JPH09147913A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH09147913A
JPH09147913A JP7328262A JP32826295A JPH09147913A JP H09147913 A JPH09147913 A JP H09147913A JP 7328262 A JP7328262 A JP 7328262A JP 32826295 A JP32826295 A JP 32826295A JP H09147913 A JPH09147913 A JP H09147913A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
electrolyte battery
solvent
negative electrode
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7328262A
Other languages
Japanese (ja)
Inventor
Maruo Jinno
丸男 神野
Nobumichi Nishida
伸道 西田
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7328262A priority Critical patent/JPH09147913A/en
Publication of JPH09147913A publication Critical patent/JPH09147913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery with an improved reservation property in charging in which generation of self-discharge caused by contact reaction between an electrode material and a nonaqueous electrolyte solution is suppressed by mixing a solvent consisting of a specific sulfonic compound with a solvent in a nonaqueous electrolytic solution. SOLUTION: A nonaqueous electrolyte battery is provided with a positive electrode, a negative electrode, and a nonaqueous electrolytic solution. A solvent of the nonaqueous electrolytic solution contains one or more kind of a solvent consisting of a sulfonic compound represented by a formula: R1 -SO2 -R2 (R1 , R2 represent different alkyl groups of C1-4 ). A content of the sulfonic compound ranges from 1 to 80% by volume desirably. When a carbonous material which can store/release a lithium ion is used for the negative electrode, a reaction with the nonaqueous electrolytic solution is suppressed further, so that a reservation characteristic of the nonaqueous electrolyte battery is improved further.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、電解液に非水電
解液を使用した非水電解質電池に係り、特に、非水電解
液が正極や負極に使用した電極材料とが反応するという
ことが少なく、自己放電して保存性等が低下するという
ことが少ない非水電解質電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery using a non-aqueous electrolytic solution as an electrolytic solution, and particularly, the non-aqueous electrolytic solution reacts with an electrode material used for a positive electrode or a negative electrode. The present invention relates to a non-aqueous electrolyte battery which rarely causes self-discharge and deterioration in storage stability.

【0002】[0002]

【従来の技術】近年、高出力,高エネルギー密度の新型
二次電池の1つとして、電解液に非水電解液を用い、リ
チウムの酸化還元を利用して放電及び充電を行なうよう
にした非水電解質電池が利用されるようになった。
2. Description of the Related Art In recent years, as one of new high-output and high-energy-density secondary batteries, a non-aqueous electrolytic solution is used as an electrolytic solution, and discharge and charge are performed by utilizing redox of lithium. Water electrolyte batteries have come into use.

【0003】ここで、このような非水電解質電池におい
ては、その負極材料に金属リチウムやリチウムイオンの
吸蔵,放出が可能な炭素材料やリチウム合金等を使用す
ると共に、正極材料にリチウムイオンの吸蔵,放出が可
能なCoO2 ,NiO2 ,Cr25 等の金属酸化物に
リチウムを含有させた材料が使用されており、また上記
の非水電解液としては、エチレンカーボネート,プロピ
レンカーボネート,γ−ブチロラクトン等の有機溶媒に
LiPF6 等のリチウム化合物からなる溶質を溶解させ
たものが使用されていた。
In such a non-aqueous electrolyte battery, a carbon material or a lithium alloy capable of absorbing and releasing metallic lithium and lithium ions is used as the negative electrode material, and the positive electrode material absorbs lithium ions. , A material in which lithium is contained in a metal oxide such as CoO 2 , NiO 2 , Cr 2 O 5 which can be released is used, and as the above non-aqueous electrolyte, ethylene carbonate, propylene carbonate, γ -A solute in which a solute composed of a lithium compound such as LiPF 6 is dissolved in an organic solvent such as butyrolactone has been used.

【0004】ここで、上記のような有機溶媒を含む非水
電解液を使用した場合、この非水電解液と上記の正極や
負極に使用した電極材料とが反応して自己放電が生じ、
特に、この電池を充電状態で保存した場合に、このよう
な反応が生じて保存特性が悪くなる等の問題があった。
When a nonaqueous electrolytic solution containing the above organic solvent is used, the nonaqueous electrolytic solution reacts with the electrode material used for the positive electrode or the negative electrode to cause self-discharge,
In particular, when this battery is stored in a charged state, there is a problem that such a reaction occurs and storage characteristics deteriorate.

【0005】[0005]

【発明が解決しようとする課題】この発明は、正極と負
極と非水系電解液を有する非水電解質電池における上記
のような問題を解決することを課題とするものであり、
正極や負極に使用した電極材料と非水電解液とが接触に
より反応して自己放電が生じるのを抑制し、特に充電時
において自己放電が生じて、電池における保存性が低下
するということがなく、保存特性等に優れた非水電解質
電池が得られるようにすることを課題とするものであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems in a non-aqueous electrolyte battery having a positive electrode, a negative electrode and a non-aqueous electrolyte solution.
Suppresses the occurrence of self-discharge due to contact between the electrode material used for the positive electrode and the negative electrode and the non-aqueous electrolyte, and in particular, self-discharge does not occur during charging and the storage stability of the battery does not deteriorate. Another object is to obtain a non-aqueous electrolyte battery having excellent storage characteristics and the like.

【0006】[0006]

【課題を解決するための手段】この発明においては、上
記のような課題を解決するため、正極と負極と非水系電
解液を有する非水電解質電池において、上記の非水電解
液における溶媒に、下記の構造式1に示すスルホン化合
物からなる溶媒を1種以上含有させるようにしたのであ
る。 R1 −SO2 −R2 (1) (但し、上記の構造式1中において、R1 ,R2 は炭素
数1〜4で構成されるアルキル基であり、R1 とR2
は異なる基で構成されている。)
In order to solve the above problems, in the present invention, in a non-aqueous electrolyte battery having a positive electrode, a negative electrode, and a non-aqueous electrolyte solution, the solvent in the non-aqueous electrolyte solution, One or more kinds of solvents each consisting of the sulfone compound represented by the following structural formula 1 are contained. R 1 —SO 2 —R 2 (1) (However, in the above structural formula 1, R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, and R 1 and R 2 are different from each other. It is composed of a group.)

【0007】ここで、上記の構造式1に示すスルホン化
合物としては、例えばCH3 SO225 ,CH3
237 ,CH3 SO249 ,C25 SO2
37 ,C25 SO249 ,C37 SO24
9 等のスルホン化合物を使用することができ、この
ようなスルホン化合物を単独又は複数組み合わせて用い
ることができる。
Examples of the sulfone compound represented by the above structural formula 1 include CH 3 SO 2 C 2 H 5 and CH 3 S.
O 2 C 3 H 7 , CH 3 SO 2 C 4 H 9 , C 2 H 5 SO 2
C 3 H 7, C 2 H 5 SO 2 C 4 H 9, C 3 H 7 SO 2 C 4
A sulfone compound such as H 9 can be used, and such sulfone compounds can be used alone or in combination.

【0008】そして、この発明における非水電解質電池
のように、非水電解液の溶媒に上記のようなスルホン化
合物を1種以上含有させると、正極や負極の電極材料と
非水電解液とが接触する面にリチウムイオン等のイオン
の通過が可能な被膜が形成され、この被膜によって非水
電解液とこれらの電極材料との反応が抑制され、この非
水電解質電池における自己放電が抑制されて、充電時に
おける保存性が向上するものと考えられる。
As in the non-aqueous electrolyte battery of the present invention, when one or more sulfone compounds as described above are contained in the solvent of the non-aqueous electrolytic solution, the electrode material for the positive electrode or the negative electrode and the non-aqueous electrolytic solution are separated from each other. A film that allows the passage of ions such as lithium ions is formed on the contact surface, and this film suppresses the reaction between the non-aqueous electrolyte solution and these electrode materials, and suppresses self-discharge in this non-aqueous electrolyte battery. It is considered that the preservability during charging is improved.

【0009】ここで、上記の構造式1に示すスルホン化
合物であって、この構造式1中におけるR1 とR2 とに
炭素数が1〜4のアルキル基を用いるようにしたのは、
炭素数がこれより多いアルキル基を持つスルホン化合物
を溶媒として含有させると、この溶媒を用いた非水電解
液の粘度が高くなって、リチウムイオン等に対するイオ
ン導電性が悪くなり、この非水電解質電池における放電
特性等が低下するためである。
Here, in the sulfone compound represented by the structural formula 1, the alkyl group having 1 to 4 carbon atoms is used for R 1 and R 2 in the structural formula 1.
When a sulfone compound having an alkyl group with more carbon atoms is contained as a solvent, the viscosity of the non-aqueous electrolytic solution using this solvent becomes higher and the ionic conductivity for lithium ions and the like deteriorates. This is because the discharge characteristics and the like of the battery deteriorate.

【0010】また、上記の構造式1のスルホン化合物に
おいて、R1 とR2 が同じ基で構成されたスルホン化合
物を使用すると、正極や負極の電極材料と非水電解液と
が接触する面に形成される被膜の状態が異なり、非水電
解液とこれらの電極材料との反応を十分に抑制すること
ができず、自己放電が生じて非水電解質電池における保
存性が低下するためである。
Further, in the sulfone compound represented by the above structural formula 1, when a sulfone compound in which R 1 and R 2 are composed of the same group is used, the surface of the positive electrode or negative electrode electrode material and the non-aqueous electrolyte contact with each other. This is because the state of the coating film formed is different, the reaction between the non-aqueous electrolyte solution and these electrode materials cannot be sufficiently suppressed, and self-discharge occurs to reduce the storage stability in the non-aqueous electrolyte battery.

【0011】そして、この発明における非水電解質電池
において、上記のようなスルホン化合物からなる溶媒と
共に使用する溶媒としては、従来より一般に使用されて
いる公知の溶媒を用いることができ、例えば、エチレン
カーボネート、プロピレンカーボネート、ブチレンカー
ボネート、ビニレンカーボネート、γ−ブチロラクト
ン、ジメチルカーボネート、ジメチルスルホキシド、ア
セトニトリル、1,2−ジメトキシエタン、ジエチルカ
ーボネート等を使用することができる。
In the non-aqueous electrolyte battery according to the present invention, as the solvent used together with the solvent composed of the sulfone compound as described above, a known solvent which has been generally used can be used, for example, ethylene carbonate. , Propylene carbonate, butylene carbonate, vinylene carbonate, γ-butyrolactone, dimethyl carbonate, dimethyl sulfoxide, acetonitrile, 1,2-dimethoxyethane, diethyl carbonate and the like can be used.

【0012】また、非水電解液における溶媒中に上記の
ようなスルホン化合物からなる溶媒を含有させる量につ
いては、この量が少ないと、電極材料と非水電解液とが
接触する面にリチウムイオン等のイオンの通過性の被膜
がうまく形成されなくなる一方、この量が多くなり過ぎ
ると、溶媒の粘度が高くなり非水電解液におけるイオン
導電性が低下して充放電特性等が悪くなるため、溶媒中
における上記のスルホン化合物からなる溶媒の含有量が
1〜80vol%の範囲になるようにすることが好まし
い。
Regarding the amount of the solvent containing the above-mentioned sulfone compound contained in the solvent in the non-aqueous electrolyte, if the amount is small, lithium ion is formed on the surface where the electrode material and the non-aqueous electrolyte come into contact with each other. While the ion-permeable film such as is not formed well, if the amount is too large, the viscosity of the solvent becomes high and the ionic conductivity in the non-aqueous electrolyte is lowered, resulting in poor charge-discharge characteristics and the like. It is preferable that the content of the solvent composed of the sulfone compound in the solvent is in the range of 1 to 80 vol%.

【0013】また、この発明における非水電解質電池に
おいて、活物質にリチウムを用いる場合、非水電解液に
おける上記の溶媒に溶解させる溶質としては、LiPF
6 ,LiCF3 SO3 ,LiClO4 ,LiBF4 ,L
210Cl10,Li212Cl12等の公知のものを使
用することができる。
When lithium is used as the active material in the non-aqueous electrolyte battery of the present invention, the solute to be dissolved in the above-mentioned solvent in the non-aqueous electrolyte is LiPF
6 , LiCF 3 SO 3 , LiClO 4 , LiBF 4 , L
Known materials such as i 2 B 10 Cl 10 and Li 2 B 12 Cl 12 can be used.

【0014】また、上記のように活物質にリチウムを用
いる場合、その正極材料としては、リチウムの吸蔵,放
出が可能な金属化合物等を使用することができ、例え
ば、リチウムを吸蔵,放出できる層状構造をしたTiS
2 ,MoS2 等の金属カルコゲン化合物や、CoO2
Cr25 ,V25 ,MnO2 ,NiO2 ,Fe
2,ZnO2 等の遷移金属酸化物にリチウムを含有さ
せた材料を用いることができ、一般にはLiCoO2
LiNiO2 ,LiMnO2 ,LiFeO2 等が好適に
使用される。
When lithium is used as the active material as described above, a metal compound capable of absorbing and desorbing lithium can be used as the positive electrode material, for example, a layered structure capable of absorbing and desorbing lithium. Structured TiS
2 , metal chalcogen compounds such as MoS 2 , CoO 2 ,
Cr 2 O 5 , V 2 O 5 , MnO 2 , NiO 2 , Fe
A material containing lithium in a transition metal oxide such as O 2 or ZnO 2 can be used. Generally, LiCoO 2 ,
LiNiO 2, LiMnO 2, LiFeO 2 or the like is preferably used.

【0015】一方、負極に使用する材料としては、従来
より公知の材料を使用することができ、例えば、金属リ
チウム、リチウムの吸蔵,放出が可能な合金や炭素材料
等を使用することができ、特に、リチウムの吸蔵,放出
が可能な炭素材料を使用した場合には、上記の非水電解
液との反応がより一層抑制され、この非水電解質電池に
おける保存特性が更に向上する。
On the other hand, as a material used for the negative electrode, a conventionally known material can be used, for example, metallic lithium, an alloy capable of inserting and extracting lithium, a carbon material, or the like can be used. In particular, when a carbon material capable of inserting and extracting lithium is used, the reaction with the above non-aqueous electrolyte is further suppressed, and the storage characteristics of this non-aqueous electrolyte battery are further improved.

【0016】[0016]

【実施例】以下、この発明に係る非水電解質電池につい
て実施例を挙げて具体的に説明すると共に、比較例を挙
げ、この発明の実施例に係る非水電解質電池が保存特性
等の点で優れていることを明らかにする。但し、この発
明における非水電解質電池は下記の実施例に示したもの
に限定されるものではなく、その要旨を変更しない範囲
において適宜変更して実施できるものである。
EXAMPLES Hereinafter, the non-aqueous electrolyte battery according to the present invention will be specifically described with reference to Examples, and comparative examples will be given to describe the non-aqueous electrolyte batteries according to Examples of the present invention in terms of storage characteristics and the like. Make it clear that you are good. However, the non-aqueous electrolyte battery according to the present invention is not limited to the ones shown in the following examples, and can be implemented by appropriately changing it without departing from the scope of the invention.

【0017】(実施例1)この実施例においては、下記
のようにして作製した正極及び負極と、下記のようにし
て調製した非水電解液を使用して、図1に示すような円
筒型の非水電解質二次電池を得るようにした。
Example 1 In this example, a positive electrode and a negative electrode prepared as follows and a non-aqueous electrolyte solution prepared as described below were used, and a cylindrical type as shown in FIG. 1 was used. The non-aqueous electrolyte secondary battery of was obtained.

【0018】[正極の作製]正極を作製するにあたって
は、その正極材料としてリチウム含有二酸化コバルトL
iCoO2 を用い、このLiCoO2 粉末を90重量
部、導電剤であるアセチレンブラックを5重量部、結着
剤であるポリフッ化ビニリデンを5重量部の割合でN−
メチルピロリドン溶媒に加え、これらを混練させてスラ
リーを調製した後、このスラリーを正極集電体であるア
ルミニウム箔の両面にドクターブレード法により塗布
し、これを150℃で2時間真空乾燥させて正極を作製
した。
[Production of Positive Electrode] In producing a positive electrode, lithium-containing cobalt dioxide L is used as the positive electrode material.
Using iCoO 2 , 90 parts by weight of this LiCoO 2 powder, 5 parts by weight of acetylene black which is a conductive agent, and 5 parts by weight of polyvinylidene fluoride which is a binder are N-
After adding a solvent of methylpyrrolidone and kneading them to prepare a slurry, the slurry is applied to both sides of an aluminum foil as a positive electrode current collector by a doctor blade method, and this is vacuum dried at 150 ° C. for 2 hours to obtain a positive electrode. Was produced.

【0019】[負極の作製]負極を作製するにあたって
は、その負極材料として天然黒鉛粉末を使用し、この天
然黒鉛粉末を90重量部、結着剤であるポリフッ化ビニ
リデンを5重量部の割合でN−メチルピロリドン溶媒に
加え、これらを混練してスラリーを調製した後、このス
ラリーを負極集電体である銅箔の両面にドクターブレー
ド法により塗布し、これを150℃で2時間真空乾燥さ
せて負極を作製した。
[Production of Negative Electrode] In producing the negative electrode, natural graphite powder was used as the negative electrode material, and 90 parts by weight of this natural graphite powder and 5 parts by weight of polyvinylidene fluoride as a binder were used. After adding N-methylpyrrolidone solvent and kneading these to prepare a slurry, this slurry was applied to both surfaces of a copper foil as a negative electrode current collector by a doctor blade method, and this was vacuum dried at 150 ° C. for 2 hours. To prepare a negative electrode.

【0020】[非水電解液の調製]非水電解液を調製す
るにあたっては、その溶媒として、エチレンカーボネー
トと前記の構造式1の条件を満たすスルホン化合物CH
3 SO225 とを1:1の体積比で混合させ、この
混合溶媒に溶質であるLiPF6 を1mol/lの割合
で溶解させて非水電解液を調製した。
[Preparation of Non-Aqueous Electrolyte Solution] When preparing a non-aqueous electrolyte solution, ethylene carbonate is used as a solvent and a sulfone compound CH satisfying the condition of the above structural formula 1.
3 SO 2 C 2 H 5 was mixed at a volume ratio of 1: 1 and LiPF 6 as a solute was dissolved in this mixed solvent at a ratio of 1 mol / l to prepare a non-aqueous electrolytic solution.

【0021】[電池の作製]そして、この実施例の非水
電解質電池を作製するにあたっては、図1に示すよう
に、上記のようにして作製した正極1と負極2との間に
セパレータ3としてリチウムイオン透過性のポリプロピ
レン製の微多孔膜を介在させて、これらをスパイラル状
に巻き、これを電池缶4内に収容させた後、この電池缶
4内に上記の非水電解液を注液して封口させ、上記の正
極1を正極リード5を介して正極外部端子6に接続させ
る一方、負極2を負極リード7を介して電池缶4に接続
させるようにした。
[Preparation of Battery] In preparing the non-aqueous electrolyte battery of this example, as shown in FIG. 1, a separator 3 was formed between the positive electrode 1 and the negative electrode 2 prepared as described above. A lithium ion permeable polypropylene microporous film is interposed, and these are spirally wound and housed in a battery can 4, and then the above-mentioned non-aqueous electrolyte solution is injected into the battery can 4. The positive electrode 1 was connected to the positive electrode external terminal 6 via the positive electrode lead 5, and the negative electrode 2 was connected to the battery can 4 via the negative electrode lead 7.

【0022】(実施例2)この実施例2においては、上
記実施例1における非水電解質電池と負極に使用する負
極材料だけを変更させ、この負極材料に金属リチウムを
使用し、それ以外については、上記実施例1の場合と同
様にして非水電解質電池を作製した。
(Example 2) In Example 2, only the negative electrode material used for the non-aqueous electrolyte battery and the negative electrode in Example 1 was changed, and metallic lithium was used as the negative electrode material. A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 above.

【0023】(実施例3〜8)これらの実施例3〜8に
おける非水電解質電池においては、上記実施例1におけ
る非水電解液だけを変更させ、それ以外については、上
記実施例1と同様にして各非水電解質電池を作製した。
(Examples 3 to 8) In the non-aqueous electrolyte batteries of Examples 3 to 8, only the non-aqueous electrolyte solution of Example 1 was changed, and otherwise the same as in Example 1 above. Then, each non-aqueous electrolyte battery was produced.

【0024】ここで、これらの実施例3〜8のものにお
いては、非水電解液を調製するにあたり、その溶媒とし
て、エチレンカーボネートと混合させるスルホン化合物
の種類を上記実施例1のものと変更させ、実施例3にお
いてはCH3 SO237を、実施例4においてはC
3 SO249 を、実施例5においてはC25
237 を、実施例6においてはC25 SO2
49 を、実施例7においてはC37 SO249
を、実施例8においてはCH3 SO225とCH3
SO237 とを1:1の体積比で加えたものを用
い、これらの各スルホン化合物をそれぞれエチレンカー
ボネートに対して1:1の体積比で加え、上記実施例1
の場合と同様にして非水電解液を調製した。なお、これ
らの実施例3〜8において使用した各スルホン化合物
は、前記の構造式1の条件を満たすものである。
In these Examples 3 to 8, the type of the sulfone compound mixed with ethylene carbonate was changed from that of Example 1 as a solvent for preparing the non-aqueous electrolytic solution. In Example 3, CH 3 SO 2 C 3 H 7 was used, and in Example 4, C 3 SO 2 C 3 H 7 was used.
H 3 SO 2 C 4 H 9 and in Example 5 C 2 H 5 S
O 2 C 3 H 7 was used as C 2 H 5 SO 2 C in Example 6.
4 H 9 and in Example 7 C 3 H 7 SO 2 C 4 H 9
In Example 8, CH 3 SO 2 C 2 H 5 and CH 3
SO 2 C 3 H 7 was added at a volume ratio of 1: 1 and each of these sulfone compounds was added at a volume ratio of 1: 1 to ethylene carbonate.
A non-aqueous electrolytic solution was prepared in the same manner as in. Each sulfone compound used in these Examples 3 to 8 satisfies the condition of Structural Formula 1 above.

【0025】(比較例1)この比較例1においては、上
記実施例1の非水電解質電池と非水電解液を調製するの
に使用する溶媒だけを変更させ、その溶媒として、エチ
レンカーボネートとC25 OCOOC25 とを1:
1の体積比で混合させたものを用いるようにし、それ以
外については、上記実施例1と同様にして非水電解質電
池を作製した。
(Comparative Example 1) In Comparative Example 1, only the solvent used for preparing the non-aqueous electrolyte battery and the non-aqueous electrolyte of Example 1 was changed, and ethylene carbonate and C were used as the solvents. 2 H 5 OCOOC 2 H 5 and 1:
A non-aqueous electrolyte battery was prepared in the same manner as in Example 1 except that the mixture was used at a volume ratio of 1.

【0026】(比較例2)この比較例2においては、非
水電解液を調製するにあたって、上記実施例1の非水電
解液とその溶媒に使用するスルホン化合物の種類だけを
変更させ、前記の構造式1においてR1 とR2 とが同じ
基で構成されたCH3 SO2 CH3 を用い、このスルホ
ン化合物とエチレンカーボネートとを1:1の体積比で
混合させた混合溶媒を使用し、それ以外については、上
記実施例1と同様にして非水電解質電池を作製した。
Comparative Example 2 In this Comparative Example 2, when preparing the non-aqueous electrolyte, only the kind of the sulfone compound used in the non-aqueous electrolyte of Example 1 and the solvent thereof was changed, and CH 3 SO 2 CH 3 in which R 1 and R 2 are the same groups in Structural Formula 1 is used, and a mixed solvent in which this sulfone compound and ethylene carbonate are mixed at a volume ratio of 1: 1 is used, A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except for the above.

【0027】(比較例3)この比較例3においては、負
極を構成する負極材料に金属リチウムを用いるように
し、それ以外については、上記の比較例2と同様にして
非水電解質電池を作製した。
(Comparative Example 3) In Comparative Example 3, a non-aqueous electrolyte battery was produced in the same manner as in Comparative Example 2 except that metallic lithium was used as the negative electrode material constituting the negative electrode. .

【0028】(比較例4)この比較例4においては、非
水電解液を調製するにあたって、上記実施例1の非水電
解液とその溶媒に使用するスルホン化合物の種類だけを
変更させ、前記の構造式1においてR1 とR2 の一方の
基が炭素数が5になったアルキル基で構成されたC4
9 SO2511を用い、このスルホン化合物とエチレ
ンカーボネートとを1:1の体積比で混合させた混合溶
媒を使用し、それ以外については、上記実施例1と同様
にして非水電解質電池を作製した。
Comparative Example 4 In this Comparative Example 4, when preparing the non-aqueous electrolyte, only the kind of the sulfone compound used in the non-aqueous electrolyte of Example 1 and the solvent thereof was changed, C 4 H in which one of R 1 and R 2 in Structural Formula 1 is an alkyl group having 5 carbon atoms
Using 9 SO 2 C 5 H 11 , a mixed solvent obtained by mixing the sulfone compound and ethylene carbonate at a volume ratio of 1: 1 was used. Otherwise, the same procedure as in Example 1 was repeated except that the non-aqueous electrolyte was used. A battery was made.

【0029】次に、上記のようにして作製した実施例1
〜8及び比較例1〜4の各非水電解質電池について、そ
れぞれ充電電流200mAで4.2Vまで充電させた
後、これを60℃で20日間保存したものと、充電した
直後における保存前のものとについてそれぞれ放電電流
500mAで2.75Vまで放電させるようにし、保存
前における各非水電解質電池の放電容量と、保存後にお
ける放電容量を測定し、更に保存後における残存率を求
めてその結果を下記の表1に示した。
Next, Example 1 manufactured as described above was used.
~ 8 and each of the non-aqueous electrolyte batteries of Comparative Examples 1 to 4 were charged at a charging current of 200 mA to 4.2 V, and then stored at 60 ° C for 20 days, and immediately after charging and before storage. The discharge capacity of each non-aqueous electrolyte battery before storage and the discharge capacity after storage were measured, and the residual rate after storage was calculated to obtain the result. The results are shown in Table 1 below.

【0030】[0030]

【表1】 [Table 1]

【0031】この結果から明らかなように、非水電解質
電池における非水電解液の溶媒において、前記の構造式
1に示すスルホン化合物であって、R1 とR2 が炭素数
1〜4のアルキル基であり、R1 とR2 が同じ基でない
という条件を満たすスルホン化合物を加えた各実施例の
非水電解質電池は、他の溶媒を含有させた比較例1の非
水電解質電池や、前記の構造式1におけるR1 とR2
同じ基で構成されたスルホン化合物を用いた比較例2,
3の各非水電解質電池や、R1 とR2 の一方の基が炭素
数5のアルキル基で構成されたスルホン化合物を用いた
比較例4の非水電解質電池に比べて、保存後における放
電容量及び残存率が高くなっており、非水電解質電池に
おける保存特性が著しく向上していた。
As is clear from these results, in the solvent of the non-aqueous electrolyte solution in the non-aqueous electrolyte battery, the sulfone compound represented by the structural formula 1 above, wherein R 1 and R 2 are alkyl having 1 to 4 carbon atoms. The non-aqueous electrolyte battery of each example containing a sulfone compound satisfying the condition that R 1 and R 2 are not the same group is a non-aqueous electrolyte battery of Comparative Example 1 containing another solvent, or Comparative Example 2 using a sulfone compound in which R 1 and R 2 in Structural Formula 1 of
Discharge after storage as compared with each non-aqueous electrolyte battery of No. 3 and the non-aqueous electrolyte battery of Comparative Example 4 using a sulfone compound in which one of R 1 and R 2 is an alkyl group having 5 carbon atoms The capacity and the residual rate were high, and the storage characteristics in the non-aqueous electrolyte battery were significantly improved.

【0032】また、実施例1〜8の各非水電解質電池を
比較した場合、その負極材料に金属リチウムを用いた実
施例2の非水電解質電池に比べ、負極材料に天然黒鉛粉
末を使用したその他の各実施例の非水電解質電池の方が
保存後における放電容量及び残存率が高くなっており、
非水電解質電池における保存特性が向上していた。
When the non-aqueous electrolyte batteries of Examples 1 to 8 were compared, natural graphite powder was used as the negative electrode material, as compared with the non-aqueous electrolyte battery of Example 2 in which metallic lithium was used as the negative electrode material. The non-aqueous electrolyte battery of each of the other examples has higher discharge capacity and residual rate after storage,
The storage characteristics of the non-aqueous electrolyte battery were improved.

【0033】(実験例1〜11)次に、上記実施例1に
おける固体電解質電池において、非水電解液を調製する
にあたり、その溶媒として、エチレンカーボネートと一
緒に加える前記のスルホン化合物CH3 SO225
の添加量を変更させて、溶媒中におけるスルホン化合物
の割合(vol%)を下記の表2に示すように変化させ
た実験例1〜11の各非水電解質電池を作製し、この実
験例1〜11の各非水電解質電池について上記の場合と
同様にして、保存前における放電容量と保存後における
放電容量と残存率とを測定し、その結果を表2に合わせ
て示した。
(Experimental Examples 1 to 11) Next, in the solid electrolyte battery in the above-mentioned Example 1, the above-mentioned sulfone compound CH 3 SO 2 was added together with ethylene carbonate as a solvent for preparing the non-aqueous electrolyte. C 2 H 5
Each of the non-aqueous electrolyte batteries of Experimental Examples 1 to 11 in which the ratio (vol%) of the sulfone compound in the solvent was changed as shown in Table 2 below was produced by changing the addition amount of For each of the nonaqueous electrolyte batteries Nos. 11 to 11, the discharge capacity before storage, the discharge capacity after storage, and the residual rate were measured in the same manner as above, and the results are also shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】この結果、溶媒としてエチレンカーボネー
トと一緒に使用する前記のスルホン化合物CH3 SO2
25 の量が、溶媒中において1〜85vol%範囲
である実験例2〜10の各非水電解質電池においては、
保存後における放電容量の低下が少なく、残存率が高く
なっていたのに対して、このスルホン化合物を加えなか
った実験例1の非水電解質電池やこのスルホン化合物の
量が90vol%になった実験例11の非水電解質電池
においては、保存後における放電容量が著しく低下して
残存率が低くなっており、溶媒に上記のようなスルホン
化合物を含有させるににあたっては、このスルホン化合
物の量を、溶媒中において1〜85vol%の範囲にす
ることが好ましかった。
As a result, the above-mentioned sulfone compound CH 3 SO 2 used together with ethylene carbonate as a solvent
In each of the non-aqueous electrolyte batteries of Experimental Examples 2 to 10 in which the amount of C 2 H 5 was in the range of 1 to 85 vol% in the solvent,
The decrease in discharge capacity after storage was small and the residual rate was high, whereas the non-aqueous electrolyte battery of Experimental Example 1 in which this sulfone compound was not added and the experiment in which the amount of this sulfone compound was 90 vol% In the non-aqueous electrolyte battery of Example 11, the discharge capacity after storage was remarkably reduced and the residual rate was low, and when the sulfone compound as described above was contained in the solvent, the amount of this sulfone compound was changed to It was preferable to set it in the range of 1 to 85 vol% in the solvent.

【0036】[0036]

【発明の効果】以上詳述したように、この発明における
非水電解質電池においては、非水電解液の溶媒に前記の
構造式1に示す条件を備えたスルホン化合物を1種以上
含有させるようにしたため、正極や負極の電極材料と非
水電解液とが接触する面にリチウムイオン等のイオンの
通過が可能な被膜が形成され、これにより非水電解液と
これらの電極材料との反応が抑制され、この非水電解質
電池において自己放電が生じるということが少なくな
り、充電時における保存特性に優れた非水電解質電池が
得られるようになった。
As described in detail above, in the non-aqueous electrolyte battery according to the present invention, the solvent of the non-aqueous electrolytic solution should contain at least one sulfone compound satisfying the conditions shown in the structural formula 1 above. Therefore, a coating that allows the passage of ions such as lithium ions is formed on the surface where the positive electrode or negative electrode electrode material and the non-aqueous electrolytic solution come into contact with each other, thereby suppressing the reaction between the non-aqueous electrolytic solution and these electrode materials. As a result, self-discharge is less likely to occur in this non-aqueous electrolyte battery, and it has become possible to obtain a non-aqueous electrolyte battery having excellent storage characteristics during charging.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各実施例及び各比較例における非水電解質電池
の内部構造を示した断面説明図である。
FIG. 1 is a cross-sectional explanatory view showing an internal structure of a non-aqueous electrolyte battery in each of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Noma 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-chome Keihanhondori, Moriguchi-shi, Osaka No. 5-5 in Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と負極と非水電解液を備えた非水電
解質電池において、上記の非水電解液における溶媒に、
下記の構造式1に示すスルホン化合物からなる溶媒が1
種以上含有されていることを特徴とする非水電解質電
池。 R1 −SO2 −R2 (1) (但し、上記の構造式1中において、R1 ,R2 は炭素
数1〜4で構成されるアルキル基であり、R1 とR2
は異なる基で構成されている。)
1. A non-aqueous electrolyte battery comprising a positive electrode, a negative electrode and a non-aqueous electrolyte, wherein the solvent in the non-aqueous electrolyte is:
The solvent composed of the sulfone compound represented by the following structural formula 1 is 1
A non-aqueous electrolyte battery containing at least one species. R 1 —SO 2 —R 2 (1) (However, in the above structural formula 1, R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms, and R 1 and R 2 are different from each other. It is composed of a group.)
【請求項2】 請求項1に記載した非水電解質電池にお
いて、前記の負極にリチウムイオンの吸蔵,放出が可能
な炭素材料を用いたことを特徴とする非水電解質電池。
2. The non-aqueous electrolyte battery according to claim 1, wherein a carbon material capable of inserting and extracting lithium ions is used for the negative electrode.
JP7328262A 1995-11-22 1995-11-22 Nonaqueous electrolyte battery Pending JPH09147913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7328262A JPH09147913A (en) 1995-11-22 1995-11-22 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7328262A JPH09147913A (en) 1995-11-22 1995-11-22 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH09147913A true JPH09147913A (en) 1997-06-06

Family

ID=18208264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7328262A Pending JPH09147913A (en) 1995-11-22 1995-11-22 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH09147913A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2767969A1 (en) * 1997-08-29 1999-03-05 Alsthom Cge Alcatel LITHIUM RECHARGEABLE GENERATOR WITH ORGANIC ELECTROLYTE AND CARBON ANODE
WO1999019932A1 (en) * 1997-10-15 1999-04-22 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
JP2000353545A (en) * 1999-12-06 2000-12-19 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
US6436582B1 (en) * 1998-10-26 2002-08-20 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
KR100428615B1 (en) * 2000-01-21 2004-04-30 삼성에스디아이 주식회사 A electrolyte for a lithium secondary battery
KR100467435B1 (en) * 2002-09-06 2005-01-24 삼성에스디아이 주식회사 An electrolyte for a lithium battery and a lithium battery comprising the same
WO2006078866A2 (en) 2005-01-19 2006-07-27 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Electric current-producing device having sulfone-based electrolyte
US7695861B2 (en) 2005-03-22 2010-04-13 Oxis Energy Limited Lithium sulphide battery and method of producing the same
WO2010047257A1 (en) * 2008-10-24 2010-04-29 住友精化株式会社 Sulfone compound
JP2011044632A (en) * 2009-08-24 2011-03-03 Japan Carlit Co Ltd:The Electrolyte for electric double layer capacitor and electric double layer capacitor
KR20110082587A (en) * 2008-11-17 2011-07-19 스미또모 세이까 가부시키가이샤 Sulfone compound
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US9196929B2 (en) 2005-01-18 2015-11-24 Oxis Energy Limited Electrolyte compositions for batteries using sulphur or sulphur compounds
US9219271B2 (en) 2004-07-27 2015-12-22 Oxis Energy Limited Battery electrode structure
US9472813B2 (en) 2010-12-15 2016-10-18 Dow Global Technologies Llc Battery electrolyte solution containing certain ester-based solvents, and batteries containing such an electrolyte solution
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901180A1 (en) * 1997-08-29 1999-03-10 Alcatel Rechargeable lithium battery with organic electrolyte and carbone anode
FR2767969A1 (en) * 1997-08-29 1999-03-05 Alsthom Cge Alcatel LITHIUM RECHARGEABLE GENERATOR WITH ORGANIC ELECTROLYTE AND CARBON ANODE
WO1999019932A1 (en) * 1997-10-15 1999-04-22 Moltech Corporation Non-aqueous electrolyte solvents for secondary cells
US6436582B1 (en) * 1998-10-26 2002-08-20 Ube Industries, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
JP2000353545A (en) * 1999-12-06 2000-12-19 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
KR100428615B1 (en) * 2000-01-21 2004-04-30 삼성에스디아이 주식회사 A electrolyte for a lithium secondary battery
US8252465B2 (en) 2001-01-19 2012-08-28 Samsung Sdi Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
KR100467435B1 (en) * 2002-09-06 2005-01-24 삼성에스디아이 주식회사 An electrolyte for a lithium battery and a lithium battery comprising the same
US7425388B2 (en) 2002-09-06 2008-09-16 Samsung Sdi Co., Ltd. Electrolyte for a lithium battery and a lithium battery comprising the same
US9219271B2 (en) 2004-07-27 2015-12-22 Oxis Energy Limited Battery electrode structure
US9196929B2 (en) 2005-01-18 2015-11-24 Oxis Energy Limited Electrolyte compositions for batteries using sulphur or sulphur compounds
EP1842250A2 (en) * 2005-01-19 2007-10-10 Arizona Board of Regents, acting for and on behalf of, Arizona State University Electric current-producing device having sulfone-based electrolyte
EP1842250A4 (en) * 2005-01-19 2010-12-15 Univ Arizona State Electric current-producing device having sulfone-based electrolyte
WO2006078866A2 (en) 2005-01-19 2006-07-27 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Electric current-producing device having sulfone-based electrolyte
US7833666B2 (en) 2005-01-19 2010-11-16 Arizona Board of Regents for and behalf of Arizona State University Electric current-producing device having sulfone-based electrolyte
US8361652B2 (en) 2005-03-22 2013-01-29 Oxis Energy Limited Lithium sulphide battery and method of producing the same
US7695861B2 (en) 2005-03-22 2010-04-13 Oxis Energy Limited Lithium sulphide battery and method of producing the same
CN102197024A (en) * 2008-10-24 2011-09-21 住友精化株式会社 Sulfone compound
US20110306797A1 (en) * 2008-10-24 2011-12-15 Sumitomo Seika Chemicals Co., Ltd. Sulfone compound
WO2010047257A1 (en) * 2008-10-24 2010-04-29 住友精化株式会社 Sulfone compound
JP5618833B2 (en) * 2008-11-17 2014-11-05 住友精化株式会社 Sulfone compound
US20110257438A1 (en) * 2008-11-17 2011-10-20 Sumitomo Seika Chemicals Co., Ltd. Sulfone compound
EP2360143A4 (en) * 2008-11-17 2015-06-24 Sumitomo Seika Chemicals Sulfone compound
KR20110082587A (en) * 2008-11-17 2011-07-19 스미또모 세이까 가부시키가이샤 Sulfone compound
US8466324B2 (en) * 2008-11-17 2013-06-18 Sumitomo Seika Chemicals Co., Ltd. Sulfone compound
JP2011044632A (en) * 2009-08-24 2011-03-03 Japan Carlit Co Ltd:The Electrolyte for electric double layer capacitor and electric double layer capacitor
US9472813B2 (en) 2010-12-15 2016-10-18 Dow Global Technologies Llc Battery electrolyte solution containing certain ester-based solvents, and batteries containing such an electrolyte solution
US10461316B2 (en) 2012-02-17 2019-10-29 Oxis Energy Limited Reinforced metal foil electrode
US9893387B2 (en) 2013-03-25 2018-02-13 Oxis Energy Limited Method of charging a lithium-sulphur cell
US9935343B2 (en) 2013-03-25 2018-04-03 Oxis Energy Limited Method of cycling a lithium-sulphur cell
US10038223B2 (en) 2013-03-25 2018-07-31 Oxis Energy Limited Method of charging a lithium-sulphur cell
US10020533B2 (en) 2013-08-15 2018-07-10 Oxis Energy Limited Laminated lithium-sulphur cell
US9899705B2 (en) 2013-12-17 2018-02-20 Oxis Energy Limited Electrolyte for a lithium-sulphur cell
US10811728B2 (en) 2014-05-30 2020-10-20 Oxis Energy Ltd. Lithium-sulphur cell

Similar Documents

Publication Publication Date Title
US11183711B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP4151060B2 (en) Non-aqueous secondary battery
JP3797197B2 (en) Nonaqueous electrolyte secondary battery
JP4837614B2 (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JPH10289731A (en) Nonaqueous electrolytic battery
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JP2005026231A (en) Electrolyte for lithium secondary battery and lithium secondary battery containing it
JP2003007331A (en) Nonaqueous electrolyte secondary battery
US6620552B2 (en) Lithium secondary battery
JP2002151144A (en) Lithium secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
WO2018173452A1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
JP2003263984A (en) Nonaqueous electrolyte cell and manufacturing method thereof
JP2000323171A (en) Nonaqueous electrolyte secondary battery
WO2012086618A1 (en) Negative electrode active material, negative electrode, and nonaqueous electrolyte secondary battery
JP3258907B2 (en) Non-aqueous electrolyte secondary battery
JP2003168478A (en) Lithium ion non-aqueous electrolyte secondary battery
JP2003331914A (en) Nonaqueous electrolyte secondary cell
KR100417084B1 (en) New additives for electrolyte and lithium ion battery using the same
JPH09147911A (en) Nonaqueous electrolyte battery
JP2004039493A (en) Nonaqueous electrolyte battery
JP2000182665A (en) Nonaqueous electrolyte secondary battery