JP4260951B2 - Vehicle clutch system - Google Patents

Vehicle clutch system Download PDF

Info

Publication number
JP4260951B2
JP4260951B2 JP35240998A JP35240998A JP4260951B2 JP 4260951 B2 JP4260951 B2 JP 4260951B2 JP 35240998 A JP35240998 A JP 35240998A JP 35240998 A JP35240998 A JP 35240998A JP 4260951 B2 JP4260951 B2 JP 4260951B2
Authority
JP
Japan
Prior art keywords
hydraulic pressure
input member
cylinder
chamber
cylinder body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35240998A
Other languages
Japanese (ja)
Other versions
JP2000179580A (en
Inventor
寛 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP35240998A priority Critical patent/JP4260951B2/en
Publication of JP2000179580A publication Critical patent/JP2000179580A/en
Application granted granted Critical
Publication of JP4260951B2 publication Critical patent/JP4260951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両のエンジンとトランスミッションとの間に介在するクラッチを断続操作するために、運転手のペダル操作に応じてマスタシリンダから作動シリンダ(クラッチオペレーティングシリンダ)に液圧を供給可能とするマニュアル操作系統と、外部からの指令に基づきマスタシリンダとは別の外部液圧発生源から上記作動シリンダに液圧を供給可能とする自動操作系統とを備えた車両のクラッチシステムに関する。
【0002】
【従来の技術】
この種の従来技術として、例えば特開平9−269022号公報に記載のものがある。この公報には、マスタシリンダ(クラッチマスタシリンダ)と作動シリンダとの間に中継シリンダを設け、マニュアル操作系統と自動操作系統との2系統を備えた車両のクラッチシステムが開示されている。
【0003】
すなわち、マスタシリンダを操作することにより上記中継シリンダを介して作動シリンダに液圧を供給しクラッチを切断するマニュアル操作系統のほかに、自動操作系統として液圧ポンプの吐出圧でもって当該中継シリンダを駆動し、作動シリンダに液圧を供給してクラッチを切断する構成が記載されている。
【0004】
ところが、上記公報に記載の従来技術では、上記中継シリンダを必要としているのでシステム全体としての部品点数が増大するとともに、当該中継シリンダに対して複数の配管を接続する必要があり、これによりシステム全体の配管工数の複雑化を招くという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は上述の問題に鑑みてなされ、マニュアル操作系統と自動操作系統とを共に備えたシステムにおいて、システム全体としての部品点数の低減と配管工数の簡素化を図った車両のクラッチシステムを提供することを課題とする。
【0006】
【課題を解決するための手段】
以上の課題は、車両のエンジンとトランスミッションとの間に介在するクラッチを断続操作するために、運転手のペダル操作に応じてマスタシリンダから作動シリンダに液圧を供給可能とするマニュアル操作系統と、外部からの指令に基づき前記マスタシリンダとは別の外部液圧発生源から前記作動シリンダに液圧を供給可能とする自動操作系統とを備え、前記マニュアル操作系統と自動操作系統とを選択的に切換え可能とした車両のクラッチシステムにおいて、前記マスタシリンダは、シリンダ本体内に挿入され運転手による操作力を受けて移動する入力部材を有し、前記シリンダ本体内に液圧発生室を区画するピストンが、前記入力部材から運転手の操作力を伝達され前記入力部材とともに前記液圧発生室側に移動可能であるとともに、前記外部液圧発生源からの液圧を受圧することにより、前記入力部材とは独立して前記液圧発生室側に移動可能に設けられており、前記シリンダ本体内には、前記ピストンに前記外部液圧発生源からの液圧を受圧可能とする操作圧室が区画され、この操作圧室を前記入力部材の前記液圧発生室側への移動に応じて作動液を貯えるリザーバに連通させる弁機構が設けられており、前記操作圧室を、前記ピストンの端部と前記入力部材の端部とが互いに対向する箇所に区画して、前記入力部材と前記シリンダ本体の内壁との間隙を介して前記リザーバに液連通させ、前記弁機構を、前記間隙を開閉可能に前記入力部材と前記シリンダ本体とにより形成したことを特徴とする車両のクラッチシステム、によって解決される。
【0007】
すなわち本発明は、マスタシリンダのシリンダ本体内にピストンと入力部材とを備え、マニュアル操作時には入力部材を介してピストンを液圧発生室側に移動させ、又、自動操作時には外部液圧発生源からの液圧でピストンを入力部材とは独立して液圧発生室側に移動させることにより、作動シリンダに液圧を供給する。これにより、従来用いられていた中継シリンダを不要としながらマニュアル操作系統および自動操作系統によるクラッチ操作を両立させるとともに、システム全体の配管工数の低減と構成の簡素化を図る。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0009】
図1は本発明の実施の形態による車両のクラッチシステムを示している。クラッチシステムは主として、マスタシリンダ1、作動シリンダ2、外部液圧発生源(たとえばモータ駆動式アクチュエータ)3及び作動液を貯えるリザーバ4を備えている。
【0010】
マスタシリンダ1は、運転手のペダル操作に応じて作動シリンダ2へ液圧を供給する。シリンダ本体11のシリンダ孔12には密封部材14A、14Bを装着したピストン14が摺動自在に挿入されており、このピストン14の前方(図中左方、以下同様。)に液圧発生室15を区画する。シリンダ孔12には又、ピストン14の後方(図中右方、以下同様。)に位置するように、クラッチペダル5に連絡する入力部材13が挿入されている。入力部材13は運転手による操作力を受けてピストン14を戻しばね16の付勢力に抗して前方へ移動可能であり、これにより液圧発生室15に液圧を発生させる。発生した液圧は出力ポート11A及び管路6を介して作動シリンダ2へ供給される。
【0011】
また、ピストン14は、モータ駆動式アクチュエータ3からの液圧を受圧することにより、入力部材13とは独立して前方の液圧発生室15側へ移動可能に構成されている。すなわち本実施の形態では、シリンダ孔12内において、入力部材13の前端部とピストン14の後端部との間に、モータ駆動式アクチュエータ3からの液圧を管路7及び入力ポート11Bを介して受圧可能とする操作圧室19が区画されている。この操作圧室19は、後述するように弁機構20を介してリザーバ4と連通可能となっている。
【0012】
弁機構20はシリンダ孔12内の開口部近傍に設けられ、入力部材13の摺動案内を行う環状の案内部材22と、案内部材22の液圧発生室15側先端に設けられた弁座21と、入力部材13に一体的に設けられ弁座21に着離座可能な弁体となるフランジ部13aとを備えている。案内部材22は、シリンダ孔12の開口部段部と、入力部材13が貫通し上記開口部に液密に螺着固定される蓋部材23との間に挟持されることによりシリンダ本体11と一体的に固定される。
【0013】
入力部材13と案内部材22との嵌合部分には液連通を許容する間隙Gが設けられ、この間隙Gは弁機構20の開弁時に操作圧室19と連通し、また、案内部材22に径方向に形成された連通孔22a、シリンダ本体11に対してシリンダ孔12とほぼ平行に穿設されリザーバ4の接続用ボス部11C内部の接続孔18を含む液通路24、接続孔19に液密に嵌入され接続部材10、及び管路9を介して常時、リザーバ4に連通している。すなわち弁機構20は、操作圧室19とリザーバ4とを連絡する間隙Gの開閉作用を行うように構成される。なお、入力部材13と蓋部材23との間には密封部材25が介在し、シリンダ本体11の内部と外部とを密封している。
【0014】
また、図示する非作動時ではピストン14は戻しばね16に付勢されて図中右方へ位置し、液圧発生室15とリザーバ4との間を、シリンダ本体11に形成される補給孔17、補給孔17に連絡する接続孔18、接続部材10、及び管路9を介して連通させている。一方、入力部材13は弁機構20を閉弁し、操作圧室19とリザーバ4との間の液連通を遮断している。
【0015】
作動シリンダ2は公知のように構成されるのでその詳細な説明は省略するが、内部にマスタシリンダ1からの液圧を受けて移動する作動ピストンを有し、この作動ピストンの移動により図示しないクラッチレリーズフォークを介してクラッチの切断作用を行い、また、マスタシリンダ1からの液圧の低下により上記作動ピストンを復帰位置へ戻らせ、上記クラッチの接続作用を行う。
【0016】
図2は、モータ駆動式アクチュエータ3の構成を示している。モータ駆動式アクチュエータ3は、クラッチ自動操作モード時において運転手のシフトチェンジ操作(シフトレバーの切替え操作)を感知する図示しないセンサの出力信号に応じて作動するように構成され、この出力信号を駆動信号として電気モータ40の駆動により後述の回転軸39、小径部38、大径部37を介して駆動軸36を回転させ、この回転力を後述のナット部材43を介してプランジャ33の直線運動に変換して液室34に液圧を生じせしめ、出力ポート42、管路7を介して液圧をマスタシリンダ1内の操作圧室19へ供給する装置である。
【0017】
本体31には内孔32が形成され、この内孔32の小径孔部32aに対して密封部材33A、33Bを装着したプランジャ33が摺動自在に挿入されている。プランジャ33の前方(図中左方)には液室34が区画され、プランジャ33の後方(図中右方)端部は駆動軸36のねじ部36aが遊嵌している。駆動軸36は内孔32の大径孔部32b内において本体31に対して回転可能に取り付けられており、ねじ部36aにはナット部材43が螺合している。このナット部材43の外周面は非円形であり、内孔32の大径孔部32bに挿通されナット部材43の外周面と略同一形状の内周面を有するスリーブ44に対して相対回転不能に支持され、駆動軸36の回転によりナット部材43がスリーブ44の内周面に沿って図中左右方向に移動可能である。駆動軸36の回転は、電気モータ40の回転軸39に一体的に設けられた小径ギヤ38と噛合する大径ギヤ37を介して行われる。
【0018】
電気モータ40が順方向に回転駆動すると、この回転力が駆動軸36に伝達されるとともにナット部材43が前方へ移動し、プランジャ33の後端部と当接する。そして、更なる駆動軸36の回転によりナット部材43が戻しばね35の付勢力に抗してプランジャ33を液室34側へ移動させる。これにより接続部材41及び管路8を介してリザーバ4と連通状態にあった液室34は密封部材33Aにより密閉されるとともに、液室34にプランジャ33の移動量に応じた液圧が発生し、出力ポート42及び管路7を介してマスタシリンダ1内の操作圧室19に供給される。他方、この状態から電気モータ40を逆方向に回転駆動すると、ナット部材43は後方へ移動するとともに、プランジャ33は戻しばね35の付勢力を受けて図示する位置に戻り、液室34はリザーバ4と相連通する。
【0019】
次に、本実施の形態の作用について説明する。
【0020】
システムの非作動時、マスタシリンダ1及びモータ駆動式アクチュエータ3はそれぞれ図1及び図2に示す状態にある。最初に、運転手によるクラッチペダル5の踏み込み操作でクラッチの断続操作を行うマニュアル操作系統の作用について説明すると、クラッチペダル5を介して運転手による操作力を受ける入力部材13は戻しばね16のばね力に抗してピストン14を前方へ移動させ、カップシール14Aが補給孔17より前方側へ至ることにより液圧発生室15を密閉し、液圧発生室15に液圧を発生させる(図3参照)。発生した液圧は出力ポート11A及び管路6を介して作動シリンダ2へ供給され、これにより作動シリンダ2が作動し、公知のように図示しない車両のエンジンとトランスミッションとの間に介在するクラッチの切断作用が行われる。
【0021】
このとき、入力部材13はピストン14とともに液圧発生室15側へ移動することにより、入力部材13のフランジ部13aと弁座21とが離座する。したがってシリンダ孔12内においてピストン14に装着される一方のカップシール14Bと弁機構20を構成する弁座21との間に形成される環状の空間S(間隙Gの一部)の容積は増大するが、この空間Sが間隙G、連通孔22a、液通路24を介してリザーバ4側と連通するので、空間Sの容積増大分に相当する液量がリザーバ4側から供給されることになり、これによりピストン14の背圧が常に大気圧(リザーバ4内の圧力)に保たれ、液圧発生室15側への移動作用(移動速度)に支障を来すことはない。
【0022】
また、クラッチ接続作用は、クラッチペダル5の踏み込み操作を解除して液圧発生室15内の液圧を低下させて図1に示す状態に戻し、作動シリンダ2に対する液圧の供給を断ち、作動シリンダ2を非作動状態にすることによって得られる。
【0023】
次に、クラッチの自動操作系統の作用について説明する。運転手によるシフトチェンジ操作が感知されると、上述したようにモータ駆動式アクチュエータ3の電気モータ40に駆動信号(電流)が供給され、これを受けて電気モータ40の回転軸39が順方向に回転駆動する。これにより上述したように、モータ駆動式アクチュエータ3からマスタシリンダ1の操作圧室19へ液圧が供給される。すると、ピストン14は入力部材13とは独立して前方へ移動し、液圧発生室15に液圧を発生させる(図4参照)。
【0024】
このとき、入力部材13は操作圧室19の圧力を受けて後方へ押圧され、そのフランジ部13aを弁座21に着座させて弁機構20を閉弁しているので、操作圧室19に導入された液圧がリザーバ4側へ流出することはない。
【0025】
また、クラッチ接続作用は、電気モータ40の駆動軸39を逆方向に回転駆動して操作圧室19内の液圧を低下させ、これによりピストン14を後退させて液圧発生室15内の液圧を低下させ、作動シリンダ2に対する液圧の供給を断って作動シリンダ2を非作動状態にすることによって得られる。
【0026】
以上のように本実施の形態によれば、上記従来公報に記載されているような中継シリンダを用いることなく、クラッチのマニュアル操作系統及び自動操作系統を両立でき、よってシステム全体としての部品点数の低減及び配管工数の簡素化を図ることができる。
【0027】
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。
【0028】
例えば以上の実施の形態では、外部液圧発生源としてモータ駆動式アクチュエータ3を用いたが、勿論、これに限らず、例えば液圧ポンプを用いてもよい。
【0029】
【発明の効果】
以上述べたように、本発明の車両のクラッチシステムによれば、マニュアル操作系統と自動操作系統とを共にに備える車両クラッチシステムを、従来に比してシステム全体としての部品点数の低減、及び配管工数の簡素化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による車両のクラッチシステムの配管系統図である。
【図2】同システムにおけるモータ駆動式アクチュエータの詳細を示す断面図である。
【図3】同システムにおけるマスタシリンダの作用を説明する断面図で、マニュアル操作系統により駆動された状態を示す。
【図4】同マスタシリンダの作用を説明する断面図で、自動操作系統により駆動された状態を示す。
【符号の説明】
1 マスタシリンダ
2 作動シリンダ
3 モータ駆動式アクチュエータ
4 リザーバ
11 シリンダ本体
13 入力部材
13a フランジ部
14 ピストン
19 操作圧室
20 弁機構
21 弁座
22 案内部材
22a 連通孔
24 液通路
[0001]
BACKGROUND OF THE INVENTION
In order to intermittently operate a clutch interposed between an engine and a transmission of a vehicle, the present invention can supply hydraulic pressure from a master cylinder to an operating cylinder (clutch operating cylinder) in accordance with a driver's pedal operation. The present invention relates to a vehicle clutch system including an operation system and an automatic operation system that can supply hydraulic pressure to the working cylinder from an external hydraulic pressure generation source different from a master cylinder based on an external command.
[0002]
[Prior art]
As this type of prior art, for example, there is one described in JP-A-9-269022. This publication discloses a vehicle clutch system in which a relay cylinder is provided between a master cylinder (clutch master cylinder) and an operating cylinder, and two systems, a manual operation system and an automatic operation system, are provided.
[0003]
That is, in addition to a manual operation system that operates the master cylinder to supply hydraulic pressure to the working cylinder via the relay cylinder and disengage the clutch, the relay cylinder can be used as an automatic operation system with the discharge pressure of the hydraulic pump. A configuration is described in which the clutch is disconnected by driving and supplying hydraulic pressure to the working cylinder.
[0004]
However, in the prior art described in the above publication, since the relay cylinder is required, the number of parts as the whole system increases, and a plurality of pipes need to be connected to the relay cylinder. There is a problem that the number of piping man-hours becomes complicated.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and provides a vehicle clutch system that reduces the number of parts and simplifies the piping man-hours as a whole system in a system including both a manual operation system and an automatic operation system. This is the issue.
[0006]
[Means for Solving the Problems]
The above-mentioned problem is that a manual operation system that can supply hydraulic pressure from the master cylinder to the working cylinder according to the driver's pedal operation in order to intermittently operate the clutch interposed between the engine and the transmission of the vehicle, An automatic operation system capable of supplying hydraulic pressure to the working cylinder from an external hydraulic pressure generation source different from the master cylinder based on a command from the outside, and selectively selecting the manual operation system and the automatic operation system In the clutch system of a vehicle that can be switched, the master cylinder has an input member that is inserted into the cylinder body and moves in response to an operation force by a driver, and a piston that defines a fluid pressure generating chamber in the cylinder body However, the operation force of the driver is transmitted from the input member and is movable to the hydraulic pressure generating chamber side together with the input member. By receiving the hydraulic pressure from Kigaibu fluid pressure generating source, said input is provided to be movable in the hydraulic pressure generating chamber side independently of the member, the said cylinder body, the said piston An operation pressure chamber that can receive a hydraulic pressure from an external hydraulic pressure generation source is defined, and the operation pressure chamber communicates with a reservoir that stores hydraulic fluid in accordance with the movement of the input member toward the hydraulic pressure generation chamber. A valve mechanism is provided, and the operation pressure chamber is partitioned into a portion where the end of the piston and the end of the input member face each other, and a gap between the input member and the inner wall of the cylinder body is formed. The vehicle clutch system is characterized in that the valve mechanism is formed by the input member and the cylinder body so that the gap can be opened and closed .
[0007]
That is, the present invention includes a piston and an input member in the cylinder body of the master cylinder, and moves the piston to the hydraulic pressure generation chamber through the input member during manual operation, and from an external hydraulic pressure generation source during automatic operation. The hydraulic pressure is supplied to the working cylinder by moving the piston to the hydraulic pressure generating chamber side independently of the input member with the hydraulic pressure of. As a result, the clutch operation by the manual operation system and the automatic operation system is made compatible while eliminating the need for the conventionally used relay cylinder, and the piping man-hour of the entire system is reduced and the configuration is simplified.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 shows a vehicle clutch system according to an embodiment of the present invention. The clutch system mainly includes a master cylinder 1, an operating cylinder 2, an external hydraulic pressure source (for example, a motor-driven actuator) 3, and a reservoir 4 for storing hydraulic fluid.
[0010]
The master cylinder 1 supplies hydraulic pressure to the working cylinder 2 according to the driver's pedal operation. A piston 14 fitted with sealing members 14A and 14B is slidably inserted into the cylinder hole 12 of the cylinder body 11, and a hydraulic pressure generating chamber 15 is located in front of the piston 14 (left side in the figure, the same applies hereinafter). Partition. An input member 13 that communicates with the clutch pedal 5 is also inserted into the cylinder hole 12 so as to be located behind the piston 14 (rightward in the figure, the same applies hereinafter). The input member 13 receives the operation force from the driver and can move the piston 14 forward against the biasing force of the return spring 16, thereby generating a hydraulic pressure in the hydraulic pressure generating chamber 15. The generated hydraulic pressure is supplied to the working cylinder 2 via the output port 11A and the pipe 6.
[0011]
The piston 14 is configured to be movable toward the front hydraulic pressure generation chamber 15 independently of the input member 13 by receiving the hydraulic pressure from the motor-driven actuator 3. That is, in the present embodiment, the hydraulic pressure from the motor-driven actuator 3 is transferred between the front end portion of the input member 13 and the rear end portion of the piston 14 in the cylinder hole 12 via the conduit 7 and the input port 11B. An operation pressure chamber 19 that can receive pressure is partitioned. The operation pressure chamber 19 can communicate with the reservoir 4 via a valve mechanism 20 as will be described later.
[0012]
The valve mechanism 20 is provided in the vicinity of the opening in the cylinder hole 12, and an annular guide member 22 that performs sliding guide of the input member 13, and a valve seat 21 that is provided at the front end of the guide member 22 on the hydraulic pressure generation chamber 15 side. And a flange portion 13 a that is provided integrally with the input member 13 and serves as a valve body that can be seated on and away from the valve seat 21. The guide member 22 is integrated with the cylinder body 11 by being sandwiched between the opening step of the cylinder hole 12 and the lid member 23 through which the input member 13 penetrates and is fixed in a liquid-tight manner to the opening. Fixed.
[0013]
A gap G that allows fluid communication is provided in a fitting portion between the input member 13 and the guide member 22, and this gap G communicates with the operation pressure chamber 19 when the valve mechanism 20 is opened. The communication hole 22a formed in the radial direction, the liquid passage 24 including the connection hole 18 inside the connection boss portion 11C of the reservoir 4 which is drilled substantially parallel to the cylinder hole 12 with respect to the cylinder body 11 and the connection hole 19 are liquid. It is tightly fitted and is always in communication with the reservoir 4 via the connecting member 10 and the conduit 9. That is, the valve mechanism 20 is configured to open and close the gap G that connects the operation pressure chamber 19 and the reservoir 4. A sealing member 25 is interposed between the input member 13 and the lid member 23 to seal the inside and the outside of the cylinder body 11.
[0014]
Further, in the illustrated non-operating state, the piston 14 is urged by the return spring 16 to be positioned rightward in the drawing, and the supply hole 17 formed in the cylinder body 11 between the hydraulic pressure generating chamber 15 and the reservoir 4. The connection hole 18 communicating with the supply hole 17, the connection member 10, and the pipe line 9 are communicated. On the other hand, the input member 13 closes the valve mechanism 20 to block the fluid communication between the operation pressure chamber 19 and the reservoir 4.
[0015]
Since the working cylinder 2 is constructed in a known manner, a detailed description thereof will be omitted. However, the working cylinder 2 has a working piston that moves under the hydraulic pressure from the master cylinder 1, and a clutch (not shown) is moved by the movement of the working piston. The clutch is disengaged through the release fork, and the operating piston is returned to the return position by the decrease in the hydraulic pressure from the master cylinder 1 to perform the clutch engagement operation.
[0016]
FIG. 2 shows the configuration of the motor-driven actuator 3. The motor-driven actuator 3 is configured to operate in response to an output signal of a sensor (not shown) that senses a driver's shift change operation (shift lever switching operation) in the automatic clutch operation mode, and drives this output signal. As a signal, the electric motor 40 is driven to rotate the drive shaft 36 via a rotary shaft 39, a small diameter portion 38, and a large diameter portion 37, which will be described later, and this rotational force is converted into a linear motion of the plunger 33 via a nut member 43, which will be described later. This is a device that converts the pressure to generate a liquid pressure in the liquid chamber 34 and supplies the liquid pressure to the operation pressure chamber 19 in the master cylinder 1 via the output port 42 and the pipe line 7.
[0017]
An inner hole 32 is formed in the main body 31, and a plunger 33 fitted with sealing members 33 </ b> A and 33 </ b> B is slidably inserted into a small diameter hole portion 32 a of the inner hole 32. A liquid chamber 34 is defined in front of the plunger 33 (left side in the figure), and a screw part 36a of the drive shaft 36 is loosely fitted to the rear (right side in the figure) end of the plunger 33. The drive shaft 36 is rotatably attached to the main body 31 in the large-diameter hole portion 32b of the inner hole 32, and a nut member 43 is screwed into the screw portion 36a. The outer peripheral surface of the nut member 43 is non-circular and cannot be rotated relative to the sleeve 44 that is inserted into the large-diameter hole portion 32b of the inner hole 32 and has an inner peripheral surface that is substantially the same shape as the outer peripheral surface of the nut member 43. The nut member 43 is supported along the inner peripheral surface of the sleeve 44 by the rotation of the drive shaft 36 and can move in the left-right direction in the figure. The drive shaft 36 is rotated through a large-diameter gear 37 that meshes with a small-diameter gear 38 that is provided integrally with the rotary shaft 39 of the electric motor 40.
[0018]
When the electric motor 40 is rotationally driven in the forward direction, this rotational force is transmitted to the drive shaft 36 and the nut member 43 moves forward and comes into contact with the rear end portion of the plunger 33. Then, the nut member 43 moves the plunger 33 toward the liquid chamber 34 against the urging force of the return spring 35 by further rotation of the drive shaft 36. As a result, the liquid chamber 34 in communication with the reservoir 4 via the connection member 41 and the pipe line 8 is sealed by the sealing member 33A, and a liquid pressure corresponding to the amount of movement of the plunger 33 is generated in the liquid chamber 34. The operation pressure chamber 19 in the master cylinder 1 is supplied via the output port 42 and the pipe line 7. On the other hand, when the electric motor 40 is rotationally driven in the reverse direction from this state, the nut member 43 moves rearward, the plunger 33 receives the urging force of the return spring 35 and returns to the illustrated position, and the liquid chamber 34 is stored in the reservoir 4. Communicate with.
[0019]
Next, the operation of the present embodiment will be described.
[0020]
When the system is not operating, the master cylinder 1 and the motor-driven actuator 3 are in the states shown in FIGS. 1 and 2, respectively. First, the operation of the manual operation system in which the clutch is engaged / disengaged by the depression of the clutch pedal 5 by the driver will be described. The input member 13 that receives the operation force by the driver via the clutch pedal 5 is the spring of the return spring 16. The piston 14 is moved forward against the force, and the cup seal 14A moves forward from the supply hole 17 to seal the hydraulic pressure generating chamber 15 and generate hydraulic pressure in the hydraulic pressure generating chamber 15 (FIG. 3). reference). The generated hydraulic pressure is supplied to the working cylinder 2 via the output port 11A and the pipe 6 so that the working cylinder 2 is actuated and, as is well known, a clutch interposed between the vehicle engine and the transmission (not shown). Cutting action is performed.
[0021]
At this time, the input member 13 moves to the hydraulic pressure generation chamber 15 side together with the piston 14, whereby the flange portion 13a of the input member 13 and the valve seat 21 are separated. Therefore, the volume of the annular space S (a part of the gap G) formed between the one cup seal 14B attached to the piston 14 and the valve seat 21 constituting the valve mechanism 20 in the cylinder hole 12 increases. However, since the space S communicates with the reservoir 4 side via the gap G, the communication hole 22a, and the liquid passage 24, the amount of liquid corresponding to the volume increase of the space S is supplied from the reservoir 4 side. As a result, the back pressure of the piston 14 is always maintained at atmospheric pressure (pressure in the reservoir 4), and the moving action (moving speed) toward the hydraulic pressure generating chamber 15 is not hindered.
[0022]
In addition, the clutch connecting action releases the operation of depressing the clutch pedal 5 to reduce the hydraulic pressure in the hydraulic pressure generating chamber 15 to return to the state shown in FIG. It is obtained by bringing the cylinder 2 into a non-operating state.
[0023]
Next, the operation of the clutch automatic operation system will be described. When a shift change operation by the driver is detected, a drive signal (current) is supplied to the electric motor 40 of the motor-driven actuator 3 as described above, and in response to this, the rotating shaft 39 of the electric motor 40 moves in the forward direction. Rotation drive. Thereby, as described above, hydraulic pressure is supplied from the motor-driven actuator 3 to the operation pressure chamber 19 of the master cylinder 1. Then, the piston 14 moves forward independently of the input member 13 and generates a hydraulic pressure in the hydraulic pressure generating chamber 15 (see FIG. 4).
[0024]
At this time, the input member 13 receives the pressure of the operation pressure chamber 19 and is pressed rearward, and the flange portion 13a is seated on the valve seat 21 to close the valve mechanism 20, so that the input member 13 is introduced into the operation pressure chamber 19. The hydraulic pressure thus made does not flow out to the reservoir 4 side.
[0025]
In addition, the clutch connection action rotates the drive shaft 39 of the electric motor 40 in the reverse direction to reduce the hydraulic pressure in the operation pressure chamber 19, thereby causing the piston 14 to retreat and the liquid in the hydraulic pressure generating chamber 15. It is obtained by lowering the pressure and cutting off the supply of the hydraulic pressure to the working cylinder 2 to make the working cylinder 2 inactive.
[0026]
As described above, according to the present embodiment, the manual operation system and the automatic operation system of the clutch can be compatible without using a relay cylinder as described in the above-mentioned conventional publication, and thus the number of parts as a whole system can be reduced. Reduction and simplification of piping man-hours can be achieved.
[0027]
The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0028]
For example, in the above embodiment, the motor-driven actuator 3 is used as the external hydraulic pressure generation source. However, the present invention is not limited to this, and a hydraulic pump, for example, may be used.
[0029]
【The invention's effect】
As described above, according to the vehicle clutch system of the present invention, the vehicle clutch system including both the manual operation system and the automatic operation system is reduced in the number of parts as a whole system and piping compared to the conventional system. Man-hours can be simplified.
[Brief description of the drawings]
FIG. 1 is a piping system diagram of a vehicle clutch system according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing details of a motor-driven actuator in the system.
FIG. 3 is a cross-sectional view for explaining the operation of the master cylinder in the system, showing a state driven by a manual operation system.
FIG. 4 is a cross-sectional view for explaining the operation of the master cylinder, showing a state driven by an automatic operation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Master cylinder 2 Actuation cylinder 3 Motor drive type actuator 4 Reservoir 11 Cylinder main body 13 Input member 13a Flange part 14 Piston 19 Operation pressure chamber 20 Valve mechanism 21 Valve seat 22 Guide member 22a Communication hole 24 Liquid passage

Claims (3)

車両のエンジンとトランスミッションとの間に介在するクラッチを断続操作するために、運転手のペダル操作に応じてマスタシリンダから作動シリンダに液圧を供給可能とするマニュアル操作系統と、外部からの指令に基づき前記マスタシリンダとは別の外部液圧発生源から前記作動シリンダに液圧を供給可能とする自動操作系統とを備え、前記マニュアル操作系統と自動操作系統とを選択的に切換え可能とした車両のクラッチシステムにおいて、
前記マスタシリンダは、シリンダ本体内に挿入され運転手による操作力を受けて移動する入力部材を有し、前記シリンダ本体内に液圧発生室を区画するピストンが、前記入力部材から運転手の操作力を伝達され前記入力部材とともに前記液圧発生室側に移動可能であるとともに、前記外部液圧発生源からの液圧を受圧することにより、前記入力部材とは独立して前記液圧発生室側に移動可能に設けられており、
前記シリンダ本体内には、前記ピストンに前記外部液圧発生源からの液圧を受圧可能とする操作圧室が区画され、この操作圧室を前記入力部材の前記液圧発生室側への移動に応じて作動液を貯えるリザーバに連通させる弁機構が設けられており、
前記操作圧室を、前記ピストンの端部と前記入力部材の端部とが互いに対向する箇所に区画して、前記入力部材と前記シリンダ本体の内壁との間隙を介して前記リザーバに液連通させ、
前記弁機構を、前記間隙を開閉可能に前記入力部材と前記シリンダ本体とにより形成したことを特徴とする車両のクラッチシステム。
In order to intermittently operate the clutch interposed between the vehicle engine and the transmission, a manual operation system that can supply hydraulic pressure from the master cylinder to the working cylinder according to the driver's pedal operation, and a command from the outside And an automatic operation system that can supply hydraulic pressure to the working cylinder from an external hydraulic pressure generation source different from the master cylinder, and the vehicle that can selectively switch between the manual operation system and the automatic operation system In the clutch system of
The master cylinder has an input member that is inserted into the cylinder body and moves by receiving an operation force from the driver, and a piston that defines a hydraulic pressure generation chamber in the cylinder body is operated by the driver from the input member. Force is transmitted to the hydraulic pressure generating chamber side together with the input member, and by receiving the hydraulic pressure from the external hydraulic pressure generating source, the hydraulic pressure generating chamber is independent of the input member. It is provided to be movable to the side ,
In the cylinder body, an operation pressure chamber is defined in which the piston can receive a hydraulic pressure from the external hydraulic pressure generation source, and the operation pressure chamber is moved to the hydraulic pressure generation chamber side of the input member. A valve mechanism is provided for communicating with a reservoir for storing hydraulic fluid according to
The operation pressure chamber is partitioned into a portion where the end of the piston and the end of the input member face each other, and is in fluid communication with the reservoir via a gap between the input member and the inner wall of the cylinder body. ,
A clutch system for a vehicle, wherein the valve mechanism is formed by the input member and the cylinder body so that the gap can be opened and closed .
前記弁機構は、前記シリンダ本体内に固定され前記入力部材の摺動案内を行う環状の案内部材の前記液圧発生室側先端に設けられた弁座と、前記入力部材に設けられ前記弁座に着離座可能な弁体となるフランジ部とを備えているとともに、当該弁機構と前記リザーバとの間が、前記入力部材と前記案内部材との嵌合部分、前記案内部材に形成した連通孔、前記シリンダ本体に形成され前記リザーバの接続用ボス部を含む液通路を介して連絡される請求項に記載の車両のクラッチシステム。The valve mechanism includes a valve seat that is fixed in the cylinder body and that is provided at a front end of the annular pressure member that guides sliding of the input member, and a valve seat that is provided on the input member. And a flange portion that serves as a valve body that can be seated / separated, and between the valve mechanism and the reservoir, a fitting portion between the input member and the guide member, and a communication formed in the guide member 2. The vehicle clutch system according to claim 1 , wherein the vehicle clutch system is communicated via a fluid passage formed in the cylinder body and including a connecting boss portion of the reservoir. 前記外部液圧発生源として、電気モータを含み、このモータの回転運動を直線運動に変換して、液圧を発生させるアクチュエータを用いる請求項1または請求項2に記載の車両のクラッチシステム。 3. The vehicle clutch system according to claim 1, wherein the external hydraulic pressure generation source includes an electric motor, and uses an actuator that generates a hydraulic pressure by converting a rotational motion of the motor into a linear motion. 4.
JP35240998A 1998-12-11 1998-12-11 Vehicle clutch system Expired - Fee Related JP4260951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35240998A JP4260951B2 (en) 1998-12-11 1998-12-11 Vehicle clutch system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35240998A JP4260951B2 (en) 1998-12-11 1998-12-11 Vehicle clutch system

Publications (2)

Publication Number Publication Date
JP2000179580A JP2000179580A (en) 2000-06-27
JP4260951B2 true JP4260951B2 (en) 2009-04-30

Family

ID=18423884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35240998A Expired - Fee Related JP4260951B2 (en) 1998-12-11 1998-12-11 Vehicle clutch system

Country Status (1)

Country Link
JP (1) JP4260951B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071250A (en) * 2005-09-05 2007-03-22 Hino Motors Ltd Clutch booster
JP4989296B2 (en) * 2007-04-27 2012-08-01 本田技研工業株式会社 Clutch operating mechanism
JP4866383B2 (en) * 2008-03-26 2012-02-01 住友重機械テクノフォート株式会社 Hot forging press with hydraulic control system for wet clutch brake

Also Published As

Publication number Publication date
JP2000179580A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP2008121796A (en) Hydraulic operated clutch device and driving force transmission device using the same as clutch mechanism
WO2010139626A1 (en) Brake system with master cylinder, disengaged from the brake pedal, and hydraulic brake booster
JP4260951B2 (en) Vehicle clutch system
JP2006214477A (en) Clutch operation device
JP2004190744A (en) Actuator
JP4092226B2 (en) Clutch control system
JP3942094B2 (en) Clutch control system
JP3896332B2 (en) Clutch control system
JP3896328B2 (en) Clutch control system
JP2566144Y2 (en) Clutch master cylinder
KR100188763B1 (en) Semi-auto clutch
JPH09309482A (en) Brake device of motorcycle
JP2008157369A (en) Clutch control system
JP3942089B2 (en) Clutch control system
JP2003307203A (en) Actuator
JP3888081B2 (en) Clutch operating device
JP2018013156A (en) Clutch on/off device
JP5098556B2 (en) Electric brake booster
JP4036104B2 (en) Clutch operating device
JP3704757B2 (en) Fluid pressure generator
KR100273515B1 (en) Clutch of vehicle
KR100303179B1 (en) Auto locking brake system of car
JPH0971144A (en) Operating device for master cylinder
JPS6222814B2 (en)
JP4036174B2 (en) Clutch operating device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees