた実施例1の電池Aおよびアルミニウム箔からなる正極集電体12を用いた実施例10の電池Pの過充電後残存率が極めて高いことが分かる。
【0041】
これは、ステンレススチール箔を正極集電体12とした電池を過充電すると、ステンレススチールが電解液中に溶けだして、やがては集電体としての機能を喪失することとなる。また、電解液中に溶け出したステンレススチールにリチウムが結合するため、自己放電が生じることとなる。このため、ステンレススチール(SUS304)箔を正極集電体12とした比較例4の電池Wの過充電後残存率が極めて低くなったと考えられる。
【0042】
一方、タンタル箔を正極集電体12とした電池を過充電しても、タンタルは電解液中に溶け出しにくいため、極めて高い過充電後残存率を示したと考えられる。また、アルミニウム箔を正極集電体12とした電池を過充電すると、アルミニウムはタンタルよりも電解液中に溶け出し易いが、ステンレススチールよりは電解液中に溶け出しにくいため、高い過充電後残存率を示したと考えられる。
以上のことから、正極集電体12に用いる金属材料としては、過充電しても電解液中に溶け出しにくいタンタルを用いることが好ましいということができる。
【0043】
8.容量比の検
ついで、正極の容量と、負極の容量と、電解液の容量(電気化学当量)との各容量の比率、即ち容量比を代えた場合の過充電後残存率の影響を検討した。ここで、正・負極および電解液の容量は以下の(2)式〜(4)式に基づいて求めた。
正極の容量=正極の比容量×正極重量・・・(2)
負極の容量=負極の比容量×負極重量・・・(3)
電解液の容量(電気化学当量:以下では容量という)
=26.8Ah×電解質塩の濃度×アニオンの価数×液量/cc・・・(4)
【0044】
なお、上述した実施例1〜実施例10の電池A〜I,Pの容量比は、正極:負極:電解液=1.5:1.5:1である。そして、容量比を代えること以外は実施例1の電池Aと同様にして非水電解質電池10を作製した。ここで、容量比を正極:負極:電解液=2:1:1とした非水電解質電池10を実施例11の電池Qとし、正極:負極:電解液=1:2:1とした非水電解質電池10を実施例12の電池Rとし、正極:負極:電解液=1:1:1とした非水電解質電池10を実施例13の電池Sとし、正極:負極:電解液=1:1:2とした非水電解質電池10を実施例14の電池Tとし、正極:負極:電解液=2:1:2とした非水電解質電池10を実施例15の電池Uとした。
【0045】
上述のようにして作製した各電池Q〜Uを用い、これらの各電池を室温(25℃)において1mA/cm2の電流密度で電池電圧が6.0Vになるまで充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から初期放電容量を求めた。この後、1mA/cm2の電流密度で電池電圧が12.0Vになるまで過充電した後、1mA/cm2の電流密度で電池電圧が2.75Vになるまで放電させて、放電時間から過充電後の放電容量を求めた。ついで、上述のようにして求めた初期放電容量と、過充電後の放電容量とから上述した(1)式に基づいて過充電後残存率を求めると、下記の表4に示すような結果となった。なお、表4には実施例1の電池Aの結果も併せて示している。
【0046】
【表4】
Figure 0004306891
【0047】
上記表4より明らかなように、電解液の容量が正極あるいは負極の容量以下である電池A,Q,R,Sは極めて高い過充電後残存率を示しているが、電解液の容量が正極あるいは負極の容量より大きい電池T,Uは、これらよりも過充電後残存率が劣っていることが分かる。
【0048】
これは、電解液の容量が正極あるいは負極の容量以下であると、過充電により電解液中のアニオンとカチオンの全てが正極または負極の黒鉛にインターカレートされ(厳密に言えば、充電の末期になると充電電圧が上昇するため、電解液中のアニオンとカチオンの全てが正極または負極の黒鉛にインターカレートされる訳ではなく、次回の放電に必要となるだけのアニオンとカチオンは残存することとなる)るため、これ以上は過充電が進行することはないためと考えられる。
【0049】
一方、電解液の容量が正極あるいは負極の容量より大きいと、正極あるいは負極の容量がなくなっても電解液中のアニオンとカチオンが正極あるいは負極に入り込もうとして充電電圧が上昇し、電解液が分解されて電池容量の劣化が起こったためと考えられる。したがって、電解液の容量が正極あるいは負極の容量以下にすることが好ましく、このような構成とすることにより、過充電が防止でき、電池容量の劣化がない非水電解質電池が得られることとなる。
【0050】
上述したように、本発明においては、正極の黒鉛質炭素にインターカレートされるアニオンと、負極の黒鉛質炭素にインターカレートされるカチオンとを非水電解質中に含有するので、充電することにより非水電解質中のアニオンが正極の黒鉛質炭素にインターカレートされ、非水電解質中のカチオンが負極の黒鉛質炭素にインターカレートされて、起電力が5〜6V程度である非水電解質電池が得られるようになる。
そして、本発明の電池においては、過充電が生じることがなく、非水電解質中のアニオンあるいはカチオンがなくなったときに充電すればよいので、特に、トリクル充電が行われる用途に用いると、本発明の特徴を発揮することができるようになるので望ましい。
【0051】
なお、上述した実施の形態においては、黒鉛質炭素として天然黒鉛を用いる例について説明したが、天然黒鉛以外の黒鉛質炭素として、人造黒鉛を用いるようにしてもよい。
【図面の簡単な説明】
【図1】 本発明の非水電解質電池を模式的に示す断面図である。
【図2】 充放電サイクル特性(充放電効率)を示す図である。
【符号の説明】
10…非水電解質電池、11…正極缶、12…正極集電体、13…正極、14…セパレータ、15…負極缶、16…負極集電体、17…負極、18…絶緑パッキング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nonaqueous electrolyte battery including a positive electrode, a negative electrode, and a nonaqueous electrolyte, and more particularly to an improvement in the combination of an active material and an electrolyte used for the positive electrode or the negative electrode of this type of nonaqueous electrolyte battery.
[0002]
[Prior art]
In recent years, lithium-cobalt oxide (LiCoO) has been used as a battery for portable electronic / communication equipment such as small video cameras, mobile phones, and notebook computers.2), Lithium-nickel oxide (LiNiO)2), Lithium-manganese oxide (LiMn)2OFourLithium secondary batteries typified by lithium ion batteries using a lithium-containing transition metal oxide such as) as a positive electrode active material and lithium metal, a lithium alloy or a carbon material capable of occluding and releasing lithium ions as a negative electrode active material. As a result, lithium secondary batteries using a carbon material as a negative electrode active material have been put into practical use.
[0003]
[Problems to be solved by the invention]
By the way, when this type of lithium secondary battery is overcharged, in the positive electrode, lithium is desorbed from the lithium-containing transition metal oxide that becomes the positive electrode active material, and the positive electrode active material reacts with the electrolyte. Decomposition of the electrolyte occurs. On the other hand, in the negative electrode, lithium is electrolytically deposited. Here, as lithium was desorbed from the lithium-containing transition metal oxide serving as the positive electrode active material, the structure of the positive electrode deteriorated, resulting in a problem that the battery deteriorated. For this reason, a protection circuit for preventing the battery from being overcharged is provided, and the battery is prevented from being deteriorated by preventing the battery from being overcharged by the protection circuit.
[0004]
However, when the protection circuit as described above is provided, there arises a problem that the structure of the battery becomes complicated and the manufacturing process becomes complicated. Also, the protection circuit itself is complicated and difficult to downsize, and this type of lithium secondary battery cannot be manufactured easily and easily.
Therefore, a method for preventing the electrolyte from being decomposed even when this type of lithium secondary battery is overcharged and the potential of the positive electrode becomes high is disclosed in Japanese Patent Laid-Open No. 5-47416 or Japanese Patent Laid-Open No. No. 242074 has been proposed.
In the methods proposed in these publications, a transition metal complex is added to the electrolyte, and the oxidation of the electrolyte by the positive electrode maintained at a high potential is suppressed by an oxidation reaction of the transition metal ion. It is to prevent it from being decomposed.
[0005]
However, even with the method proposed in Japanese Patent Laid-Open No. 5-47416 or Japanese Patent Laid-Open No. 4-242074, if an overcharged state occurs, the electrolytic solution is decomposed, resulting in a problem that the battery deteriorates. occured.
Therefore, the present invention has been made to solve the above problems, and an object thereof is to provide a non-aqueous electrolyte battery that does not cause an overcharged state and that does not cause structural deterioration of the positive electrode or decomposition of the electrolytic solution. To do.
[0006]
[Means for solving the problems and their functions and effects]
The present invention has been made on the basis of the knowledge that if the anion and cation in the electrolyte are completely consumed before the electrode is overcharged, the overcharge state cannot be reached.
Therefore, in the nonaqueous electrolyte battery of the present invention, the positive electrode has a graphitic carbon layer on the surface of the positive electrode current collector, the negative electrode has a graphitic carbon layer on the surface of the negative electrode current collector, and the nonaqueous electrolyte is a solvent. At least ethylene carbonate and chain carbonate.
[0007]
As described above, when the graphitic carbon is provided in the positive electrode and the negative electrode, by charging the battery, anions in the nonaqueous electrolyte are intercalated into the graphite carbon of the positive electrode, and the cations in the nonaqueous electrolyte are changed. By intercalating the graphitic carbon of the negative electrode, a nonaqueous electrolyte battery having an electromotive force of about 5 to 6 V can be obtained.
At this time, when ethylene carbonate is contained in the solvent of the non-aqueous electrolyte, ethylene carbonate is difficult to be decomposed at the negative electrode, so that decomposition of the electrolyte can be suppressed. Moreover, when the chain carbonate is contained in the solvent, the chain carbonate has an action of suppressing the reaction with the graphitic carbon in the high potential region, so that the stability of the electrolyte in the high potential region is improved. For this reason, the non-aqueous electrolyte needs to contain at least ethylene carbonate and chain carbonate as a solvent.
[0008]
  In addition, as electrolyte salt of non-aqueous electrolyte, LiX (SO2R)nWherein X is N, C, O or B and R is CFThreeOr C2FFiveOr CThreeF7Or CFourF9And n is an integer of 1 to 3)What is expressed asThis is particularly preferable because the capacity remaining rate after overcharging is excellent.
[0009]
  As a positive electrode current collector used in such a non-aqueous electrolyte battery, it is necessary to use a metal current collector that does not dissolve in the electrolyte due to charge and discharge.Aluminum foilIs difficult to dissolve in the electrolyte due to charge / discharge,TheIs TantaLeIncluding tantalum foil, tantalum alloy foil,Aluminum foilIs preferably used.
[0010]
By charging such a non-aqueous electrolyte battery, the anion in the electrolyte is intercalated into the graphite carbon of the positive electrode, and the cation in the electrolyte is intercalated into the graphite carbon of the negative electrode. If the electrochemical equivalent of the nonaqueous electrolyte is less than the capacity of the smaller one of the positive electrode and the negative electrode, all of the anions and cations in the electrolyte are intercalated into the graphitic carbon of the positive electrode or the negative electrode (strictly speaking For example, since the charging voltage increases at the end of charging, not all the anions and cations in the electrolyte are intercalated into the positive or negative graphitic carbon, but only necessary for the next discharge. Since an anion and a cation remain), charging does not proceed any further. Therefore, by adopting such a configuration, it is possible to obtain a nonaqueous electrolyte battery in which the progress of overcharge can be prevented and the battery capacity is not deteriorated.
[0011]
In addition, as a solvent of the nonaqueous electrolyte used for the nonaqueous electrolyte battery of the present invention, the solvent is not decomposed at the negative electrode by containing ethylene carbonate, and the electrolyte is stabilized in a high potential region by containing chain carbonate. It is an indispensable requirement to ensure the properties, but if this ethylene carbonate is contained in a mixture of 10 parts by weight or more and a chain carbonate such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. Ether solvents such as 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone (γ-BL), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), tetrahydrofuran ( THF) may be mixed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the following, embodiments of the nonaqueous electrolyte battery of the present invention will be described in detail. However, the present invention is not limited to these embodiments, and may be modified as appropriate without departing from the scope of the present invention. Is possible. FIG. 1 is a cross-sectional view schematically showing the nonaqueous electrolyte battery of the present invention.
[0013]
1. Fabrication of positive electrode
Using natural graphite having an average particle diameter of 10 μm (d = 3.354 mm), 95% by weight of this natural graphite was mixed with 5% by weight of polyvinylidene fluoride (PVdF) as a binder. Thereafter, N-methyl-2-pyrrolidone (NMP) was added to the mixture and mixed and kneaded to prepare a positive electrode slurry. Next, this positive electrode slurry was applied to the positive electrode current collector 12 made of tantalum foil by a doctor blade method, and then rolled to a predetermined thickness. Subsequently, after vacuum-drying at a temperature of 130 ° C., it was cut into a predetermined size to produce a positive electrode in which the positive electrode graphite layer 11 was formed on the surface of the positive electrode current collector 12.
[0014]
2. Production of negative electrode
Using natural graphite having an average particle diameter of 10 μm (d = 3.354 mm), 95% by weight of this natural graphite was mixed with 5% by weight of polyvinylidene fluoride (PVdF) as a binder. Thereafter, N-methyl-2-pyrrolidone (NMP) was added to the mixture and mixed and kneaded to prepare a negative electrode slurry. Next, this negative electrode slurry was applied to the negative electrode current collector 14 made of copper foil by the doctor blade method, and then rolled to a predetermined thickness. Subsequently, after vacuum-drying at a temperature of 130 ° C., it was cut into a predetermined size, and a negative electrode in which the negative electrode graphite layer 13 was formed on the surface of the negative electrode current collector 14 was produced.
[0015]
3. Preparation of electrolyte
(1) Example 1
LiN (C as a solute) is mixed in an equal volume mixed solvent of ethylene carbonate (EC: hereinafter simply EC) which is a cyclic carbonate and dimethyl carbonate (DMC: hereinafter simply DMC) which is a chain carbonate.2FFiveSO2)2A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of (lithium perfluoroalkylsulfonic acid imide). This nonaqueous electrolytic solution was designated as electrolytic solution a of Example 1.
[0016]
(2) Example 2
In an equal volume mixed solvent of EC (cyclic carbonate) and chain carbonate diethyl carbonate (DEC: hereinafter simply referred to as DEC), LiN (C2FFiveSO2)2A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of (lithium perfluoroalkylsulfonic acid imide). This nonaqueous electrolytic solution was used as electrolytic solution b of Example 2.
[0017]
(3) Example 3
EC (cyclic carbonate), DMC (chain carbonate), and ether solvent 1,2-dimethoxyethane (DME: hereinafter simply referred to as DME) are mixed at a volume ratio of 2: 1: 1. LiN (C as a solute)2FFiveSO2)2A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of (lithium perfluoroalkylsulfonic acid imide). This nonaqueous electrolytic solution was used as electrolytic solution c of Example 3.
[0018]
(4) Comparative Example 1
In an equal volume mixed solvent of EC (cyclic carbonate) and DME (ether solvent), LiN (C2FFiveSO2)2A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of (lithium perfluoroalkylsulfonic acid imide). This nonaqueous electrolytic solution was used as the electrolytic solution x of Comparative Example 1.
[0019]
(5) Comparative Example 2
LiN (C as a solute) in a solvent made of propylene carbonate (PC: hereinafter simply referred to as PC), which is a cyclic carbonate.2FFiveSO2)2A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of (lithium perfluoroalkylsulfonic acid imide). This nonaqueous electrolytic solution was used as the electrolytic solution y of Comparative Example 2.
[0020]
(6) Comparative Example 3
LiN (C as a solute) in an equal volume mixed solvent of PC (cyclic carbonate) and DMC (chain carbonate)2FFiveSO2)2A non-aqueous electrolyte was prepared by dissolving 1 mol / liter of (lithium perfluoroalkylsulfonic acid imide). This nonaqueous electrolytic solution was used as the electrolytic solution z of Comparative Example 3.
[0021]
4). Battery fabrication
Next, the positive electrode produced as described above, the negative electrode produced as described above, and each of the electrolytic solutions a, b, c of Examples 1 to 3 and Comparative Examples 1 to 3 prepared as described above. A non-aqueous electrolyte battery 10 as shown in FIG. 1 was produced using each electrolyte solution x, y, z. That is, first, a metal positive electrode can 16 is prepared. Next, the positive electrode was disposed in the positive electrode can 16 so that the positive electrode current collector 12 was on the lower side and the positive electrode graphite layer 11 was on the upper side so that the positive electrode current collector 12 was in contact with the bottom of the can. Next, a separator 15 made of a polypropylene microporous film impregnated with the electrolytic solution prepared as described above was disposed on the positive electrode graphite layer 11.
[0022]
On the other hand, a metal negative electrode can 17 is prepared. In addition, the green-green packing 18 made of polypropylene is disposed in advance on the inner peripheral edge of the negative electrode can 17. The negative electrode was disposed in the negative electrode can 17 so that the negative electrode current collector 14 was in contact with the bottom of the can and the negative electrode current collector 14 was on the lower side and the negative electrode graphite layer 13 was on the upper side. Next, the negative electrode can 17 was turned upside down, and the negative electrode can 17 was placed on the positive electrode can 16 so that the negative electrode graphite layer 13 was disposed on the separator 15. Next, the upper end portion of the positive electrode can 16 was sealed inward to produce a flat type nonaqueous electrolyte battery 10.
[0023]
Here, the nonaqueous electrolyte battery 10 using the electrolytic solution a of Example 1 is referred to as the battery A of Example 1, and the nonaqueous electrolyte battery 10 using the electrolytic solution b of Example 2 is referred to as the battery B of Example 2. The nonaqueous electrolyte battery 10 using the electrolytic solution c of Example 3 was designated as the battery C of Example 3. Further, the non-aqueous electrolyte battery 10 using the electrolyte solution x of Comparative Example 1 is referred to as the battery X of the comparative example, and the non-aqueous electrolyte battery 10 using the electrolyte solution y of Comparative Example 2 is referred to as the battery Y of the Comparative Example 2. The nonaqueous electrolyte battery 10 using the electrolytic solution z of Example 3 was designated as the battery Z of Comparative Example 3.
[0024]
5). test
(1) Overcharge test
The batteries A, B, and C of Examples 1 to 3 manufactured as described above and the batteries X, Y, and Z of Comparative Examples 1 to 3 were used, and each of these batteries was 1 mA at room temperature (25 ° C.). / Cm21mA / cm after charging until the battery voltage becomes 6.0V at a current density of2The battery was discharged at a current density of 2.75 V and the initial discharge capacity was determined from the discharge time. After this, 1 mA / cm21mA / cm after overcharging at a current density of 12.0V until the battery voltage is 12.0V2The battery was discharged at a current density of 2.75 V and the discharge capacity after overcharging was determined from the discharge time. Next, when determining the discharge capacity remaining rate after overcharging (residual rate after overcharging) based on the following equation (1) from the initial discharge capacity obtained as described above and the discharge capacity after overcharging, The results shown in Table 1 below were obtained.
Residual rate after overcharge (%) = (discharge capacity after overcharge / initial discharge capacity) × 100% (1)
[0025]
(2) Cycle characteristic test
Moreover, each battery A, B, C of Examples 1-3 produced as mentioned above and each battery X, Y, Z of Comparative Examples 1-3 were used, and these each battery was made into room temperature (25 degreeC). 1 mA / cm21mA / cm after charging until the battery voltage becomes 6.0V at a current density of2A charge / discharge cycle test was performed in which the cycle of discharging until the battery voltage reached 2.75 V at a current density of 1 cycle was performed. Next, the ratio between the charge capacity and the discharge capacity for each cycle is determined, and this is used as the charge / discharge efficiency (%). When the charge / discharge efficiency (%) for each cycle is represented by a graph, the result shown in FIG. It became. 2 indicate that the charge / discharge efficiencies (%) of the batteries A, B, and C and the batteries Y and Z vary within the hatched range.
Moreover, after performing such a charge / discharge cycle test, the discharge capacity after 500 cycles was obtained, and the discharge capacity remaining rate after 500 cycles (remaining rate after 500 cycles) was obtained from the ratio with the initial discharge capacity. The results shown in Table 1 were obtained.
[0026]
[Table 1]
Figure 0004306891
[0027]
As apparent from Table 1 and FIG. 2, the cycle characteristics (charge / discharge efficiency), the remaining rate after overcharge, and the remaining rate after 500 cycles are high for each of the batteries A, B, and C of Examples 1 to 3. The cycle characteristics (charge / discharge efficiency), the remaining rate after overcharge, and the remaining rate after 500 cycles are all low values. I understand.
[0028]
This is probably because ethylene carbonate (EC), which is a cyclic carbonate, is difficult to be decomposed at the negative electrode, so that the cycle characteristics at the negative electrode are improved, resulting in improved charge / discharge characteristics. Further, chain carbonates such as dimethyl carbonate (DMC) and diethyl carbonate (DEC) not only improve the utilization rate of the positive electrode active material and the negative electrode active material, but also suppress the reaction with the graphite positive electrode in a high potential region. Therefore, it is considered that the stability of the electrolyte in the high potential region is improved and the residual rate after overcharge is improved.
[0029]
On the other hand, since propylene carbonate (PC), which is a cyclic carbonate, is easily decomposed at the negative electrode, the cycle characteristics at the negative electrode are lowered, and as a result, the charge / discharge characteristics are considered to be lowered. In addition, ether solvents such as 1,2-dimethoxyethane (DME) react with the graphite positive electrode in the high potential region and are decomposed, resulting in instability of the electrolytic solution in the high potential region, and the residual rate after overcharging. Is thought to have declined.
From the above, as the solvent of the electrolytic solution, a mixed solvent of cyclic carbonate such as ethylene carbonate (EC) and dimethyl carbonate (DMC), diethyl carbonate (DEC), etc., and ether solvents, etc. It can be said that it is preferable to add and use.
[0030]
6). Inspection of electrolyte saltDebate
  Next, the influence of the discharge capacity remaining rate after overcharging (residual rate after overcharging) depending on the type of electrolyte salt was examined. LiN (C as lithium perfluoroalkyl sulfonic acid imide, which is an electrolyte salt used in manufacturing the battery A of Example 1 described above.2FFiveSO2)2Instead of LiN (CFThreeSO2)2, LiN (CFourF9SO2)2, LiN (CFThreeSO2) (CFourF9SO2), LiC (CFThreeSO2)Three, LiPF6And LiN (CFThreeSO2) (CFourF9SO2), LiBFFourAnd LiN (CFThreeSO2) (CFourF9SO2), LiPF6, LiBFFour, LiAsF6, LiSbF6LiClOFour, LiCFThreeSOThreeEach nonaqueous electrolyte battery 10 was produced in the same manner as in Example 1 described above except that was used.
[0031]
Here, as the electrolyte salt, LiN (CFThreeSO2)2A non-aqueous electrolyte battery 10 using LiN was designated as Battery D of Example 4, and LiN (CFourF9SO2)2A non-aqueous electrolyte battery 10 using a battery is designated as battery E of Example 5, and LiN (CFThreeSO2) (CFourF9SO2) Was used as battery F of Example 6, and LiC (CFThreeSO2)ThreeThe non-aqueous electrolyte battery 10 using the battery is referred to as the battery G of Example 7, and LiPF6And LiN (CFThreeSO2) (CFourF9SO2) Was used as a battery H of Example 8 using an electrolyte salt mixed with 0.5 mol / liter each.
[0032]
  LiBFFourAnd LiN (CFThreeSO2) (CFourF9SO2) Was used as a battery I of Example 9 using an electrolyte salt mixed with 0.5 mol / liter of each.It was. Also,LiPF6Non-aqueous electrolyte battery 10 usingReference example 1Battery J and LiBFFourNon-aqueous electrolyte battery 10 usingReference example 2Battery K and LiAsF6Non-aqueous electrolyte battery 10 usingReference example 3Battery L and LiSbF6Non-aqueous electrolyte battery 10 usingReference example 4Battery M and LiClOFourNon-aqueous electrolyte battery 10 usingReference Example 5Battery N and LiCFThreeSOThreeNon-aqueous electrolyte battery 10 usingReference Example 6The battery O was obtained.
[0033]
Using each of the batteries D to O produced as described above, each of these batteries was 1 mA / cm at room temperature (25 ° C.).21mA / cm after charging until the battery voltage becomes 6.0V at a current density of2The battery was discharged at a current density of 2.75 V and the initial discharge capacity was determined from the discharge time. After this, 1 mA / cm21mA / cm after overcharging at a current density of 12.0V until the battery voltage is 12.0V2The battery was discharged at a current density of 2.75 V and the discharge capacity after overcharging was determined from the discharge time. Next, when the post-overcharge residual rate is determined based on the above-described equation (1) from the initial discharge capacity obtained as described above and the discharge capacity after overcharge, the results shown in Table 2 below are obtained. became. Table 2 also shows the results of the battery A of Example 1.
[0034]
[Table 2]
Figure 0004306891
[0035]
As is clear from Table 2 above, LiCFThreeSOThreeThe battery O with the electrolyte salt as the electrolyte salt shows a somewhat low residual rate after overcharge, but LiN (C2FFiveSO2)2, LiN (CFThreeSO2)2, LiN (CFourF9SO2)2, LiN (CFThreeSO2) (CFourF9SO2), LiC (CFThreeSO2)Three, LiPF6And LiN (CFThreeSO2) (CFourF9SO2), LiBFFourAnd LiN (CFThreeSO2) (CFourF9SO2), LiPF6, LiBFFour, LiAsF6, LiSbF6LiClOFourIt can be seen that a high residual rate after overcharge can be maintained by using an electrolyte salt such as.
[0036]
Of these electrolyte salts, LiN (C2FFiveSO2)2, LiN (CFThreeSO2)2, LiN (CFourF9SO2)2, LiN (CFThreeSO2) (CFourF9SO2Lithium perfluoroalkylsulfonic acid imide such as LiC (CFThreeSO2)ThreeIt can be seen that lithium perfluoroalkylsulfonic acid methides such as can maintain a very high residual rate after overcharge. From this, as the electrolyte salt used in the nonaqueous electrolyte battery of the present invention, LiX (SO2RThree)nWherein X is N, C, O or B and RThreeIs CFThreeOr C2FFiveOr CThreeF7Or CFourF9And n is an integer of 1 to 3).
[0037]
7. Study of positive electrode current collector material
  Next, the influence of the positive electrode current collector material on the residual rate after overcharge was examined. Here, as the positive electrode current collector 12, a non-aqueous electrolyte battery 10 was produced in the same manner as in the above-described Example 1 except that an aluminum foil was used instead of the tantalum foil of Example 1, and this was used as an example.10The battery P was obtained. Further, a nonaqueous electrolyte battery 10 was produced in the same manner as in Example 1 except that a stainless steel (SUS304) foil was used instead of the tantalum foil of Example 1, and this was designated as Battery W of Comparative Example 4. .
[0038]
Then, using these batteries P and W, each of these batteries was stored at 1 mA / cm at room temperature (25 ° C.).21mA / cm after charging until the battery voltage becomes 6.0V at a current density of2The battery was discharged at a current density of 2.75 V and the initial discharge capacity was determined from the discharge time. After this, 1 mA / cm21mA / cm after overcharging at a current density of 12.0V until the battery voltage is 12.0V2The battery was discharged at a current density of 2.75 V and the discharge capacity after overcharging was determined from the discharge time. Next, when the post-overcharge remaining rate is calculated based on the above-described equation (1) from the initial discharge capacity obtained as described above and the discharge capacity after overcharge, the results shown in Table 3 below are obtained. became. Table 3 also shows the results of the battery A of Example 1.
[0039]
[Table 3]
Figure 0004306891
[0040]
  As apparent from Table 3 above, the remaining rate after overcharge of the battery W of Comparative Example 4 using the positive electrode current collector 12 made of stainless steel (SUS304) foil is extremely low, whereas the positive electrode made of tantalum foil Example using battery A of Example 1 using current collector 12 and positive electrode current collector 12 made of aluminum foil10It can be seen that the remaining rate of the battery P after overcharging is extremely high.
[0041]
This is because when a battery using a stainless steel foil as the positive electrode current collector 12 is overcharged, the stainless steel begins to dissolve in the electrolyte solution, and eventually the function as the current collector is lost. Moreover, since lithium couple | bonds with the stainless steel melt | dissolved in electrolyte solution, self-discharge will arise. For this reason, it is considered that the remaining rate after overcharging of the battery W of Comparative Example 4 using the stainless steel (SUS304) foil as the positive electrode current collector 12 was extremely low.
[0042]
On the other hand, even when the battery using the tantalum foil as the positive electrode current collector 12 is overcharged, tantalum hardly dissolves in the electrolytic solution, and thus it is considered that the residual rate after the overcharge is extremely high. Moreover, when the battery using the aluminum foil as the positive electrode current collector 12 is overcharged, aluminum is more easily dissolved in the electrolytic solution than tantalum, but is less soluble in the electrolytic solution than stainless steel. It is thought that the rate was shown.
From the above, it can be said that as the metal material used for the positive electrode current collector 12, it is preferable to use tantalum which does not easily dissolve in the electrolyte even when overcharged.
[0043]
8). Capacity ratio inspectionDebate
  Next, the ratio of each capacity of the capacity of the positive electrode, the capacity of the negative electrode, and the capacity (electrochemical equivalent) of the electrolyte solution, that is, the influence of the residual rate after overcharging when the capacity ratio was changed was examined. Here, the capacity | capacitance of positive / negative electrode and electrolyte solution was calculated | required based on the following (2) Formula-(4) Formula.
Positive electrode capacity = positive electrode specific capacity × positive electrode weight (2)
Negative electrode capacity = negative electrode specific capacity × negative electrode weight (3)
Electrolyte capacity (electrochemical equivalent: hereinafter referred to as capacity)
= 26.8 Ah × concentration of electrolyte salt × anion valence × liquid amount / cc (4)
[0044]
  In addition, Example 1- Example mentioned above10Batteries A ~I,The capacity ratio of P is positive electrode: negative electrode: electrolyte = 1.5: 1.5: 1. And the nonaqueous electrolyte battery 10 was produced like the battery A of Example 1 except changing capacity ratio. Here, the non-aqueous electrolyte battery 10 having a capacity ratio of positive electrode: negative electrode: electrolyte = 2: 1: 1 was used as an example.11Example of non-aqueous electrolyte battery 10 in which positive electrode: negative electrode: electrolyte = 1: 2: 112Example of non-aqueous electrolyte battery 10 having a positive electrode: negative electrode: electrolyte = 1: 1: 113Example of non-aqueous electrolyte battery 10 with positive electrode: negative electrode: electrolyte = 1: 1: 214Example of non-aqueous electrolyte battery 10 with positive electrode: negative electrode: electrolyte = 2: 1: 215Battery U.
[0045]
Using each of the batteries Q to U manufactured as described above, each of these batteries was 1 mA / cm at room temperature (25 ° C.).21mA / cm after charging until the battery voltage becomes 6.0V at a current density of2The battery was discharged at a current density of 2.75 V and the initial discharge capacity was determined from the discharge time. After this, 1 mA / cm21mA / cm after overcharging at a current density of 12.0V until the battery voltage is 12.0V2The battery was discharged at a current density of 2.75 V and the discharge capacity after overcharging was determined from the discharge time. Next, when the post-overcharge residual rate is determined based on the above-described equation (1) from the initial discharge capacity obtained as described above and the discharge capacity after overcharge, the results shown in Table 4 below are obtained. became. Table 4 also shows the results of the battery A of Example 1.
[0046]
[Table 4]
Figure 0004306891
[0047]
As is apparent from Table 4 above, the batteries A, Q, R, and S whose electrolyte capacity is less than that of the positive electrode or the negative electrode show a very high residual rate after overcharge, but the electrolyte capacity is positive. Alternatively, it can be seen that the batteries T and U having a capacity larger than that of the negative electrode are inferior in the remaining rate after overcharging.
[0048]
This is because when the capacity of the electrolytic solution is less than the capacity of the positive electrode or the negative electrode, all of the anions and cations in the electrolytic solution are intercalated into the graphite of the positive electrode or the negative electrode due to overcharging. Since the charging voltage rises, not all of the anions and cations in the electrolyte are intercalated into the positive or negative graphite, but only enough anions and cations are needed for the next discharge. Therefore, it is considered that overcharge does not proceed any further.
[0049]
On the other hand, if the capacity of the electrolyte is larger than the capacity of the positive electrode or the negative electrode, even if the capacity of the positive electrode or the negative electrode is lost, the anion and cation in the electrolyte will enter the positive electrode or the negative electrode, the charging voltage will rise, and the electrolyte will decompose This is thought to be due to the deterioration of battery capacity. Therefore, the capacity of the electrolytic solution is preferably set to be equal to or less than the capacity of the positive electrode or the negative electrode. With such a configuration, a non-aqueous electrolyte battery that can prevent overcharge and that does not deteriorate the battery capacity is obtained. .
[0050]
As described above, in the present invention, since the non-aqueous electrolyte contains an anion intercalated with the graphite carbon of the positive electrode and a cation intercalated with the graphite carbon of the negative electrode, charging is performed. Is used to intercalate anions in the non-aqueous electrolyte into the graphite carbon of the positive electrode, and cations in the non-aqueous electrolyte are intercalated into the graphite carbon of the negative electrode, so that the electromotive force is about 5 to 6 V. A battery can be obtained.
In the battery of the present invention, overcharging does not occur, and charging may be performed when the anion or cation in the non-aqueous electrolyte is exhausted. It is desirable because it becomes possible to exhibit the characteristics of.
[0051]
In the above-described embodiment, an example in which natural graphite is used as graphitic carbon has been described. However, artificial graphite may be used as graphitic carbon other than natural graphite.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a nonaqueous electrolyte battery of the present invention.
FIG. 2 is a graph showing charge / discharge cycle characteristics (charge / discharge efficiency).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Non-aqueous electrolyte battery, 11 ... Positive electrode can, 12 ... Positive electrode collector, 13 ... Positive electrode, 14 ... Separator, 15 ... Negative electrode can, 16 ... Negative electrode collector, 17 ... Negative electrode, 18 ... Green packing

Claims (2)

電池容器内に少なくとも正極と負極と非水電解質とを備えた非水電解質電池であって、
前記正極は正極集電体の表面に黒鉛質炭素層を備えるとともに、当該正極集電体はタンタルを含有した箔またはアルミニウム箔からなり
前記負極は負極集電体の表面に黒鉛質炭素層を備え、
前記非水電解質は溶媒として少なくともエチレンカーボネートと鎖状カーボネートとを含有するとともに、前記溶媒中にLiX(SO2R)n(式中、XはN、C、OまたはBであり、RはCF3またはC25またはC37またはC49であり、nは1〜3の整数である)と表される電解質塩を含有していることを特徴とする非水電解質電池。
A nonaqueous electrolyte battery comprising at least a positive electrode, a negative electrode, and a nonaqueous electrolyte in a battery container,
The positive electrode is provided with a graphitic carbon layer on the surface of the positive electrode current collector, and the positive electrode current collector comprises a tantalum-containing foil or an aluminum foil ,
The negative electrode comprises a graphitic carbon layer on the surface of the negative electrode current collector,
The non-aqueous electrolyte contains at least ethylene carbonate and chain carbonate as a solvent, and LiX (SO 2 R) n (wherein X is N, C, O or B, and R is CF 3 or C 2 F 5 or C 3 F 7 or C 4 F 9 , and n is an integer of 1 to 3).
前記非水電解質の電気化学当量は前記正極または負極のいずれか少ない方の容量よりも少ないことを特徴とする請求項1に記載の非水電解質電池。  2. The nonaqueous electrolyte battery according to claim 1, wherein the electrochemical equivalent of the nonaqueous electrolyte is less than the capacity of the positive electrode or the negative electrode, whichever is smaller.
JP24756099A 1999-09-01 1999-09-01 Non-aqueous electrolyte battery Expired - Fee Related JP4306891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24756099A JP4306891B2 (en) 1999-09-01 1999-09-01 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24756099A JP4306891B2 (en) 1999-09-01 1999-09-01 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001076756A JP2001076756A (en) 2001-03-23
JP4306891B2 true JP4306891B2 (en) 2009-08-05

Family

ID=17165321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24756099A Expired - Fee Related JP4306891B2 (en) 1999-09-01 1999-09-01 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP4306891B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7049032B2 (en) * 2001-07-25 2006-05-23 Asahi Glass Company, Limited Secondary power source
JP4496688B2 (en) * 2001-09-06 2010-07-07 株式会社ジーエス・ユアサコーポレーション Secondary battery
JP2014127656A (en) * 2012-12-27 2014-07-07 Ricoh Co Ltd Nonaqueous electrolyte storage element
JP2014130717A (en) 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element
JP6203584B2 (en) * 2013-09-25 2017-09-27 国立大学法人 東京大学 Power storage device
JP6349998B2 (en) * 2014-06-17 2018-07-04 住友電気工業株式会社 Sodium ion secondary battery

Also Published As

Publication number Publication date
JP2001076756A (en) 2001-03-23

Similar Documents

Publication Publication Date Title
US6511776B1 (en) Polymer electrolyte battery and polymer electrolyte
JP5058538B2 (en) Lithium ion secondary battery
JP4433163B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JPH09147913A (en) Nonaqueous electrolyte battery
JP3883726B2 (en) Non-aqueous electrolyte secondary battery
JP2005203342A (en) Secondary battery
JP2009070827A (en) Secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
JP2000243437A (en) Solute for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2004327444A (en) Electrolyte for lithium secondary battery, and lithium secondary battery including this
JP3831550B2 (en) Non-aqueous electrolyte battery
JP4082853B2 (en) Lithium secondary battery
JP2003031259A (en) Nonaqueous electrolyte secondary battery
JP4306891B2 (en) Non-aqueous electrolyte battery
JP4056278B2 (en) Non-aqueous electrolyte battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP4194322B2 (en) Lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
US20040170902A1 (en) Nonaqueous electrolyte battery
JP3525921B2 (en) Cathode active material for non-aqueous secondary batteries
JP4293756B2 (en) Nonaqueous electrolyte secondary battery
JP2009245866A (en) Non-aqueous electrolyte secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees