JP4496688B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP4496688B2
JP4496688B2 JP2001269715A JP2001269715A JP4496688B2 JP 4496688 B2 JP4496688 B2 JP 4496688B2 JP 2001269715 A JP2001269715 A JP 2001269715A JP 2001269715 A JP2001269715 A JP 2001269715A JP 4496688 B2 JP4496688 B2 JP 4496688B2
Authority
JP
Japan
Prior art keywords
lithium
battery
negative electrode
electrolyte
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001269715A
Other languages
Japanese (ja)
Other versions
JP2003077544A (en
Inventor
隆明 井口
純一 倉富
宏二 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2001269715A priority Critical patent/JP4496688B2/en
Publication of JP2003077544A publication Critical patent/JP2003077544A/en
Application granted granted Critical
Publication of JP4496688B2 publication Critical patent/JP4496688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に関し、特にリチウム二次電池の電極材料の選択に関する。
【0002】
【従来の技術】
近年、モバイル機器の多機能化やハイブリッド電気自動車(HEV)の実用化などに伴い、これらに用いる電源として、高出力で高容量の電池への要求が強くなっている。特に、ハイブリッド電気自動車(HEV)用電源として用いる電池には、高率放電特性や重量エネルギー密度をさらに向上させた電池が求められている。
【0003】
従来、小型、軽量で、エネルギー密度の高い電源として、非水電解質を用いたリチウム二次電池が実用化されており、負極材料としては金属リチウム、リチウム合金あるいはリチウムイオンの吸蔵・放出が可能な炭素質材料が、正極材料としてはリチウムイオンの吸蔵・放出が可能なリチウムコバルト複合酸化物やリチウムマンガン複合酸化物などのリチウム遷移金属複合酸化物などが使用されている。
【0004】
リチウム二次電池の負極に炭素質材料を用いると、金属リチウムやリチウム合金を用いた場合に比べ、充放電サイクル寿命や安全性の点で優れた電池とすることができる。しかし、それでもなお負極上にリチウムが析出して寿命低下を招くことがあった。また、保存性能については充分ではなかった。
【0005】
この原因については必ずしも明らかではないが、次のように考えられる。負極に用いる炭素質材料がリチウムを吸蔵・放出する電位は、金属リチウムの電位に近接しているため、電池の充電状態において炭素質材料の骨格中に吸蔵されているリチウムは活性度が高く、電解質等を還元する反応を起こしやすい。また、炭素質材料は炭素元素のみの骨格から構成されていることから、酸素原子含有化合物である電解質を構成する溶媒や電解質塩との間に副反応が生じ、それによって負極と電解質との界面に酸化物被膜が形成されるものと考えられる。
【0006】
従来のリチウム二次電池では、これらの現象による影響を最小限に抑えるため、高精度で複雑な充放電制御を行う必要があり、電池特性上不利な要因となっていた。また、正極材料に用いる遷移金属酸化物へのリチウムイオンの吸蔵・放出反応は、前記遷移金属酸化物の格子内へのリチウムイオンの拡散が律速段階となることから、高率放電特性を得るための制限となっていた。
【0007】
さらに、一般的なリチウム電池が充分な高率充放電特性を達成できないもう一つの原因は、正極および負極の電極反応機構の組合せにあった。即ち、電池の充放電に伴って、カチオン(Li+)のみが正・負極間をシャトル的に移動するため、電極反応に寄与しないアニオンの存在により、電解質中に電解質塩の濃度勾配が生じる。即ち、例えば放電時にはリチウムイオンが負極から正極へ移動する。ところが、電解質中のリチウムイオンの輸率は1ではないので、アニオンは負極側へ片寄り、逆に正極近傍ではアニオン濃度が枯渇する傾向が生じる。ところが、電荷補償の原理により、前記アニオン濃度の勾配は即ちリチウム塩濃度の勾配を意味する。つまり、負極表面近傍では塩濃度が高くなり、正極表面近傍では塩濃度が低くなる。このような濃度勾配の結果、前記カチオンの拡散が充分に行えないため、充分な高率充放電特性を達成できないといった問題点があった。
【0008】
このような濃度勾配による影響は、電解質としてゲル電解質、さらには高分子固体電解質を用いた場合にはより顕著であった。即ち、液状電解質の場合には電解質が容易に流動するため、前記流動によって前記濃度勾配は比較的短時間で解消される。ところが、ゲル電解質や高分子固体電解質では電解質の流動が起こらないので、前記濃度勾配の解消が時間的に遅れるからである。
【0009】
【発明が解決しようとする課題】
本発明は、上記問題点に鑑みなされたものであって、放電容量が大きく、出力密度が高く、保存性や充放電サイクル性能にも優れた二次電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明は、請求項1に記載したように、リチウムイオンを吸蔵・放出し得る遷移金属カルコゲン化合物を有する負極と、アニオンを吸蔵・放出し得る炭素質材料を有する正極とを具備した二次電池である。
【0011】
正極及び負極をこのように組合せることにより、カチオン(Li+)が負極活剤に吸蔵・放出すると共に、非水電解質中のアニオン(X-)が正極活剤に吸蔵・放出することによって充放電を行う二次電池が構成される。
【0012】
従って、前記した電解質中のアニオン濃度の勾配に起因する高率充放電特性の制限が解消される。なぜなら、例えば充電時には、カチオン(Li+)は負極遷移金属カルコゲン化合物内に挿入されると共に、正極方向に移動するアニオンは正極炭素材料内に挿入されるので、正極近傍にアニオン濃度の勾配が生じることがないからである。従って、高率充放電を行っても、上記した濃度勾配の影響を受けることなく、電極が本来持つ能力を充分に発揮させることができる。
【0013】
また、負極材料に遷移金属カルコゲン化合物を用いているので、負極へのリチウムイオンの吸蔵・放出反応電位が金属リチウムの電位から乖離しているため、電解質等を還元する反応を起こすことがなく、電池の保存性能、充放電サイクル性能及び安全性を向上させることができる。
【0014】
また、本発明は前記遷移金属カルコゲン化合物は、金属リチウムの電位に対して300mV(v.s.Li/Li+)以上の電位においてリチウムイオンが吸蔵・放出するものであることを特徴としている。
【0015】
このような構成によれば、負極へのリチウムイオンの吸蔵・放出反応電位が金属アルミニウムの還元電位以上であるため、負極に金属リチウム、リチウム合金又は炭素質材料を用いたリチウム電池には用いることのできなかった金属アルミニウムを負極の集電体として用いることができる。金属アルミニウムの比重は2.7であり、一般に負極集電体として用いられている金属銅の比重8.9に比べて1/3以下であるため、重量エネルギー密度の高い電池を提供することができる。
【0016】
ゆえに、本発明は前記負極はアルミニウムまたはアルミニウム合金を有する集電体を具備したことを特徴としている。
【0017】
【発明の実施の形態】
正極に用いる炭素質材料は、電解質中のアニオン(X-)を吸蔵・放出する機能と充分な電気容量を有していれば良く、面間隔(d002)、結晶度及び格子形態を選択することによって、本発明電池の作動電位や放電電位形状を自由に設計することが可能である。例えば、人造黒鉛、天然黒鉛、グラファイト、コークス、ハードカーボン等に分類され、無定形、粒状、燐片状、繊維状、ラジアル状、膨張状などの形体を有するものが挙げられる。
【0018】
負極に用いる遷移金属カルコゲン化合物としては、リチウムチタン複合酸化物LixTi5/3-yy4(Lは1種類以上のTi以外の元素、4/3≦x≦7/3、0≦y≦5/3)、ニオブ酸化物(Nb25等)、マンガンバナジウム複合酸化物(MnVOx等)、リチウム鉄複合酸化物又は鉄酸化物(Li6Fe23,Fe23等)、タングステン酸化物(WO3等)、リチウム遷移金属窒化物(Li7MnN4,Li3FeN2,Li3-xxN(M:Co,Ni,Cu)等)、遷移金属硫化物(TiS2,MoS2,Co1. 6Mo67.7等),リチウム遷移金属ポリアニオン(Lixy(POzb,Lixy(SOzb,Lixy(BOzb(M;Fe,V,Ni,Mn)等)などが挙げられる。
【0019】
また、本発明に用いる非水電解質は、高い出力特性を達成するためには液系電解質であってもよいが、さらに安全性を重視する場合にはゲル電解質や高分子固体電解質を用いることが好ましい。あるいは無機固体電解質を用いてもよい。
【0020】
本発明によれば、ゲル電解質や高分子固体電解質を用いても、前記したアニオン濃度勾配の問題が生じないので、高率放電特性が確保され、且つ、高い安全性を兼ね備えた二次電池を提供することができる。無機固体電解質はイオン輸率が1であるので、もとより前記問題は生じない。
【0021】
非水電解質としては、有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン等のエステル類や、テトラヒドロフラン、2−メチルテトラヒドロフラン等の置換テトラヒドロフラン、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等のエーテル類、ジメチルスルホキシド、エチルメチルスルフォン、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル、N−メチルピロリドン、ジメチルフォルムアミド等が挙げられ、これらを単独又は混合溶媒として用いることができ、これに支持電解質塩として、LiClO4、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22等を溶解したものが挙げられる。
【0022】
無機固体電解質としては、リチウムの窒化物、ハロゲン化物、酸素酸塩、硫化リン化合物などがよく知られており、これらの1種または2種以上を混合して用いることができる。なかでも、Li3N、LiI、Li5NI2、Li3N−LiI−LiOH、Li4SiO4、Li4SiO4−LiI−LiOH、xLi3PO4-(1-x)Li4SiO4、Li2SiS3、LiLaTiO3、LiTi2(PO43等やその類似化合物が好ましい。
【0023】
ゲル電解質や高分子固体電解質に用いる高分子材料としては、ポリエチレンオキサイド誘導体か少なくとも前記誘導体を含むポリマー、ポリプロピレンオキサイド誘導体か少なくとも前記誘導体を含むポリマー、ポリフォスファゼンやポリフォスファゼン誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフルオライド、フッ素ゴム等に上記した非水電解液を含有させた高分子マトリックス材料(ゲル電解質)等が好ましい。また、これら無機固体電解質と高分子固体電解質を併用してもよい。
【0024】
本発明電池の負極には、導電剤、結着剤あるいはフィラー等を添加することができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、鉄、銀、金など)粉、金属繊維、金属の蒸着、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。その添加量は1〜50重量%が好ましく、特に2〜30重量%が好ましい。これらは正極に添加してもよい。
【0025】
結着剤としては、例えば、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボメトキシセルロース等といった熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類のようにリチウムと反応する官能基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望ましい。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0026】
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、アルミナ、炭素等が用いられる。フィラーの添加量は30重量%以下が好ましい。
【0027】
セパレータとしては、イオンの透過度が優れ、機械的強度のある絶縁性薄膜を用いることができる。耐有機溶剤性と疎水性からポリプロピレンやポリエチレンといったオレフィン系のポリマー、ガラス繊維、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からつくられたシート、微孔膜、不織布が用いられる。セパレータの孔径は、一般に電池に用いられる範囲のものであり、例えば0.01〜10μmである。またその厚さについても同様で、一般に電池に用いられる範囲のものであり、例えば5〜300μmである。前記ゲル電解質、高分子固体電解質、無機固体電解質を単独で用いてセパレータの役割を兼ね備えさせてもよく、上記したようなセパレータを併用してもよい。
【0028】
正極に用いる炭素材料や、負極に用いる遷移金属カルコゲン化合物の粒子は、平均粒子サイズ0.1〜100μmである粉体が望ましい。所定の形状の粉体を得るため、粉砕機や分級機や造粒機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いてもよい。分級方法としては、特に限定はなく、篩や風力分級機などが乾式、湿式ともに必要に応じて用いられる。
【0029】
正極及び負極の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極集電体には、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極集電体には、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐還元性向上の目的で、銅、アルミニウム等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いる事ができる。
【0030】
特に本発明電池は、負極作動電位が金属リチウムの電位(Li+/Li)に対して300mV以上の電位であるため、正極集電体及び負極集電体に共にアルミニウムを用いることができるので、従来のリチウム二次電池に比べて重量エネルギー密度を大幅に向上させることができる。
【0031】
正極集電体や負極集電体の表面を酸化処理してもよい。また、これらの形状については、フォイルの他、フィルム、シート、ネット、パンチドメタル、エキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚さは特に限定はないが、1〜500μmのものが用いられる。
【0032】
本発明におけるリチウム二次電池の形状としては、何ら限定されるものではないが、例えば、円筒形、角形、コイン形、ボタン形、扁平形、フィルム状等が挙げられる。
【0033】
【実施例】
本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの記載に何ら限定されるものではない。
【0034】
(実施例1)
水酸化リチウム(LiOH・H2O)と酸化チタン(TiO2)を混合し、これらを酸化雰囲気下において900℃で熱処理してチタン酸リチウム(Li4/3Ti5/34)を得た。
【0035】
負極材料としての前記チタン酸リチウム87重量%、導電剤としてのアセチレンブラック10重量%及び結着剤としてのポリフッ化ビニリデン3重量%を混合し、分散溶剤としてのN−メチル−2−ピロリドンを加えて負極合剤スラリーとし、厚さ15μmの帯状のアルミニウム箔に均一に塗布した後、乾燥し加圧成型することにより負極1を得た。
【0036】
ピッチコークスをアルゴンガス雰囲気中2800℃で2時間熱処理して面間隔(d002)が0.335nmの人造黒鉛を得た。
【0037】
正極材料としての前記人造黒鉛94重量%及び結着剤としてのポリフッ化ビニリデン6重量%を混合し、分散溶剤としてのN−メチル−2−ピロリドンを加え、正極合剤スラリーとし、厚さ15μmの帯状のアルミニウム箔に均一に塗布した後、乾燥し加圧成型することにより正極2を得た。
【0038】
このようにして作製された帯状の負極1及び正極2を微多孔性ポリオレフィンフィルムよりなるセパレータ3を介して多数回捲回した後、最外周の巻き終わりの部分をテープで固定し、電極群とした。前記電極群を、アルミニウム製の円筒型の電池缶5に収納し、前記電極群の上下に絶縁板4を設置した。アルミニウム製の集電リード10を正極2から導き出し、電池蓋7に設置された安全弁8の突起部分に溶接した。一方、アルミニウム製の集電リード11を負極1から導き出し、電池缶5の底部に溶接した。
【0039】
エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を体積比1:1の割合で混合した溶媒に、ヘキサフルオロリン酸リチウム(LiPF6)を1モル溶解し、非水電解質とした。
【0040】
電極缶5の内部に前記電解液を注入した後、封口ガスケット6を介して電池缶5をかしめることにより、電池蓋7を固定し、外径が18mm及び高さが65mmの円筒型電池を作製した。尚、電池蓋7には、電流遮断機構を有する安全弁8及びPTC素子9が備わっている。
【0041】
以上の方法により本発明電池1を得た。
【0042】
(実施例2)
水酸化ニオブ(Nb(OH)2)を大気雰囲気下において900℃で熱処理して五酸化ニオブ(Nb25)を得た。前記五酸化ニオブを負極材料として用いたことを除いては、実施例1と同様にして、本発明電池2を得た。
【0043】
(比較例1)
負極材料として面間隔(d002)が0.375nmのハードカーボン系炭素質材料を用いたことを除いては実施例1と同様にして、比較電池1を得た。
【0044】
(比較例2)
負極材料として面間隔(d002)が0.375nmのハードカーボン系炭素質材料を用い、正極材料としてリチウムマンガン複合酸化物(LiMn24)を用いたることを除いては実施例1と同様にして、比較電池2を得た。
【0045】
(比較例3)
負極材料として面間隔(d002)が0.375nmのハードカーボン系炭素質材料を用い、正極材料としてリチウムマンガンニッケル複合酸化物(LiMn1.5Ni0.54)を用いたことを除いては実施例1と同様にして、比較電池3を得た。
【0046】
本発明電池1,2及び比較電池1〜3を用いて、初期容量試験、出力性能試験、保存性能試験及び高率充放電サイクル性能試験を実施した。いずれの試験においても、充放電の電圧範囲(充電終止電圧−放電終止電圧)は、本発明電池1については3.5V−2.0V、本発明電池2については3.0V−1.8V、比較電池1については4.8V−3.0V、比較電池2については4.2V−2.7V、比較電池3については5.0V−3.5Vとした。
【0047】
初期容量試験は、充電電流及び放電電流を共に、0.1It(mA)(10時間率)とし、数サイクルの充放電を行った。
【0048】
それぞれの電池について、放電容量[mAh]及び平均作動電圧[V]並びにそれらから算出された体積エネルギー密度[Wh/L]及び重量エネルギー密度[Wh/Kg]を表1に示す。
【0049】
出力性能試験は、前記初期容量試験に供した本発明電池1,2および比較電池1〜3を初期容量に対して50%の深度(DOD50%)まで放電した状態としてから行った。このような状態の各電池を0.1It(10時間率)、0.5It(2時間率)、1It(1時間率)、2It(1/2時間率)、3It(1/3時間率)および5It(1/5時間率)の各放電電流で放電した。ここで各電池の放電終止電圧は、前記初期容量試験で採用した各電池の放電終止電圧とそれぞれ同一とした。放電レートをx軸とし、それぞれの電池について放電30秒後の電池電圧をy軸としてプロットし、一次近似式(y=ax+b)を求めた。次に、各電池の放電終止電圧y’を前記近似式に代入して求められるレートx’を電流値として算出した。これによって求められたx’およびy’の値を用い、(式1)により各電池の実効出力密度(W/kg)を算出した。結果を表2に示す。
【0050】
【式1】

Figure 0004496688
【0051】
保存性能試験は、前記初期容量試験の条件に従い5サイクルの充放電を行った後、6サイクル目充電末の状態で室温にて4週間(28日間)保存し、保存後の放電容量を測定することによって(式2)により自己放電率を算出した。
【0052】
【式2】
Figure 0004496688
【0053】
高率充放電サイクル性能試験は、2種類のパターンによって行った。パターン1は、充電電流を5It(1/5時間率)とし、放電電流を0.5It(2時間率)とした。パターン2は、充電電流を0.5It(2時間率)とし、放電電流を5It(1/5時間率)とした。200サイクル経過後の容量維持率を(式3)により求めた。パターン1による結果を表4に、パターン2による結果を表5に示す。
【0054】
【式3】
Figure 0004496688
【0055】
【表1】
Figure 0004496688
【0056】
【表2】
Figure 0004496688
【0057】
【表3】
Figure 0004496688
【0058】
【表4】
Figure 0004496688
【0059】
【表5】
Figure 0004496688
表1の結果から明らかなように、本発明電池1,2は、平均放電電圧が小さいにもかかわらず、そのエネルギー密度は比較電池1〜3に比べて遜色なく、実用レベルであると考えられる。これは、本発明のリチウム二次電池は負極に作動電位が300mV以上を有するリチウム遷移金属カルコゲン化物を使用しているため、負極の集電体として軽量なアルミニウムを用いることが可能となったためである。また、本発明電池1,2の放電容量は比較電池1,2の放電容量に比べて大きい。
【0060】
表2の結果から明らかなように、本発明電池1,2は、平均放電電圧が小さいにもかかわらず、その出力密度は比較電池1〜3に比べて遜色なく実用レベルであると考えられる。これは、本発明のリチウム二次電池はカチオン(Li+)とアニオン(X-)の両方が電池反応に寄与する電極反応機構であるため、電解質中のイオン拡散や濃度分極の影響を大幅に抑制することができたためである。
【0061】
表3の結果から明らかなように、本発明電池1,2は、保存性能において、比較電池1〜3よりも優れている。これは、負極に炭素質材料を用いた場合に生じていた、リチウム吸蔵炭素質材料と電解質との副反応に起因する悪影響が解消できたためと考えられる。
【0062】
表4および表5の結果から明らかなように、本発明電池1,2は、高率充放電サイクル性能において、比較電池1〜3よりも優れている。特にその傾向は、充電を高率で行ったパターン1の場合に顕著である。負極に炭素質材料を使用した比較電池では、充電時の分極によって負極電位がLiの溶解・析出電位を下回り、リチウムが負極上に析出することによるリチウムイオンの不活性化や、活物質と電解質との副反応が起こっていると考えられる。そして比較電池におけるこれらの影響が、長期の充放電サイクルを繰り返すことによって本発明電池との明確な差異となって現れたものと考えられる。本発明の二次電池では負極にリチウム遷移金属カルコゲン化物を使用しているため、充電時の分極によっても負極電位がLiの溶解・析出電位を下回ることが抑制されるため、サイクル性能が向上したものと考えられる。
【0063】
なお、本発明は上記実施例に記載された活剤の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。また円筒型電池はあくまで本発明を説明するためのものであり、電池の形状はこれに限定されるものではない。
【0064】
【発明の効果】
本発明は、請求項1に記載したように、リチウムイオンを吸蔵・放出し得る遷移金属カルコゲン化合物を有する負極と、アニオンを吸蔵・放出し得る炭素質材料を有する正極とを組み合わせて構成されているので、高率充放電を行っても濃度勾配の影響を受けることがなく、高出力特性及び高容量特性を有した二次電池を提供できる。
【0065】
また、負極材料に遷移金属カルコゲン化合物を用いているので、負極へのリチウムイオンの吸蔵・放出反応電位が金属リチウムの電位から乖離しているため、電解質等を還元する反応を起こすことがないので、二次電池の保存性能、充放電サイクル性能及び安全性を向上させることができる。
【0066】
また、本発明は前記遷移金属カルコゲン化合物は、金属リチウムの電位に対して300mV(v.s.Li/Li+)以上の電位においてリチウムイオンが吸蔵・放出するものであることを特徴としているので、金属アルミニウムを負極の集電体として用いることができ、重量エネルギー密度の高い二次電池を提供することができる。
【図面の簡単な説明】
【図1】実施例に係る電池の断面図である。
【符号の説明】
1 負極
2 正極
3 セパレータ
4 絶縁板
5 電池缶
6 封口ガスケット
7 電池蓋
8 安全弁
9 PTC素子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly to selection of an electrode material for a lithium secondary battery.
[0002]
[Prior art]
In recent years, with the increasing functionality of mobile devices and the practical application of hybrid electric vehicles (HEV), there is an increasing demand for batteries with high output and high capacity as power sources used for these. In particular, a battery used as a power source for a hybrid electric vehicle (HEV) is required to have a battery with further improved high rate discharge characteristics and weight energy density.
[0003]
Conventionally, a lithium secondary battery using a non-aqueous electrolyte has been put to practical use as a compact, lightweight, high energy density power source, and as a negative electrode material, metal lithium, lithium alloy or lithium ion can be occluded / released. As the carbonaceous material, as the positive electrode material, lithium transition metal composite oxides such as lithium cobalt composite oxide and lithium manganese composite oxide capable of inserting and extracting lithium ions are used.
[0004]
If a carbonaceous material is used for the negative electrode of a lithium secondary battery, it can be set as the battery excellent in the charge / discharge cycle life and safety compared with the case where metallic lithium and a lithium alloy are used. However, lithium may still be deposited on the negative electrode, leading to a decrease in life. Further, the storage performance was not sufficient.
[0005]
Although this cause is not necessarily clear, it is considered as follows. The potential at which the carbonaceous material used for the negative electrode occludes / releases lithium is close to the potential of metallic lithium, so lithium stored in the skeleton of the carbonaceous material in the charged state of the battery has high activity, It tends to cause a reaction that reduces electrolytes. In addition, since the carbonaceous material is composed of a skeleton containing only carbon elements, a side reaction occurs between the solvent and the electrolyte salt constituting the electrolyte that is an oxygen atom-containing compound, thereby causing an interface between the negative electrode and the electrolyte. It is thought that an oxide film is formed on the surface.
[0006]
In a conventional lithium secondary battery, in order to minimize the influence of these phenomena, it is necessary to perform complicated charge / discharge control with high accuracy, which is a disadvantageous factor in battery characteristics. In addition, the lithium ion storage / release reaction in the transition metal oxide used for the positive electrode material is a rate-determining step of the diffusion of lithium ions into the lattice of the transition metal oxide, so that high rate discharge characteristics can be obtained. It was a limitation.
[0007]
Furthermore, another reason why a general lithium battery cannot achieve a sufficiently high rate charge / discharge characteristic is a combination of positive electrode and negative electrode electrode reaction mechanisms. That is, as the battery is charged / discharged, only the cation (Li + ) moves between the positive and negative electrodes in a shuttle manner, so that the presence of an anion that does not contribute to the electrode reaction causes a concentration gradient of the electrolyte salt in the electrolyte. That is, for example, during discharge, lithium ions move from the negative electrode to the positive electrode. However, since the transport number of lithium ions in the electrolyte is not 1, the anion tends to deviate toward the negative electrode side, and conversely, the anion concentration tends to be depleted in the vicinity of the positive electrode. However, according to the principle of charge compensation, the anion concentration gradient means a lithium salt concentration gradient. That is, the salt concentration increases near the negative electrode surface, and the salt concentration decreases near the positive electrode surface. As a result of such a concentration gradient, the cation cannot be sufficiently diffused, so that a sufficient high rate charge / discharge characteristic cannot be achieved.
[0008]
The effect of such a concentration gradient is more remarkable when a gel electrolyte or a polymer solid electrolyte is used as the electrolyte. That is, in the case of a liquid electrolyte, since the electrolyte easily flows, the concentration gradient is eliminated in a relatively short time by the flow. However, since the electrolyte does not flow in the gel electrolyte or the polymer solid electrolyte, the solution of the concentration gradient is delayed in time.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and an object thereof is to provide a secondary battery having a large discharge capacity, a high output density, and excellent storage stability and charge / discharge cycle performance.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a negative electrode having a transition metal chalcogen compound capable of occluding and releasing lithium ions, and a positive electrode having a carbonaceous material capable of occluding and releasing anions. Is a secondary battery.
[0011]
By combining the positive electrode and the negative electrode in this manner, cations (Li + ) are occluded / released in the negative electrode active agent, and anions (X ) in the non-aqueous electrolyte are occluded / released in the positive electrode active agent. A secondary battery for discharging is configured.
[0012]
Therefore, the limitation on the high rate charge / discharge characteristics due to the gradient of the anion concentration in the electrolyte is eliminated. This is because, for example, during charging, the cation (Li + ) is inserted into the negative electrode transition metal chalcogen compound and the anion moving in the positive electrode direction is inserted into the positive electrode carbonaceous material. It is because it does not occur. Therefore, even if high rate charge / discharge is performed, the inherent capability of the electrode can be fully exhibited without being affected by the above-described concentration gradient.
[0013]
In addition, since a transition metal chalcogen compound is used as the negative electrode material, the lithium ion storage / release reaction potential from the negative electrode is deviated from the potential of metallic lithium, so there is no reaction to reduce the electrolyte, etc. Battery storage performance, charge / discharge cycle performance and safety can be improved.
[0014]
In the present invention , the transition metal chalcogen compound is characterized in that lithium ions are occluded / released at a potential of 300 mV (vsLi / Li + ) or more with respect to the potential of metallic lithium.
[0015]
According to such a configuration, the lithium ion storage / release reaction potential to the negative electrode is equal to or higher than the reduction potential of metal aluminum, and therefore, it is used for a lithium battery using metal lithium, a lithium alloy, or a carbonaceous material for the negative electrode. Metal aluminum that could not be formed can be used as a current collector for the negative electrode. Since the specific gravity of metallic aluminum is 2.7, which is 1/3 or less compared to the specific gravity of 8.9 of metallic copper generally used as a negative electrode current collector, it is possible to provide a battery having a high weight energy density. it can.
[0016]
Therefore, the present invention is characterized in that the negative electrode includes a current collector having aluminum or an aluminum alloy.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The carbonaceous material used for the positive electrode only needs to have a function of occluding and releasing anions (X ) in the electrolyte and a sufficient electric capacity, and the plane spacing (d 002 ), crystallinity, and lattice form are selected. Thus, it is possible to freely design the operating potential and discharge potential shape of the battery of the present invention. For example, those classified into artificial graphite, natural graphite, graphite, coke, hard carbon, etc., and those having shapes such as amorphous, granular, flake shaped, fibrous, radial, expanded, and the like can be mentioned.
[0018]
As the transition metal chalcogen compound used for the negative electrode, lithium titanium composite oxide Li x Ti 5 / 3-y L y O 4 (L is one or more elements other than Ti, 4/3 ≦ x ≦ 7/3, 0 ≦ y ≦ 5/3), niobium oxide (Nb 2 O 5 etc.), manganese vanadium composite oxide (MnVO x etc.), lithium iron composite oxide or iron oxide (Li 6 Fe 2 O 3 , Fe 2 O) 3 ), tungsten oxide (WO 3 etc.), lithium transition metal nitride (Li 7 MnN 4 , Li 3 FeN 2 , Li 3-x M x N (M: Co, Ni, Cu) etc.), transition metal sulfide (TiS 2, MoS 2, Co 1. 6 Mo 6 S 7.7 , etc.), lithium transition metal polyanion (Li x M y (PO z ) b, Li x M y (SO z) b, Li x M y ( BO z ) b (M; Fe, V, Ni, Mn), etc.).
[0019]
In addition, the nonaqueous electrolyte used in the present invention may be a liquid electrolyte in order to achieve high output characteristics, but in the case where safety is more important, a gel electrolyte or a solid polymer electrolyte may be used. preferable. Alternatively, an inorganic solid electrolyte may be used.
[0020]
According to the present invention, even when a gel electrolyte or a solid polymer electrolyte is used, the above-described problem of an anion concentration gradient does not occur. Therefore, a high-discharge characteristic is ensured and a secondary battery having high safety is obtained. Can be provided. Since the inorganic solid electrolyte has an ion transport number of 1, the above problem does not occur.
[0021]
Nonaqueous electrolytes include organic solvents such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, substituted tetrahydrofurans such as tetrahydrofuran and 2-methyltetrahydrofuran, and dioxolane. , Ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethyl sulfoxide, ethyl methyl sulfone, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide, etc. is, they can be used alone or as a mixed solvent, a supporting electrolyte salt thereto, LiClO 4, LiPF 6, iBF 4, LiAsF 6, include those prepared by dissolving LiCF 3 SO 3, LiN (CF 3 SO 2) 2 and the like.
[0022]
As inorganic solid electrolytes, lithium nitrides, halides, oxyacid salts, phosphorus sulfide compounds, and the like are well known, and one or more of these can be used in combination. Among them, Li 3 N, LiI, Li 5 NI 2, Li 3 N-LiI-LiOH, Li 4 SiO 4, Li 4 SiO 4 -LiI-LiOH, xLi 3 PO 4- (1-x) Li 4 SiO 4 , Li 2 SiS 3 , LiLaTiO 3 , LiTi 2 (PO 4 ) 3 and the like and the like are preferable.
[0023]
Polymer materials used in gel electrolytes and solid polymer electrolytes include polyethylene oxide derivatives or polymers containing at least the above derivatives, polypropylene oxide derivatives or polymers containing at least the above derivatives, polyphosphazenes or polyphosphazene derivatives, and ion dissociation groups. Polymer matrix material (gel electrolyte) containing the above non-aqueous electrolyte in a polymer containing, a phosphate ester polymer derivative, a polyvinyl pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, fluororubber, etc. preferable. These inorganic solid electrolytes and polymer solid electrolytes may be used in combination.
[0024]
A conductive agent, a binder, a filler, or the like can be added to the negative electrode of the battery of the present invention. As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, iron, silver, gold, etc.) powder, metal Conductive materials such as fibers, metal vapor deposition, and conductive ceramic materials can be included as one type or a mixture thereof. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight. These may be added to the positive electrode.
[0025]
Examples of the binder include heat such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carbomethoxy cellulose, and the like. A plastic resin, a polymer having rubber elasticity, a polysaccharide, or the like can be used as one kind or a mixture of two or more kinds. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0026]
As the filler, any material that does not adversely affect the battery performance may be used. For example, olefin polymers such as polypropylene and polyethylene, aerosil, alumina, carbon, and the like are used. The amount of filler added is preferably 30% by weight or less.
[0027]
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Sheets, microporous membranes, and nonwoven fabrics made from olefin polymers such as polypropylene and polyethylene, glass fibers, polyvinylidene fluoride, polytetrafluoroethylene, etc. are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator is in a range generally used for batteries, for example, 0.01 to 10 μm. The thickness is also the same, and is generally in the range used for batteries, for example, 5 to 300 μm. The gel electrolyte, polymer solid electrolyte, and inorganic solid electrolyte may be used alone to serve as a separator, or the above-described separator may be used in combination.
[0028]
The carbonaceous material used for the positive electrode and the particles of the transition metal chalcogen compound used for the negative electrode are preferably powder having an average particle size of 0.1 to 100 μm. In order to obtain powder having a predetermined shape, a pulverizer, a classifier, or a granulator is used. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill, a sieve, or the like is used. At the time of pulverization, water or wet pulverization in the presence of an organic solvent such as hexane may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as necessary for both dry and wet methods.
[0029]
As the current collector for the positive electrode and the negative electrode, any electronic conductor may be used as long as it does not adversely affect the constructed battery. For example, the positive electrode current collector includes aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., in addition to aluminum and titanium for the purpose of improving adhesiveness, conductivity, and oxidation resistance. The thing which processed the surface, such as copper, with carbon, nickel, titanium, silver, etc. can be used. In addition to copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., the negative electrode current collector has improved adhesion, conductivity and reduction resistance. For the purpose, a material obtained by treating the surface of copper, aluminum or the like with carbon, nickel, titanium, silver or the like can be used.
[0030]
In particular, the battery of the present invention has a negative electrode operating potential of 300 mV or more with respect to the potential of metallic lithium (Li + / Li), and therefore, aluminum can be used for both the positive electrode current collector and the negative electrode current collector. Compared with the conventional lithium secondary battery, the weight energy density can be greatly improved.
[0031]
The surface of the positive electrode current collector or the negative electrode current collector may be oxidized. As for these shapes, films, sheets, nets, punched metals, expanded products, lath bodies, porous bodies, foams, formed bodies of fiber groups, and the like are used in addition to foils. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0032]
The shape of the lithium secondary battery in the present invention is not limited at all, and examples thereof include a cylindrical shape, a square shape, a coin shape, a button shape, a flat shape, and a film shape.
[0033]
【Example】
The present invention will be described in more detail based on examples, but the present invention is not limited to these descriptions.
[0034]
Example 1
Lithium hydroxide (LiOH.H 2 O) and titanium oxide (TiO 2 ) are mixed and heat-treated at 900 ° C. in an oxidizing atmosphere to obtain lithium titanate (Li 4/3 Ti 5/3 O 4 ). It was.
[0035]
87% by weight of the lithium titanate as a negative electrode material, 10% by weight of acetylene black as a conductive agent and 3% by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-2-pyrrolidone as a dispersion solvent was added. The negative electrode mixture slurry was uniformly applied to a 15 μm thick strip-shaped aluminum foil, and then dried and pressure-molded to obtain the negative electrode 1.
[0036]
The pitch coke was heat-treated at 2800 ° C. for 2 hours in an argon gas atmosphere to obtain artificial graphite having an interplanar spacing (d 002 ) of 0.335 nm.
[0037]
94% by weight of the artificial graphite as a positive electrode material and 6% by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-2-pyrrolidone as a dispersion solvent was added to form a positive electrode mixture slurry having a thickness of 15 μm. After apply | coating uniformly to strip | belt-shaped aluminum foil, the positive electrode 2 was obtained by drying and pressure-molding.
[0038]
After winding the strip-like negative electrode 1 and the positive electrode 2 thus produced many times through a separator 3 made of a microporous polyolefin film, the outermost winding end portion is fixed with tape, did. The electrode group was accommodated in a cylindrical battery can 5 made of aluminum, and insulating plates 4 were installed above and below the electrode group. A current collecting lead 10 made of aluminum was led out from the positive electrode 2 and welded to a protruding portion of the safety valve 8 installed on the battery lid 7. On the other hand, an aluminum current collecting lead 11 was led out from the negative electrode 1 and welded to the bottom of the battery can 5.
[0039]
One mole of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a solvent in which ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 1 to obtain a nonaqueous electrolyte.
[0040]
After injecting the electrolyte into the electrode can 5, the battery can 5 is caulked through the sealing gasket 6 to fix the battery lid 7, and a cylindrical battery having an outer diameter of 18 mm and a height of 65 mm is obtained. Produced. The battery lid 7 is provided with a safety valve 8 and a PTC element 9 having a current interruption mechanism.
[0041]
The battery 1 of the present invention was obtained by the above method.
[0042]
(Example 2)
Niobium hydroxide (Nb (OH) 2 ) was heat-treated at 900 ° C. in an air atmosphere to obtain niobium pentoxide (Nb 2 O 5 ). A battery 2 of the present invention was obtained in the same manner as in Example 1 except that the niobium pentoxide was used as a negative electrode material.
[0043]
(Comparative Example 1)
A comparative battery 1 was obtained in the same manner as in Example 1 except that a hard carbon-based carbonaceous material having an interplanar spacing (d 002 ) of 0.375 nm was used as the negative electrode material.
[0044]
(Comparative Example 2)
The same as Example 1 except that a hard carbon-based carbonaceous material having an interplanar spacing (d 002 ) of 0.375 nm is used as the negative electrode material, and lithium manganese composite oxide (LiMn 2 O 4 ) is used as the positive electrode material. Thus, a comparative battery 2 was obtained.
[0045]
(Comparative Example 3)
Example except that a hard carbon-based carbonaceous material having an interplanar spacing (d 002 ) of 0.375 nm was used as the negative electrode material, and lithium manganese nickel composite oxide (LiMn 1.5 Ni 0.5 O 4 ) was used as the positive electrode material. In the same manner as in Example 1, a comparative battery 3 was obtained.
[0046]
An initial capacity test, an output performance test, a storage performance test, and a high rate charge / discharge cycle performance test were performed using the inventive batteries 1 and 2 and the comparative batteries 1 to 3. In any test, the charge / discharge voltage range (end-of-charge voltage−end-of-discharge voltage) is 3.5V-2.0V for the present invention battery 1, 3.0V-1.8V for the present invention battery 2, Comparative battery 1 was set to 4.8V-3.0V, comparative battery 2 was set to 4.2V-2.7V, and comparative battery 3 was set to 5.0V-3.5V.
[0047]
In the initial capacity test, both charging current and discharging current were set to 0.1 It (mA) (10 hour rate), and charging / discharging of several cycles was performed.
[0048]
Table 1 shows the discharge capacity [mAh] and the average operating voltage [V], and the volume energy density [Wh / L] and weight energy density [Wh / Kg] calculated therefrom for each battery.
[0049]
The output performance test was performed after the present invention batteries 1 and 2 and comparative batteries 1 to 3 subjected to the initial capacity test were discharged to a depth of 50% (DOD 50%) with respect to the initial capacity. Each battery in such a state is 0.1 It (10 hour rate), 0.5 It (2 hour rate), 1 It (1 hour rate), 2 It (1/2 hour rate), 3 It (1/3 hour rate). And a discharge current of 5 It (1/5 hour rate). Here, the discharge end voltage of each battery was the same as the discharge end voltage of each battery employed in the initial capacity test. The discharge rate was taken as the x-axis, and the battery voltage after 30 seconds of discharge was plotted as the y-axis for each battery, and a first order approximation (y = ax + b) was obtained. Next, a rate x ′ obtained by substituting the final discharge voltage y ′ of each battery into the approximate expression was calculated as a current value. Using the values of x ′ and y ′ thus obtained, the effective output density (W / kg) of each battery was calculated by (Equation 1). The results are shown in Table 2.
[0050]
[Formula 1]
Figure 0004496688
[0051]
In the storage performance test, 5 cycles of charge and discharge are performed according to the conditions of the initial capacity test, and then stored at room temperature for 4 weeks (28 days) at the end of the 6th cycle, and the discharge capacity after storage is measured. Thus, the self-discharge rate was calculated by (Equation 2).
[0052]
[Formula 2]
Figure 0004496688
[0053]
The high rate charge / discharge cycle performance test was performed using two types of patterns. In pattern 1, the charging current was 5 It (1/5 hour rate) and the discharging current was 0.5 It (2 hour rate). In pattern 2, the charging current was 0.5 It (2 hour rate) and the discharging current was 5 It (1/5 hour rate). The capacity retention rate after 200 cycles was obtained from (Equation 3). Table 4 shows the results of Pattern 1 and Table 5 shows the results of Pattern 2.
[0054]
[Formula 3]
Figure 0004496688
[0055]
[Table 1]
Figure 0004496688
[0056]
[Table 2]
Figure 0004496688
[0057]
[Table 3]
Figure 0004496688
[0058]
[Table 4]
Figure 0004496688
[0059]
[Table 5]
Figure 0004496688
As is apparent from the results in Table 1, the batteries 1 and 2 of the present invention are considered to be at a practical level, with an energy density comparable to that of the comparative batteries 1 to 3 even though the average discharge voltage is small. . This is because the lithium secondary battery of the present invention uses a lithium transition metal chalcogenide having an operating potential of 300 mV or more for the negative electrode, so that it is possible to use lightweight aluminum as the negative electrode current collector. is there. In addition, the discharge capacities of the inventive batteries 1 and 2 are larger than the discharge capacities of the comparative batteries 1 and 2.
[0060]
As is clear from the results in Table 2, the batteries 1 and 2 of the present invention are considered to be practically inferior in output density compared with the comparative batteries 1 to 3 although the average discharge voltage is small. This is because the lithium secondary battery of the present invention is an electrode reaction mechanism in which both the cation (Li + ) and the anion (X ) contribute to the battery reaction, and therefore the influence of ion diffusion and concentration polarization in the electrolyte is greatly increased. This is because it was able to be suppressed.
[0061]
As is clear from the results in Table 3, the batteries 1 and 2 of the present invention are superior to the comparative batteries 1 to 3 in storage performance. This is considered to be because the adverse effect caused by the side reaction between the lithium occluded carbonaceous material and the electrolyte, which was caused when the carbonaceous material was used for the negative electrode, was solved.
[0062]
As is apparent from the results of Tables 4 and 5, the batteries 1 and 2 of the present invention are superior to the comparative batteries 1 to 3 in the high rate charge / discharge cycle performance. This tendency is particularly noticeable in the case of pattern 1 in which charging is performed at a high rate. In a comparative battery using a carbonaceous material for the negative electrode, the negative electrode potential falls below the Li dissolution / precipitation potential due to polarization during charging, and lithium ions are deactivated by the deposition of lithium on the negative electrode, and the active material and electrolyte It is thought that a side reaction with And it is thought that these influences in the comparative battery appeared as a clear difference from the battery of the present invention by repeating the long-term charge / discharge cycle. In the secondary battery of the present invention, since the lithium transition metal chalcogenide is used for the negative electrode, the negative electrode potential is suppressed from being lower than the dissolution / deposition potential of Li even by the polarization during charging, and thus the cycle performance is improved. It is considered a thing.
[0063]
In addition, this invention is not limited to the starting material of the active agent described in the said Example, manufacturing method, a positive electrode, a negative electrode, an electrolyte, a separator, a battery shape, etc. Further, the cylindrical battery is only for explaining the present invention, and the shape of the battery is not limited to this.
[0064]
【The invention's effect】
As described in claim 1, the present invention is configured by combining a negative electrode having a transition metal chalcogen compound capable of occluding and releasing lithium ions and a positive electrode having a carbonaceous material capable of occluding and releasing anions. Therefore, even if high rate charge / discharge is performed, the secondary battery having high output characteristics and high capacity characteristics can be provided without being affected by the concentration gradient.
[0065]
In addition, since a transition metal chalcogen compound is used as the negative electrode material, the lithium ion storage / release reaction potential is deviated from the potential of lithium metal, so there is no reaction to reduce the electrolyte. The storage performance, charge / discharge cycle performance, and safety of the secondary battery can be improved.
[0066]
In the present invention , the transition metal chalcogen compound is characterized in that lithium ions are occluded / released at a potential of 300 mV (vsLi / Li + ) or more with respect to the potential of metallic lithium. Can be used as a current collector for a negative electrode, and a secondary battery having a high weight energy density can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a battery according to an example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Positive electrode 3 Separator 4 Insulation board 5 Battery can 6 Sealing gasket 7 Battery cover 8 Safety valve 9 PTC element

Claims (3)

金属リチウムの電位に対して300mV(vs.Li/Li+)以上の電位においてリチウムイオンを吸蔵・放出し得る遷移金属カルコゲン化合物を有し、アルミニウムまたはアルミニウム合金を有する集電体を具備した負極と、非水電解質と、アニオンを吸蔵・放出し得る炭素質材料を有する正極とを具備し、充放電に伴って前記炭素材料が前記非水電解質中のアニオンを吸蔵・放出する二次電池。A negative electrode comprising a current collector having a transition metal chalcogen compound capable of occluding and releasing lithium ions at a potential of 300 mV ( vs. Li / Li + ) or higher with respect to the potential of metallic lithium, and comprising aluminum or an aluminum alloy; , a non-aqueous electrolyte, a anion; and a positive electrode having a carbonaceous material capable of occluding and releasing, secondary batteries anion absorbing and releasing of the carbonaceous material in the nonaqueous electrolyte with the charging and discharging. 前記炭素質材料は、人造黒鉛、天然黒鉛、グラファイト、コークス又はハードカーボンである請求項1記載の二次電池。The secondary battery according to claim 1, wherein the carbonaceous material is artificial graphite, natural graphite, graphite, coke, or hard carbon. 前記遷移金属カルコゲン化合物は、チタン酸リチウムである請求項1又は2に記載の二次電池。The secondary battery according to claim 1, wherein the transition metal chalcogen compound is lithium titanate.
JP2001269715A 2001-09-06 2001-09-06 Secondary battery Expired - Fee Related JP4496688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001269715A JP4496688B2 (en) 2001-09-06 2001-09-06 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001269715A JP4496688B2 (en) 2001-09-06 2001-09-06 Secondary battery

Publications (2)

Publication Number Publication Date
JP2003077544A JP2003077544A (en) 2003-03-14
JP4496688B2 true JP4496688B2 (en) 2010-07-07

Family

ID=19095486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001269715A Expired - Fee Related JP4496688B2 (en) 2001-09-06 2001-09-06 Secondary battery

Country Status (1)

Country Link
JP (1) JP4496688B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815858B2 (en) * 2005-04-27 2011-11-16 ソニー株式会社 Secondary battery
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
CN101467287B (en) * 2006-03-03 2012-09-05 加州理工学院 Fluoride ion electrochemical cell
KR101503759B1 (en) * 2006-03-03 2015-03-18 캘리포니아 인스티튜트 오브 테크놀로지 fluoride ion electrochemical cell
JP2008047853A (en) * 2006-07-21 2008-02-28 Sony Corp Capacitor
JP5169094B2 (en) 2007-09-12 2013-03-27 ソニー株式会社 Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP5272810B2 (en) * 2009-03-06 2013-08-28 株式会社豊田中央研究所 Capacitors
WO2010125642A1 (en) * 2009-04-28 2010-11-04 トヨタ自動車株式会社 Non-aqueous electrolyte-type lithium ion secondary cell and manufacturing method thereof, and a vehicle or device in which non-aqueous electrolyte-type lithium ion secondary cells are mounted
JP2014130717A (en) 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60249247A (en) * 1984-05-24 1985-12-09 Matsushita Electric Ind Co Ltd Battery
JPS6259412B2 (en) * 1980-04-18 1987-12-10 Yuasa Battery Co Ltd
JPH0282447A (en) * 1988-09-16 1990-03-23 Matsushita Electric Ind Co Ltd Manufacture of lithium secondary battery
JP2000195555A (en) * 1998-12-24 2000-07-14 Seiko Instruments Inc Nonaqueous electrolyte battery and its manufacture
JP2000268881A (en) * 1999-01-14 2000-09-29 Honda Motor Co Ltd Electrochemical capacitor
JP2001076756A (en) * 1999-09-01 2001-03-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001148242A (en) * 1998-12-24 2001-05-29 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2002270175A (en) * 2001-03-09 2002-09-20 Asahi Glass Co Ltd Secondary power source
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2327370A1 (en) * 2000-12-05 2002-06-05 Hydro-Quebec New method of manufacturing pure li4ti5o12 from the ternary compound tix-liy-carbon: effect of carbon on the synthesis and conductivity of the electrode

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259412B2 (en) * 1980-04-18 1987-12-10 Yuasa Battery Co Ltd
JPS60249247A (en) * 1984-05-24 1985-12-09 Matsushita Electric Ind Co Ltd Battery
JPH0282447A (en) * 1988-09-16 1990-03-23 Matsushita Electric Ind Co Ltd Manufacture of lithium secondary battery
JP2000195555A (en) * 1998-12-24 2000-07-14 Seiko Instruments Inc Nonaqueous electrolyte battery and its manufacture
JP2001148242A (en) * 1998-12-24 2001-05-29 Seiko Instruments Inc Non-aqueous electrolyte secondary battery
JP2000268881A (en) * 1999-01-14 2000-09-29 Honda Motor Co Ltd Electrochemical capacitor
JP2001076756A (en) * 1999-09-01 2001-03-23 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2001213622A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2001213623A (en) * 2000-01-26 2001-08-07 Toho Titanium Co Ltd Process of producing lithium titanate, lithium ion battery and electrode thereof
JP2002270175A (en) * 2001-03-09 2002-09-20 Asahi Glass Co Ltd Secondary power source
WO2002093666A1 (en) * 2001-05-15 2002-11-21 Fdk Corporation Nonaqueous electrolytic secondary battery and method of producing anode material thereof

Also Published As

Publication number Publication date
JP2003077544A (en) 2003-03-14

Similar Documents

Publication Publication Date Title
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
JP6236197B2 (en) Positive electrode for lithium battery and lithium battery
JP5255143B2 (en) Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR102285149B1 (en) Negative active material and lithium battery containing the material
KR20120129816A (en) Accumulator device and positive electrode
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
KR101697008B1 (en) Lithium secondary battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
KR101623724B1 (en) Anode Mixture for Secondary Battery Having Improved Structural Safety and Secondary Battery Having the Same
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP2013105703A (en) Battery electrode, nonaqueous electrolyte battery, and battery pack
KR102207920B1 (en) Composite cathode active material, preparation method thereof, and cathode and lithium battery containing the material
KR20140009927A (en) Anode active material for lithium secondary battery and lithium secondary battery comprising the same
JP2014191865A (en) Negative electrode, nonaqueous electrolyte battery, and battery pack
JP4496688B2 (en) Secondary battery
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2013089519A (en) Lithium ion secondary battery
JPH11204145A (en) Lithium secondary battery
KR20160080865A (en) Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
WO2019100233A1 (en) High voltage positive electrode material and cathode as well as lithium ion cell and battery including the same
JP2000357517A (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery
KR20150089389A (en) Positive active material, lithium battery containing the positive material, and method for manufacturing the positive active material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4496688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20100914

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees