JP4293756B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4293756B2
JP4293756B2 JP2002088323A JP2002088323A JP4293756B2 JP 4293756 B2 JP4293756 B2 JP 4293756B2 JP 2002088323 A JP2002088323 A JP 2002088323A JP 2002088323 A JP2002088323 A JP 2002088323A JP 4293756 B2 JP4293756 B2 JP 4293756B2
Authority
JP
Japan
Prior art keywords
average pore
separator
pore diameter
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002088323A
Other languages
Japanese (ja)
Other versions
JP2003288879A (en
Inventor
竜司 大下
吉久三 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002088323A priority Critical patent/JP4293756B2/en
Publication of JP2003288879A publication Critical patent/JP2003288879A/en
Application granted granted Critical
Publication of JP4293756B2 publication Critical patent/JP4293756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、正極と、負極と、これらの正極と負極を隔離するセパレータと、非水電解質とを備えた非水電解質二次電池に係り、特に、充電保存特性に優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
近年、小型ビデオカメラ、携帯電話、ノートパソコン等の携帯用電子・通信機器等の電源として、小型軽量でかつ高容量な非水電解質二次電池が用いられるようになった。このような非水電解質二次電池は、リチウムイオンの吸蔵・放出が可能な黒鉛を負極活物質として用い、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有マンガン酸化物(LiMn24)等のリチウム含有遷移金属酸化物を正極活物質として用い、有機溶媒に溶質としてリチウム塩を溶解させた電解液を用いて構成される電池である。
【0003】
この種の非水電解質二次電池は、長期に亘って充放電を繰り返すと、電解液の分解反応が発生して、それに伴うセパレータの目詰まりが生じて、電池性能の低下を引き起こすことが知られている。ところで、電解液の分解反応は、主に電極とセパレータ界面で発生し、その反応生成物がセパレータ目詰まり(閉塞)の原因となる。近年の非水電解質二次電池においては、電池の高容量化のために、負極材料に反応性の高い黒鉛粉末を混入したり、活物質の充填嵩密度を高める傾向にある。そこで、電解液分解物の発生に伴うセパレータ目詰まりの起こりにくいセパレータが求められるようになってきた。
【0004】
【発明が解決しようとする課題】
一般に、セパレータの孔径が大きい方が目詰まりしにくいことから、大きな孔径のセパレータが要求される傾向にある。しかしながら、セパレータの孔径が大きすぎると、電極活物質の脱落やリチウムの樹枝状析出物(デンドライト)による正極・負極間での短絡などの問題が発生しやすくなる。特に、充放電サイクルとともに電極活物質の微細な粒子や電流集中によって負極表面で発生したデンドライトは、セパレータ内部へ進入し内部短絡ブリッジを形成することで電気絶縁性を損なうという問題を生じた。
【0005】
また、セパレータの孔径が大きくなると必要な強度が得られなくなって、電池組み立て時の作業性が低下するという問題も生じた。このように、セパレータにおいては、目詰まりしにくい大きな孔径であることと、電極活物質やデンドライト貫通による微小短絡を起こしにくいことを両立する孔構造を実現し、かつ必要な強度を維持することはかなり困難なことである。また、目詰まりしにくい大きな孔径であると、電極と接するセパレータには電解液と接する箇所が多くなる。このため、充電状態で保存した場合に、副反応の電解液分解反応が生じて充電保存特性が低下するという問題も生じた。
【0006】
そこで、本発明は上記問題点を解消するためになされたものであって、特定の物性値に規制したセパレータを用いて、電極活物質の脱落やデンドライドによる短絡を起こさず、サイクル特性にも優れ、かつ充電保存特性にも優れた非水電解質二次電池を提供できるようにすることを目的とするものである。
【0007】
【課題を解決するための手段】
このような目的を達成するため、本発明の非水電解質二次電池は、ポリエチレンからなり、水銀圧入法により測定した微孔の平均孔径が実質的に2つ以上のピークを有して、それらの微孔の平均孔径はいずれも0.05μm〜0.7μmの範囲内にあり、かつその断面の表面近傍では平均孔径が小さい微孔が形成されており、その断面の中央部では表面近傍よりは平均孔径が大きい微孔が形成されていて、表面近傍での小さい微孔の平均孔径は0.3μm以下であるとともに、当該セパレータのバブルポイント値が0.29〜0.68MPaであるセパレータを正極と負極との間に備えるようにしている。
【0008】
ここで、水銀圧入法により測定した平均孔径が0.05μm未満のセパレータを用いると、電解液の分解物の発生に伴う目詰まりが起こり易くなるためにサイクル特性が著しく低下する。また、水銀圧入法により測定した平均孔径が0.7μmより大きいセパレータを用いると、電極活物質の脱落やリチウムデンドライドによる短絡が起こりやすくなったり、必要な強度が保てなくなって、電池組み立て時の作業性が著しく低下する。このため、水銀圧入法により測定した平均孔径が0.05μm〜0.7μmの範囲内にあるセパレータを用いる必要がある。
【0009】
そして、表面の平均孔径が0.3μm以下であると、充電状態で保存しても、正極や負極と接するセパレータ部には電解液と接する箇所が少なくなるため、副反応による電解液の分解反応が生じるのを抑制できるようになる。これにより、セパレータ内に電解液が閉じ込められた形態になり、充分な量の電解液が保持できるようになって充電保存特性が向上するようになる。
【0010】
このことは、電解液の分解物の発生に伴う目詰まりを抑制するためには、セパレータの内部は、所定の大きさの平均孔径が必要となる。一方、正極と負極が電解液と接する箇所を少なくするとともに、電解液を閉じ込めた形態にするためには、セパレータの表面は所定の小ささの平均孔径にすることが必要であることが分かる。これらのことから、セパレータの内部と表面とで、平均孔径が実質的に2つ以上のピークを有するセパレータを用いる必要があることが分かる。
【0011】
なお、水銀圧入法により測定された平均孔径が0.3μm以下のセパレータはのバブルポイント値は一般的に0.98MPa以上を示すことが多い。しかしながら、上述のように、平均孔径が実質的に2つ以上のピークを有して、これらの平均孔径が0.05μm〜0.7μmの範囲内にあるようにし、かつ表面の平均孔径が0.3μm以下になるようにコントロールして作製したセパレータのバブルポイント値を0.29〜0.68MPaにすると、充電保存特性が向上することが明らかになった。
【0012】
この場合、ポリエチレン製セパレータであると、上述のように平均孔径が実質的に2つ以上のピークを有し、これらの平均孔径が0.05μm〜0.7μmの範囲内にあり、かつ表面の平均孔径が0.3μm以下で、バブルポイント値を0.29〜0.68MPaにコントロールすることが容易にできるので好ましい。
なお、正極活物質としては、非水電解質電池で使用できるものであれば何でもよいが、リチウム含有遷移金属酸化物、特に、リチウム含有コバルト酸化物(LiCoO2)であれば、充電保存時の副反応の抑制効果が発揮できて好ましい。
【0013】
また、負極活物質としては、非水電解質電池で使用できるものであれば何でもよいが、特に黒鉛であれば、充電保存時の副反応の抑制効果が発揮できて好ましい。
また、電解液についても、非水電解質電池で使用できるものであれば何でもよいが、特に、環状炭酸エステルと鎖状炭酸エステルとの混合溶媒であると、充電保存時の副反応の抑制効果が発揮できて好ましい。
【0014】
【発明の実施の形態】
ついで、本発明の一実施の形態を以下に説明する。なお、図1は本発明の非水電解質二次電池に用いるセパレータの断面を模式的に示すイメージ図である。
1.セパレータの作製
高密度ポリエチレンに可塑剤(例えば、流動パラフィン)を添加して押出機に投入して溶融混練した。ついで、コートハンガーダイを経て冷却ロール上に押出キャストすることにより所定の厚みの高分子ゲルシートを得た。得られた高分子ゲルシートを延伸をした後、可塑剤を抽出除去して厚みが20μmのポリエチレン微多孔膜を作製し、セパレータ10とした。このように作製されたセパレータ10は、図1に模式的に示すように、断面の表面近傍(図1のA部)では平均孔径が小さい微孔12が形成され、断面の中央部(図1のB部)では平均孔径が大きい微孔11が形成されることとなる。
【0015】
ここで、延伸条件や可塑剤の抽出条件をコントロールして、下記の表1に示すような物性値を有するセパレータa,b,c,d,e,f,g,h,iを作製した。なお、表1において、水銀圧入法でのA部およびB部の平均孔径(μm)は、ポロシメトリー(島津製作所製ポアサイザ)を使用し、体積基準のメディアン径(μm)の測定値であって、A部での平均孔径は、セパレータ10の断面の表面近傍(図1のA部)に形成された微孔12の平均孔径(μm)を表し、B部での平均孔径はセパレータ10の断面の中央部(図1のB部)に形成された微孔11の平均孔径(μm)を表している。
【0016】
また、表面の平均孔径(μm)は、走査型電子顕微鏡(SEM)にてセパレータの表面写真を撮影し、実質的な表面の平均孔径を測定した値を示している。さらに、バブルポイント(MPa)は、テスト液(エタノール)中にセパレータを配置し、ガス圧を徐々に加えてセパレータから最初に気泡が発生した時の圧力値を測定(ASTM E−128−61に準拠)して求めた値である。
【0017】
【表1】

Figure 0004293756
【0018】
2.正極の作製
800℃の温度で熱処理したリチウム含有二酸化コバルト(LiCoO2)を正極活物質として用い、この正極活物質としてのリチウム含有二酸化コバルト(LiCoO2)85質量%と、導電剤としてのカーボン粉末10質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを混合した。この後、この混合物にN−メチル−2−ピロリドン(NMP)を加えて混合・混練して正極活物質スラリーを作製した。ついで、この正極活物質スラリーをアルミニウム箔からなる正極集電体の両面にドクターブレード法により塗着した後、圧延後の厚みが140μmとなるように圧延した。ついで、130℃の温度で真空乾燥した後、所定寸法に切断して、正極集電体の表面に正極合剤層を備えた正極を作製した。
【0019】
3.負極の作製
平均粒径10μmの天然黒鉛を負極活物質として用い、この負極活物質としの天然黒鉛95質量%に、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを混合した。この後、この混合物にN−メチル−2−ピロリドン(NMP)を加えて混合・混練して負極活物質スラリーを作製した。ついで、この負極活物質スラリーを銅箔からなる負極集電体の両面にドクターブレード法により塗着した後、圧延後の厚みが130μmとなるように圧延した。ついで、130℃の温度で真空乾燥した後、所定寸法に切断して、負極集電体の表面に負極合剤層を備えた負極を作製した。
【0020】
4.非水電解質二次電池の作製
ついで、上述のように作製したポリプロピレン製微多孔膜からなる各セパレータa,b,c,d,e,f,g,h,iを用い、これらの両側に上述のように作製した正極と負極とを介在させて積層した後、これらを渦巻状にそれぞれ巻回して円柱状の渦巻電極群とした。ついで、これらの円柱状の渦巻電極群を加圧して扁平な渦巻電極群とした。ついで、これらをそれぞれ金属製の角形外装缶に挿入した後、外装缶の開口部に蓋体を取り付けて気密に封口した。
【0021】
ついで、エチレンカーボネート(EC:以下、単にECという)とエチルメチルカーボネート(EMC:以下、単にEMCという)とを体積比で40:60となるように混合した混合溶媒に、LiPF6を1.0モル/リットル溶解して非水電解液を調製した。この後、蓋体の注液口から上述のように調製した非水電解液を注入した。この後、注液口を封止して非水電解質二次電池A〜Iをそれぞれ作製した。ここで、セパレータa〜iを用いたものを各々電池A〜Iとした。なお、電池Fにおいては、渦巻電極群を作製する際に短絡が生じたために、電池を作製することができなかったが、ここでは便宜的に電池Fとした。
【0022】
また、電解液の溶媒としては、ECおよびEMC以外にも、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、スルホラン(SL)、ビニレンカーボネート(VC)、ジエチルカーボネート(DEC)、テトラヒドロフラン(THF)、1,2−ジエトキシエタン(DEE)、1,2−ジメトキシエタン(DME)、エトキシメトキシエタン(EME)、γ−ブチロラクトン等の単体、あるいはこれらの二成分以上の混合溶媒を選択して用いても良い。また、この溶媒に溶解される溶質としては、LiPF6以外にも、LiBF4、LiCF3SO3、LiAsF6、LiN(CF3SO22、LiN(C25SO22、LiC(CF3SO23、LiCF3(CF23SO3等を用いてもよい。
【0023】
5.電池試験
(1)サイクル特性試験
これらの各電池A〜Iをそれぞれ用いて、室温(約25℃)で、1It(Itは設計容量(mA)/1h(時間)で表される数値)の充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が20mAに達するまで定電圧充電した。この後、1Itの放電電流で、電池電圧が2.75Vに達するまで放電させて、1サイクルとする充放電サイクルを200サイクル繰り返して行って、200サイクル目の放電容量(mAh)を求めた。ついで、1サイクル目の放電容量と200サイクル目の放電容量との比率(%)、即ち、200サイクル後の容量残存率(%)をサイクル特性として求めると、下記の表2に示すような結果となった。
【0024】
(2)充電保存特性試験
また、各電池A〜Iをそれぞれ用いて、室温(約25℃)で、1Itの充電電流で、電池電圧が4.2Vになるまで定電流充電し、4.2Vの定電圧で電流値が20mAに達するまで定電圧充電した。この後、60℃で20日間保存した後、1Itの放電電流で、電池電圧が2.75Vに達するまで放電させて、充電保存後の放電容量を測定し、保存前の放電容量残存率(%)を充電保存特性として求めると、下記の表2に示すような結果となった。
【0025】
【表2】
Figure 0004293756
【0026】
上記表2の結果から明らかなように、電池A,B,C,Dは、サイクル特性および充電保存特性が優れていることが分かる。このことから、水銀圧入法により測定した平均孔径(平均孔径AおよびB)が0.05μm〜0.7μmの範囲内にあるセパレータを用いると、サイクル特性および充電保存特性に優れた非水電解質電池が得られるようになる。また、セパレータ表面の平均孔径が0.3μm以下であると、充電保存特性が向上することが分かる。さらに、バブルポイントが0.29〜0.68MPaの範囲ではサイクル特性および充電保存特性が優れている。また、バブルポイントが0.29MPa未満あるいは0.68MPaより大きくなると、サイクル特性は良好であるが、保存特性が悪化することが分かる。
【0027】
【発明の効果】
以上のことから、平均孔径が実質的に2つ以上のピークを有して、これらの平均孔径が0.05μm〜0.7μmの範囲内にあるようにし、かつ表面の平均孔径が0.3μm以下になるようにコントロールして作製したセパレータのバブルポイント値を0.29〜0.68MPaにすると、サイクル特性が向上するとともに、充電保存特性も向上した非水電解質二次電池が得られることが明らかになったということができる。
【0028】
なお、上述した実施の形態においては、正極活物質としてリチウム含有二酸化コバルト(LiCoO2)を用い、負極活物質として天然黒鉛を用いた非水電解液二次電池に本発明のセパレータを適用する例について説明したが、本発明はこれに限らず種々の活物質を選択して用いることができる。例えば、負極活物質として天然黒鉛以外に、リチウムイオンを吸蔵・脱離し得るカーボン系材料、例えば、カーボンブラック、コークス、ガラス状炭素、炭素繊維、またはこれらの焼成体等を用いるようにしてもよい。
【0029】
また、正極活物質としてはLiCoO2以外に、リチウムイオンをゲストとして受け入れ得るリチウム含有遷移金属化合物、例えば、LiNiO2、LiCoXNi(1-X)2、LiCrO2、LiVO2、LiMnO2、αLiFeO2、LiTiO2、LiScO2、LiYO2、LiMn24等を用いるようにしてもよい。特に、LiNiO2、LiCoXNi(1-X)2を単独で用いるかあるいはこれらの二種以上を混合して用いるのが好適である。
【図面の簡単な説明】
【図1】 本発明の非水電解質二次電池に用いるセパレータの断面を模式的に示すイメージ図である。
【符号の説明】
10…セパレータ、11…断面の中央部に形成された平均孔径が大きい微孔、12…断面の表面近傍に形成された平均孔径が小さい微孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator separating these positive and negative electrodes, and a non-aqueous electrolyte, and in particular, a non-aqueous electrolyte secondary battery having excellent charge storage characteristics. It relates to batteries.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte secondary batteries that are small and light and have a high capacity have come to be used as power sources for portable electronic and communication devices such as small video cameras, mobile phones, and notebook computers. Such a non-aqueous electrolyte secondary battery uses graphite capable of occluding and releasing lithium ions as a negative electrode active material, and contains lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing manganese oxide (LiMn 2 O 4 ), etc. The lithium-containing transition metal oxide is used as a positive electrode active material, and the battery is configured using an electrolytic solution in which a lithium salt is dissolved as a solute in an organic solvent.
[0003]
When this type of non-aqueous electrolyte secondary battery is repeatedly charged and discharged over a long period of time, a decomposition reaction of the electrolytic solution occurs, resulting in clogging of the separator, which causes a decrease in battery performance. It has been. By the way, the decomposition reaction of the electrolytic solution mainly occurs at the interface between the electrode and the separator, and the reaction product causes clogging (clogging) of the separator. In recent non-aqueous electrolyte secondary batteries, in order to increase the capacity of the battery, highly reactive graphite powder tends to be mixed into the negative electrode material, or the bulk density of the active material tends to increase. Accordingly, separators that are less prone to clogging of separators due to generation of electrolyte decomposition products have been demanded.
[0004]
[Problems to be solved by the invention]
In general, since a separator having a larger hole diameter is less likely to be clogged, a separator having a larger hole diameter tends to be required. However, if the pore diameter of the separator is too large, problems such as dropping of the electrode active material and short-circuit between the positive electrode and the negative electrode due to lithium dendritic precipitates (dendrites) tend to occur. In particular, the dendrite generated on the negative electrode surface due to the fine particles of the electrode active material and the current concentration with the charge / discharge cycle enters the separator and forms an internal short-circuit bridge, thereby causing a problem of impairing the electrical insulation.
[0005]
Further, when the pore diameter of the separator is increased, a necessary strength cannot be obtained, and there is a problem that workability at the time of battery assembly is lowered. In this way, in the separator, it is possible to realize a hole structure that has both a large hole diameter that is not easily clogged and that it is difficult to cause a micro short-circuit due to electrode active material and dendrite penetration, and to maintain the required strength. This is quite difficult. Further, if the hole diameter is difficult to be clogged, the separator in contact with the electrode has more portions in contact with the electrolytic solution. For this reason, when it preserve | saved in the charge state, the electrolyte solution decomposition reaction of a side reaction produced and the problem that a charge preservation | save characteristic fell also occurred.
[0006]
Therefore, the present invention has been made to solve the above-mentioned problems, using a separator regulated to a specific physical property value, without causing the electrode active material to fall off or short-circuiting due to dendrites, and excellent in cycle characteristics. It is another object of the present invention to provide a nonaqueous electrolyte secondary battery excellent in charge storage characteristics.
[0007]
[Means for Solving the Problems]
To achieve the above object, the non-aqueous electrolyte secondary battery of the present invention comprises a polyethylene, an average pore diameter of the micropores measured by a mercury porosimetry and have a substantially two or more peaks, they The average pore diameter of each of the micropores is in the range of 0.05 μm to 0.7 μm, and a micropore with a small average pore diameter is formed in the vicinity of the surface of the cross section. A micropore having a large average pore diameter is formed, and an average pore diameter of small micropores in the vicinity of the surface is 0.3 μm or less, and a bubble point value of the separator is 0.29 to 0.68 MPa. It is provided between the positive electrode and the negative electrode.
[0008]
Here, when a separator having an average pore diameter measured by a mercury intrusion method of less than 0.05 μm is used, clogging due to generation of a decomposition product of the electrolytic solution is likely to occur, so that the cycle characteristics are remarkably deteriorated. In addition, if a separator with an average pore size measured by the mercury intrusion method is larger than 0.7 μm, the electrode active material is likely to fall off or short-circuiting due to lithium dendrites, and the required strength cannot be maintained. The workability is significantly reduced. For this reason, it is necessary to use a separator whose average pore diameter measured by the mercury intrusion method is in the range of 0.05 μm to 0.7 μm.
[0009]
And, when the average pore diameter on the surface is 0.3 μm or less, even if the battery is stored in a charged state, the separator part in contact with the positive electrode or the negative electrode has fewer places in contact with the electrolytic solution. Can be suppressed. As a result, the electrolyte solution is confined in the separator, and a sufficient amount of the electrolyte solution can be held, thereby improving the charge storage characteristics.
[0010]
This means that in order to suppress clogging associated with generation of decomposition products of the electrolytic solution, the inside of the separator needs to have an average pore size of a predetermined size. On the other hand, in order to reduce the number of places where the positive electrode and the negative electrode are in contact with the electrolytic solution, and to form a configuration in which the electrolytic solution is confined, it is understood that the surface of the separator needs to have a predetermined average pore diameter. From these facts, it can be seen that it is necessary to use a separator having an average pore diameter substantially having two or more peaks between the inside and the surface of the separator.
[0011]
In addition, the bubble point value of a separator having an average pore size of 0.3 μm or less measured by mercury porosimetry generally generally indicates 0.98 MPa or more. However, as described above, the average pore diameter has substantially two or more peaks so that these average pore diameters are in the range of 0.05 μm to 0.7 μm and the average pore diameter of the surface is 0. It was revealed that the charge storage characteristics were improved when the bubble point value of the separator produced by controlling to be 3 μm or less was 0.29 to 0.68 MPa.
[0012]
In this case, if it is Po Riechiren separators made, an average pore diameter as described above has a substantially two or more peaks, these average pore diameter in the range of 0.05Myuemu~0.7Myuemu, and surface Is preferable because the average pore diameter is 0.3 μm or less and the bubble point value can be easily controlled to 0.29 to 0.68 MPa.
Any positive electrode active material may be used as long as it can be used in a non-aqueous electrolyte battery. However, a lithium-containing transition metal oxide, particularly lithium-containing cobalt oxide (LiCoO 2 ), may be used as a secondary battery during charge storage. It is preferable because it can exert an effect of suppressing the reaction.
[0013]
The negative electrode active material may be anything as long as it can be used in a non-aqueous electrolyte battery, but graphite is particularly preferable because it can exert an effect of suppressing side reactions during charge storage.
The electrolyte solution may be anything as long as it can be used in a non-aqueous electrolyte battery, and in particular, if it is a mixed solvent of a cyclic carbonate and a chain carbonate, the effect of suppressing side reactions during charge storage can be reduced. It can be demonstrated and is preferable.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described below. In addition, FIG. 1 is an image figure which shows typically the cross section of the separator used for the nonaqueous electrolyte secondary battery of this invention.
1. Production of Separator A plasticizer (for example, liquid paraffin) was added to high-density polyethylene, and the mixture was put into an extruder and melt-kneaded. Subsequently, a polymer gel sheet having a predetermined thickness was obtained by extrusion casting onto a cooling roll through a coat hanger die. After stretching the obtained polymer gel sheet, the plasticizer was extracted and removed to produce a polyethylene microporous film having a thickness of 20 μm. As schematically shown in FIG. 1, the separator 10 thus manufactured has micropores 12 having a small average pore diameter in the vicinity of the surface of the cross section (A portion of FIG. 1), and the central portion of the cross section (FIG. 1). In part B), the micropores 11 having a large average pore diameter are formed.
[0015]
Here, separators a, b, c, d, e, f, g, h, and i having physical property values as shown in Table 1 below were prepared by controlling stretching conditions and plasticizer extraction conditions. In Table 1, the average pore diameters (μm) of part A and part B in the mercury intrusion method are measured values of the volume-based median diameter (μm) using porosimetry (a pore sizer manufactured by Shimadzu Corporation). The average pore diameter at the A portion represents the average pore diameter (μm) of the micropores 12 formed in the vicinity of the surface of the cross section of the separator 10 (A portion in FIG. 1), and the average pore diameter at the B portion is the cross section of the separator 10. The average pore diameter (μm) of the micropores 11 formed in the central portion (B portion in FIG. 1) is shown.
[0016]
The average pore diameter (μm) on the surface is a value obtained by taking a surface photograph of the separator with a scanning electron microscope (SEM) and measuring the average average pore diameter on the surface. Further, the bubble point (MPa) is measured by measuring the pressure value when bubbles are first generated from the separator by gradually applying the gas pressure by placing the separator in the test liquid (ethanol) (according to ASTM E-128-61). It is a value obtained by conforming).
[0017]
[Table 1]
Figure 0004293756
[0018]
2. Production of Positive Electrode Using lithium-containing cobalt dioxide (LiCoO 2 ) heat-treated at a temperature of 800 ° C. as a positive electrode active material, 85% by mass of lithium-containing cobalt dioxide (LiCoO 2 ) as a positive electrode active material, and carbon powder as a conductive agent 10% by mass and 5% by mass of polyvinylidene fluoride (PVdF) as a binder were mixed. Thereafter, N-methyl-2-pyrrolidone (NMP) was added to the mixture and mixed and kneaded to prepare a positive electrode active material slurry. Next, this positive electrode active material slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil by a doctor blade method, and then rolled so that the thickness after rolling was 140 μm. Subsequently, after vacuum-drying at a temperature of 130 ° C., it was cut to a predetermined size to produce a positive electrode having a positive electrode mixture layer on the surface of the positive electrode current collector.
[0019]
3. Production of Negative Electrode Natural graphite having an average particle size of 10 μm was used as a negative electrode active material, and 95% by mass of natural graphite as the negative electrode active material was mixed with 5% by mass of polyvinylidene fluoride (PVdF) as a binder. Thereafter, N-methyl-2-pyrrolidone (NMP) was added to this mixture and mixed and kneaded to prepare a negative electrode active material slurry. Next, this negative electrode active material slurry was applied to both surfaces of a negative electrode current collector made of copper foil by a doctor blade method, and then rolled so that the thickness after rolling was 130 μm. Subsequently, after vacuum-drying at a temperature of 130 ° C., it was cut to a predetermined size to produce a negative electrode having a negative electrode mixture layer on the surface of the negative electrode current collector.
[0020]
4). Production of non-aqueous electrolyte secondary battery Next, separators a, b, c, d, e, f, g, h, i made of a polypropylene microporous membrane produced as described above were used, and the above-mentioned were provided on both sides thereof. After stacking the positive electrode and the negative electrode produced as described above, these were wound in a spiral shape to form a cylindrical spiral electrode group. Subsequently, these cylindrical spiral electrode groups were pressurized to form flat spiral electrode groups. Next, each of these was inserted into a metal square outer can, and then a lid was attached to the opening of the outer can to seal it hermetically.
[0021]
Next, LiPF 6 was added to a mixed solvent in which ethylene carbonate (EC: hereinafter simply referred to as EC) and ethyl methyl carbonate (EMC: hereinafter simply referred to as EMC) were mixed at a volume ratio of 40:60. A non-aqueous electrolyte was prepared by dissolving in mol / liter. Thereafter, the non-aqueous electrolyte prepared as described above was injected from the inlet of the lid. Thereafter, the liquid injection port was sealed to prepare nonaqueous electrolyte secondary batteries A to I, respectively. Here, the batteries using separators a to i were designated as batteries A to I, respectively. In addition, in the battery F, since the short circuit occurred when producing the spiral electrode group, the battery could not be produced.
[0022]
In addition to EC and EMC, electrolyte solvents include propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), sulfolane (SL), vinylene carbonate (VC), and diethyl carbonate (DEC). , Tetrahydrofuran (THF), 1,2-diethoxyethane (DEE), 1,2-dimethoxyethane (DME), ethoxymethoxyethane (EME), γ-butyrolactone, or a mixed solvent of two or more of these components May be selected and used. In addition to LiPF 6 , solutes dissolved in this solvent include LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiC. (CF 3 SO 2 ) 3 , LiCF 3 (CF 2 ) 3 SO 3 or the like may be used.
[0023]
5. Battery Test (1) Cycle Characteristic Test Using each of these batteries A to I, charging at 1 It (it is a numerical value represented by design capacity (mA) / 1 h (hour)) at room temperature (about 25 ° C.) The battery was charged at a constant current until the battery voltage reached 4.2V, and charged at a constant voltage of 4.2V until the current value reached 20 mA. Thereafter, the battery was discharged at a 1 It discharge current until the battery voltage reached 2.75 V, and a charge / discharge cycle of one cycle was repeated 200 times to obtain a discharge capacity (mAh) at the 200th cycle. Next, when the ratio (%) between the discharge capacity at the first cycle and the discharge capacity at the 200th cycle, that is, the capacity remaining rate (%) after 200 cycles is obtained as the cycle characteristics, the results shown in Table 2 below are obtained. It became.
[0024]
(2) Charging storage characteristic test Also, using each of the batteries A to I, a constant current charge was performed at room temperature (about 25 ° C.) at a charging current of 1 It until the battery voltage reached 4.2 V, and 4.2 V. The battery was charged at a constant voltage until the current value reached 20 mA at a constant voltage of. Thereafter, after storage at 60 ° C. for 20 days, the battery was discharged at 1 It discharge current until the battery voltage reached 2.75 V, the discharge capacity after charge storage was measured, and the remaining discharge capacity ratio (% ) As the charge storage characteristics, the results shown in Table 2 below were obtained.
[0025]
[Table 2]
Figure 0004293756
[0026]
As is clear from the results in Table 2, the batteries A, B, C, and D have excellent cycle characteristics and charge storage characteristics. Therefore, when a separator having an average pore size (average pore size A and B) measured by mercury porosimetry in the range of 0.05 μm to 0.7 μm is used, the nonaqueous electrolyte battery is excellent in cycle characteristics and charge storage characteristics. Can be obtained. Moreover, it turns out that a charge preservation | save characteristic improves that the average hole diameter of the separator surface is 0.3 micrometer or less. Furthermore, when the bubble point is in the range of 0.29 to 0.68 MPa, cycle characteristics and charge storage characteristics are excellent. It can also be seen that when the bubble point is less than 0.29 MPa or greater than 0.68 MPa, the cycle characteristics are good, but the storage characteristics deteriorate.
[0027]
【The invention's effect】
From the above, the average pore diameter has substantially two or more peaks, the average pore diameter is in the range of 0.05 μm to 0.7 μm, and the average pore diameter of the surface is 0.3 μm. When the bubble point value of the separator produced by controlling so as to be 0.29 to 0.68 MPa is obtained, it is possible to obtain a nonaqueous electrolyte secondary battery with improved cycle characteristics and improved charge storage characteristics. It can be said that it became clear.
[0028]
In the above-described embodiment, an example in which the separator of the present invention is applied to a nonaqueous electrolyte secondary battery using lithium-containing cobalt dioxide (LiCoO 2 ) as a positive electrode active material and natural graphite as a negative electrode active material. However, the present invention is not limited to this, and various active materials can be selected and used. For example, in addition to natural graphite, a carbon-based material that can occlude and desorb lithium ions, such as carbon black, coke, glassy carbon, carbon fiber, or a fired body thereof, may be used as the negative electrode active material. .
[0029]
In addition to LiCoO 2 as the positive electrode active material, a lithium-containing transition metal compound that can accept lithium ions as a guest, for example, LiNiO 2 , LiCo X Ni (1-X) O 2 , LiCrO 2 , LiVO 2 , LiMnO 2 , αLiFeO 2 , LiTiO 2 , LiScO 2 , LiYO 2 , LiMn 2 O 4 or the like may be used. In particular, LiNiO 2 and LiCo x Ni (1-X) O 2 are preferably used alone or in combination of two or more thereof.
[Brief description of the drawings]
FIG. 1 is an image diagram schematically showing a cross section of a separator used in a nonaqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Separator, 11 ... Micropore with large average pore diameter formed in center part of cross section, 12 ... Micropore with small average pore diameter formed in the surface vicinity of cross section

Claims (1)

正極と、負極と、これらの正極と負極を隔離するセパレータと、非水電解質とを備えた非水電解質二次電池であって、
前記セパレータはポリエチレンからなり、水銀圧入法により測定した微孔の平均孔径が実質的に2つ以上のピークを有して、それらの微孔の平均孔径はいずれも0.05μm〜0.7μmの範囲内にあり、かつその断面の表面近傍では平均孔径が小さい微孔が形成されており、その断面の中央部では表面近傍よりは平均孔径が大きい微孔が形成されていて、前記表面近傍での小さい微孔の平均孔径は0.3μm以下であるとともに、当該セパレータのバブルポイント値が0.29〜0.68MPaであることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode, a separator separating these positive and negative electrodes, and a non-aqueous electrolyte,
The separator is made of polyethylene, an average pore diameter of the micropores measured by a mercury porosimetry and have a substantially two or more peaks, even 0.05μm~0.7μm any average pore size of these micropores are In the vicinity of the surface of the cross section, a micropore having a small average pore diameter is formed, and in the central portion of the cross section, a micropore having an average pore diameter larger than that of the surface is formed. The non-aqueous electrolyte secondary battery is characterized in that the average pore diameter of the small pores is 0.3 μm or less and the bubble point value of the separator is 0.29 to 0.68 MPa.
JP2002088323A 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery Expired - Fee Related JP4293756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088323A JP4293756B2 (en) 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088323A JP4293756B2 (en) 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2003288879A JP2003288879A (en) 2003-10-10
JP4293756B2 true JP4293756B2 (en) 2009-07-08

Family

ID=29234220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088323A Expired - Fee Related JP4293756B2 (en) 2002-03-27 2002-03-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4293756B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7988895B2 (en) * 2005-09-28 2011-08-02 Toray Tonen Specialty Separator Godo Kaisha Production method of microporous polyethylene membrane and battery separator
KR100861705B1 (en) 2006-05-29 2008-10-06 주식회사 엘지화학 Electrode Assembly with Excellent Structural Stability and Wetting Properties to Electrolyte and Secondary Battery Having the Same
CN111801832A (en) * 2018-04-04 2020-10-20 株式会社东芝 Nonaqueous electrolyte battery and battery pack
CN111697189B (en) * 2020-06-28 2022-06-28 佛山市金辉高科光电材料股份有限公司 Polyolefin microporous base membrane and preparation method thereof, diaphragm and battery

Also Published As

Publication number Publication date
JP2003288879A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4878683B2 (en) Lithium secondary battery
JP5094027B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
JP6137088B2 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
KR102362887B1 (en) Method of pre-lithiating an anode for lithium secondary battery and Lithium metal laminate for being used therefor
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
JP2010062113A (en) Lithium ion secondary battery
JP2003282055A (en) Non-aqueous electrolyte secondary battery
CN102361095A (en) Lithium ion battery with high specific power and preparation method for same
JP5403711B2 (en) Method for producing lithium ion secondary battery
JP3244389B2 (en) Lithium secondary battery
KR20180036715A (en) Lithium secondary battery
JP4026351B2 (en) Negative electrode current collector, and negative electrode plate and non-aqueous electrolyte secondary battery using the current collector
JP2006066298A (en) Lithium secondary battery
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
KR101586681B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5125050B2 (en) Nonaqueous electrolyte secondary battery
JP4293756B2 (en) Nonaqueous electrolyte secondary battery
JP6567442B2 (en) Lithium secondary battery charge / discharge method
JP4306891B2 (en) Non-aqueous electrolyte battery
JP2006244921A (en) Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2000277111A (en) Lithium secondary battery
JPH08171934A (en) Lithium secondary battery
JP2010027386A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees