JP4244979B2 - 内燃機関の過給圧制御装置 - Google Patents

内燃機関の過給圧制御装置 Download PDF

Info

Publication number
JP4244979B2
JP4244979B2 JP2005275832A JP2005275832A JP4244979B2 JP 4244979 B2 JP4244979 B2 JP 4244979B2 JP 2005275832 A JP2005275832 A JP 2005275832A JP 2005275832 A JP2005275832 A JP 2005275832A JP 4244979 B2 JP4244979 B2 JP 4244979B2
Authority
JP
Japan
Prior art keywords
exhaust
intake
valve
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005275832A
Other languages
English (en)
Other versions
JP2007085258A (ja
Inventor
政広 井上
博文 久保田
泰之 入澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005275832A priority Critical patent/JP4244979B2/ja
Priority to PCT/IB2006/002626 priority patent/WO2007034308A2/en
Priority to CN2006800345848A priority patent/CN101268268B/zh
Priority to EP06808878A priority patent/EP1926897B1/en
Priority to DE602006016823T priority patent/DE602006016823D1/de
Priority to US11/995,803 priority patent/US8011185B2/en
Publication of JP2007085258A publication Critical patent/JP2007085258A/ja
Application granted granted Critical
Publication of JP4244979B2 publication Critical patent/JP4244979B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の過給圧を制御する装置に関する。
点火時期の遅角または燃料噴射時期の遅角等により排気温度すなわち排気のエネルギを増大させてターボチャージャの応答性を向上させる技術が知られている(例えば、特許文献1参照。)。
特公平7−101011号公報 特開2003−3871号公報
ここで、点火時期の遅角または噴射時期の遅角等により、排気の熱エネルギを増加させると、その分内燃機関で発生するトルクが減少する。すなわち、吸入空気量が同じであると仮定した場合、排気の熱エネルギを増加させたほうが増加させないときよりも正味トルクが減少する。これは、点火時期の遅角等により排気の熱エネルギを増加させた場合に、次サイクル以降の過給圧は上昇するが、現時点でのサイクルでは発生トルクが減少するためである。そして、排気のエネルギの増加により過給圧の応答性を高めても、発生トルクの低下による機関回転数の応答性の低下のほうが大きいとドライバビリティが悪化してしまう。
また、急加速時等ではショックの低減等を抑制するために点火時期を遅角させて発生トルクを低下させることがある。この場合、排気のエネルギを増加させる手段として点火時期の遅角等を行っても効果は小さい。
本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の過給圧制御装置において、過給圧をより速やかに上昇させることができる技術を提供することを目的とする。
上記課題を達成するために本発明による内燃機関の過給圧制御装置は、以下の手段を採用した。すなわち、本発明による内燃機関の過給圧制御装置は、
内燃機関の排気によりタービンが回転駆動されるターボチャージャと、
EGR装置と、
を備え、
過給時にEGRを行う、又は過給時のEGR量を過給されていないときと比較して増加させることを特徴とする。
ここで、EGRを行うことにより、現サイクルの気筒内で発生した温度の高い排気の一部を次回以降のサイクルで気筒内に取り込むことができる。すなわち、現サイクルで発生したエネルギの一部を次回以降のサイクルで用いることができる。これにより、次回以降のサイクルではエネルギの総量が増加する。そのため、排気のエネルギを増加させるための点火時期の遅角の度合いを小さくすることができるので、機関発生トルクの低下を抑制することができる。このようにして、機関発生トルクの低下を抑制しつつ排気のエネルギを増加させることができるので、過給圧上昇の応答性を高めてドライバビリティの悪化を抑制することができる。
本発明においては、吸気弁および/または排気弁の開閉時期を変更する可変動弁機構をさらに備え、
過給時に行うEGRは、吸気弁および/または排気弁の開閉時期を制御することにより行う内部EGRであってもよい。
内部EGRは、既燃ガスを排気通路または吸気通路に一旦流し込み、その後同じ通路を逆流させて気筒内に導入させたり、気筒内に残留する既燃ガスを多くしたりすることにより行われる。たとえば、吸気通路に吹き返した既燃ガスを気筒内に再吸入したり、排気通路に排出された既燃ガスを逆流させて気筒内に吸入したり、気筒内から排出される既燃ガスの量を減少させて気筒内に残留する既燃ガスの量を増加させたりして内部EGRが行われる。この内部EGRは、例えば可変動弁機構が排気弁の開閉特性を変更することにより行うことができる。この可変動弁機構は、排気弁の開弁時期、閉弁時期、リフト量、作用角を調整することにより、内燃機関の気筒内に吸入される新気量、EGR量、残留ガス量(内部EGR量)、ポンプ損失等を調整し、内燃機関の運転状態を変更する。例えば、気筒内若しくは排気通路の圧力よりも吸気通路の圧力が低い場合に、吸気弁の開弁時期を進角させて吸気弁と排気弁とが同時に開弁しているバルブオーバラップを大きくすると、吸気通路側に吹き返す既燃ガスの量が増加する。そして、吸気通路に吹き返した既燃ガスは次の吸気行程で気筒内に吸入される。そのため、次サイクルにおける気筒内の既燃ガスが多くなる。また、排気弁の閉弁時期を排気上死点よりも早くすると、吸気通路側に吹き返す既燃ガスの量が増加し、この既燃ガスは吸気行程で気筒内に吸入される。そのため、気筒内に残留する既燃ガスが多くなる。さらに、排気弁の閉弁時期を排気上死点よりも遅くすると、排気通路に一旦排出された既燃ガスが吸気行程で気筒内に逆流する。そのため、気筒内に残留する既燃ガスが多くなる。このようにして、内部EGR量を増加させることができる。そして、内部EGRガスの温度はEGR通路を介して行う外部EGRガスの温度よりも高いので、気筒内における内部EGRガスの割合を増加させることにより、気筒内のエネルギを上昇させることができる。
本発明においては、吸気の圧力が所定値よりも低い場合には、過給時のEGRを禁止することができる。
吸気の圧力とは気筒内に吸入される空気の圧力であり、吸気通路にスロットルが備えられていればそれよりも下流の圧力である。この吸気の圧力が例えばスロットルよりも上流の圧力または大気圧よりも低い場合には、タービン回転数の上昇値に対する過給圧の上昇値が小さいので、排気エネルギを増加したとしても過給圧上昇の応答性を高める効果は小さい。また、吸気の圧力が低い場合には内燃機関が低負荷で運転されていることが多く、この場合内部EGRガスの温度が低いので、内部EGRを行ったとしても次回以降のサイクルでのエネルギの増加は小さい。一方、EGRを禁止することにより機関発生トルクを増加することができるので、機関回転数を増加させて吸入空気量を増加させることができる。これにより過給圧上昇の応答性を向上させることができる。なお、前記「所定値」とは、内部EGRを行ってもその効果が乏しいときの吸気圧力の上限値であり、例えばスロットルよりも上流の圧力または大気圧である。
本発明においては、機関発生トルクが所定範囲内で且つ内部EGRガス量が最多となるように吸気弁の開弁時期を調整することができる。
吸気弁の開弁時期を進角すると吸気通路に流れ込む既燃ガス量が多くなるので、内部EGRガス量が増加する。これにより、次回以降のサイクルに加えられるエネルギが増加する。しかし、吸気弁の開弁時期を過剰に進角すると、現時点サイクルにおける発生トルクの低下により過給圧の応答性が低下し、この低下が次回以降の過給圧の応答性の上昇を上
回るようになる。これに対し、吸気弁の開弁時期の進角量を制限すれば発生トルクの低下を抑制することができ、さらにこの範囲内で内部EGRガス量を最多とすることにより過給圧上昇の応答性の向上を図ることができる。なお、「所定範囲」とは、次回以降のサイクルにおいて排気のエネルギの増加による過給圧の上昇が機関発生トルクの減少による過給圧の低下を上回ることができる範囲とすることができる。すなわち、この範囲内であれば、吸気弁の開弁時期を進角させて現サイクルの機関発生トルクが低下しても、次回以降の機関発生トルクの低下を抑制することができる。さらに、排気弁の開弁時期の遅角を組み合わせることにより、機関発生トルクを増大させることができる。
本発明においては、過給時にEGRガス量を増加させているときには点火時期の進角を行わないことができる。
EGRガス量が増加すると気筒内の燃焼が緩慢となるため、従来では点火時期を進角させて機関発生トルクを増加させていた。また、EGRガス量が増加すると気筒内の温度が上昇するためノッキングが発生しやすくなる。そしてノッキングが発生する場合には点火時期を遅角させていた。一方、ノッキングが発生するおそれのない場合に点火時期の進角を禁止すると機関発生トルクが減少する分排気温度を上昇させることができる。これにより、排気エネルギが増加するためターボチャージャの応答性を改善することができる。
また、本発明による内燃機関の過給圧制御装置は、
吸気弁および/または排気弁の開閉時期を変更する可変動弁機構と、
排気の温度を検出する排気温度検出手段と、
を備え、
排気の温度が所定温度以上となる運転領域では、吸気弁の開弁時期の進角制御を禁止し、且つ排気弁の開弁時期を所定量遅角させることを特徴としてもよい。
例えば触媒の温度が過剰に高くなると、触媒の劣化が進行したり触媒での排気の浄化性能が低下したりする。また、例えばターボチャージャの温度が過剰に高くなると該ターボチャージャが毀損するおそれがある。そのため、例えばターボチャージャおよび/または排気浄化触媒の温度がある程度高くなる場合には、排気温度をそれ以上上昇させることができなくなるので、内部EGRを増加させることが困難となる。これに対し、排気弁の開弁時期を遅角させると、既燃ガスのエネルギのうちピストンを押し下げるエネルギが大きくなるので、機関発生トルクが増加する。また、吸気弁の開弁時期を遅角させると吸気弁と排気弁とが共に開弁している期間が長くなる。排気温度が高い場合には過給圧も高くなっているので、オーバラップ期間には吸気通路から排気通路へと空気が吹きぬける。これにより排気脈動のタイミングを変化させて吸気弁と排気弁とが共に開弁状態となっているときの背圧を低下させることができる。その結果、排気行程終了付近の排気の速度を上昇させることができるので、タービンに動圧エネルギを与えることができ、過給圧上昇の応答性を高めることができる。また、吸気弁の開弁時期の進角を行わないことにより、内部EGRの増加を抑制することができるので、排気温度の上昇を抑制することができる。なお、「所定温度」とは、内燃機関の排気通路に備えられた部材または内燃機関を構成する部材の性能が低下し得る温度若しくは部材が毀損する温度の下限値である。
本発明によれば、EGRを行うことにより現サイクルのエネルギの一部を次回以降のサイクルで使用することができるので、過給圧をより速やかに上昇させることができる。
以下、本発明に係る内燃機関の過給圧制御装置の具体的な実施態様について図面に基づいて説明する。
図1は、本実施例に係る内燃機関の過給圧制御装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4サイクル・ガソリンエンジンである。
内燃機関1には、吸気管3および排気管4が接続されている。この吸気管3の途中には、排気のエネルギを駆動源として作動するターボチャージャ5のコンプレッサハウジング5aが設けられている。コンプレッサハウジング5a内にはコンプレッサ5cが格納されている。また、コンプレッサハウジング5aよりも下流の吸気管3には、該吸気管3内を流通する吸気の流量を調節する吸気スロットル6が設けられている。この吸気スロットル6は、電動アクチュエータにより開閉される。コンプレッサハウジング5aよりも上流の吸気管3には、該吸気管3内を流通する吸気の流量に応じた信号を出力するエアフローメータ7が設けられている。このエアフローメータ7により、内燃機関1の吸入空気量が測定される。
一方、排気管4の途中には、前記ターボチャージャ5のタービンハウジング5bが設けられている。また、タービンハウジング5bよりも下流の排気管4には、排気浄化触媒8が設けられている。タービンハウジング5b内には排気のエネルギで回転する排気タービン5dが格納されている。
また、本実施例に係る内燃機関1は可変動弁機構50を備えている。各気筒2には吸気弁51が2つ備えられおり、各吸気弁51の開閉動作は吸気側カム52によって行われる。この吸気側カム52は吸気側カムシャフト53に取り付けられ、更に吸気側カムシャフト53の端部には吸気側プーリ54が設けられている。更に、吸気側カムシャフト53と吸気側プーリ54との相対的な回転位相を変更可能とする可変回転位相機構(以下、「吸気側VVT」という)55が設けられている。この吸気側VVT55は、ECU10からの指令に従って吸気側カムシャフト53と吸気側プーリ54との相対的な回転位相を制御する。
そして、吸気側カムシャフト53の回転駆動は、クランクシャフトの駆動力によって行われる。そして、クランクシャフトの駆動力によって吸気側カムシャフト53が回転駆動され、さらには吸気側カム52が回転されて、以て吸気弁51の開閉動作が行われる。そして、本実施例では、可変動弁機構50により吸気弁51の開閉時期を吸気上死点よりも進角または遅角して、気筒2内の既燃ガスの量が変更される。本実施例では、このようにして気筒2内に残留する既燃ガスを内部EGRガスと称している。
また、各気筒2には排気弁61が2つ備えられおり、各排気弁61の開閉動作は排気側カム62によって行われる。この排気側カム62は排気側カムシャフト63に取り付けられ、更に排気側カムシャフト63の端部には排気側プーリ64が設けられている。更に、排気側カムシャフト63と排気側プーリ64との相対的な回転位相を変更可能とする可変回転位相機構(以下、「排気側VVT」という)65が設けられている。この排気側VVT65は、ECU10からの指令に従って排気側カムシャフト63と排気側プーリ64との相対的な回転位相を制御する。
吸気側カムシャフト53および排気側カムシャフト63の回転駆動は、クランクシャフトの駆動力によって行われる。そして、クランクシャフトの駆動力によって吸気側カムシャフト53および排気側カムシャフト63が回転駆動され、さらには吸気側カム52および排気側カム62が回転されて、以て吸気弁51および排気弁61の開閉動作が行われる。そして、本実施例では、可変動弁機構50により吸気弁51および排気弁61の開閉時期を進角または遅角して、気筒2内の既燃ガスの量が変更される。本実施例では、このようにして気筒2内に残留する既燃ガスを内部EGRガスと称している。
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。また、ECU10には、運転者がアクセルペダル11を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ12、機関回転数を検出するクランクポジションセンサ13、吸気スロットル6よりも下流の吸気管3内の圧力に応じた信号を出力する下流側吸気圧センサ14、吸気スロットル6よりも上流の吸気管3内の圧力に応じた信号を出力する上流側吸気圧センサ15の他、各種センサが電気配線を介して接続され、これら各種センサの出力信号がECU10に入力されるようになっている。一方、ECU10には、吸気スロットル6、吸気側VVT55および排気側VVT65が電気配線を介して接続されており、該ECU10によりこれらの機器が制御される。
そして、ECU10は内部EGRガス量を調整する。内部EGRガスの量は、吸気側VVT55を制御することにより調整することができる。吸気弁51の開く時期を排気上死点よりも早くすると排気行程中に吸気弁51が開かれることになる。そして、吸気管3の圧力が排気管4の圧力よりも低ければピストンの上昇と共に気筒2内の既燃ガスが吸気管3に逆流する。この逆流した既燃ガスは直後の吸気行程に再度気筒2内に流入する。すなわち、吸気弁51の閉じる時期を排気上死点よりも早くするほど、内部EGRガス量を増加させることができる。
ここで図2は、本実施例に係る機関回転数と機関発生トルクとの関係を示した図である。また、図3は、本実施例に係る過給圧、機関発生トルク、吸気側VVTの制御値、および排気側VVTの制御値と、従来の制御に係るこれらの値との推移を示したタイムチャートである。
図2で、「等スロットル上流圧曲線」とは、吸気スロットル6よりも上流側と下流側との吸気管3内の圧力が等しくなっているときの機関発生トルクを機関回転数毎に表した線である。「OT限界線」とは、ターボチャージャ5または排気浄化触媒8が過熱するおそれのある機関発生トルクの最低値を機関回転数毎に表した線である。「過渡軌跡」とは、本実施例による加速時の内燃機関1の運転状態の変化を示している。「NAトルク」は、過給が行われていないとしたときの機関発生トルクを機関回転数毎に現している。
図2中「等スロットル上流圧曲線」よりも機関発生トルクが小さい運転領域を「通常制御領域」と示している。この「通常制御領域」では機関回転数毎に機関発生トルクが最も大きくなるように吸気側VVT55および排気側VVT65が制御される。すなわち、「通常制御領域」で示される運転領域では、排気のエネルギを積極的に増加させるための吸気側VVT55および排気側VVT65の制御は行われない。
これは、吸気スロットル6よりも下流側の圧力が上流側の圧力以下の場合には、排気タービン5dの回転数の上昇量ΔTCRに対する過給圧の上昇量ΔPmの値(ΔPm/ΔTCR)が小さいため、排気のエネルギが増加しても過給圧はあまり高くならないことによる。また、このような状態では内部EGRの温度も低いので、この点においても過給圧の応答性は高くならない。このような運転状態では、排気のエネルギを増加させるよりも機関回転数を上昇させたほうが機関発生トルクを速やかに増加させることができる。そのため、過給圧または排気タービン5dの回転数が所定値(等スロットル上流圧曲線)以下の場合には上記吸気側VVT55および排気側VVT65の制御は行わない。そして、機関発生トルクが最も大きくなるように吸気側VVT55および排気側VVT65を制御する。なお、「通常制御領域」の制御が開始される時点を図3では(2)の記号で示している。
また、図2中「等スロットル上流圧曲線」と「OT限界線」とで囲まれる運転領域を「吸・排気側VVT制御領域」と示しており、この運転領域では吸気側VVT55および排気側VVT65により内部EGRが増加される。
この「吸・排気側VVT制御領域」に入った直後は吸気管3の圧力よりも排気管4の圧力のほうが高い。そして、この運転領域では、まず吸気側VVT55により吸気弁51の開弁時期をMBT点(機関発生トルクが最も大きくなる時期)からずらしてオーバラップを大きくさせることにより内部EGRを増加させている。これにより、現サイクルの排気のエネルギの一部を次サイクルにおいて用いることができるので、現サイクルにおける発生トルクは低下するものの、次サイクルにおけるエネルギの総量が増加する。そのため、排気のエネルギを増加させるために行う点火時期の遅角の度合いを小さくことができるので、発生トルクの低下を抑制することができる。このときの吸気弁51の開弁時期の進角量は内部EGRガス量が最多となるように決定される。
また、このとき同時に排気側VVT65により排気弁61の開弁時期を進角させてもよい。これにより、背圧を上昇させることができるので、内部EGRガス量をより多くすることが可能となる。この排気弁61の開弁時期の進角は、吸気弁51とのオーバラップの期間を一定に保ったまま行う。
さらに、吸気弁51の閉弁時期を独立して制御可能なシステムの場合には、吸気弁51の閉弁時期を吸気下死点近傍とすることにより、吸入空気量を最大とすることができる。これにより、機関発生トルクをより増加させることができる。なお、「吸・排気側VVT制御領域」であって吸気管3の圧力よりも排気管4の圧力のほうが高いときの制御が行われている期間を図3では(1)の記号で示している。
さらに、「吸・排気側VVT制御領域」であって吸気管3の圧力が排気管4の圧力以上の高い場合には、発生トルクの低下の割合がMBT時に対して所定範囲内で且つ排気タービン5dの回転数(若しくは過給圧)が最高になるように吸気弁51の開弁時期が進角される。ここでは、気筒内に吸入される空気量が最大となるように吸気弁51の開弁時期が制御される。
ここで、吸気弁51の開弁時期を過剰に進角させるとオーバラップ期間が過剰に長くなり圧縮行程終了時の温度が高くなる。これによりノッキングが発生するおそれがあるので、点火時期が遅角される。そのため、機関発生トルクが低下する。しかし、点火時期の遅角により機関発生トルクを多少犠牲にしても、吸気弁51の開弁時期を進角させることにより、吸気管3から排気管4への空気の吹き抜けが起こる。これにより、吸入空気量が増加するので機関発生トルクを増加させることができる。すなわち、MBT時に対しての発生トルクの低下の割合が所定範囲内であれば、機関発生トルク低下よりも次サイクル以降における過給圧上昇による機関発生トルクの上昇のほうが大きくなるため、次サイクル以降では機関発生トルクを上昇させることができる。
また、このとき同時に排気側VVT65により排気弁61の開弁時期を遅角させる。これにより、膨張行程時に既燃ガスがピストンを押し下げる時間が長くなるので、機関発生トルクを上昇させることができる。
さらに、吸気弁51の閉弁時期を独立して制御可能なシステムの場合には、吸気弁51の閉弁時期を吸気下死点近傍とすることにより、吸入空気量を最大とすることができる。
これにより、機関発生トルクをより増加させることができる。なお、「吸・排気側VVT制御領域」であって吸気管3の圧力が排気管4の圧力以上のときの制御が行われている期間を図3では(3)の記号で示している。
ここで、従来では内部EGRの増加により燃焼が緩慢となるので、これによる機関発生トルクの低下を補うために点火時期を進角させていた。一方、本実施例では、ノッキングが発生するおそれのない領域(以下、ノック領域以外という。)では、点火時期の進角を実施しないようにして排気の温度をさらに上昇させる。一方、ノッキングが発生するおそれのある領域(以下、ノック領域という。)では、ノッキングが発生しないように点火時期の遅角補正を行う。なお、このような制御が行われている運転状態を図3では(4)の記号で示している。
そして、図2中「OT限界線」よりも機関発生トルクが大きな運転領域を「排気側VVT制御領域」と示しており、この運転領域では排気側VVT65により排気弁61の開弁時期が遅角等される。
ターボチャージャ5または排気浄化触媒8が過熱するおそれのある運転領域(以下、OT領域という。)では、排気の温度を上昇させるとターボチャージャ5または排気浄化触媒8が過熱してしまうので、排気の温度を上昇させることが困難となる。そのため、排気側VVT65により排気弁61の開弁時期を遅角させ且つオーバラップを大きくして、吸気管3から気筒2内に流入した空気をそのまま排気管4に排出させる。これにより、排気タービン5dに与える動圧エネルギを大きくすることができるので、過給圧上昇の応答性を高めることができる。また、排気側VVT65により排気弁61の開弁時期を遅角させることにより、膨張行程時に既燃ガスがピストンを押し下げる時間が長くなるので、機関発生トルクを上昇させることができる。なお、「排気側VVT制御領域」で制御が行われている期間を図3では(5)の記号で示している。
ここで、図3において実線は本実施例によるもの、破線は従来技術によるものを示している。従来では、MBTを目標として吸気側VVT55および排気側VVT65が制御されていた。図3中のAで示される時間において運転者がアクセルペダル11を踏み込んで加速要求がなされている。AからBの間では吸気スロットル6よりも下流側の圧力が上流側の圧力以下の前記「通常運転制御領域」となる。このAからBの間では本実施例でも従来技術でも同じ制御が行われる。
また、図3中Bで示される時間において吸気スロットル6よりも上流側と下流側との吸気管3内の圧力が等しくなる。そして、このBで示される時間から前記「吸・排気側VVT制御領域」となる。従来技術では、この運転領域であってもMBT点を目標として吸・排気弁の開閉時期が制御されていた。そのため、図3では、従来技術によるものは吸気側VVT55による吸気弁51の開閉時期を遅角させている。しかし、本実施例によるものは、MBT点を目標とせずに吸気弁51の開閉時期を進角させている。また、従来技術によるものは排気側VVT65による排気弁61の開閉時期を徐々に進角させているが、本実施例によるものは一旦進角させた後は開閉時期を一定として吸気管3内により多くの既燃ガスが吹き返すようにしている。
そして、Cで示される時間において従来技術よりも本実施例に係る制御によるほうの過給圧が大きくなる。そして、Dで示される時間において前記「OT限界線」に達し、このDで示される時間以降は「排気側VVT制御領域」となる。
次に、本実施例による過給圧制御について説明する。図4は、本実施例による過給圧制御のフローを示したフローチャートである。本ルーチンは、ターボチャージャ5による過
給が必要な場合に所定時間毎に繰り返し実行される。
ステップS101では、過給圧制御前提条件が成立しているか否か判定される。過給圧制御前提条件とは、本実施例における過給圧制御が行われる前提となる条件であり、加速要求があった場合やフューエルカット後であるときに条件が成立しているとされる。また、定常運転時や緩加速時に過給圧制御を行うと燃費が悪化するおそれがあるため、このような場合には条件が成立していないとされる。ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方、否定判定がなされた場合にはステップS104へ進む。
ステップS102では、内燃機関1が所定の領域で運転されているか否か判定される。所定の領域とは、吸気スロットル6よりも下流の吸気管3内の圧力が吸気スロットル6よりも上流の吸気管3内の圧力以下の場合である。これらの圧力は、下流側吸気圧センサ14および上流側吸気圧センサ15により得ることができる。すなわち、本ステップでは、機関発生トルクが図2における「等スロットル上流圧曲線」よりも低い「通常制御領域」であるか否か判定される。ΔPm/ΔTCRが小さい場合には排気のエネルギの増加により排気タービン5dの回転数が上昇しても過給圧の上昇はほとんど望めない。
ここで、図5は、排気タービン5dの回転数TCRと過給圧Pmとの関係を示した図である。ハッチングで示した部分では、ΔPm/ΔTCRが所定値以下となる。例えば排気タービン5dの回転数TCRが50000r.p.m.以下で過給圧Pmが14kPa以下の領域である。このハッチングで示した領域ではΔPm/ΔTCRが小さいため、排気エネルギの増加による過給圧の上昇は行わないようにしてもよい。すなわち、本ステップではタービン回転数が所定値以下の場合には「通常制御領域」と判定し、過給圧制御を行わないようにしてもよい。ステップS102で肯定判定がなされた場合にはステップS103へ進み、一方、否定判定がなされた場合にはステップS104へ進む。
ステップS103では、排気エネルギの増加制御が行われる。詳細は後述する。
ステップS104では、排気エネルギの増加制御を行わない従来の過給圧制御すなわち通常制御が行われる。
次に、排気エネルギの増加制御のフローについて説明する。図6は、本実施例による排気エネルギの増加制御のフローを示したフローチャートである。本ルーチンは、前記ステップS103において実行される。
ステップS201では、内燃機関1の運転領域がOT領域であるか否か判定される。すなわち、排気の温度を上昇させることができる運転領域か否か判定される。判定は、機関回転数および機関負荷を図2に代入することにより行われる。ステップS201で肯定判定がなされた場合にはステップS206へ進み、一方、否定判定がなされた場合にはステップS202へ進む。
ステップS202では、吸気側VVT55により吸気弁51の開弁時期を進角させる。これにより、排気行程の途中で吸気弁51が開かれることになるため、既燃ガスの一部が吸気管3に逆流する。そして、次の吸気行程において吸気管3内の既燃ガスが気筒2内に吸入される。このようにして、本ステップでは内部EGRが増加される。その結果、圧縮行程終了時の気筒2内温度が上昇するので、排気のエネルギを増加させることができる。
また、図7は、排気タービン5dの回転数と機関発生トルクとの関係を示した図である。同じ記号のものは、排気弁61の開閉時期が同じで吸気弁51の開閉時期が異なっている。そして、吸気弁51の開閉時期が進角されるほど、機関発生トルクが低下する。また、丸印において排気弁51の開閉時期が一番早く、三角印に向かって排気弁51の開閉時期が遅くなる。そして、吸気側VVT55の制御値は、図7中のハッチングで示すMBTの範囲内で排気タービン5dの回転数が最高となるように選択される。これは、吸入空気量が最多となるように吸気側VVT55の制御値を得ることに等しい。すなわち、図7においては、Zで示される点の状態となるように吸気弁51および排気弁61の開閉時期が制御される。これにより、現サイクルの発生トルクは低下しても次サイクル以降で過給圧の応答性が高まるので、次サイクル以降では発生トルクの低下を打ち消すことができる。
ステップS203では、内燃機関1の運転領域がノック領域であるか否か判定される。
内燃機関1の負荷が中・高負荷の場合にはノッキングが発生するおそれがあるため、ノッキングの発生しないように点火時期の補正を行う。ここで、図8は、吸気弁51の開弁時期と排気の温度との関係を示した図である。三角印は点火時期の補正を行う場合、丸印は点火時期の補正を行わない場合を示している。このように点火時期を補正することにより排気温度の上昇を抑制することができる。そして、ノッキングが発生するおそれのあるときには排気温度の上昇を抑制するように点火時期を補正することにより、ノッキングの発生を抑制することができる。なお、機関回転数および機関発生トルクに基づいてノック領域を予め実験等により求めてマップ化しておき、現時点での機関回転数および機関負荷を該マップに代入してノック領域であるか否か判定される。ステップS203で肯定判定がなされた場合にはステップS204へ進み、一方、否定判定がなされた場合にはステップS205へ進む。
ステップS204では、ノッキングが発生しないように点火時期の補正が行われる。これにより、燃焼温度を抑制しノッキングの発生を抑制することができる。
ステップS205では、点火時期の補正が行われないようにされる。ノッキングが発生するおそれがないため、点火時期をそのままとすることができ、これにより排気のエネルギをより増加させることができる。
ステップS206では、排気側VVT65による排気弁61の開閉時期の変更制御および点火時期の補正が行われる。OT領域では、排気の温度を上昇させることによる過給圧の上昇は困難となる。そのため、排気の流速を高めることにより過給圧の上昇を図る。まず、排気側VVT65による排気弁61の開閉時期の変更制御では、排気脈動が発生するタイミングを変えることによりバルブオーバラップ中の背圧を低下させる。ここで、図9は排気管4内の圧力(背圧)変化の推移を示した図である。横軸はクランクアングルである。実線は変更前、破線は変更後を示している。本実施例では4気筒の内燃機関1を用いているため、他の気筒からの排気により排気の圧力が変動する。このような排気脈動のタイミングをずらすことにより、バルブオーバラップ中の背圧を低下させることができる。そうすると、吸気管3から気筒2導入される空気がそのまま排気管4に吹き抜ける。これにより、排気行程終了付近に排気の流れを生じさせて、排気タービン5dに運動エネルギを与えることができるので、過給圧を速やかに上昇させることができる。
このようにして、吸気弁51の開閉時期、排気弁61の開閉時期、および点火時期を制御することにより、排気のエネルギを増加させることができる。これにより過給圧上昇時の応答性を高めることができるので、ドライバビリティを向上させることができる。また、吸気スロットル6の下流側の圧力が上流側の圧力以下の場合には、内部EGRを禁止することにより機関発生トルクを増加することができるので、機関回転数を増加させて吸入空気量を増加させることができる。これにより過給圧上昇の応答性を向上させることができる。さらに、過給圧がある程度高くなった場合には、吸気弁51の開弁時期の進角量を制限することにより発生トルクの低下を抑制することができ、過給圧上昇の応答性の向上を図ることができる。そして、同時に排気弁61の開弁時期を遅角させることにより、既燃ガスによる機関発生トルクを増大させることができる。また、ノッキングが発生するおそれのないときに点火時期の進角を禁止することにより、機関発生トルクが減少する分排気温度が上昇するので、排気エネルギを増加させることができ、過給圧上昇の応答性を改善することができる。
実施例に係る内燃機関の過給圧制御装置を適用する内燃機関とその吸・排気系の概略構成を示す図である。 実施例に係る機関回転数と機関発生トルクとの関係を示した図である。 実施例に係る過給圧、機関発生トルク、吸気側VVTの制御値、および排気側VVTの制御値と、従来の制御に係るこれらの値との推移を示したタイムチャートである。 実施例による過給圧制御のフローを示したフローチャートである。 排気タービンの回転数TCRと過給圧Pmとの関係を示した図である。 実施例による排気エネルギの増加制御のフローを示したフローチャートである。 排気タービンの回転数と機関発生トルクとの関係を示した図である。 吸気弁の開弁時期と排気の温度との関係を示した図である。 排気管内の圧力(背圧)変化の推移を示した図である。
符号の説明
1 内燃機関
2 気筒
3 吸気管
4 排気管
5 ターボチャージャ
5a コンプレッサハウジング
5b タービンハウジング
5c コンプレッサ
5d 排気タービン
6 吸気スロットル
7 エアフローメータ
8 排気浄化触媒
10 ECU
11 アクセルペダル
12 アクセル開度センサ
13 クランクポジションセンサ
14 下流側吸気圧センサ
15 上流側吸気圧センサ
50 可変動弁機構
51 吸気弁
52 吸気側カム
53 吸気側カムシャフト
54 吸気側プーリ
61 排気弁
62 排気側カム
63 排気側カムシャフト
64 排気側プーリ

Claims (6)

  1. 内燃機関の排気によりタービンが回転駆動されるターボチャージャと、
    EGR装置と、
    を備え、
    給時のEGR量を過給されていないときと比較して増加させることを特徴とする内燃機関の過給圧制御装置。
  2. 吸気弁および/または排気弁の開閉時期を変更する可変動弁機構をさらに備え、
    過給時に行うEGRは、吸気弁および/または排気弁の開閉時期を制御することにより行う内部EGRであることを特徴とする請求項1に記載の内燃機関の過給圧制御装置。
  3. 吸気の圧力が所定値よりも低い場合には、過給時のEGRを禁止することを特徴とする請求項1または2に記載の内燃機関の過給圧制御装置。
  4. 機関発生トルクが所定範囲内で且つ内部EGRガス量が最多となるように吸気弁の開弁時期を調整することを特徴とする請求項2に記載の内燃機関の過給圧制御装置。
  5. 過給時にEGRガス量を増加させているときには点火時期の進角を行わないことを特徴とする請求項1から4の何れかに記載の内燃機関の過給圧制御装置。
  6. 吸気弁および/または排気弁の開閉時期を変更する可変動弁機構と、
    排気の温度を検出する排気温度検出手段と、
    さらに備え、
    排気の温度が所定温度以上となる運転領域では、吸気弁の開弁時期の進角制御を禁止し、且つ排気弁の開弁時期を所定量遅角させることを特徴とする請求項1に記載の内燃機関の過給圧制御装置。
JP2005275832A 2005-09-22 2005-09-22 内燃機関の過給圧制御装置 Expired - Fee Related JP4244979B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005275832A JP4244979B2 (ja) 2005-09-22 2005-09-22 内燃機関の過給圧制御装置
PCT/IB2006/002626 WO2007034308A2 (en) 2005-09-22 2006-09-22 Boost pressure control apparatus and boost pressure control method of internal combustion engine
CN2006800345848A CN101268268B (zh) 2005-09-22 2006-09-22 内燃机的增压压力控制装置及增压压力控制方法
EP06808878A EP1926897B1 (en) 2005-09-22 2006-09-22 Boost pressure control apparatus and boost pressure control method of internal combustion engine
DE602006016823T DE602006016823D1 (de) 2005-09-22 2006-09-22 Startdrucksteuerungsgerät und startdrucksteuerungsverfahren für einen internen verbrennungsmotor
US11/995,803 US8011185B2 (en) 2005-09-22 2006-09-22 Boost pressure control apparatus and boost pressure control method of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275832A JP4244979B2 (ja) 2005-09-22 2005-09-22 内燃機関の過給圧制御装置

Publications (2)

Publication Number Publication Date
JP2007085258A JP2007085258A (ja) 2007-04-05
JP4244979B2 true JP4244979B2 (ja) 2009-03-25

Family

ID=37621144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275832A Expired - Fee Related JP4244979B2 (ja) 2005-09-22 2005-09-22 内燃機関の過給圧制御装置

Country Status (6)

Country Link
US (1) US8011185B2 (ja)
EP (1) EP1926897B1 (ja)
JP (1) JP4244979B2 (ja)
CN (1) CN101268268B (ja)
DE (1) DE602006016823D1 (ja)
WO (1) WO2007034308A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7743306B2 (en) 2005-07-26 2010-06-22 Kyushu Institute Of Technology Test vector generating method and test vector generating program of semiconductor logic circuit device
US8117513B2 (en) 2005-03-30 2012-02-14 Lptex Corporation Test method and test program of semiconductor logic circuit device

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042053A1 (de) * 2007-09-05 2009-03-12 Mahle International Gmbh Kolbenmotor
FR2926109A1 (fr) * 2008-01-08 2009-07-10 Renault Sas Procede de regulation de la temperature des gaz d'echappement d'un moteur a combustion interne.
EP2347110B1 (en) * 2008-11-20 2015-09-16 Wärtsilä Finland Oy Method of controlling turbocharger speed of a piston engine and a control system for a turbocharged piston engine
WO2010073353A1 (ja) * 2008-12-26 2010-07-01 トヨタ自動車株式会社 内燃機関の制御装置
US8365528B2 (en) 2009-01-06 2013-02-05 Ford Global Technologies, Llc Engine valve duration control for improved scavenging
WO2010079624A1 (ja) * 2009-01-07 2010-07-15 トヨタ自動車株式会社 エンジン制御装置
KR101312964B1 (ko) * 2009-04-01 2013-10-01 스미도모쥬기가이고교 가부시키가이샤 하이브리드형 작업기계
WO2011016124A1 (ja) * 2009-08-06 2011-02-10 トヨタ自動車株式会社 内燃機関のegr制御システム
EP2557300B8 (en) * 2010-04-08 2019-11-13 Toyota Jidosha Kabushiki Kaisha Combustion control device for an internal combustion engine
CN102439276B (zh) * 2010-04-20 2014-06-04 丰田自动车株式会社 内燃机的控制装置
DE102010036727B4 (de) 2010-07-29 2022-06-15 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben einer aufgeladenen Brennkraftmaschine
US8701409B2 (en) * 2010-09-09 2014-04-22 Ford Global Technologies, Llc Method and system for a turbocharged engine
US8069663B2 (en) * 2010-09-09 2011-12-06 Ford Global Technologies, Llc Method and system for turbocharging an engine
US8479511B2 (en) * 2010-09-09 2013-07-09 Ford Global Technologies, Llc Method and system for a turbocharged engine
JP5772025B2 (ja) * 2011-02-07 2015-09-02 日産自動車株式会社 内燃機関の制御装置
US8931273B2 (en) * 2012-05-17 2015-01-13 Ford Global Technologies, Llc Stored compressed air management for improved engine performance
AT513137B1 (de) * 2012-09-13 2014-02-15 Avl List Gmbh Verfahren zur Überwachung zumindest eines Abgasturboladers
DE102012018692A1 (de) * 2012-09-21 2014-03-27 Daimler Ag Verfahren zum Betreiben einer zumindest ein Einlassventil aufweisenden Brennkraftmaschine, insbesondere eines Ottomotors
JP6163914B2 (ja) 2013-06-27 2017-07-19 いすゞ自動車株式会社 ディーゼルエンジン及びその制御方法
JP5826346B1 (ja) * 2014-09-03 2015-12-02 三菱電機株式会社 内燃機関の制御装置
US9453435B2 (en) * 2014-10-07 2016-09-27 GM Global Technology Operations LLC Control of internal combustion engine with two-stage turbocharging
US10119479B2 (en) * 2015-08-06 2018-11-06 Ford Global Technologies, Llc Methods and systems for boost control based on exhaust pressure greater than a threshold
CN107620641B (zh) * 2016-07-15 2022-04-01 日立安斯泰莫株式会社 机动车发动机用ecu
JP6930178B2 (ja) * 2017-03-30 2021-09-01 三菱自動車工業株式会社 内燃機関の制御装置
US10138833B1 (en) 2017-09-06 2018-11-27 Ford Global Technologies, Llc Diesel engine cold starting system and methods
EP3924610A1 (en) * 2019-04-02 2021-12-22 Cummins, Inc. Intake manifold pressure control strategy
DE102020128160A1 (de) 2020-10-27 2022-04-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Verbrennungsmotors
CN115370496B (zh) * 2022-05-17 2023-12-26 东风汽车集团股份有限公司 涡轮增压发动机气路扭矩控制方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3539168C2 (de) 1984-11-08 1994-06-23 Volkswagen Ag Brennkraftmaschine für Fahrzeuge mit einem Abgasturbolader
GB2267310B (en) * 1992-05-27 1996-04-24 Fuji Heavy Ind Ltd System for controlling a valve mechanism for an internal combustion engine
JPH07101011A (ja) 1993-10-07 1995-04-18 Toray Ind Inc 難燃性電飾用シート
DE19719630C2 (de) * 1997-05-09 1999-02-25 Daimler Benz Ag Verfahren zur Regelung eines aufgeladenen Verbrennungsmotors und Vorrichtung zur Durchführung des Verfahrens
JP3622446B2 (ja) 1997-09-30 2005-02-23 日産自動車株式会社 ディーゼルエンジンの燃焼制御装置
US6401457B1 (en) * 2001-01-31 2002-06-11 Cummins, Inc. System for estimating turbocharger compressor outlet temperature
JP4517515B2 (ja) * 2001-02-14 2010-08-04 マツダ株式会社 自動車用4サイクルエンジン
JP4031227B2 (ja) 2001-10-23 2008-01-09 富士重工業株式会社 過給機付筒内噴射エンジンの排気還流装置
US6601387B2 (en) * 2001-12-05 2003-08-05 Detroit Diesel Corporation System and method for determination of EGR flow rate
US6681171B2 (en) * 2001-12-18 2004-01-20 Detroit Diesel Corporation Condensation control for internal combustion engines using EGR
US6725848B2 (en) * 2002-01-18 2004-04-27 Detroit Diesel Corporation Method of controlling exhaust gas recirculation system based upon humidity
US6772742B2 (en) 2002-03-01 2004-08-10 International Engine Intellectual Property Company, Llc Method and apparatus for flexibly regulating internal combustion engine valve flow
JP2004036595A (ja) * 2002-07-08 2004-02-05 Honda Motor Co Ltd 圧縮着火式内燃機関の制御装置
JP2004251183A (ja) * 2003-02-19 2004-09-09 Toyota Motor Corp 内燃機関の制御装置
JP2004346776A (ja) * 2003-05-20 2004-12-09 Komatsu Ltd 給気バイパス制御装置を備えた内燃機関
JP4111094B2 (ja) * 2003-07-31 2008-07-02 日産自動車株式会社 排気後処理装置付過給エンジンの制御装置および制御方法
JP2005127180A (ja) * 2003-10-22 2005-05-19 Toyota Motor Corp 内燃機関のバルブ特性制御装置
JP4033110B2 (ja) * 2003-11-11 2008-01-16 トヨタ自動車株式会社 内燃機関および内燃機関の制御方法
JP2005248748A (ja) 2004-03-02 2005-09-15 Isuzu Motors Ltd ディーゼルエンジン
US7143580B2 (en) * 2004-10-22 2006-12-05 Detroit Diesel Corporation Virtual compressor outlet temperature sensing for charge air cooler overheating protection
US7296562B2 (en) * 2006-03-30 2007-11-20 Caterpiller Inc. Control system and method for estimating turbocharger performance
US7650863B2 (en) * 2006-11-30 2010-01-26 Caterpillar Inc. Variable engine valve actuation system having common rail
US7937996B2 (en) * 2007-08-24 2011-05-10 GM Global Technology Operations LLC Turbo speed sensor diagnostic for turbocharged engines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8117513B2 (en) 2005-03-30 2012-02-14 Lptex Corporation Test method and test program of semiconductor logic circuit device
US7743306B2 (en) 2005-07-26 2010-06-22 Kyushu Institute Of Technology Test vector generating method and test vector generating program of semiconductor logic circuit device

Also Published As

Publication number Publication date
JP2007085258A (ja) 2007-04-05
DE602006016823D1 (de) 2010-10-21
CN101268268A (zh) 2008-09-17
EP1926897B1 (en) 2010-09-08
WO2007034308A2 (en) 2007-03-29
US8011185B2 (en) 2011-09-06
EP1926897A2 (en) 2008-06-04
US20080209906A1 (en) 2008-09-04
CN101268268B (zh) 2010-12-01
WO2007034308A3 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4244979B2 (ja) 内燃機関の過給圧制御装置
EP1848885B1 (en) Control method and control apparatus for internal combustion engine
JP4363459B2 (ja) 可変バルブタイミング機構の制御装置
US20190368430A1 (en) Gasoline engine knock control
JP2007056842A (ja) 過給器の制御装置
JP6350304B2 (ja) リーンバーンエンジン
JP5549603B2 (ja) 内燃機関の制御装置
JP4841382B2 (ja) 内燃機関
JP2007032515A (ja) 内燃機関の制御装置
JP2007182828A (ja) 内燃機関の制御装置
JP6296430B2 (ja) エンジンの制御装置
JP2008297929A (ja) 内燃機関の制御装置
JP2005113772A (ja) ノック回避装置
JP2009216035A (ja) 内燃機関の制御装置
JP2012041852A (ja) 内燃機関の制御装置
JP5263249B2 (ja) 過給機付き内燃機関の可変バルブタイミング制御装置
JP2009150320A (ja) 内燃機関の可変動弁システム
JP6753530B2 (ja) 内燃機関の制御方法および制御装置
JP2009191703A (ja) 内燃機関の制御装置
JP5338709B2 (ja) 内燃機関の制御装置
JP5041167B2 (ja) エンジンの制御装置
JP6390543B2 (ja) 内燃機関の運転制御装置
JP4396253B2 (ja) 内燃機関の吸気制御装置
JP7256682B2 (ja) 内燃機関の制御方法及び内燃機関の制御装置
JP2006132410A (ja) 過給機付内燃機関

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R151 Written notification of patent or utility model registration

Ref document number: 4244979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees