JP4292770B2 - リーク検査装置及びリーク検査方法 - Google Patents

リーク検査装置及びリーク検査方法 Download PDF

Info

Publication number
JP4292770B2
JP4292770B2 JP2002275195A JP2002275195A JP4292770B2 JP 4292770 B2 JP4292770 B2 JP 4292770B2 JP 2002275195 A JP2002275195 A JP 2002275195A JP 2002275195 A JP2002275195 A JP 2002275195A JP 4292770 B2 JP4292770 B2 JP 4292770B2
Authority
JP
Japan
Prior art keywords
voltage
inspection
line
source
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002275195A
Other languages
English (en)
Other versions
JP2004109823A (ja
Inventor
孫幸 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002275195A priority Critical patent/JP4292770B2/ja
Publication of JP2004109823A publication Critical patent/JP2004109823A/ja
Application granted granted Critical
Publication of JP4292770B2 publication Critical patent/JP4292770B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アクティブマトリクス方式の液晶パネル等のリーク検査に好適なリーク検査装置及びリーク検査方法に関する。
【0002】
【従来の技術】
一般に電気光学装置、例えば、電気光学物質に液晶を用いて所定の表示を行う液晶装置は、一対の基板間に液晶が挟持された構成となっている。このうち、TFT駆動、TFD駆動等によるアクティブマトリクス駆動方式の液晶装置等の電気光学装置においては、縦横に夫々配列された多数の走査線(ゲート線)及びデータ線(ソース線)の各交点に対応して、画素電極及びスイッチング素子を基板(アクティブマトリクス基板)上に設けて構成される。
【0003】
各走査線には、走査線駆動回路から走査信号が順次供給されるようになっている。一方、データ線には、データ線駆動回路により駆動されたサンプリング回路によって画像信号が供給される。即ち、データ線駆動回路は、画像信号線上の画像信号をデータ線毎にサンプリングするサンプリング回路に対して、走査信号の順次供給動作と平行して、サンプリング回路駆動信号を供給するように構成されている。
【0004】
データ線駆動回路は、一般には、複数のラッチ回路(シフトレジスタ回路)を備え、水平走査期間の最初に供給される転送信号をクロック信号に応じて順次シフトして、これをサンプリング信号として出力するものであり、同様に、走査線駆動回路は、複数のラッチ回路を備え、垂直走査期間の最初に供給される転送信号をクロック信号に応じて順次シフトして、これを走査信号として出力するものである。また、サンプリング回路は、各データ線毎に設けられるサンプリング用のスイッチを備え、外部から供給される画像信号を、データ線駆動回路によるサンプリング信号にしたがいサンプリングして、各データ線に供給するものである。
【0005】
TFT素子等のスイッチング素子は、ゲート線に供給されるオン信号によってオンとなり、ソース線を介して供給される画像信号を画素電極に書込む。これにより、画素電極と対向電極相互間の液晶装置に画像信号に基づく電圧を印加して、液晶分子の配列を変化させる。こうして、画素の透過率を変化させ、画素電極及び液晶層を通過する光を画像信号に応じて変化させて画像表示を行う。なお、液晶層における電圧保持特性を向上させてコントラスト比の高い画像表示が可能とするために、通常、付加容量が採用される。
【0006】
このようなアクティブマトリクス基板を備えた液晶装置の不良原因として、ゲート・ソース間のリーク不良、付加容量のリーク不良及びゲート線と容量線とのリーク不良等が挙げられる。このような、液晶パネルの欠陥の検出方法としては、特許文献1に開示の方法等もある。
【0007】
また、他の検査方法として、ビデオ線及びゲート線に検査用の電圧を印加して行う方法がある。この方法では、ビデオ線に印加する検査用の電圧としては例えば5Vが採用されている。一方、ゲート線に印加する検査用の電圧としては例えば17Vが採用される。なお、容量線は電圧が0Vのラインこのようなリーク不良の検出は、ソース線に接続されたビデオ線、ゲート線に検査用の電圧を印加し、このときにビデオ線及びゲート線に流れる電流を検出するパネル検査において行われる。に接続される。この場合には、ゲート・ソース間の電位差は12Vとなり、ゲート・ソース間のリーク不良の確実な検査が可能である。また、この検査用電圧を用いると、ゲート線と容量線との間の電位差は17Vであり、ゲート線と容量線との間のショートを確実に検査可能である。
【0008】
【特許文献1】
特開平9−159997号公報
【0009】
【発明が解決しようとする課題】
しかしながら、この検査用電圧では、付加容量の端子間に印加される検査用電圧は5Vと比較的小さい電位差に設定される。従って、パネル検査において確実に付加容量のリーク不良を検出することができるとは限らない。例えば、実使用においてはビデオ線に5Vよりも高い電圧が印加されることがある。この場合には、検査時に発見することができなかった付加容量のリーク不良が実使用で発生することが考えられる。
【0010】
なお、ビデオ線に印加する検査用電圧を単に大きくしただけでは、これに伴ってゲート・ソース間の電位差が小さくなってしまい、ゲート・ソース間のリーク不良の検出が確実に行われなくなってしまう。
【0011】
本発明はかかる問題点に鑑みてなされたものであって、検査用電圧として2つ以上の電圧設定を行うことにより、アクティブマトリクス基板のリーク不良を確実に検出することができるリーク検査装置及びリーク検査方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明に係るリーク検査方法は、複数の走査線及び複数のソース線と、前記走査線及びソース線の交差部分に対応して設けられるスイッチング素子と、前記スイッチング素子と所定の共通電位との間に接続された付加容量とを有するマトリクス基板の前記走査線に、検査用の検査用走査電圧を印加する第1の電圧印加処理と、前記ソース線に検査用の検査用ソース電圧である第1の電圧を印加する第2の電圧印加処理と、前記第1及び第2の電圧印加処理による第1の検査モードにおいて、前記ソース線に流れる電流及び前記走査線に流れる電流を検出する第1の電流検出処理と、前記ソース線に検査用の検査用ソース電圧であり前記第1の電圧とは異なる第2の電圧を印加する第3の電圧印加処理と、前記第1及び第3の電圧印加処理による第2の検査モードにおいて、前記ソース線に流れる電流及び前記走査線に流れる電流を検出する第2の電流検出処理と、前記第1及び第2の電流検出処理によって前記スイッチング素子のリーク不良及び前記付加容量のリーク不良を判定する判定処理とを具備したことを特徴とする。
【0013】
このような構成によれば、第1の電圧印加処理、第2の電圧印加処理及び第3の電圧印加処理によって、走査線には検査用の検査用走査電圧が印加され、前記ソース線には検査用の検査用ソース電圧である第1の電圧又は第1の電圧とは異なる第2の電圧が印加される。検査用走査電圧及び第1の電圧を用いた第1の検査モードにおいて、ソース線に流れる電流及び走査線に流れる電流を検出する第1の電流検出処理が実施される。また、検査用走査電圧及び第2の電圧を用いた第2の検査モードにおいて、ソース線に流れる電流及び走査線に流れる電流を検出する第2の電流検出処理が実施される。スイッチング素子のリーク不良が生じている場合には、第1及び第2の検査モードにおいてソース線及び走査線に電流が流れることが考えられ、また、付加容量のリーク不良が生じている場合にはソース線に電流が流れることが考えられる。従って、第1及び第2の検査モードにおける第1及び第2の電流検出処理によって、スイッチング素子のリーク不良及び付加容量のリーク不良を判定することができる。この場合において、第1の電圧と第2の電圧とは相互に異なり、第1の検査モードと第2の検査モードとの間で、スイッチング素子に印加される電圧の設定と付加容量に印加される電圧の設定とを独立して変化させることができる。これにより、第1の検査モードと第2の検査モードとで、スイッチング素子のリーク不良の判定のために最適な電圧設定と付加容量のリーク不良の判定のために最適な電圧設定とが可能となり、確実なリーク不良の判定が可能となる。
【0014】
また、前記第1の電圧は、前記スイッチング素子のリーク不良の検出のために前記検査用ソース電圧であり、前記第2の電圧は、前記付加容量のリーク不良の検出のために前記検査用ソース電圧であって、前記第1の電圧は前記検査用走査電圧との差が前記第2の電圧よりも大きく、前記第2の電圧は前記共通電位との差が前記第1の電圧よりも大きいことを特徴とする。
【0015】
このような構成によれば、第1の検査モードに使用される第1の電圧は前記検査用走査電圧との差が第2の電圧よりも大きい。これにより、第1の検査モードではスイッチング素子に印加される電圧が大きく、そのリーク不良を判定しやすい。一方、第2の検査モードに用いる第2の電圧は、共通電位との差が第1の電圧よりも大きい。これにより、第2の検査モードでは付加容量に印加される電圧が大きく、そのリーク不良を判定しやすい。
【0016】
また、前記スイッチング素子は、前記マトリクス基板上に半導体プロセスによって形成されたトランジスタであり、前記判定処理は、前記トランジスタのゲート・ソース間のリーク不良及び前記トランジスタのドレインと前記所定の共通電位との間に接続された前記付加容量のリーク不良を判定することを特徴とする。
【0017】
このような構成によれば、第1の検査モードによってトランジスタのゲート・ソース間のリーク不良を判定し、第2の検査モードによって付加容量のリーク不良を判定する。これらの判定に際して、第1の検査モードと第2の検査モードとで夫々最適な電圧設定が行われる。
【0018】
また、前記複数のソース線は、画像信号が供給されるビデオ線に接続されており、前記第1及び第2の電流検出処理は、前記ビデオ線に流れる電流を検出することにより前記ソース線に流れる電流を検出することを特徴とする。
【0019】
このような構成によれば、複数のソース線に流れる電流を検出する必要はなく、ビデオ線に流れる電流のみを検出すればよく、良不良の判定が容易となる。
【0020】
また、前記第3の電圧印加処理は、前記検査用ソース電圧である前記第2の電圧として、前記ビデオ線に供給される画像信号のレベルに基づく電圧値を設定することを特徴とする。
【0021】
このような構成によれば、マトリクス基板が画像信号用である場合に、実使用時の画像信号が入力された場合と同様の判定基準で、付加容量のリーク不良を判定することができる。
【0022】
また、本発明に係るリーク検査装置は、複数の走査線及び複数のソース線と、前記走査線及びソース線の交差部分に対応して設けられるスイッチング素子と、前記スイッチング素子と所定の共通電位との間に接続された付加容量とを有するマトリクス基板の前記ソース線に流れる電流を検出する第1の電流検出手段と、前記走査線に流れる電流を検出する第2の電流検出手段と、前記走査線に検査用の検査用走査電圧を印加する第1の電圧印加手段と、前記ソース線に検査用の検査用ソース電圧を印加する第2の電圧印加手段と、前記第2の電圧印加手段による前記検査用ソース電圧を2種類以上切換えながら、前記第1及び第2の電流検出手段の検出結果によって、前記スイッチング素子のリーク不良及び前記付加容量のリーク不良を判定する検査制御手段とを具備したことを特徴とする。
【0023】
このような構成によれば、第1の電圧印加手段によって、走査線には検査用走査電圧が印加される。また、検査制御手段は、ソース線には、第1又は第2の電圧印加手段によって、検査用ソース電圧である第1の電圧又は第1の電圧とは異なる第2の電圧を印加する。第1の電流検出手段はソース線に流れる電流を検出し、第2の電流検出手段は走査線に流れる電流を検出する。ソース電圧と第1の電圧とを用いた場合とソース電圧と第2の電圧とを用いた場合とで、スイッチング素子に印加される電圧は変化し、また、付加容量に印加される電圧も変化する。これにより、スイッチング素子のリーク不良の判定のために最適な電圧設定と付加容量のリーク不良の判定のために最適な電圧設定とが可能となり、確実なリーク不良の判定が可能となる。
【0024】
また、前記検査制御手段は、前記スイッチング素子のリーク不良の検出のために前記検査用ソース電圧として第1の電圧を発生させ、前記付加容量のリーク不良の検出のために前記検査用ソース電圧として第2の電圧を発生させ、前記第1の電圧は前記検査用走査電圧との差が前記第2の電圧よりも大きく、前記第2の電圧は前記共通電位との差が前記第1の電圧よりも大きいことを特徴とする。
【0025】
このような構成によれば、第1の電圧は前記検査用走査電圧との差が第2の電圧よりも大きい。これにより、この場合にはスイッチング素子に印加される電圧が大きく、そのリーク不良を判定しやすい。一方、第2の電圧は、共通電位との差が第1の電圧よりも大きい。これにより、この場合には、付加容量に印加される電圧が大きく、そのリーク不良を判定しやすい。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。図1は本発明の第1実施の形態に係るリーク検査装置を説明するための説明図である。本実施の形態は検査対象のパネルとしてアクティブマトリクス基板を用いた液晶パネルに適用した例である。図2は検査対象の液晶パネルの構成を示す斜視図であり、図3は図2のA−A'線の断面図である。
【0027】
検査対象の液晶パネルは、素子基板と対向基板とが、互いに一定の間隙を保って貼付され、その間隙に電気光学材料である液晶が挟持される構成となっている。素子基板及び対向基板としてはガラス基板等の透明基板が用いられ、素子基板上には画素を駆動するトランジスタと共に、周辺駆動回路等が形成されている。
【0028】
先ず、図2及び図3を参照して検査対象の液晶パネルについて説明する。
【0029】
図2及び図3において、液晶パネル100は、各種素子や画素電極118等が形成された素子基板101と、対向電極108等が設けられた対向基板102とが、スペーサ(図示省略)を含むシール材104によって一定の間隙を保って、互いに電極形成面が対向するように貼り合わせられると共に、この間隙に電気光学物質として例えばTN(Twisted Nematic)型の液晶105が封入された構成となっている。
【0030】
素子基板101には、ガラスや、半導体、石英などが用いられるが、対向基板102には、ガラスなどが用いられる。なお、素子基板101に不透明な基板が用いられる場合には、透過型ではなく反射型として用いられることとなる。また、シール材104は、対向基板102の周辺に沿って形成されるが、液晶105を封入するために一部が開口している。このため、液晶105の封入後に、その開口部分が封止材106によって封止されている。
【0031】
素子基板101の対向面であって、シール材104の外側一辺の領域140においては、Xドライバ(図1のXドライバ500)が形成されて、サンプリング信号を出力する構成となっている。さらに、この一辺においてシール材104が形成される近傍の領域150には、画像信号線やサンプリング回路などを形成してもよい。一方、この一辺の外周部分には、複数の実装端子107が形成されて、外部回路(図示省略)から各種信号を入力する構成となっている。
【0032】
また、この一辺に隣接する2辺の領域130には、夫々Yドライバ(図1のYドライバ400)が形成されて、走査線を両側から駆動する構成となっている。なお、走査線に供給される走査信号の遅延が問題にならないのであれば、Yドライバを片側1個だけに形成する構成でもよい。
【0033】
一方、対向基板102に設けられる対向電極108は、素子基板101との貼合部分における4隅のうち少なくとも一ヶ所において導通材により、素子基板101と電気的に接続される構成となっている。
【0034】
また、対向基板102には、特に図示はしないが、画素電極118と対向する領域に、必要に応じて着色層(カラーフィルタ)が設けられる。ただし、後述する複板式のプロジェクタのように色光変調の用途に適用する場合には、対向基板102に着色層を形成する必要はない。
【0035】
素子基板101及び対向基板102の対向面には、ラビング処理された配向膜(図3では省略)が設けられる。また、基板101,102の各背面側には配向膜の配向方向に応じた偏光子(図示省略)が夫々設けられる。なお、図3においては、対向電極108や、画素電極118、実装端子107等には厚みを持たせているが、これは、形成位置を示すための便宜的な措置であり、実際には、基板に対して充分に無視できるほど薄い。
【0036】
図1において、ビデオ線電流計124、ゲート線電流計125、検査電圧発生回路126及び検査電圧制御回路127以外の部分によって図2及び図3の液晶パネルが構成される。なお、図1では、マトリクス状に形成された複数の画素のうち1個の画素のみについて示している。実際には、ビデオ線電流計124、ゲート線電流計125、検査電圧発生回路126及び検査電圧制御回路127は、実装端子107中の所定の端子に接続されるようになっている。
【0037】
液晶パネル100は、素子基板にあっては、図1に示すように、X方向に沿って平行に複数本の走査線112が配列して形成され、また、これと直交するY方向に沿って平行に複数本のソース線114が形成されている。そして、これらの走査線112とソース線114との各交点においては、各画素を制御するためのスイッチング素子であるTFT116のゲート電極が走査線112に接続される一方、TFT116のソース電極がソース線114に接続されると共に、TFT116のドレイン電極が画素電極118に接続されている。
【0038】
そして、各画素は、画素電極118と、対向基板に形成された共通電極108(電位LCCOM)と、これら両電極間に挟持された液晶とによって構成されて、走査線112とソース線114との各交点に対応して、マトリクス状に配列される。また、液晶層における電圧保持特性を向上させてコントラスト比の高い画像表示が可能とするために、各画素毎に、電気的にみて、画素電極118と共通電極とに挟持された液晶に対して並列に付加容量119が形成される。即ち、付加容量119は、電気的にはTFT116のドレインと共通電位線(容量線)120との間に接続される。
【0039】
Xドライバ500は、水平走査期間の最初に供給される転送開始パルスDXを、クロック信号CLXに従って順次シフトすることによって、サンプリング信号S1〜Snを所定の順番で出力するものである。
このようなサンプリング信号は互いに排他的に発生させる必要がある。ところが、サンプリング信号が、何らかの理由によりオーバーラップして出力されることがある。そうすると、あるデータ線に本来サンプリングされるべき画像信号は、これに隣接するデータ線にもサンプリングされてしまう。この結果、いわゆるゴーストやクロストークなどが発生して、表示品位が低下するという問題が生じる。
【0040】
そこで、サンプリング信号がオーバーラップすることを防止するために、Xドライバ500内には図示しないイネーブル回路が導入されている。イネーブル回路は、相前後するサンプリング回路駆動信号同士が、時間軸上で部分的に重なったまま、これらの信号に応じてサンプリングスイッチがサンプリングしてしまうことがないように、イネーブル信号と呼ばれるイネーブル用のクロック信号と各サンプリング回路駆動信号との論理積をとることにより、各サンプリング回路駆動信号のパルス幅を、イネーブル信号のパルス幅にまで狭める技術である。
【0041】
このようにパルス幅を制限することにより、相前後する二つのサンプリング回路駆動信号の間には、若干の時間間隔が時間的マージンとして置かれることになる。このため、たとえ高周波数駆動に伴って、サンプリング回路、Xドライバ等を構成するTFT等の能動素子や各種配線におけるオン抵抗や配線抵抗、時定数、容量、遅延時間などの悪影響が相対的に増大しても、上述した時間的マージンにより、この悪影響を部分的に又は完全に吸収することが可能となる。
【0042】
この結果、画像信号が相展開されていない場合には相隣接するデータ線間における、或いは、画像信号が相展開されている場合には同一の画像信号に接続されていると共に相前後して駆動されるデータ線間における、所謂クロストークやゴーストが生じるのを効率的に防ぐことが可能となる。
【0043】
Xドライバ500は、入力されたイネーブル信号(パルス幅制限信号)ENBを用いて、隣接するサンプリング信号S1〜Sn同士が同時にハイレベル(以下、Hレベルという)となることを確実に防止するようになっている。
【0044】
Xドライバ500からのサンプリング信号S1 〜Snはビデオ線113とn本の各ソース線114とを接続するn個の各スイッチングトランジスタ122のゲートに与えられる。トランジスタ122はHレベルのサンプリング信号によってオンとなって、ビデオ線113の信号を各ソース線114に供給する。なお、ソース線114はトランジスタ123を介して共通信号線NRSに接続されている。トランジスタ123はゲートに印加される信号NRGによってオンとなり、ソース線114の一端に共通信号線NRSの電圧を供給するようになっている。なお、信号NRGによってトランジスタ123をオフ状態にすることによって、ソース線114をフローティング状態にすることができる。
【0045】
Yドライバ400は、出力信号の引き出し方向と、入力される信号とが異なる以外、基本的にXドライバ500の構成と同様である。すなわち、Yドライバ400は、Xドライバ500を90度左回転して配置したものであり、図1に示すように、パルスDXに代えて転送開始パルスパルスDYが入力されると共に、クロック信号CLXに代えて、水平走査期間毎に、クロック信号CLYが入力される構成となっている。
【0046】
Yドライバ400には、正の電源電圧としてはVDDYが供給され、負の電源電圧としてVSSYが供給される。Yドライバ400は、走査期間において選択する走査線には正の電源電圧VDDY(例えば17V)の走査信号を印加し、その他の走査線には負の電電電圧VSSY(例えば0V)の走査信号を印加するようになっている。
【0047】
液晶パネル100の実使用時においては、ビデオ線113には、図示しない画像処理回路からの画像信号が供給される。この画像信号は、サンプリング信号によってオンとなったスイッチングトランジスタ122を介してソース線114に供給され、走査信号によってオンとなったTFT116を介して画素電極118に印加される。
【0048】
本実施の形態においては、リーク検査時においてビデオ線113に検査用の電圧を供給する検査電圧発生回路126が設けられている。検査電圧発生回路126は、後述する検査電圧制御回路127に制御されて、ビデオ線113に少なくとも2種類の電圧を印加することができるようになっている。
【0049】
検査電圧制御回路127は、リーク検査時には、Xドライバ500に常にHレベルの転送開始パルスDXを供給すると共に、Yドライバ400にも常にHレベルの転送開始パルスDYを供給するようになっている。また、検査電圧制御回路127は、ゲート・ソース間のリーク不良、付加容量のリーク不良及びゲート線と容量線とのリーク不良を検出する第1の検査モードと、特に付加容量のリーク不良を検出するための第2の検査モードとを設定可能であり、第1の検査モード時には、検査電圧発生回路126を制御して、比較的低い電圧をビデオ線113に供給させ、第2の検査モード時には、検査電圧発生回路126を制御して、比較的高い電圧をビデオ線113に供給させるようになっている。
【0050】
例えば、検査電圧発生回路126は、第1の検査モード時に5Vの電圧をビデオ線113に印加し、第2の検査モード時に12Vの電圧をビデオ線113に印加するようになっている。
ビデオ線電流計124は、ビデオ線113に流れる電流量を計測する。また、ゲート線電流計125は、走査線112に流れる電流量を計測する。
【0051】
次に、このように構成された実施の形態におけるリーク検査方法について図4のフローチャートを参照して説明する。
【0052】
検査が開始されると、検査電圧制御回路127は、図4のステップS1 において、第1の検査モードを設定する。即ち、Yドライバ400に供給する転送開始パルスDYを常時Hレベルに設定すると共に、Xドライバ500に供給する転送開始パルスDXを常時Hレベルに設定する。そして、検査電圧制御回路127は、検査電圧発生回路126を制御して、ビデオ線113に比較的低い電圧値である例えば5Vを印加させる(ステップS2 )。
【0053】
転送開始パルスDYが常にHレベルであることから、Yドライバ400からの全ての走査線112への出力は電圧VDDYとなる。例えば電圧VDDYとして17Vを採用するものとする。また、転送開始パルスDXが常にHレベルであることから、Xドライバ500は全てのサンプリング信号S1 〜SnとしてHレベルの信号を出力する。これにより、全ての列のスイッチングトランジスタ122はオンとなり、ビデオ線113に印加された電圧は全てのソース線114にも供給される。一方、信号NRGはLレベルに設定されてトランジスタ123はオフであり、ソース線114はフローティング状態である。
【0054】
従って、この状態では、ソース線114は全て5Vに設定され、走査線112は全て17Vに設定される。そして、全ての画素のTFT116はオンである。次に、ステップS3 において電流値が検出される。第1の検査モードにおいては、TFT116のゲートには17Vが印加され、ソースには5Vが印加されており、ゲート・ソース間は12Vの電位差に設定されている。また、付加容量119には、容量線120に供給される共通電圧VSSY(0V)とドレイン電圧(略5V)との差電圧が印加されている。また、走査線112と容量線120との間の電位差は、17V−0V=17Vである。
【0055】
いま、TFT116のゲート・ソース間、付加容量119及び走査線112と容量線120との間にリーク電流が生じていないものとする。この場合には、ビデオ線113及び走査線112のいずれにも電流は流れない。これに対し、これらの検査部位に欠陥が生じている場合には、これらの検査部位に印加された電圧によってリーク電流が流れる。
【0056】
即ち、TFT116のゲート・ソース間のリーク電流は、ソース線114を介してビデオ線113に流れると共に走査線112にも流れる。また、付加容量119に生じるリーク電流は、容量線120に流れ、ビデオ線113にも流れる。また、走査線112と容量線120との間のリーク電流は、走査線112に流れる。
【0057】
従って、ゲート・ソース間のリーク不良は、ビデオ線電流計124及びゲート線電流計125によって検出可能である。付加容量119のリーク不良は、ビデオ線電流計124によって検出可能である。また、走査線112と容量線120との間のリーク不良は、ゲート線電流計125によって検出可能である。
【0058】
ステップS3 において、これらの電流計124,125によってビデオ線113及びゲート線125に流れる電流を計測する。そして、ステップS4 において、電流計124,125の計測結果から、良不良の判定を行う。例えば、ゲート線電流計125のみにおいて所定レベル以上の電流値を検出した場合には、走査線112と容量線120との間のリーク不良が生じているものと判定することができる。また、ビデオ線電流計124のみにおいて所定レベル以上の電流値を検出した場合には、付加容量119のリーク不良が生じているものと判定することができる。なお、ゲート線電流計125とビデオ線電流計124の両方において所定レベル以上の電流値を検出した場合には、ゲート・ソース間のリーク不良、付加容量119のリーク不良、走査線112と容量線120との間のリーク不良の少なくとも1つが生じているものと判定することができる。
【0059】
一方、ビデオ線電流計124及びゲート線電流計125のいずれも計測電流値が0である場合には、第1の検査モードでは、ゲート・ソース間のリーク不良、付加容量119のリーク不良及び走査線112と容量線120との間にリーク不良は生じていないものと判定する。
【0060】
しかしながら、第1の検査モードにおいては、ゲート・ソース間の印加電圧は12Vと十分に高く、また、走査線112と容量線120との間の印加電圧も17Vと十分に高いことから検査の信頼性が高いのに対し、付加容量119の端子電圧は5Vと比較的低い。実使用時には、画像信号の平均レベルが約12Vであることを考慮すると、付加容量119についての検査結果の信頼性は比較的低い。
【0061】
そこで、本実施の形態においては、次のステップS5 において、検査電圧制御回路127は、第2の検査モードを設定するようになっている。即ち、検査電圧制御回路127は、検査電圧発生回路126を制御して、ビデオ線113に比較的高い電圧である例えば12Vを供給する(ステップS6 )。即ち、この場合には、全ソース線114は12Vに設定される。
【0062】
従って、この第2の検査モードにおいては、ゲート・ソース間の印加電圧は(17−12)V=5Vとなり、走査線112と容量線120との間の印加電圧も12Vとなり、付加容量119の端子電圧は12Vとなる。次のステップS7 においては、ゲート線電流計125とビデオ線電流計124の電流値を計測し、ステップS8 において良不良を判定する。この場合にも、第1の検査モードと同様の判定を行う。
【0063】
第2の検査モードにおいては、付加容量119の端子電圧が実使用時と同様の比較的高い電圧値に設定されることから、付加容量119についての検査結果の信頼性は十分に高い。
【0064】
即ち、ゲート・ソース間のリーク不良については第1の検査モードによって良不良を判定し、走査線112と容量線120との間のリーク不良については、第1及び第2の検査モードにおいて良不良を判定し、付加容量119のリーク不良については第2の検査モードにおいて良不良を判定する。検査電圧制御回路127は、第1の検査モード及び第2の検査モードによる良不良の判定結果を検査者に提示する(ステップS9 )。
【0065】
このように本実施の形態においては、検査用電圧として相互に異なる2種類の電圧を用いた第1の検査モード及び第2の検査モードによって、ゲート・ソース間のリーク不良、走査線112と容量線120との間のリーク不良及び付加容量119のリーク不良の良不良を判定している。いずれの検査部位においても、十分な印加電圧を印加した検査が可能であり、信頼性が高い検査結果を得ることができる。
【0066】
即ち、第1の検査モードでは、走査線に印加する電圧との差をなるべく大きくする電圧をビデオ線に印加することによって、確実にゲート・ソース間のリーク不良を検出可能にし、一方、第2の検査モードでは、容量線の共通電位との差をなるべく大きくする電圧をビデオ線に印加することによって、確実に付加容量のリーク不良を検出可能にしている。
【0067】
特に、近年、容量線の絶縁膜が薄くなっていることから付加容量のリーク不良が発生しやすくなっており、本実施の形態は極めて有用である。また、上記実施の形態においては、第1の検査モード後に第2の検査モードを実施したが、第2の検査モードを行った後に第1の検査モードを実施するようにしてもよいことは明らかである。
【0068】
また、上記実施の形態においては、走査線に17Vを印加し、ビデオ線に5V又は12Vを印加した例を示したが、検査電圧としてはこれに限定されず種々の電圧を選択可能である。例えば、ビデオ線に低い電圧として2Vを印加してもよく、この場合には、より一層ゲート・ソース間のリーク不良を検出しやすくなる。
【0069】
なお、上記実施の形態においては、検査対象として液晶パネルを例に説明したが、アレイ状に配置されたスイッチング素子をXアドレス及びYアドレスによって指定すると共に、スイッチング素子と所定の共通電位との間に付加容量が形成された各種マトリクス基板に適用することができる。
【0070】
また、走査線に印加する電圧及びビデオ線に印加する電圧を適宜切換えることにより、ドレインと前段の走査線との間で付加容量を形成する前段ゲート方式の液晶パネルにも適用可能である。
【0071】
また、本発明はEL装置や電気泳動装置等にも適用できる。
【図面の簡単な説明】
【図1】 本発明の第1実施の形態に係るリーク検査装置を説明するための説明図。
【図2】 図1中の液晶パネル100の構成を示す斜視図。
【図3】 図2のA−A'線の断面図。
【図4】 実施の形態におけるリーク検査方法を説明するためのフローチャート。
【符号の説明】
100…液晶パネル、112…走査線、113…ビデオ線、114…ソース線、116…TFT、119…付加容量、124…ビデオ線電流計、125…ゲート線電流計、126…検査電圧発生回路、127…検査電圧制御回路。

Claims (7)

  1. 複数の走査線及び複数のソース線と、前記走査線及びソース線の交差部分に対応して設けられるスイッチング素子と、前記スイッチング素子と所定の共通電位との間に接続された付加容量とを有するマトリクス基板の前記走査線に、検査用の検査用走査電圧を印加する第1の電圧印加処理と、
    前記ソース線に検査用の検査用ソース電圧である第1の電圧を印加する第2の電圧印加処理と、
    前記第1及び第2の電圧印加処理による第1の検査モードにおいて、前記ソース線に流れる電流及び前記走査線に流れる電流を検出する第1の電流検出処理と、
    前記ソース線に検査用の検査用ソース電圧であり前記第1の電圧とは異なる第2の電圧を印加する第3の電圧印加処理と、
    前記第1及び第3の電圧印加処理による第2の検査モードにおいて、前記ソース線に流れる電流及び前記走査線に流れる電流を検出する第2の電流検出処理と、
    前記第1及び第2の電流検出処理によって前記スイッチング素子のリーク不良及び前記付加容量のリーク不良を判定する判定処理とを具備したことを特徴とするリーク検査方法。
  2. 前記第1の電圧は、前記スイッチング素子のリーク不良の検出のために前記検査用ソース電圧であり、
    前記第2の電圧は、前記付加容量のリーク不良の検出のために前記検査用ソース電圧であって、
    前記第1の電圧は前記検査用走査電圧との差が前記第2の電圧よりも大きく、前記第2の電圧は前記共通電位との差が前記第1の電圧よりも大きいことを特徴とする請求項に記載のリーク検査方法。
  3. 前記スイッチング素子は、前記マトリクス基板上に半導体プロセスによって形成されたトランジスタであり、
    前記判定処理は、前記トランジスタのゲート・ソース間のリーク不良及び前記トランジスタのドレインと前記所定の共通電位との間に接続された前記付加容量のリーク不良を判定することを特徴とする請求項1に記載のリーク検査方法。
  4. 前記複数のソース線は、画像信号が供給されるビデオ線に接続されており、
    前記第1及び第2の電流検出処理は、前記ビデオ線に流れる電流を検出することにより前記ソース線に流れる電流を検出することを特徴とする請求項1に記載のリーク検査方法。
  5. 前記第3の電圧印加処理は、前記検査用ソース電圧である前記第2の電圧として、前記ビデオ線に供給される画像信号のレベルに基づく電圧値を設定することを特徴とする請求項4に記載のリーク検査方法。
  6. 複数の走査線及び複数のソース線と、前記走査線及びソース線の交差部分に対応して設けられるスイッチング素子と、前記スイッチング素子と所定の共通電位との間に接続された付加容量とを有するマトリクス基板の前記ソース線に流れる電流を検出する第1の電流検出手段と、
    前記走査線に流れる電流を検出する第2の電流検出手段と、
    前記走査線に検査用の検査用走査電圧を印加する第1の電圧印加手段と、
    前記ソース線に検査用の検査用ソース電圧を印加する第2の電圧印加手段と、
    前記第2の電圧印加手段による前記検査用ソース電圧を2種類以上切換えながら、前記第1及び第2の電流検出手段の検出結果によって、前記スイッチング素子のリーク不良及び前記付加容量のリーク不良を判定する検査制御手段とを具備したことを特徴とするリーク検査装置。
  7. 前記検査制御手段は、前記スイッチング素子のリーク不良の検出のために前記検査用ソース電圧として第1の電圧を発生させ、前記付加容量のリーク不良の検出のために前記検査用ソース電圧として第2の電圧を発生させ、
    前記第1の電圧は前記検査用走査電圧との差が前記第2の電圧よりも大きく、前記第2の電圧は前記共通電位との差が前記第1の電圧よりも大きいことを特徴とする請求項6に記載のリーク検査装置。
JP2002275195A 2002-09-20 2002-09-20 リーク検査装置及びリーク検査方法 Expired - Fee Related JP4292770B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275195A JP4292770B2 (ja) 2002-09-20 2002-09-20 リーク検査装置及びリーク検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275195A JP4292770B2 (ja) 2002-09-20 2002-09-20 リーク検査装置及びリーク検査方法

Publications (2)

Publication Number Publication Date
JP2004109823A JP2004109823A (ja) 2004-04-08
JP4292770B2 true JP4292770B2 (ja) 2009-07-08

Family

ID=32271462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275195A Expired - Fee Related JP4292770B2 (ja) 2002-09-20 2002-09-20 リーク検査装置及びリーク検査方法

Country Status (1)

Country Link
JP (1) JP4292770B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038988A (ja) * 2004-07-23 2006-02-09 Seiko Epson Corp 電気光学装置、電子機器、および実装構造体
JP2006178029A (ja) * 2004-12-21 2006-07-06 Seiko Epson Corp 電気光学装置、その検査方法、駆動装置および電子機器
JP2006178030A (ja) * 2004-12-21 2006-07-06 Seiko Epson Corp 電気光学装置、その駆動方法、駆動装置および電子機器
JP6095995B2 (ja) * 2013-02-06 2017-03-15 株式会社ダイヘン 溶接電源装置、当該溶接電源装置を備えた溶接システム、および、異常検出方法

Also Published As

Publication number Publication date
JP2004109823A (ja) 2004-04-08

Similar Documents

Publication Publication Date Title
US20080170195A1 (en) Display panel, method of inspecting the display panel and method of manufacturing the display panel
JP2007333823A (ja) 液晶表示装置および液晶表示装置の検査方法
US6654075B1 (en) Liquid crystal display device and method for fabricating the same
JP3648976B2 (ja) アクティブマトリクス基板、液晶装置及び電子機器並びに該アクティブマトリクス基板の検査方法
KR101152497B1 (ko) 액정표시소자
JP4292770B2 (ja) リーク検査装置及びリーク検査方法
KR101174156B1 (ko) 평판 표시장치
TW200402027A (en) Electro-optical device, drive device and drive method for electro-optical device, and electronic apparatus
CN101256750B (zh) 驱动液晶显示器件的方法
KR101992852B1 (ko) 표시장치
JP2001183614A (ja) 表示素子およびその検査方法
JP3966326B2 (ja) アクティブマトリクス基板の検査方法
US20090109204A1 (en) Electro-optical device and electronic apparatus
JP3010568B2 (ja) 液晶画像表示装置の検査機、検査方法、及び製造方法
US20050278128A1 (en) Circuit inspection method, method of manufacturing liquid-crystal display, and circuit inspection apparatus
KR20080055248A (ko) 표시 패널
JP2001235761A (ja) 電気光学装置
JPH0481889A (ja) アクティブマトリクスアレイ基板の検査方法
JP3302623B2 (ja) アクティブマトリックス型液晶パネルの検査方法
JP2007065540A (ja) 電気光学装置及びその検査方法、並びに電子機器
KR20060115518A (ko) 표시 패널 및 이를 이용한 검사 방법
JP2017138393A (ja) 液晶表示装置及びその検査方法
JP5256104B2 (ja) 液晶表示装置
JP4736335B2 (ja) 電気光学装置及び電子機器
JPH063636A (ja) 液晶表示パネルの検査方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees