JP4235896B2 - DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT - Google Patents

DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT Download PDF

Info

Publication number
JP4235896B2
JP4235896B2 JP2003142149A JP2003142149A JP4235896B2 JP 4235896 B2 JP4235896 B2 JP 4235896B2 JP 2003142149 A JP2003142149 A JP 2003142149A JP 2003142149 A JP2003142149 A JP 2003142149A JP 4235896 B2 JP4235896 B2 JP 4235896B2
Authority
JP
Japan
Prior art keywords
tio
dielectric
weight
dielectric ceramic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003142149A
Other languages
Japanese (ja)
Other versions
JP2004345878A (en
Inventor
孝史 河野
晃一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003142149A priority Critical patent/JP4235896B2/en
Priority to PCT/JP2004/006735 priority patent/WO2004103929A1/en
Priority to KR1020057022055A priority patent/KR101137272B1/en
Priority to EP04733921.3A priority patent/EP1645551B9/en
Priority to US10/556,374 priority patent/US7276461B2/en
Publication of JP2004345878A publication Critical patent/JP2004345878A/en
Application granted granted Critical
Publication of JP4235896B2 publication Critical patent/JP4235896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低抵抗導体であるAu、AgやCu等と同時焼成が可能で、積層セラミック部品に好適な低い誘電損失(高いQ値)を有する誘電体磁器及び該誘電体磁器を得るための組成物、その製造方法、ならびにそれを用いた積層セラミックコンデンサやLCフィルタ等の積層セラミック部品に関するものである。特に、本発明は、Zn2TiO4、ZnTiO3、Al23更には必要に応じTiO2を含む主成分、並びにガラス成分からなる誘電体磁器組成物、およびその製造方法、並びにそれを用いた誘電体磁器および積層セラミック部品に関する。
【0002】
【従来の技術】
近年、マイクロ波回路の集積化に伴い、小型でかつ誘電損失(tanδ)が小さく誘電特性が安定した誘電体共振器が求められている。そのため誘電体共振器部品としては内部に層状に電極導体を構成した積層チップ部品の市場が拡大している。これら積層チップ部品の内部導体としてはAu、Pt、Pd等の貴金属が用いられてきたが、コストダウンの観点からこれら導体材料より比較的安価なAgもしくはCu、またはAgもしくはCuを主成分とする合金にかわりつつある。特にAgまたはAgを主成分とする合金はその直流抵抗が低いことから、誘電体共振器のQ特性を向上させることができる等の利点がありその要求が高まっている。しかしAgまたはAgを主成分とする合金は融点が960℃程度と低く、これより低い温度で安定に焼結できる誘電体材料が必要となる。
【0003】
また、誘電体共振器を用いて誘電体フィルタを形成する場合、誘電体材料に要求される特性は、(1)温度変化に対する特性の変動を極力小さくするため誘電体の共振周波数の温度係数τfの絶対値が小さいこと、(2)誘電体フィルタに要求される挿入損失を極力小さくするため誘電体のQ値が高いこと、である。さらに携帯電話等で使用されるマイクロ波付近では誘電体の比誘電率εrにより共振器の長さが制約を受けるために、素子の小型化には比誘電率εrが高いことが要求される。ここで、誘電体共振器の長さは使用電磁波の波長が基準となる。比誘電率εrの誘電体中を伝播する電磁波の波長λは、真空中の電磁波の伝播波長をλ0とするとλ=λ0/(εr1/2となる。
【0004】
したがって素子は使用される誘電体材料の誘電率が大きいほど小型化できる。しかし素子が小さくなりすぎると要求される加工精度が厳しくなり現実の加工精度が低下し、かつ電極の印刷精度の影響を受けやすくなるため、用途等によって素子が小さくなりすぎないように、比誘電率εrは適切な範囲(例えば10〜40、好ましくは、15から25程度)のものが要求される。そこで、これらの要求を満足するために、1000℃以下で焼成可能な誘電体磁器としては、樹脂中に無機誘電体粒子を分散したもの(特許文献1)や、BaO−TiO2−Nd23系セラミックスとガラスの複合材料からなるガラスセラミックス(特許文献2)が知られている。また、TiO2とZnOを含み、さらにB23系ガラスを含有する誘電体磁器組成物も知られている(特許文献3)。
【0005】
【特許文献1】
特開平6−132621号公報(第16頁段落番号(0069)、表9参照)。
【特許文献2】
特開平10−330161号公報(第3頁段落番号(0005)、表1参照)。)
【特許文献3】
特許第3103296号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に示された素子では、焼成温度が400℃程度でありAg等を配線導体として用いての同時焼成による多層化、微細な配線化ができないという問題があった。
【0007】
また特許文献2に示されたガラスセラミックス材料は比誘電率εrが40より大きいために素子が小さくなりすぎて要求される加工精度が厳しくなり現実の加工精度が低下し、かつ電極の印刷精度の影響を受けやすくなる問題点があった。
【0008】
さらに、特許文献3に記載されている組成では、実施例から分かるように、比誘電率εrが25〜70程度と高めで、誘電特性の温度係数も組成により大きく変動し絶対値が700ppm/℃を超えるものもある。高周波の誘電体部品を提供するには、適度な比誘電率で、誘電特性の温度依存性が小さく、かつ、高いQ値を有する材料が求められている。
さらに、誘電体磁器組成物を焼成して得られる誘電体磁器の誘電特性は、焼成温度や組成の変動により、変動したり、ばらつくのが通常であり、これらの焼成温度や組成の変動による特性の変動またはばらつきは、量産の場合の歩留まりを低下させるという問題がある。
【0009】
本発明の目的は、Cu、Agといった低抵抗導体の同時焼成による内装化、多層化ができる800〜1000℃の温度での焼成が可能で、かつ、低い誘電損失tanδ(高いQ値)を有し、共振周波数の温度係数τfの絶対値が50ppm/℃以下であり、かつ積層セラミック部品等を適度な大きさに形成できるように比誘電率εrが10から40、好ましくは15から25程度である誘電体磁器、それを得るための組成物であって焼成温度の変動による特性の変動やばらつきが少なく、また、焼結時の組成変動の少ない誘電体磁器組成物、およびその製造方法を提供することにある。また、このような誘電体磁器からなる誘電体層とCuまたはAgを主成分とする内部電極とを有する積層セラミックコンデンサやLCフィルタ等の積層セラミック部品を提供することである。
【0010】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために鋭意検討した結果、ZnTiO3、Zn2TiO4およびAl23、更に必要に応じてTiO2を含む混合物に対して、少なくともZnO、B23を含むガラスを添加することにより、800から1000℃の焼成を行った後においてもZnTiO3、Zn2TiO4、TiO2およびAl23の生成相比を変動させることなく、好ましい範囲のεrと低い誘電損失tanδ(高いQ値)を得ることができること、また、ZnOを含むガラスを用いることでZnTiO3とZn2TiO4からのZnO成分のガラス中への溶解を極力抑制することができるために組成変化による誘電特性の変動を抑制でき、配線導体としてCuおよびAg等を用いた多層化、微細配線化が可能であることを知見し、本発明に至った。
【0011】
即ち、本発明は、一般式xZn2TiO4−yZnTiO3−zTiO2−wAl23で表され、xが0.15<x<1.0、yが0<y<0.85、zが0≦z≦0.2、wが0<w≦0.2、ただし、x+y+z+w=1の範囲内である主成分100重量部に対して、ZnOを50〜75重量%、B23を5〜30重量%、SiO2を6〜15重量%、Al23を0.5〜5重量%、BaOを3〜10重量%含むガラス成分を3重量部以上30重量部以下含有せしめてなる誘電体磁器組成物に関する。
【0012】
本発明の誘電体磁器組成物の好ましい態様として、xが0.15<x<0.99、yが0.005<y<0.85、wが0.005<w≦0.2のものが挙げられる。
【0013】
さらに、本発明は、前記誘電体磁器組成物を焼成してなる、Zn2TiO4、ZnTiO3、TiO2、及びAl23の結晶相(但し、TiO2の結晶相は無くともよい。以下同様。)とガラス相とからなることを特徴とする誘電体磁器に関する。
【0014】
また、本発明は、ZnO原料粉末とTiO2原料粉末を混合し、仮焼することにより、Zn2TiO4、ZnTiO3およびTiO2からなるセラミック粉末(但し、TiO2の含有量は零であってもよい)を得、該セラミック粉末にAl23と、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスとを混合することを特徴とする前記誘電体磁器組成物の製造方法に関する。
【0015】
さらに、本発明は、複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備える積層セラミック部品において、前記誘電体層が前記誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されていることを特徴とする積層セラミック部品に関する。
【0016】
Zn2TiO4、ZnTiO3、Al23及び任意成分としてのTiO2からなる結晶成分にガラス成分を含有させた特定の組成とすることにより、1000℃以下の焼成温度で焼成可能であり、焼成後の誘電体磁器の比誘電率εrが10〜40、好ましくは、15〜25程度で、誘電損失が小さく、共振周波数の温度係数の絶対値が50ppm/℃以下とすることができ、さらに、これらの特性が焼成温度により変動しにくい誘電体磁器組成物を提供できる。これにより、CuもしくはAg単体、又はCuもしくはAgを主成分とする合金材料からなる内部電極を有する積層セラミック部品を提供することができる。
【0017】
【発明の実施の形態】
以下、本発明の誘電体磁器組成物について具体的に説明する。
本発明の誘電体磁器組成物は、Zn2TiO4、ZnTiO3、Al23及び任意成分としてのTiO2からなる主成分とガラス成分を含有してなる誘電体磁器組成物であり、主成分は、一般式xZn2TiO4−yZnTiO3−zTiO2−wAl23で表され、xが0.15<x<1.0、yが0<y<0.85、zが0≦z≦0.2、wが0<w≦0.2、ただし、x+y+z+w=1の範囲内である。Zn2TiO4、ZnTiO3、TiO2、Al23は、結晶形態を有している。一方、ガラス成分としては、ZnOを50〜75重量%及びB23を5〜30重量%含むガラスが挙げられる。本発明の誘電体磁器組成物では、前記主成分100重量部に対して、前記ガラス成分を3重量部以上30重量部以下含有せしめてなる。
【0018】
前記組成においてZn2TiO4のモル分率xは0.15を超え1.0未満とくに0.15を超え0.99未満の範囲であることが好ましい。xが0.15以下の場合、あるいはxが1.0の場合はτfの絶対値が50ppm/℃を超え好ましくない。
【0019】
また、前記組成においてZnTiO3のモル分率yは0を超え0.85未満とくに0.005を超え0.85未満の範囲であることが好ましい。yが0の場合、あるいはyが0.85以上の場合には、τfの絶対値が50ppm/℃を超え好ましくない。
【0020】
また、前記組成においてTiO2のモル分率zは0〜0.2の範囲であることが好ましい。TiO2を含有することにより誘電率がやや増加する傾向にあるが、zが0.2以下の組成ではいずれも本発明の目的とする効果を得ることができる。zが0.2より大きい場合は、τfが+50ppm/℃を超え好ましくない。
【0021】
また、前記組成においてAl23のモル分率wは0を超え0.2以下とくに0.005を超え0.2以下の範囲であることが好ましい。wが0の場合は、焼成温度の変動による誘電特性の変動が大きくなり、そのため焼結温度範囲が狭くなるため好ましくない。wが0.2より大きい場合は、焼結温度がAgもしくはCu、またはAgもしくはCuを主成分とする合金の融点以上の温度となり、本発明の目的の一つであるこれら電極の使用ができなくなるため好ましくない。
【0022】
また、本発明の誘電体磁器組成物は、セラミックス母材となる前記主成分100重量部に対してガラス成分の添加量が3〜30重量部の範囲であることが好ましい。ガラス成分の添加量が3重量部未満の場合は、焼成温度がAgもしくはCu、またはAgもしくはCuを主成分とする合金の融点以上の温度となり、本発明の目的の一つであるこれらからなる電極の使用ができなくなるため好ましくない。ガラス成分の添加量が30重量部を超える場合は、ガラスが溶出し、良好な焼結ができなくなり好ましくない。
【0023】
また、本発明に用いるZn2TiO4は酸化亜鉛ZnOと酸化チタンTiO2とをモル比2:1で混合し焼成することにより得ることができる。また、ZnTiO3はZnOとTiO2とをモル比1:1で混合し焼成することにより得ることができる。Zn2TiO4およびZnTiO3の原料として、TiO2とZnOの他に、焼成時に酸化物となるZn及び/又はTiを含有する硝酸塩、炭酸塩、水酸化物、塩化物、および有機金属化合物等を使用してもよい。
【0024】
本発明に用いるガラスとしては、ZnOを50〜75重量%含むガラスが好ましい。ガラスにZnO成分を含有することにより、主成分を構成するZn2TiO4およびZnTiO3のZnO成分がガラス相に移ることを抑制することができ、焼成時の組成変化による誘電特性の変動を少なくすることができる。また、ガラスにB23を5〜30重量%含むと低温焼結が進みやすくなるので好ましい。特に好ましいガラス成分としては、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%の割合で含まれるものが挙げられる。このガラス成分と前記主成分とを混合させた誘電体磁器組成物では、比誘電率εrが15〜25程度の好ましい範囲とすることができる。配合するガラスとしては、上記のような各酸化物成分を所定割合で配合したものを溶融、冷却し、ガラス化したものが使用される。尚、ここで、本発明で使用するガラスの組成について以下に説明する。ZnOについては、50重量%未満ではガラスの軟化点が高くなることにより良好な焼結ができなくなる傾向にあり、75重量%超では所望温度でのガラス化が困難になる傾向にある。B23については、5重量%未満ではガラスの軟化点が高くなることにより良好な焼結ができなくなる傾向にあり、30重量%超ではガラス溶出により良好な焼結ができなくなる傾向にある。SiO2については、6重量%未満及び15重量%超でガラスの軟化点が高くなることにより良好な焼結ができなくなる傾向にある。Al23については、0.5重量%未満では化学的耐久性が低くなる傾向にあり、5重量%超では所望温度でのガラス化が困難になる傾向にある。BaOについては、3重量%未満及び10重量%超で所望温度でのガラス化が困難になる傾向にある。またガラス中にPb、Biの成分を含むと本発明の誘電体磁器組成物のQ値が低下する傾向にある。
【0025】
本発明によれば、xZn2TiO4−yZnTiO3−zTiO2−wAl23で表され、xが0.15<x<1.0、yが0<y<0.85、zが0≦z≦0.2、wが0<w≦0.2、ただし、x+y+z+w=1の範囲内である主成分100重量部に対して、ZnOおよびB23を含むガラス成分を3重量部以上30重量部以下含有させることにより、800〜1000℃の焼成温度で低温焼結可能である。このような誘電体磁器組成物を焼成して本発明の誘電体磁器を得ることが出来る。本発明の誘電体磁器は、比誘電率εrが10〜40、好ましくは15〜25程度で、無負荷Q値が大きく、共振周波数の温度係数τfの絶対値が50ppm/℃以下の特性を有する。誘電体磁器の組成は、焼成前の誘電体磁器組成物の各原料組成とほぼ同じであり、Zn2TiO4、ZnTiO3、TiO2、及びAl23の結晶相とガラス相とからなる。本発明の誘電体磁器組成物により、低温焼成が可能で、上記のような特性の誘電体磁器を得ることができる。
【0026】
なお、本発明の誘電体磁器組成物は、焼成前の、Zn2TiO4、ZnTiO3、TiO2、Al23および上記のガラスの混合物として表されるが、調製過程において添加される溶媒や有機物などの添加物が混合されていても本発明の意図する誘電体磁器組成物である。また、本発明の磁器組成の混合物は、焼成しても結晶相、ガラス相の組成の変動が少ないため、焼成後の誘電体磁器も本発明の誘電体磁器組成物からなる誘電体磁器である。
【0027】
本発明では、焼成前にZn2TiO4、ZnTiO3、TiO2、Al23の各粒子及びガラス粒子は、個別に粉砕し混合されるか、あるいは、各原料粒子は混合された状態で粉砕されるが、焼成前のこれら原料粒子の平均粒子径は分散性を高め、高い無負荷Q値と安定した比誘電率εrを得るために2.0μm以下、好ましくは1.0μm以下であることが好ましい。なお、平均粒子径を過度に小さくすると取り扱いが困難になる場合があるので、0.05μm以上とするのが好ましい。
【0028】
次に、本発明の誘電体磁器組成物および誘電体磁器の製造方法について説明する。主成分の一部を構成するZn2TiO4、ZnTiO3およびTiO2の粉末は、それぞれ単独で調製してもよいし、ZnOとTiO2の原料比を調整して仮焼し、直接、Zn2TiO4、ZnTiO3およびTiO2が混合した粉末を得ても良い。Zn2TiO4、ZnTiO3およびTiO2が混合した粉末を一度の仮焼で得る場合は、ZnOとTiO2の原料粉末を予め設定した割合で混合して仮焼すればよい。これに所定量のAl23を混合することにより本発明の誘電体磁器組成物の主成分とすることができる。本発明の誘電体磁器組成物とするには、この主成分100重量部に対して、ZnOを50〜75重量%、B23を5〜30重量%含むガラス成分を3重量部以上30重量部以下混合すればよい。
【0029】
好ましい誘電体磁器組成物の製造方法は、ZnO原料粉末とTiO2原料粉末を混合し、仮焼することにより、Zn2TiO4、ZnTiO3およびTiO2からなるセラミック粉末を得、該セラミック粉末にAl23と、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスを所定量混合することである。
【0030】
また、Zn2TiO4、ZnTiO3をそれぞれ単独で用意する場合は、酸化チタン(TiO2)と酸化亜鉛(ZnO)を2:1および1:1のモル比率でそれぞれ混合し、仮焼すればよい。得られたZn2TiO4、ZnTiO3と、TiO2、Al23を所定量秤量し、混合することにより本発明の誘電体磁器組成物の主成分とすることができる。
【0031】
Zn2TiO4、ZnTiO3の各粉末を個別に調製し、本発明の誘電体磁器組成物を得る方法についてさらに詳細に説明する。まず、酸化チタン(TiO2)と酸化亜鉛(ZnO)を2:1のモル比率に秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕し、酸素含有雰囲気(例えば空気雰囲気)下にて900〜1200℃で約1〜5時間程度仮焼する。このようにして得られた仮焼粉はZn2TiO4からなる。次に酸化チタンと酸化亜鉛を1:1のモル比率に秤量し、Zn2TiO4と同様な作製方法でZnTiO3を作製する。これらZn2TiO4、ZnTiO3と、さらに、TiO2、Al23とガラスを所定の比率に秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕して目的の誘電体磁器組成物となる誘電体磁器原料粉末を作製する。
【0032】
本発明の誘電体磁器組成物は焼成し、誘電体磁器のペレットとして誘電特性を測定する。詳しくは、前記誘電体磁器原料粉末にポリビニルアルコールの如き有機バインダーを混合して均質にし、乾燥、粉砕をおこなった後、ペレット形状に加圧成形(圧力100〜1000Kg/cm2程度)する。得られた成形物を空気の如き酸素含有ガス雰囲気下にて800〜1000℃で焼成することにより、Zn2TiO4相、ZnTiO3相、TiO2相、Al23相およびガラス相が共存する誘電体磁器を得ることができる。
【0033】
本発明の誘電体磁器組成物は、必要により適当な形状、およびサイズに加工、あるいはドクターブレード法等によるシート成形、およびシートと電極による積層化を行うことにより、各種積層セラミック部品の材料として利用できる。積層セラミック部品としては、積層セラミックコンデンサ、LCフィルタ、誘電体共振器、誘電体基板などが挙げられる。
【0034】
本発明の積層セラミック部品は、複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えており、前記誘電体層が前記誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されている。本発明の積層セラミック部品は、誘電体磁器組成物を含有する誘電体層と、Cu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料とを、同時焼成することにより得られる。
【0035】
上記積層セラミック部品の一実施形態として、例えば図1及び図2に示したトリプレートタイプの共振器が挙げられる。図1は本発明に係る一実施形態のトリプレートタイプの共振器を示す模式的斜視図であり、図2はその模式的断面図である。図1及び図2に示すように、トリプレートタイプの共振器は、複数の誘電体層1と、該誘電体層間に形成された内部電極2と、該内部電極に電気的に接続された外部電極3とを備える積層セラミック部品である。トリプレートタイプの共振器は、内部電極2を中央部に配置して複数枚の誘電体層1を積層して得られる。内部電極2は、図に示した第1の面Aからこれに対向する第2の面Bまで貫通するように形成されており、第1の面Aのみ開放面で、第1の面Aを除く共振器の5面には外部電極3が形成されており、第2の面Bにおいて内部電極2と外部電極3が接続されている。内部電極2の材料は、CuまたはAgあるいは、それらを主成分とする合金材料で構成されている。本発明の誘電体磁器組成物は低温で焼成できるため、これらの内部電極の材料が使用できる。
【0036】
【実施例】
実施例1:
酸化チタン(TiO2)0.33モル、酸化亜鉛(ZnO)0.66モルをエタノールと共にボールミルにいれ、12時間湿式混合した。溶液を脱媒後、粉砕し、空気雰囲気下1000℃で仮焼成し、Zn2TiO4仮焼粉を得た。次にTiO20.5モル、ZnO0.5モルを同様な方法で湿式混合、仮焼してZnTiO3仮焼粉を得た。これらZn2TiO4仮焼粉、ZnTiO3仮焼粉と、TiO2粉、およびAl23粉を表1に示した配合量で調製したものを母材(主成分)とした。この母材100重量部に対して、ZnO 63.5重量%、SiO2 8重量%、Al23 1.5重量%、BaO 7重量%、B23 20重量%から構成されるガラス粉末10重量部を添加したものをボールミルにいれ、24時間湿式混合した。溶液を脱媒後、平均粒子径が1μmになるまで粉砕し、この粉砕物に適量のポリビニルアルコール溶液を加えて乾燥後、直径12mm、厚み4mmのペレットに成形し、空気雰囲気下において、850℃で2時間焼成した(実施例1a)。図3に作製した焼結体のX線回折図を示した。図3に示したように本発明の誘電体磁器組成物の焼結体においてもZn2TiO4相、ZnTiO3相、TiO2相および、Al23相が共存していることがわかる。また、同様に作製した別のペレットを同様に950℃で2時間焼成した(実施例1b)。
【0037】
こうして得られた誘電体磁器を直径7mm、厚み3mmの大きさに加工した後、誘電共振法によって、共振周波数7〜11GHzにおける無負荷Q値、比誘電率εrおよび共振周波数の温度係数τfを求めた。その結果を表2に示した。
【0038】
【表1】

Figure 0004235896
【0039】
【表2】
Figure 0004235896
【0040】
また前記母材とガラスの混合物100gに対して、結合剤としてポリビニルブチラール9g、可塑剤としてジブチルフタレート6gおよび溶剤としてトルエン60gとイソプロピルアルコール30gを添加しドクターブレード法により厚さ100μmのグリーンシートを作製した。そして、このグリーンシートを、65℃の温度で200kg/cm2の圧力を加える熱圧着により、22層積層した。その際、内部電極としてAgを印刷した層が厚み方向の中央部にくるように配置した。得られた積層体を900℃で2時間焼成した後、外部電極を形成して、トリプレートタイプの共振器を作製した。大きさは、幅4.9mm、高さ1.7mm、長さ8.4mmであった。
【0041】
得られたトリプレートタイプの共振器について共振周波数2GHzで無負荷Q値を評価した。その結果、トリプレートタイプの共振器としての無負荷Qは210であった。このように、本発明に係る誘電体磁器組成物を使用することにより、優れた特性を有するトリプレートタイプの共振器が得られた。
【0042】
実施例2〜4:(x、yの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0043】
実施例5〜7:(zの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0044】
実施例8〜10:(wの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。上記の実施例のように、Al23を添加した本発明の誘電体磁器組成物では、850から950℃の広い焼成温度範囲で比誘電率εr、低い誘電損失(高いQ値)および共振周波数の温度係数τfの変動が少なく安定した特性の得られることが分かる。
【0045】
実施例11〜13:(ガラス組成の影響)
上記実施例1と同様にZnTiO、ZnTiO、TiOとAlを表1に示した配合量で混合したものを母材とし、この母材と表1記載の種々のガラスを表1に示した配合量で混合後、粒子径が表1記載の平均粒子径になるまで粉砕し、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0046】
実施例14、15:(ガラス量の影響)
上記実施例1と同様にZnTiO、ZnTiO、TiOとAlを表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製して、実施例1と同様な方法で種々の特性を評価した。その結果を表2に示した。
【0047】
比較例1、2:(x、yの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながらZn2TiO4のモル比xが0.15以下のとき、または、ZnTiO3のモル比yが0.85以上では共振周波数の温度係数τfが+50ppm/℃より大きくなり、また、yが0では共振周波数の温度係数τfが−50ppm/℃より小さくなった。その結果を表2に示した。
【0048】
比較例3、4:(zの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながらTiO2のモル比zが0.2より多い条件では共振周波数の温度係数τfが+50ppm/℃より大きくなった。その結果を表2に示した。
【0049】
比較例5、6:(wの影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件(但し、焼成温度900℃も実施)でペレット形状の焼結体を作製した。しかしながらAl23のモル比wが0の条件では850℃の焼成で共振周波数の温度係数τfの絶対値が50ppm/℃より大きく、さらに850から950℃の焼成温度範囲で共振周波数の温度係数τfが大きく変化し不安定であった。またwが0.2以上の条件では焼成温度が1000℃以上になった。その結果を表2に示した。
【0050】
比較例7〜21:(ガラス組成の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材と表1記載の種々のガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながら本発明に使用したガラス組成の範囲外のガラス組成物を用いたときには、硫酸溶液でガラスが溶解したり(比較例14)、1000℃以下で焼結しなかったり800℃以上でガラスが溶出したり(比較例7〜13,15〜21)した。その結果を表2に示した。
【0051】
比較例22、23:(ガラス量の影響)
上記実施例1と同様にZn2TiO4、ZnTiO3、TiO2とAl23を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製しようとした。しかしながらガラス量が3重量部より少ない場合は1000℃以下で焼結しなかった。ガラス量が30重量部より多い場合は900℃でガラスが溶出してセッターと反応した。その結果を表2に示した。
【0052】
【発明の効果】
本発明の誘電体磁器組成物を用いることにより、従来困難であったAgもしくはCu、またはAgもしくはCuを主成分とする合金の融点以下での焼成が可能となり、電子部品を構成する場合これら金属を内装化、多層化するための内部導体として使用することができる。また本発明の誘電体磁器組成物を焼成して得られる誘電体磁器は、低い誘電損失tanδ(高いQ値)を有し、共振周波数の温度係数τfの絶対値が50ppm/℃以下であり、かつ積層セラミック部品等を適度な大きさに形成できるように比誘電率εrが10から40、好ましくは15から25程度である。さらに、本発明によれば、このような誘電体磁器を得るための、焼成温度の変動による特性の変動の少ない、また、焼結時の組成変動の少ない誘電体磁器組成物およびその製造方法が提供される。さらにこのような誘電体磁器組成物からなる誘電体層とAgもしくはCu、またはAgもしくはCuを主成分とする合金を用いた内部電極とを有する積層セラミックコンデンサやLCフィルタ等の積層セラミック部品が提供される。
【図面の簡単な説明】
【図1】本発明に係る一実施形態のトリプレートタイプの共振器を示す模式的斜視図である。
【図2】図1の共振器の模式的断面図である。
【図3】実施例1で得られた本発明にかかる誘電体磁器組成物の焼結体のX線回折図である。
【符号の説明】
1 誘電体層
2 内部電極
3 外部電極[0001]
BACKGROUND OF THE INVENTION
The present invention provides a dielectric ceramic having a low dielectric loss (high Q value) suitable for multilayer ceramic parts and capable of co-firing with low resistance conductors such as Au, Ag and Cu, and the like. The present invention relates to a composition, a manufacturing method thereof, and a multilayer ceramic component such as a multilayer ceramic capacitor and an LC filter using the composition. In particular, the present invention provides Zn 2 TiO Four ZnTiO Three , Al 2 O Three Furthermore, if necessary, TiO 2 The present invention relates to a dielectric porcelain composition comprising a main component containing glass and a glass component, a method for producing the same, and a dielectric porcelain and multilayer ceramic component using the same.
[0002]
[Prior art]
In recent years, with the integration of microwave circuits, a dielectric resonator having a small size, a small dielectric loss (tan δ), and a stable dielectric characteristic has been demanded. Therefore, as a dielectric resonator component, the market for multilayer chip components in which electrode conductors are formed in layers is expanding. Noble metals such as Au, Pt, and Pd have been used as the internal conductors of these multilayer chip components. However, Ag or Cu, which is relatively cheaper than these conductor materials, or Ag or Cu as a main component from the viewpoint of cost reduction. The alloy is being replaced. In particular, Ag or an alloy containing Ag as a main component has a low direct current resistance, so that there is an advantage that the Q characteristic of the dielectric resonator can be improved, and the demand is increasing. However, Ag or an alloy containing Ag as a main component has a melting point as low as about 960 ° C., and a dielectric material that can be stably sintered at a lower temperature is required.
[0003]
When a dielectric filter is formed using a dielectric resonator, the characteristics required for the dielectric material are as follows: (1) the temperature coefficient τ of the resonance frequency of the dielectric in order to minimize fluctuations in the characteristics with respect to temperature changes. f (2) The Q value of the dielectric is high in order to minimize the insertion loss required for the dielectric filter. Furthermore, in the vicinity of microwaves used in mobile phones, etc., the dielectric constant of the dielectric ε r Since the length of the resonator is limited by the r Is required to be high. Here, the length of the dielectric resonator is based on the wavelength of the electromagnetic wave used. Dielectric constant ε r The wavelength λ of the electromagnetic wave propagating in the dielectric of 0 Then λ = λ 0 / (Ε r ) 1/2 It becomes.
[0004]
Therefore, the element can be downsized as the dielectric constant of the dielectric material used increases. However, if the device becomes too small, the required processing accuracy will become severe, the actual processing accuracy will decrease, and it will be easily affected by the printing accuracy of the electrode. Rate ε r In a suitable range (for example, 10 to 40, preferably about 15 to 25) is required. Therefore, in order to satisfy these requirements, dielectric ceramics that can be fired at 1000 ° C. or lower include those in which inorganic dielectric particles are dispersed in a resin (Patent Document 1), BaO—TiO 2 -Nd 2 O Three A glass ceramic (Patent Document 2) made of a composite material of a ceramic and glass is known. TiO 2 And ZnO, and further B 2 O Three A dielectric ceramic composition containing glass is also known (Patent Document 3).
[0005]
[Patent Document 1]
JP-A-6-132621 (see paragraph number (0069), page 16, Table 9).
[Patent Document 2]
Japanese Patent Laid-Open No. 10-330161 (see paragraph number (0005) on page 3, Table 1). )
[Patent Document 3]
Japanese Patent No. 3103296
[0006]
[Problems to be solved by the invention]
However, the element disclosed in Patent Document 1 has a problem that the firing temperature is about 400 ° C., and multilayering and fine wiring cannot be performed by simultaneous firing using Ag or the like as a wiring conductor.
[0007]
Further, the glass ceramic material disclosed in Patent Document 2 has a relative dielectric constant ε. r Therefore, there is a problem that the required processing accuracy becomes severe because the element becomes too small, the actual processing accuracy is lowered, and it is easily affected by the printing accuracy of the electrode.
[0008]
Furthermore, in the composition described in Patent Document 3, as can be seen from the examples, the relative dielectric constant ε r Is as high as about 25 to 70, and the temperature coefficient of the dielectric characteristics varies greatly depending on the composition, and the absolute value exceeds 700 ppm / ° C. In order to provide a high-frequency dielectric component, a material having an appropriate relative dielectric constant, a small temperature dependence of dielectric characteristics, and a high Q value is required.
Furthermore, the dielectric properties of dielectric ceramics obtained by firing dielectric ceramic compositions usually vary or vary due to variations in firing temperature and composition. Characteristics due to variations in firing temperature and composition Such fluctuations or variations have a problem of reducing the yield in mass production.
[0009]
It is an object of the present invention to be able to be fired at a temperature of 800 to 1000 ° C. that can be internally and multilayered by simultaneously firing low resistance conductors such as Cu and Ag, and has a low dielectric loss tan δ (high Q value). And the temperature coefficient τ of the resonance frequency f The relative dielectric constant ε is 50 ppm / ° C. or less and the multilayer ceramic component can be formed to an appropriate size. r Is a dielectric porcelain having a thickness of 10 to 40, preferably about 15 to 25, and a composition for obtaining the same, and there is little variation or variation in characteristics due to variation in firing temperature, and there is little composition variation during sintering It is an object of the present invention to provide a dielectric ceramic composition and a manufacturing method thereof. Another object of the present invention is to provide a multilayer ceramic component such as a multilayer ceramic capacitor or LC filter having a dielectric layer made of such a dielectric ceramic and an internal electrode mainly composed of Cu or Ag.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that ZnTiO Three , Zn 2 TiO Four And Al 2 O Three If necessary, TiO 2 At least ZnO, B for a mixture containing 2 O Three ZnTiO even after baking at 800 to 1000 ° C. by adding glass containing Three , Zn 2 TiO Four TiO 2 And Al 2 O Three Ε within a preferred range without changing the product phase ratio of r And a low dielectric loss tan δ (high Q value), and by using a glass containing ZnO, ZnTiO Three And Zn 2 TiO Four As a result, it is possible to suppress the dissolution of the ZnO component from the glass into the glass as much as possible, so that it is possible to suppress the fluctuation of the dielectric characteristics due to the composition change, and it is possible to make multilayer and fine wiring using Cu, Ag, etc. As a result, the present invention has been achieved.
[0011]
That is, the present invention relates to the general formula xZn 2 TiO Four -YZnTiO Three -ZTiO 2 -WAl 2 O Three X is 0.15 <x <1.0, y is 0 <y <0.85, z is 0 ≦ z ≦ 0.2, and w is 0 <w ≦ 0.2, where x + y + z + w = 1 to 50 parts by weight of ZnO with respect to 100 parts by weight of the main component within the range of 1, B 2 O Three 5 to 30% by weight, SiO 2 6-15% by weight, Al 2 O Three Is a dielectric ceramic composition containing 3 to 30 parts by weight of a glass component containing 0.5 to 5% by weight and 3 to 10% by weight of BaO.
[0012]
In a preferred embodiment of the dielectric ceramic composition of the present invention, x is 0.15 <x <0.99, y is 0.005 <y <0.85, and w is 0.005 <w ≦ 0.2. Is mentioned.
[0013]
Furthermore, the present invention provides a Zn ceramic obtained by firing the dielectric ceramic composition. 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Crystal phase (however, TiO 2 The crystal phase may not be present. The same applies below. ) And a glass phase.
[0014]
Further, the present invention relates to ZnO raw material powder and TiO 2 By mixing the raw material powder and calcining, Zn 2 TiO Four ZnTiO Three And TiO 2 Ceramic powder (however, TiO 2 The ceramic powder may contain Al. 2 O Three ZnO is 50 to 75% by weight, B 2 O Three 5 to 30% by weight, SiO 2 6-15% by weight, Al 2 O Three It is related with the manufacturing method of the said dielectric ceramic composition characterized by mixing with the lead-free low melting glass whose 0.5 to 5 weight% and BaO are 3 to 10 weight%.
[0015]
Furthermore, the present invention provides a multilayer ceramic component comprising a plurality of dielectric layers, internal electrodes formed between the dielectric layers, and external electrodes electrically connected to the internal electrodes. It is composed of a dielectric ceramic obtained by firing the dielectric ceramic composition, and the internal electrode is formed of Cu alone or Ag alone, or an alloy material mainly containing Cu or Ag. It is related with the laminated ceramic parts.
[0016]
Zn 2 TiO Four ZnTiO Three , Al 2 O Three And TiO as an optional component 2 It is possible to sinter at a firing temperature of 1000 ° C. or less by making a specific composition in which a glass component is contained in a crystal component made of, and the dielectric constant ε of the dielectric ceramic after firing r Is about 10 to 40, preferably about 15 to 25, the dielectric loss is small, the absolute value of the temperature coefficient of the resonance frequency can be 50 ppm / ° C. or less, and these characteristics hardly change depending on the firing temperature. A dielectric ceramic composition can be provided. Thereby, it is possible to provide a multilayer ceramic component having an internal electrode made of Cu or Ag alone or an alloy material containing Cu or Ag as a main component.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the dielectric ceramic composition of the present invention will be specifically described.
The dielectric ceramic composition of the present invention contains Zn 2 TiO Four ZnTiO Three , Al 2 O Three And TiO as an optional component 2 A dielectric ceramic composition comprising a main component comprising a glass component and a main component comprising a general formula xZn 2 TiO Four -YZnTiO Three -ZTiO 2 -WAl 2 O Three X is 0.15 <x <1.0, y is 0 <y <0.85, z is 0 ≦ z ≦ 0.2, and w is 0 <w ≦ 0.2, where x + y + z + w = Within the range of 1. Zn 2 TiO Four ZnTiO Three TiO 2 , Al 2 O Three Has a crystalline form. On the other hand, as a glass component, ZnO is 50 to 75% by weight and B 2 O Three Glass containing 5 to 30% by weight. In the dielectric ceramic composition of the present invention, the glass component is contained in an amount of 3 to 30 parts by weight with respect to 100 parts by weight of the main component.
[0018]
Zn in the composition 2 TiO Four The molar fraction x is preferably in the range of more than 0.15 and less than 1.0, particularly more than 0.15 and less than 0.99. When x is 0.15 or less, or when x is 1.0, τ f The absolute value of exceeds 50 ppm / ° C., which is not preferable.
[0019]
In the composition, ZnTiO Three The molar fraction y is preferably greater than 0 and less than 0.85, more preferably greater than 0.005 and less than 0.85. When y is 0, or when y is 0.85 or more, τ f The absolute value of exceeds 50 ppm / ° C., which is not preferable.
[0020]
In the composition, TiO 2 The molar fraction z is preferably in the range of 0 to 0.2. TiO 2 Although the dielectric constant tends to slightly increase by the inclusion of Z, any composition having z of 0.2 or less can achieve the intended effect of the present invention. If z is greater than 0.2, τ f Exceeds +50 ppm / ° C.
[0021]
In the above composition, Al 2 O Three The molar fraction w is preferably in the range of more than 0 and not more than 0.2, particularly more than 0.005 and not more than 0.2. When w is 0, the variation in the dielectric characteristics due to the variation in the firing temperature becomes large, and therefore the sintering temperature range becomes narrow, which is not preferable. When w is larger than 0.2, the sintering temperature is higher than the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, and these electrodes, which is one of the objects of the present invention, can be used. Since it disappears, it is not preferable.
[0022]
Moreover, it is preferable that the dielectric ceramic composition of this invention is the range whose addition amount of a glass component is 3-30 weight part with respect to 100 weight part of said main components used as a ceramic base material. When the addition amount of the glass component is less than 3 parts by weight, the firing temperature becomes a temperature equal to or higher than the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, which is one of the objects of the present invention. Since it becomes impossible to use an electrode, it is not preferable. When the added amount of the glass component exceeds 30 parts by weight, the glass is eluted, and good sintering cannot be performed.
[0023]
In addition, Zn used in the present invention 2 TiO Four Zinc oxide ZnO and titanium oxide TiO 2 Can be obtained by mixing and baking at a molar ratio of 2: 1. ZnTiO Three ZnO and TiO 2 Can be obtained by mixing and baking at a molar ratio of 1: 1. Zn 2 TiO Four And ZnTiO Three TiO as raw material 2 In addition to ZnO, nitrates, carbonates, hydroxides, chlorides, organometallic compounds, and the like containing Zn and / or Ti that become oxides during firing may be used.
[0024]
As the glass used in the present invention, a glass containing 50 to 75% by weight of ZnO is preferable. Zn constituting the main component by containing ZnO component in glass 2 TiO Four And ZnTiO Three The ZnO component can be prevented from moving into the glass phase, and variations in dielectric characteristics due to composition changes during firing can be reduced. In addition, B on glass 2 O Three 5 to 30% by weight is preferable because low-temperature sintering easily proceeds. As a particularly preferred glass component, ZnO is 50 to 75% by weight, B 2 O Three 5 to 30% by weight, SiO 2 6-15% by weight, Al 2 O Three Is contained in a proportion of 0.5 to 5% by weight and BaO is contained in a proportion of 3 to 10% by weight. In the dielectric ceramic composition in which the glass component and the main component are mixed, the relative dielectric constant ε r Can be made a preferable range of about 15 to 25. As glass to mix | blend, what melt | dissolved, cooled, and vitrified what mixed the above each oxide component in the predetermined ratio is used. Here, the composition of the glass used in the present invention will be described below. With respect to ZnO, if it is less than 50% by weight, the glass tends to have a high softening point, so that good sintering cannot be achieved. If it exceeds 75% by weight, vitrification at a desired temperature tends to be difficult. B 2 O Three When the amount is less than 5% by weight, the glass has a high softening point, which tends to prevent good sintering, and when it exceeds 30% by weight, the glass tends to be unable to be sintered satisfactorily. SiO 2 With respect to, when it is less than 6% by weight and more than 15% by weight, the glass has a high softening point, which tends to prevent good sintering. Al 2 O Three For less than 0.5% by weight, the chemical durability tends to be low, and when it exceeds 5% by weight, vitrification at the desired temperature tends to be difficult. BaO tends to be difficult to vitrify at a desired temperature when it is less than 3% by weight and more than 10% by weight. Moreover, when Pb and Bi components are contained in the glass, the Q value of the dielectric ceramic composition of the present invention tends to decrease.
[0025]
According to the present invention, xZn 2 TiO Four -YZnTiO Three -ZTiO 2 -WAl 2 O Three X is 0.15 <x <1.0, y is 0 <y <0.85, z is 0 ≦ z ≦ 0.2, and w is 0 <w ≦ 0.2, where x + y + z + w = ZnO and B with respect to 100 parts by weight of the main component in the range of 1 2 O Three By containing 3 parts by weight or more and 30 parts by weight or less of a glass component containing sinter, low-temperature sintering is possible at a firing temperature of 800 to 1000 ° C. By firing such a dielectric ceramic composition, the dielectric ceramic of the present invention can be obtained. The dielectric ceramic of the present invention has a relative dielectric constant ε r Is 10 to 40, preferably about 15 to 25, the unloaded Q value is large, and the temperature coefficient τ of the resonance frequency f Has an absolute value of 50 ppm / ° C. or less. The composition of the dielectric ceramic is almost the same as each raw material composition of the dielectric ceramic composition before firing, Zn 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three The crystal phase and the glass phase. The dielectric ceramic composition of the present invention can be fired at a low temperature, and a dielectric ceramic having the above characteristics can be obtained.
[0026]
The dielectric ceramic composition of the present invention is made of Zn before firing. 2 TiO Four ZnTiO Three TiO 2 , Al 2 O Three Although it is expressed as a mixture of the above-mentioned glass, it is a dielectric ceramic composition intended by the present invention even if an additive such as a solvent or an organic substance added in the preparation process is mixed. In addition, since the mixture of the ceramic composition of the present invention has little variation in the composition of the crystal phase and the glass phase even when fired, the dielectric ceramic after firing is also a dielectric ceramic made of the dielectric ceramic composition of the present invention. .
[0027]
In the present invention, before firing, Zn 2 TiO Four ZnTiO Three TiO 2 , Al 2 O Three These particles and glass particles are individually pulverized and mixed, or each raw material particle is pulverized in a mixed state, but the average particle diameter of these raw material particles before firing increases dispersibility and is high No-load Q value and stable dielectric constant ε r In order to obtain the above, it is 2.0 μm or less, preferably 1.0 μm or less. In addition, since handling may become difficult when an average particle diameter is too small, it is preferable to set it as 0.05 micrometer or more.
[0028]
Next, the dielectric ceramic composition of the present invention and the method for producing the dielectric ceramic will be described. Zn constituting a part of the main component 2 TiO Four ZnTiO Three And TiO 2 These powders may be prepared individually, or ZnO and TiO. 2 Calcination by adjusting the raw material ratio, directly Zn 2 TiO Four ZnTiO Three And TiO 2 You may obtain the powder which mixed. Zn 2 TiO Four ZnTiO Three And TiO 2 ZnO and TiO are obtained in a single calcined powder. 2 These raw material powders may be mixed and calcined at a preset ratio. A certain amount of Al 2 O Three Can be used as the main component of the dielectric ceramic composition of the present invention. In order to obtain the dielectric ceramic composition of the present invention, 50 to 75% by weight of ZnO, B 2 O Three May be mixed in an amount of 3 to 30 parts by weight.
[0029]
A preferred method for producing a dielectric ceramic composition is ZnO raw material powder and TiO. 2 By mixing the raw material powder and calcining, Zn 2 TiO Four ZnTiO Three And TiO 2 A ceramic powder consisting of 2 O Three ZnO is 50 to 75% by weight, B 2 O Three 5 to 30% by weight, SiO 2 6-15% by weight, Al 2 O Three Is to mix a predetermined amount of lead-free low-melting glass having 0.5 to 5% by weight and BaO of 3 to 10% by weight.
[0030]
Zn 2 TiO Four ZnTiO Three Are prepared separately, titanium oxide (TiO 2 ) And zinc oxide (ZnO) at a molar ratio of 2: 1 and 1: 1, respectively, and calcined. Obtained Zn 2 TiO Four ZnTiO Three And TiO 2 , Al 2 O Three Can be used as a main component of the dielectric ceramic composition of the present invention by weighing and mixing a predetermined amount.
[0031]
Zn 2 TiO Four ZnTiO Three A method for preparing each of the powders individually and obtaining the dielectric ceramic composition of the present invention will be described in more detail. First, titanium oxide (TiO 2 ) And zinc oxide (ZnO) are weighed to a molar ratio of 2: 1 and wet mixed with a solvent such as water or alcohol. Subsequently, after removing water, alcohol, and the like, it is pulverized and calcined at 900 to 1200 ° C. for about 1 to 5 hours in an oxygen-containing atmosphere (for example, air atmosphere). The calcined powder thus obtained is Zn 2 TiO Four Consists of. Next, titanium oxide and zinc oxide were weighed to a molar ratio of 1: 1, and Zn 2 TiO Four ZnTiO with the same manufacturing method Three Is made. These Zn 2 TiO Four ZnTiO Three And, in addition, TiO 2 , Al 2 O Three And glass are weighed to a predetermined ratio and wet mixed with a solvent such as water or alcohol. Subsequently, after removing water, alcohol, and the like, a dielectric ceramic raw material powder that is pulverized and becomes a target dielectric ceramic composition is produced.
[0032]
The dielectric ceramic composition of the present invention is fired, and the dielectric properties are measured as pellets of the dielectric ceramic. Specifically, the dielectric ceramic raw material powder is mixed with an organic binder such as polyvinyl alcohol, homogenized, dried and pulverized, and then pressed into pellets (pressure 100 to 1000 kg / cm). 2 Degree). By firing the obtained molded product at 800 to 1000 ° C. in an oxygen-containing gas atmosphere such as air, Zn 2 TiO Four Phase, ZnTiO Three Phase, TiO 2 Phase, Al 2 O Three A dielectric ceramic in which a phase and a glass phase coexist can be obtained.
[0033]
The dielectric ceramic composition of the present invention is used as a material for various multilayer ceramic parts by processing into an appropriate shape and size if necessary, or by forming a sheet by a doctor blade method or the like, and laminating by a sheet and an electrode. it can. Examples of the multilayer ceramic component include a multilayer ceramic capacitor, an LC filter, a dielectric resonator, and a dielectric substrate.
[0034]
The multilayer ceramic component of the present invention includes a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode, the dielectric layer comprising: The dielectric ceramic composition is made of a dielectric ceramic obtained by firing, and the internal electrode is made of Cu alone or Ag alone, or an alloy material containing Cu or Ag as a main component. The multilayer ceramic component of the present invention can be obtained by co-firing a dielectric layer containing a dielectric ceramic composition and an alloy material containing Cu or Ag alone or Cu or Ag as a main component.
[0035]
As an embodiment of the multilayer ceramic component, for example, a triplate type resonator shown in FIGS. 1 and 2 can be cited. FIG. 1 is a schematic perspective view showing a triplate type resonator according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view thereof. As shown in FIGS. 1 and 2, the triplate type resonator includes a plurality of dielectric layers 1, internal electrodes 2 formed between the dielectric layers, and externally connected to the internal electrodes. This is a multilayer ceramic component including an electrode 3. The triplate type resonator is obtained by arranging a plurality of dielectric layers 1 with the internal electrode 2 disposed in the center. The internal electrode 2 is formed so as to penetrate from the first surface A shown in the figure to the second surface B opposite to the first surface A, and only the first surface A is an open surface, and the first surface A is External electrodes 3 are formed on the five surfaces of the resonator except the internal electrode 2 and the external electrode 3 on the second surface B. The material of the internal electrode 2 is made of Cu or Ag or an alloy material containing them as a main component. Since the dielectric ceramic composition of the present invention can be fired at a low temperature, these internal electrode materials can be used.
[0036]
【Example】
Example 1:
Titanium oxide (TiO 2 ) 0.33 mol and zinc oxide (ZnO) 0.66 mol were placed in a ball mill together with ethanol and wet mixed for 12 hours. After removing the solution, it is pulverized and calcined at 1000 ° C. in an air atmosphere. 2 TiO Four A calcined powder was obtained. Next, TiO 2 0.5 mol and 0.5 mol of ZnO were wet-mixed and calcined in the same manner to obtain ZnTiO. Three A calcined powder was obtained. These Zn 2 TiO Four Calcination powder, ZnTiO Three Calcinated powder and TiO 2 Powder and Al 2 O Three The base material (principal component) was prepared by blending the powder in the amount shown in Table 1. With respect to 100 parts by weight of the base material, 63.5% by weight of ZnO, SiO 2 8% by weight, Al 2 O Three 1.5 wt%, BaO 7 wt%, B 2 O Three What added 10 weight part of glass powder comprised from 20 weight% was put into the ball mill, and was wet-mixed for 24 hours. After removing the solution, the solution was pulverized until the average particle size became 1 μm, and an appropriate amount of polyvinyl alcohol solution was added to the pulverized product, dried, and then formed into pellets having a diameter of 12 mm and a thickness of 4 mm, and 850 ° C. in an air atmosphere. For 2 hours (Example 1a). FIG. 3 shows an X-ray diffraction pattern of the sintered body produced. As shown in FIG. 3, Zn was also obtained in the sintered body of the dielectric ceramic composition of the present invention. 2 TiO Four Phase, ZnTiO Three Phase, TiO 2 Phase and Al 2 O Three It can be seen that the phases coexist. Further, another pellet produced in the same manner was similarly fired at 950 ° C. for 2 hours (Example 1b).
[0037]
After processing the dielectric ceramic thus obtained to a size of 7 mm in diameter and 3 mm in thickness, the dielectric resonance method is used to measure the no-load Q value and the relative dielectric constant ε at a resonance frequency of 7 to 11 GHz. r And temperature coefficient τ of resonance frequency f Asked. The results are shown in Table 2.
[0038]
[Table 1]
Figure 0004235896
[0039]
[Table 2]
Figure 0004235896
[0040]
Further, 9 g of polyvinyl butyral as a binder, 6 g of dibutyl phthalate as a plasticizer, 60 g of toluene and 30 g of isopropyl alcohol as a binder are added to 100 g of the base material and glass mixture, and a green sheet having a thickness of 100 μm is prepared by a doctor blade method. did. And this green sheet is 200 kg / cm at the temperature of 65 degreeC. 2 Twenty-two layers were laminated by thermocompression applying a pressure of. At that time, the layer printed with Ag as the internal electrode was arranged at the center in the thickness direction. The obtained laminate was baked at 900 ° C. for 2 hours, and then external electrodes were formed to produce a triplate type resonator. The size was 4.9 mm in width, 1.7 mm in height, and 8.4 mm in length.
[0041]
With respect to the obtained triplate type resonator, an unloaded Q value was evaluated at a resonance frequency of 2 GHz. As a result, the unloaded Q as a triplate type resonator was 210. As described above, a triplate type resonator having excellent characteristics was obtained by using the dielectric ceramic composition according to the present invention.
[0042]
Examples 2 to 4: (Influence of x and y)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the amount shown in Table 1 as a base material, and after mixing the base material and glass in the amount shown in Table 1, a pellet-shaped sintered body was produced under the same conditions as in Example 1. Thus, various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0043]
Examples 5 to 7: (Influence of z)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the amount shown in Table 1 as a base material, and after mixing this base material and glass in the amount shown in Table 1, a pellet-shaped sintered body was produced under the same conditions as in Example 1. Thus, various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0044]
Examples 8 to 10: (Influence of w)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the amount shown in Table 1 as a base material, and after mixing the base material and glass in the amount shown in Table 1, a pellet-shaped sintered body was produced under the same conditions as in Example 1. Thus, various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2. As in the above example, Al 2 O Three In the dielectric ceramic composition of the present invention to which is added a relative dielectric constant ε in a wide firing temperature range of 850 to 950 ° C. r , Low dielectric loss (high Q factor) and temperature coefficient τ of resonance frequency f It can be seen that stable characteristics can be obtained with little fluctuation.
[0045]
Examples 11- 13 : (Influence of glass composition)
Zn as in Example 1 above 2 TiO 4 ZnTiO 3 TiO 2 And Al 2 O 3 Is mixed with the blending amount shown in Table 1 as a base material, and after mixing the base material and various glasses shown in Table 1 at the blending amounts shown in Table 1, the particle diameter is the average particle size shown in Table 1 Then, a pellet-shaped sintered body was produced under the same conditions as in Example 1, and various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0046]
Example 14, 15 : (Effect of glass amount)
Zn as in Example 1 above 2 TiO 4 ZnTiO 3 TiO 2 And Al 2 O 3 Was mixed in the amount shown in Table 1 as a base material, and after mixing the base material and glass in the amount shown in Table 1, a pellet-shaped sintered body was produced under the same conditions as in Example 1. Thus, various characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0047]
Comparative Examples 1 and 2: (Influence of x and y)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the amount shown in Table 1 as a base material, and after mixing the base material and glass in the amount shown in Table 1, a pellet-shaped sintered body was produced under the same conditions as in Example 1. . However, Zn 2 TiO Four When the molar ratio x is 0.15 or less, or ZnTiO Three If the molar ratio y is 0.85 or more, the temperature coefficient τ of the resonance frequency f Becomes greater than +50 ppm / ° C., and when y is 0, the temperature coefficient τ of the resonance frequency f Was less than −50 ppm / ° C. The results are shown in Table 2.
[0048]
Comparative Examples 3 and 4: (Influence of z)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the amount shown in Table 1 as a base material, and after mixing the base material and glass in the amount shown in Table 1, a pellet-shaped sintered body was produced under the same conditions as in Example 1. . However, TiO 2 The temperature coefficient τ of the resonance frequency under the condition that the molar ratio z is greater than 0.2 f Was greater than +50 ppm / ° C. The results are shown in Table 2.
[0049]
Comparative Examples 5 and 6: (Influence of w)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the blending amount shown in Table 1 as a base material, and after mixing the base material and glass in the blending amount shown in Table 1, the same conditions as in Example 1 (however, firing temperature of 900 ° C. was also implemented) A pellet-shaped sintered body was produced. However Al 2 O Three Temperature coefficient τ of resonance frequency by firing at 850 ° C. under the condition that the molar ratio w is 0 f Is greater than 50 ppm / ° C., and the temperature coefficient τ of the resonance frequency in the firing temperature range of 850 to 950 ° C. f Changed greatly and was unstable. Further, the firing temperature was 1000 ° C. or higher under the condition that w was 0.2 or higher. The results are shown in Table 2.
[0050]
Comparative Examples 7 to 21: (Influence of glass composition)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three Was mixed in the blending amount shown in Table 1 as a base material, and after mixing the base material and various glasses described in Table 1 in the blending amounts shown in Table 1, pellets were formed under the same conditions as in Example 1. A sintered body was produced. However, when a glass composition outside the range of the glass composition used in the present invention is used, the glass dissolves with a sulfuric acid solution (Comparative Example 14), does not sinter at 1000 ° C. or lower, or dissolves at 800 ° C. or higher. (Comparative Examples 7 to 13, 15 to 21). The results are shown in Table 2.
[0051]
Comparative Examples 22 and 23: (Effect of glass amount)
Zn as in Example 1 above 2 TiO Four ZnTiO Three TiO 2 And Al 2 O Three The base material is a mixture of the amount shown in Table 1, and after mixing the base material and glass in the amount shown in Table 1, a pellet-shaped sintered body is produced under the same conditions as in Example 1. It was. However, when the amount of glass was less than 3 parts by weight, it was not sintered at 1000 ° C. or lower. When the amount of glass was more than 30 parts by weight, the glass eluted at 900 ° C. and reacted with the setter. The results are shown in Table 2.
[0052]
【The invention's effect】
By using the dielectric porcelain composition of the present invention, it becomes possible to calcinate below the melting point of Ag or Cu, or an alloy containing Ag or Cu as a main component, which has been difficult in the past. Can be used as an internal conductor for interior and multilayering. The dielectric ceramic obtained by firing the dielectric ceramic composition of the present invention has a low dielectric loss tan δ (high Q value) and a temperature coefficient τ of resonance frequency. f The relative dielectric constant ε is 50 ppm / ° C. or less and the multilayer ceramic component can be formed to an appropriate size. r Is about 10 to 40, preferably about 15 to 25. Furthermore, according to the present invention, there are provided a dielectric ceramic composition having a small variation in characteristics due to a variation in firing temperature and a small variation in composition during sintering, and a method for producing the same, in order to obtain such a dielectric ceramic. Provided. Furthermore, a multilayer ceramic component such as a multilayer ceramic capacitor or LC filter having a dielectric layer made of such a dielectric ceramic composition and an internal electrode using Ag or Cu, or an alloy mainly composed of Ag or Cu is provided. Is done.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a triplate type resonator according to an embodiment of the present invention.
2 is a schematic cross-sectional view of the resonator of FIG.
3 is an X-ray diffraction pattern of a sintered body of a dielectric ceramic composition according to the present invention obtained in Example 1. FIG.
[Explanation of symbols]
1 Dielectric layer
2 Internal electrodes
3 External electrode

Claims (4)

一般式xZn2TiO4−yZnTiO3−zTiO2−wAl23で表され、xが0.15<x<1.0、yが0<y<0.85、zが0≦z≦0.2、wが0<w≦0.2、ただし、x+y+z+w=1の範囲内である主成分100重量部に対して、ZnOを50〜75重量%、B23を5〜30重量%、SiO2を6〜15重量%、Al23を0.5〜5重量%、BaOを3〜10重量%含むガラス成分を3重量部以上30重量部以下含有せしめてなる誘電体磁器組成物。It is represented by the general formula xZn 2 TiO 4 —yZnTiO 3 —zTiO 2 —wAl 2 O 3 , where x is 0.15 <x <1.0, y is 0 <y <0.85, and z is 0 ≦ z ≦ 0. .2, w 0 <w ≦ 0.2, where xO + y + z + w = 1 to 100 parts by weight of the main component, ZnO 50-75 wt%, B 2 O 3 5-30 wt% A dielectric ceramic composition comprising 3 to 30 parts by weight of a glass component containing 6 to 15% by weight of SiO 2 , 0.5 to 5% by weight of Al 2 O 3 and 3 to 10% by weight of BaO. object. 請求項1記載の誘電体磁器組成物を焼成してなる、Zn2TiO4、ZnTiO3、TiO2、及びAl23の結晶相(但し、TiO2の結晶相は無くともよい)とガラス相とからなることを特徴とする誘電体磁器。A crystal phase of Zn 2 TiO 4 , ZnTiO 3 , TiO 2 , and Al 2 O 3 obtained by firing the dielectric ceramic composition according to claim 1 (however, the crystal phase of TiO 2 may be omitted) and glass A dielectric ceramic characterized by comprising a phase. ZnO原料粉末とTiO2原料粉末を混合し、仮焼することにより、Zn2TiO4、ZnTiO3およびTiO2からなるセラミック粉末(但し、TiO2の含有量は零であってもよい)を得、該セラミック粉末にAl23と、ZnOが50〜75重量%、B23が5〜30重量%、SiO2が6〜15重量%、Al23が0.5〜5重量%、BaOが3〜10重量%である無鉛低融点ガラスとを混合することを特徴とする請求項1記載の誘電体磁器組成物の製造方法。A ceramic powder composed of Zn 2 TiO 4 , ZnTiO 3 and TiO 2 (however, the content of TiO 2 may be zero) is obtained by mixing and calcining the ZnO raw material powder and the TiO 2 raw material powder. The ceramic powder has Al 2 O 3 and ZnO of 50 to 75% by weight, B 2 O 3 of 5 to 30% by weight, SiO 2 of 6 to 15% by weight, and Al 2 O 3 of 0.5 to 5% by weight. %, And a lead-free low-melting glass having a BaO content of 3 to 10% by weight. 2. A method for producing a dielectric ceramic composition according to claim 1. 複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備える積層セラミック部品において、前記誘電体層が前記請求項1記載の誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されていることを特徴とする積層セラミック部品。  The multilayer ceramic component comprising a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode, wherein the dielectric layer is according to claim 1. It is composed of a dielectric ceramic obtained by firing a dielectric ceramic composition, and the internal electrode is formed of Cu alone or Ag alone, or an alloy material mainly containing Cu or Ag. Laminated ceramic parts.
JP2003142149A 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT Expired - Fee Related JP4235896B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003142149A JP4235896B2 (en) 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
PCT/JP2004/006735 WO2004103929A1 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
KR1020057022055A KR101137272B1 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
EP04733921.3A EP1645551B9 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
US10/556,374 US7276461B2 (en) 2003-05-20 2004-05-19 Dielectric ceramic composition, method of manufacturing the same, and dielectric ceramics and laminated ceramic part using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142149A JP4235896B2 (en) 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT

Publications (2)

Publication Number Publication Date
JP2004345878A JP2004345878A (en) 2004-12-09
JP4235896B2 true JP4235896B2 (en) 2009-03-11

Family

ID=33530320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142149A Expired - Fee Related JP4235896B2 (en) 2003-05-20 2003-05-20 DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT

Country Status (1)

Country Link
JP (1) JP4235896B2 (en)

Also Published As

Publication number Publication date
JP2004345878A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP4096822B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP3737774B2 (en) Dielectric ceramic composition
JP2000319066A (en) Low temperature simultaneously firing dielectric ceramic composition
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
KR101137272B1 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP2002356371A (en) Dielectric ceramic composition and laminated ceramic capacitor
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP3375450B2 (en) Dielectric porcelain composition
KR100359721B1 (en) Dielectric Ceramic Compositions able to be cofired with metal
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JP4281549B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
JP4253652B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT PRODUCED BY USING SAME, AND METHOD FOR PRODUCING MULTILAYER CERAMIC CAPACITOR
EP1315231A2 (en) Dielectric ceramic composition and laminated ceramic parts using the same
JP2005001944A (en) Dielectric porcelain composition and multilayered ceramic component using the same
JP4114503B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2003221274A (en) Dielectric porcelain composition and integrated ceramic parts using it
JP2003160377A (en) Dielectric ceramic composition and laminated ceramic part using the same
JP4006655B2 (en) Dielectric porcelain composition for microwave
JP3858395B2 (en) Dielectric porcelain composition
JP2003221273A (en) Dielectric porcelain composition and integrated ceramic parts using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Ref document number: 4235896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees