JP3375450B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP3375450B2
JP3375450B2 JP04304095A JP4304095A JP3375450B2 JP 3375450 B2 JP3375450 B2 JP 3375450B2 JP 04304095 A JP04304095 A JP 04304095A JP 4304095 A JP4304095 A JP 4304095A JP 3375450 B2 JP3375450 B2 JP 3375450B2
Authority
JP
Japan
Prior art keywords
dielectric
component
added
temperature
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04304095A
Other languages
Japanese (ja)
Other versions
JPH08239262A (en
Inventor
一郎 亀山
純一 加藤
博司 加賀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04304095A priority Critical patent/JP3375450B2/en
Publication of JPH08239262A publication Critical patent/JPH08239262A/en
Application granted granted Critical
Publication of JP3375450B2 publication Critical patent/JP3375450B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマイクロ波領域で使用さ
れる誘電体磁器の材料となる組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composition used as a material for a dielectric ceramic used in a microwave region.

【0002】[0002]

【従来の技術】近年、自動車電話や携帯電話などに代表
されるように、マイクロ波領域の電磁波を利用する移動
体通信の進展が目覚ましく、それにともない機器の小型
化の要求が非常に強い。小型化を実現するためには、機
器を構成する個々の部品が小型化される必要がある。誘
電体磁器は、これらの機器のフィルタ素子や発振素子な
どの共振器系部品に、誘電体共振器として組み込まれて
いる。誘電体共振器の大きさは同じ共振モードを利用す
る場合、使用する誘電体磁器の持つ誘電率の平方根に逆
比例するため、さらなる小型の誘電体共振器を得るに
は、高い誘電率を有する誘電体磁器が必要である。誘電
体共振器用の磁器は現在までに数多くのものが開発され
ており、特に誘電率の大きい磁器として、BaO−Ti
2−Ln2 3系(Lnはランタニド系元素)が特開昭
56−134562号公報に提案されている。ただし、
この系の焼結温度は1350℃程度であり、後述する低
温焼結性マイクロ波誘電体磁器に比べて高い。また、誘
電体磁器に求められる他の特性としては、マイクロ波領
域で低損失であること、すなわち無負荷Q値が高いこ
と、さらに共振周波数の温度変化が小さいこと、すなわ
ち誘電率の温度変化が小さいことが挙げられる。
2. Description of the Related Art In recent years, represented by car phones and mobile phones
To move using electromagnetic waves in the microwave region
The progress of body communication is remarkable and the size of the equipment is small.
There is a strong demand for conversion. In order to achieve miniaturization,
The individual components that make up the container need to be miniaturized. Invitation
Electric porcelain is not a filter element or oscillation element for these devices.
Which resonator system component is incorporated as a dielectric resonator
There is. Dielectric resonator size uses the same resonance mode
If it is, reverse the square root of the permittivity of the dielectric porcelain used.
Since it is proportional, to obtain a smaller dielectric resonator
Requires a dielectric porcelain having a high dielectric constant. dielectric
Many porcelains for body resonators have been developed to date.
As a porcelain with a particularly large dielectric constant, BaO-Ti
O2-Ln2O 3System (Ln is lanthanide element)
No. 56-134562. However,
The sintering temperature of this system is about 1350 ° C, which is low as described later.
Higher than hot-sinterable microwave dielectric porcelain. In addition,
Other characteristics required for electric porcelain are microwave
Low loss, that is, high no-load Q value
In addition, the temperature change of the resonance frequency is small, that is,
The change in dielectric constant with temperature is small.

【0003】さらに、共振器系部品の小型化・高機能化
を実現する技術として、導体と誘電体磁器を積層構造に
して、それらを同時焼成する方法が注目されている。積
層デバイス用の導体は、高周波で使用することから導電
率が高いほど望ましいため、Agなどを用いる必要があ
る。積層デバイス用の誘電体磁器は、導体金属が溶解し
ない温度で焼成可能にしなければならず、Agを導体に
用いる場合は、960℃以下で誘電体磁器を焼結させる
必要がある。
Further, as a technique for realizing the miniaturization and high functionality of resonator parts, a method of forming a conductor and a dielectric ceramic in a laminated structure and simultaneously firing them has been attracting attention. It is necessary to use Ag or the like for the conductor for the laminated device because it is desirable that the conductivity is higher because it is used at high frequency. The dielectric porcelain for a laminated device must be capable of firing at a temperature at which the conductor metal does not melt, and when Ag is used for the conductor, it is necessary to sinter the dielectric porcelain at 960 ° C or lower.

【0004】一方、低温焼成可能なマイクロ波用誘電体
磁器組成物が特開平3−290358号公報、特開平3
−290359号公報、特開平3−295854号公
報、特開平3−295855号公報、特開平3−295
856号公報等に記載されている。これらの誘電体磁器
組成物は、BaO、Ln23、TiO2、PbO、Bi2
3からなる組成物に副成分を添加したもので、誘電体
磁器の低温焼成化を図ったものである。
On the other hand, a dielectric ceramic composition for microwaves that can be fired at a low temperature is disclosed in JP-A-3-290358 and JP-A-3.
-290359, JP-A-3-295854, JP-A-3-295855, and JP-A-3-295.
No. 856, etc. These dielectric ceramic compositions are made of BaO, Ln 2 O 3 , TiO 2 , PbO, Bi 2
This is a composition in which subcomponents are added to a composition of O 3 and is intended for low-temperature firing of dielectric ceramics.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の誘電体磁器の焼結温度は1000℃前後であるため、
Agを内部導体に適用するには焼結温度が高く、積層型
マイクロ波デバイスの高性能化を実現していくには未だ
満足できるものではなかった。したがって、Agとの同
時焼成を可能にするには、さらに低温焼成化に効果のあ
る副成分を見い出すことが必要となる。
However, since the sintering temperature of these dielectric ceramics is around 1000 ° C.,
In order to apply Ag to the internal conductor, the sintering temperature is high, and it was not yet satisfactory to realize high performance of the laminated microwave device. Therefore, in order to enable simultaneous firing with Ag, it is necessary to find a subcomponent that is more effective for low temperature firing.

【0006】一般に、磁器組成物に副成分としてガラス
を添加するとその焼結温度は低下する。本発明者らによ
れば、添加するガラスは軟化点が低いほどその効果は大
きいことが確認されている。軟化点の低いPbO−B2
3−SiO2ガラスやPbO−B23−ZnOガラスな
どのPb系ガラスに注目した場合、PbO組成比が大き
いほど軟化点は低くなる。しかしながら、PbO組成比
の大きいガラスを、前述した公報に記載されている誘電
体組成物に添加すると、焼成温度は950℃以下まで低
下するが、焼成温度に対してマイクロ波特性、特に誘電
率が大きくばらついてしまう。PbO組成比が大きいガ
ラスほどそのばらつきは顕著となる。一方、ガラス添加
量を少なくしたり、PbO組成比が小さいガラスを添加
する場合は、誘電体磁器の焼成温度が低下せず、Agと
の同時焼成が極めて困難となる。
Generally, when glass is added as a subcomponent to a porcelain composition, its sintering temperature is lowered. According to the present inventors, it has been confirmed that the lower the softening point of the added glass, the greater the effect. Low softening point PbO-B 2
When attention is focused on Pb-based glasses such as O 3 —SiO 2 glass and PbO—B 2 O 3 —ZnO glass, the softening point decreases as the PbO composition ratio increases. However, when a glass having a large PbO composition ratio is added to the dielectric composition described in the above-mentioned publication, the firing temperature is lowered to 950 ° C. or lower, but the microwave characteristics, particularly the dielectric constant, with respect to the firing temperature. Will vary greatly. The greater the PbO composition ratio of the glass, the more remarkable the variation. On the other hand, when the amount of glass added is reduced or glass with a small PbO composition ratio is added, the firing temperature of the dielectric ceramic does not decrease, and simultaneous firing with Ag becomes extremely difficult.

【0007】本発明は、前記従来の課題を解決するた
め、Agと同時焼成可能で、かつ焼成温度に対し安定し
たマイクロ波特性が得られ、さらに、マイクロ波領域で
誘電率が高く、損失が小さく、優れた温度特性を持つ誘
電体磁器を製造するための組成物を提供することを目的
とする。
In order to solve the above-mentioned conventional problems, the present invention can obtain a microwave characteristic that can be simultaneously fired with Ag and is stable with respect to the firing temperature, and has a high permittivity in the microwave region and a loss. It is an object of the present invention to provide a composition for producing a dielectric porcelain having a small temperature coefficient and excellent temperature characteristics.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するた
め、本発明の誘電体磁器組成物は、主成分として前記式
(化1)で示される仮焼した組成物と、副成分として前
記式(化2)で表されるPbO−V25−B23−Si
2系ガラスを5〜30重量%含み、前記主成分及び副
成分が平均粒子径0.2〜0.8μmの微粉末であると
いう構成を備えたものである。前記構成においては主成
分として0.01〜20重量%のBi23を添加するこ
とが好ましい。
In order to achieve the above object, the dielectric ceramic composition of the present invention comprises a calcined composition represented by the above formula (Formula 1) as a main component and the above formula as an auxiliary component. PbO-V 2 O represented by (formula 2) 5 -B 2 O 3 -Si
The composition is such that it contains 5 to 30% by weight of O 2 -based glass, and the main component and subcomponents are fine powders having an average particle diameter of 0.2 to 0.8 μm. In the above structure, it is preferable to add 0.01 to 20% by weight of Bi 2 O 3 as a main component.

【0009】また前記構成においては、副成分として
0.05〜3.0重量%のMn成分を添加することが好
ましい。また前記構成においては、副成分として0.0
1〜4.0重量%のW成分を添加することが好ましい。
In the above structure, it is preferable to add 0.05 to 3.0% by weight of Mn component as an accessory component. Further, in the above structure, 0.0
It is preferable to add 1 to 4.0% by weight of the W component.

【0010】[0010]

【作用】前記本発明の誘電体磁器組成物によれば、主成
分として前記式(化1)で示される仮焼した組成物と、
副成分として下記式(化2)で表されるPbO−V25
−B23−SiO2系ガラスを5〜30重量%含み、前
記主成分及び副成分が平均粒子径0.2〜0.8μmの微
粉末であることにより、950℃以下の空気中、および
2中等の低い酸素分圧下であっても緻密に焼結し、2
〜6GHzのマイクロ波領域で、誘電率が50以上、Q値
が200以上、共振周波数の温度係数の絶対値が50pp
m/℃以下と優れた特性を示し、かつ焼成温度に対して
特性が変動しない誘電体磁器を製造できる。また主成分
として0.01〜20重量%のBi23成分を添加する
という本発明の好ましい例によれば、焼結性が向上し、
低温焼成が可能となる。また副成分として0.05〜
3.0重量%のMn成分を添加するという本発明の好ま
しい例によれば、同様に焼結性が向上し、低温焼成が可
能となる。また、副成分として0.01〜4.0重量%
のW成分を添加するという本発明の好ましい例によれ
ば、同様に焼結性が向上し、低温焼成が可能となる。
According to the above-mentioned dielectric ceramic composition of the present invention, a calcined composition represented by the above formula (Formula 1) as a main component,
PbO-V 2 O 5 to as a sub-component represented by the following formula (Formula 2)
-B 2 O 3 comprises -SiO 2 based glass 5-30 wt%, by the main component and subcomponent being a fine powder having an average particle diameter 0.2 to 0.8 [mu] m, of 950 ° C. or less in air, And densely sinter even under low oxygen partial pressures such as N 2 and 2
In the microwave region of up to 6 GHz, the dielectric constant is 50 or more, the Q value is 200 or more, and the absolute value of the temperature coefficient of the resonance frequency is 50 pp.
It is possible to manufacture a dielectric ceramic exhibiting excellent characteristics of m / ° C. or less and having characteristics that do not vary with firing temperature. Further, according to a preferred example of the present invention in which 0.01 to 20% by weight of Bi 2 O 3 component is added as a main component, the sinterability is improved,
Low temperature firing is possible. Also, as an accessory component, 0.05 to
According to the preferable example of the present invention in which 3.0% by weight of Mn component is added, the sinterability is similarly improved and low temperature firing becomes possible. In addition, 0.01 to 4.0% by weight as an accessory component
According to the preferable example of the present invention in which the W component is added, the sinterability is similarly improved and low temperature firing becomes possible.

【0011】[0011]

【実施例】以下、実施例を用いて本発明を具体的に説明
する。 (実施例1)主成分には化学的に高純度のBaO、Ti
2、及びNd23を用いた。原料の純度補正を行なっ
たのち、表1に示した比率で秤量した。これらの粉体
を、ポリエチレン製のボールミルに入れ、安定化ジルコ
ニアの玉石と純水を加え、17時間湿式混合した。混合
後、スラリーを乾燥し、アルミナ製の坩堝にいれ、空気
中において1000〜1200℃の温度で2〜5時間仮
焼した。ライカイ機で解砕した後、前述したボールミル
で17時間粉砕し、乾燥させ、各種の仮焼粉を得た。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example 1) Chemically highly pure BaO and Ti are used as main components.
O 2 and Nd 2 O 3 were used. After correcting the purity of the raw materials, the raw materials were weighed at the ratios shown in Table 1. These powders were placed in a polyethylene ball mill, and boulders of stabilized zirconia and pure water were added and wet-mixed for 17 hours. After mixing, the slurry was dried, put in an alumina crucible, and calcined in air at a temperature of 1000 to 1200 ° C. for 2 to 5 hours. After crushing with a liqui machine, it was crushed with the above-mentioned ball mill for 17 hours and dried to obtain various calcined powders.

【0012】他方、副成分には高純度のPbO、V
25、B23、SiO2を用い、表2に示した比率で秤
量した。これらの粉体を安定化ジルコニアと共に入れ乾
式で混合した。そして、得られた混合物を溶解した後に
急冷してガラス化し、各種のガラスを得た。なおガラス
の軟化点は400〜700℃であった。
On the other hand, as the accessory component, high-purity PbO, V
2 O 5 , B 2 O 3 and SiO 2 were used and weighed in the ratios shown in Table 2. These powders were put together with stabilized zirconia and mixed dry. Then, the obtained mixture was melted and then rapidly cooled to vitrify to obtain various glasses. The softening point of the glass was 400 to 700 ° C.

【0013】次に仮焼粉100重量部に対して、作製し
たガラスを所定量添加し、これらの粉体を安定化ジルコ
ニアボールと共にボールミルに入れて24〜48時間湿
式で混合粉砕を行い、平均粒子径が0.8μm以下とな
るように制御した。なお、粒子径はレーザー回折散乱法
を用いて測定した。
Next, a predetermined amount of the produced glass was added to 100 parts by weight of the calcined powder, and the powder was put into a ball mill together with stabilized zirconia balls, and wet-mixed for 24 to 48 hours, and averaged. The particle size was controlled to be 0.8 μm or less. The particle size was measured by the laser diffraction scattering method.

【0014】その後、この混合粉末にバインダとしてポ
リビニルアルコールの5重量%水溶液を6重量%加えて
混合後、32メッシュのふるいを通して造粒し、圧力1
00MPaで直径13mm、厚み約5mmの円柱状にプレス成
形した。成形体を600℃で2時間加熱してバインダを
焼却後、マグネシアの容器に入れ蓋をし、空気中800
〜1100℃で2〜4時間保持して焼成した。密度が最
高になる温度で焼成した焼結体についてマイクロ波での
誘電特性を測定した。共振周波数と無負荷Q値は誘電体
共振器法により求めた。焼結体の寸法と共振周波数より
誘電率を算出した。共振周波数は、2〜5GHzであっ
た。また、−25℃、20℃及び85℃における共振周
波数を測定し、最小二乗法により、その温度係数
(τf)を算出した。本実施例の結果を表1の1〜6番
に示す(#は比較例を示す)。
Thereafter, 6% by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added to the mixed powder as a binder and mixed, and then the mixture was granulated through a 32 mesh sieve and pressure 1
It was press-molded at 00 MPa into a cylindrical shape having a diameter of 13 mm and a thickness of about 5 mm. The molded body is heated at 600 ° C for 2 hours to incinerate the binder, put it in a magnesia container, and then cover it in air to 800
Calcination was performed by holding at ˜1100 ° C. for 2 to 4 hours. The dielectric properties in the microwave were measured for the sintered body that was fired at the temperature at which the density was maximized. The resonance frequency and the unloaded Q value were obtained by the dielectric resonator method. The dielectric constant was calculated from the dimensions of the sintered body and the resonance frequency. The resonance frequency was 2 to 5 GHz. In addition, the resonance frequencies at -25 ° C, 20 ° C, and 85 ° C were measured, and the temperature coefficient (τ f ) was calculated by the least square method. The results of this example are shown in Nos. 1 to 6 of Table 1 (# indicates a comparative example).

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】表1の1〜6番に示したように、本実施例
の組成物は、微粉砕およびガラスを添加したことによ
り、950℃以下の低温で緻密に焼結した。ガラス添加
量が多いほど低温焼成化に効果があった。また、粒子径
が小さくなるほど焼結性は向上したが、平均粒子径が
0.2μmよりも小さくなると、ドクターブレード法な
どによるテープ成形が困難となるところから、平均粒子
径は0.2〜0.8μmの範囲となるように制御するこ
とが望ましい。
As shown in Nos. 1 to 6 of Table 1, the composition of this example was finely sintered and glass was added, whereby it was densely sintered at a low temperature of 950 ° C. or lower. The larger the amount of glass added, the more effective the low temperature baking was. The smaller the particle size, the better the sinterability. However, when the average particle size is less than 0.2 μm, tape molding by the doctor blade method or the like becomes difficult, so the average particle size is 0.2 to 0. It is desirable to control so as to be in the range of 0.8 μm.

【0018】マイクロ波特性は、誘電率(ε)が50以
上、無負荷Q値が200以上、かつ共振周波数の温度係
数(τf)の絶対値が50ppm/℃以下の値を示した。 (実施例2)主成分には化学的に高純度のBaO、Ti
2、Nd23、及びBi23を用い、実施例1と同様
の方法により各種の仮焼粉を得た。
Regarding the microwave characteristics, the dielectric constant (ε) was 50 or more, the unloaded Q value was 200 or more, and the absolute value of the temperature coefficient (τ f ) of the resonance frequency was 50 ppm / ° C. or less. (Example 2) Mainly chemically pure BaO and Ti are used as main components.
Using O 2 , Nd 2 O 3 and Bi 2 O 3 , various calcined powders were obtained by the same method as in Example 1.

【0019】他方、副成分には高純度のPbO、V
25、B23、SiO2を用い、表2に示した比率で秤
量し、実施例1と同様の方法により各種のガラスを得
た。なおガラスの軟化点は400〜700℃であった。
実施例1と同様の方法で、焼結体を作製し、その焼結体
についてマイクロ波での誘電特性を同様に測定した。そ
の結果を表1の7〜23番に示す。
On the other hand, the secondary components include high-purity PbO and V.
2 O 5 , B 2 O 3 and SiO 2 were used and weighed in the ratios shown in Table 2 and various glasses were obtained in the same manner as in Example 1. The softening point of the glass was 400 to 700 ° C.
A sintered body was prepared in the same manner as in Example 1, and the dielectric characteristics of the sintered body were also measured by microwave. The results are shown in Nos. 7 to 23 of Table 1.

【0020】表1の7〜23番に示したように、本実施
例の組成物は、微粉砕およびガラスを添加したことによ
り、950℃以下の低温で緻密に焼結した。ガラス添加
量が多いほど低温焼成化に効果があった。また、粒子径
が小さくなるほど焼結性は向上した。
As shown in Nos. 7 to 23 of Table 1, the composition of this example was finely pulverized and glass was added, whereby it was densely sintered at a low temperature of 950 ° C. or lower. The larger the amount of glass added, the more effective the low temperature baking was. In addition, the smaller the particle size, the better the sinterability.

【0021】マイクロ波特性は、誘電率(ε)が50以
上、無負荷Q値が200以上、かつ共振周波数の温度係
数(τf)の絶対値が50ppm/℃以下の値を示した。特
に、0.65PbO−0.10V25−0.20B23
−0.05SiO2(重量比)のガラスを用いたNo.
11の組成物は、900℃の焼成温度において、誘電率
は81、無負荷Q値は720(共振周波数f0=3.3GH
z)、共振周波数の温度係数は+3ppm/℃と優れたマイ
クロ波誘電特性を示した。図1(a)〜(c)はマイク
ロ波特性の焼成温度による影響について示したグラフで
あるが、875℃および925℃の焼成温度に対しても
これらのマイクロ波特性はほぼ同じ値が得られた。すな
わち、焼成温度に対して安定した特性が得られるため、
誘電体磁器の量産に適した磁器組成物であるといえる。
また比較例として、No.11の組成と主成分が同じで
ある組成物にV成分を含まないPb系ガラス(0.75
PbO+0.20B23+0.05SiO2(重量比)
)を20重量%添加して作製した誘電体磁器について
も図示した。この誘電体磁器の誘電率(ε)および無負
荷Q値は共に実施例と同様高い値が得られた。しかしな
がら、875℃で密度が最高値を示したにも関わらず、
焼成温度に対して誘電率および共振周波数の温度係数
(τf)が大きく変動した。このような場合、同じロッ
トにおいても炉内の温度ばらつきによって特性の異なっ
た磁器が得られることになるため好ましくない。以上の
ことから本実施例のV成分が特性の安定化に大きく寄与
していることは明らかである。
Regarding the microwave characteristics, the dielectric constant (ε) was 50 or more, the unloaded Q value was 200 or more, and the absolute value of the temperature coefficient (τ f ) of the resonance frequency was 50 ppm / ° C. or less. In particular, 0.65PbO-0.10V 2 O 5 -0.20B 2 O 3
No. using glass of −0.05 SiO 2 (weight ratio).
The composition of No. 11 had a dielectric constant of 81 and an unloaded Q value of 720 (resonance frequency f 0 = 3.3 GH) at a firing temperature of 900 ° C.
z), the temperature coefficient of the resonance frequency was +3 ppm / ° C, indicating excellent microwave dielectric characteristics. 1 (a) to 1 (c) are graphs showing the influence of the firing temperature on the microwave characteristics, but these microwave characteristics have almost the same values even at the firing temperatures of 875 ° C. and 925 ° C. Was obtained. That is, since stable characteristics can be obtained with respect to the firing temperature,
It can be said that the porcelain composition is suitable for mass production of dielectric porcelain.
As a comparative example, No. The composition of which the main component is the same as that of Pb-based glass (0.75)
PbO + 0.20B 2 O 3 + 0.05SiO 2 (weight ratio)
) Is also shown in the figure. The dielectric constant (ε) and the unloaded Q value of this dielectric ceramic were both high as in the example. However, despite the highest density at 875 ° C,
The temperature coefficient (τ f ) of the dielectric constant and the resonance frequency fluctuated greatly with the firing temperature. In such a case, even in the same lot, porcelain having different characteristics can be obtained due to temperature variation in the furnace, which is not preferable. From the above, it is clear that the V component of this example greatly contributes to the stabilization of the characteristics.

【0022】一方、PbO組成比が40重量%より小さ
いガラスを添加した場合や、微粉砕を行わず平均粒子径
が0.8μm以上の場合、焼結温度が950℃以上と高
くなった。また、仮焼粉のみを予め平均粒子径が0.8
μm以下となるように微粉砕し、その後に平均粒子径が
2〜5μmのガラスを添加して混合した場合や、平均粒
子径が2〜5μmの仮焼粉に、平均粒子径0.8μm以下
のガラスを添加して混合した場合においても、焼結温度
は950℃以上を示した。すなわち仮焼粉とガラスの両
成分を微粉砕しなければ焼結温度の大きな低下は望めな
いのである。これらはAgを内部導体としたデバイスへ
の適用が困難となる。また、PbO組成比が85重量%
より大きい副成分の添加や、30重量%を越えた副成分
の添加は、焼結温度は800℃以下にまで低下するもの
もあったが、無負荷Q値が200以下となり実用的でな
いと判断した。
On the other hand, when glass having a PbO composition ratio of less than 40% by weight was added, or when fine pulverization was not carried out and the average particle diameter was 0.8 μm or more, the sintering temperature was as high as 950 ° C. or more. Also, only the calcined powder had an average particle size of 0.8
Finely pulverized to a particle size of less than or equal to μm, and then added and mixed with glass having an average particle size of 2 to 5 μm, or a calcined powder having an average particle size of 2 to 5 μm, and an average particle size of 0.8 μm or less Even when the above glass was added and mixed, the sintering temperature was 950 ° C. or higher. That is, a large decrease in the sintering temperature cannot be expected unless both the calcined powder and glass components are finely pulverized. It is difficult to apply these to devices using Ag as an internal conductor. Further, the PbO composition ratio is 85% by weight.
Although the addition of larger subcomponents or the addition of subcomponents exceeding 30% by weight sometimes lowered the sintering temperature to 800 ° C or lower, the unloaded Q value was 200 or lower, and it was judged to be impractical. did.

【0023】(実施例3)誘電体磁器組成物として、表
1に示した試料番号3番、10番、および19番を選
び、これらにMn成分としてMn34を表3に示す種々
の量添加した。焼結体の作製、および特性の評価は実施
例1と同様の方法により行なった。結果を表3に示す。
(Example 3) As the dielectric ceramic composition, sample Nos. 3, 10 and 19 shown in Table 1 were selected, and Mn 3 O 4 was added to these as various Mn components as shown in Table 3. Amount was added. The production of the sintered body and the evaluation of the properties were performed by the same method as in Example 1. The results are shown in Table 3.

【0024】[0024]

【表3】 [Table 3]

【0025】表3に示したように、本実施例の組成物
は、焼結温度を低下させ、かつ無負荷Q値を向上させ
た。比較例では、無添加のときより誘電率、無負荷Q値
を大きく低下させ、温度特性τfをプラス側に大きくシ
フトさせた。
As shown in Table 3, the composition of this example lowered the sintering temperature and improved the unloaded Q value. In the comparative example, the dielectric constant and the no-load Q value were greatly reduced and the temperature characteristic τ f was significantly shifted to the positive side as compared with the case of no addition.

【0026】(実施例4)誘電体磁器組成物として、表
1に示した試料番号3番、10番、および19番を選
び、これらにW成分としてWO3を表4に示す種々の量
添加した。焼結体の作製、および特性の評価は実施例1
と同様の方法により行なった。結果を表4に示す。
Example 4 As the dielectric ceramic composition, sample Nos. 3, 10 and 19 shown in Table 1 were selected, and WO 3 was added as a W component in various amounts shown in Table 4. did. The production of the sintered body and the evaluation of the properties are performed in Example 1.
The same method was used. The results are shown in Table 4.

【0027】[0027]

【表4】 [Table 4]

【0028】表4に示したように、本実施例の組成物
は、焼成温度を低下させ、かつ無負荷Q値を向上させ
た。比較例では、誘電率と無負荷Q値を大きく低下させ
た。 (参考例)上記実施例の磁器を用いて、積層型のマイク
ロ波デバイスとして、ストリップライン導体を誘電体層
で挟み、シールド導体と結合用のキャパシタを内蔵した
構造をもつ誘電体共振器を作製した。図2は本発明の一
実施例の誘電体磁器を用いた共振器の構成を示す斜視図
である。図3は図2のI−I線断面図、図4は図2のII
−II線断面図である。図5(a)は図3のIII−II
I線断面図、図5(b)は図3のIV−IV線断面図、
図5(c)は図3のV−V線断面図であり、内層導体
2、3、4の導体印刷パターンと外部電極5、6、7の
配置を示す。以下、その作製法について述べる。
As shown in Table 4, the composition of this example lowered the firing temperature and improved the unloaded Q value. In the comparative example, the dielectric constant and the unloaded Q value were greatly reduced. Reference Example Using the porcelain of the above-mentioned example, a dielectric resonator having a structure in which a stripline conductor is sandwiched between dielectric layers and a shield conductor and a coupling capacitor are built in is manufactured as a laminated microwave device. did. FIG. 2 is a perspective view showing the structure of a resonator using a dielectric ceramic according to an embodiment of the present invention. 3 is a cross-sectional view taken along the line II of FIG. 2, and FIG. 4 is II of FIG.
It is a II sectional view. FIG. 5A is III-II of FIG.
5 is a sectional view taken along line I, and FIG. 5B is a sectional view taken along line IV-IV in FIG.
FIG. 5C is a cross-sectional view taken along the line VV of FIG. 3, and shows the conductor print pattern of the inner layer conductors 2, 3, 4 and the arrangement of the outer electrodes 5, 6, 7. The manufacturing method will be described below.

【0029】誘電体磁器には表1の4番、11番、表3
の26番、および表4の48番の組成物を用いて製造し
たものを用いた。これら各々の組成物に有機バインダ、
溶剤、分散剤および可塑剤を加え、混合して得たスラリ
ーをドクターブレード法によりシート化した。導体金属
にはAgを用い、ビヒクルと共に混練しペースト化し
た。なお、図5(b)のストリップライン3の長さは1
3mmである。
Dielectric porcelain has No. 4, No. 11 and No. 3 in Table 1.
No. 26 of No. 26 and the composition of No. 48 of Table 4 were used. Organic binder in each of these compositions,
A solvent, a dispersant and a plasticizer were added and mixed to obtain a slurry, which was formed into a sheet by a doctor blade method. Ag was used as the conductor metal and kneaded with the vehicle to form a paste. The length of the strip line 3 in FIG. 5B is 1
It is 3 mm.

【0030】次に、積層・印刷工程では、まず、シート
を複数枚積層した後、図5(c)の導体パターン2を印
刷し、その上面にシートを複数枚積層し、図5(b)の
導体パターン3を印刷、さらに、シートを複数枚積層
し、図5(a)の導体パターン4を印刷、そしてシート
を複数枚積層後、熱プレスにより圧着した。個々の素子
に切断後、空気中、700℃で熱処理してバインダを飛
散させ、その後875〜925℃で焼成を行った。そし
て、外部電極として市販のCuペーストをN2で焼付
け、積層型の誘電体共振器を得た。焼成後のストリップ
ラインの長さは11.4mmから11.5mmであった。各
々の誘電体磁器に対し素子を10個ずつ作製し、特性は
その平均を用いた。表5に得られた共振器の共振周波数
とQ値を示す。
Next, in the laminating / printing step, first, after laminating a plurality of sheets, the conductor pattern 2 of FIG. 5 (c) is printed, and a plurality of sheets are laminated on the upper surface of the conductor pattern 2. The conductor pattern 3 was printed, a plurality of sheets were further laminated, the conductor pattern 4 of FIG. 5A was printed, and a plurality of sheets were laminated and then pressure-bonded by a hot press. After cutting into individual elements, heat treatment was performed at 700 ° C. in air to scatter the binder, and then firing was performed at 875 to 925 ° C. Then, a commercially available Cu paste was baked as an external electrode with N 2 to obtain a laminated dielectric resonator. The length of the stripline after firing was 11.4 mm to 11.5 mm. Ten elements were produced for each dielectric ceramic, and the average was used for the characteristics. Table 5 shows the resonance frequency and Q value of the obtained resonator.

【0031】[0031]

【表5】 [Table 5]

【0032】表5に示したように、共振周波数はいずれ
も750MHz前後であり、Q値は、150以上と高く、
優れたものであった。したがって、本実施例の誘電体磁
器は内部導体にAgが適用できることがわかった。しか
も高い誘電率を有するので、より小型の共振器系部品を
形成することができるという利点がある。
As shown in Table 5, the resonance frequencies are all around 750 MHz, the Q value is as high as 150 or more,
It was excellent. Therefore, it was found that Ag can be applied to the inner conductor of the dielectric ceramics of this example. Moreover, since it has a high dielectric constant, there is an advantage that a smaller resonator system component can be formed.

【0033】なお、ストリップラインを曲線型や、ステ
ップ型にすることで、より小型の共振デバイスを得るこ
とも可能である。また、これらを複数個とキャパシタ等
を組み合わせることにより、バンドパスフィルタ等を得
ることも可能である。
It is also possible to obtain a smaller resonant device by making the strip line a curved type or a step type. It is also possible to obtain a bandpass filter or the like by combining a plurality of these with a capacitor or the like.

【0034】[0034]

【発明の効果】以上説明した通り、本発明の誘電体磁器
組成物によれば、主成分として前記式(化1)で示され
る仮焼した組成物と、副成分として前記式(化2)で表
されるPbO−V25−B23−SiO2系ガラスを5
〜30重量%含み、前記主成分及び副成分が平均粒子径
0.2〜0.8μmの微粉末であることにより、950
℃以下の空気中、およびN2中等の低い酸素分圧下であ
っても緻密に焼結し、2〜6GHzのマイクロ波領域で、
誘電率が50以上、Q値が200以上、共振周波数の温
度係数の絶対値が50ppm/℃以下と優れた特性を示す
誘電体磁器を製造できる。またPb成分及びV成分を添
加しても焼成温度に対し安定した特性が得られる。また
主成分として0.01〜20重量%のBi23成分を添
加すると、焼結性が向上し、低温焼成が可能となる。ま
た、副成分として0.05〜3.0重量%のMn成分を
添加すると、焼結性が向上し、低温焼成が可能となる。
また、副成分として0.01〜4.0重量%のW成分を
添加すると、同様に焼結性が向上し、低温焼成が可能と
なる。
As described above, according to the dielectric ceramic composition of the present invention, the calcined composition represented by the formula (Formula 1) as the main component and the formula (Formula 2) as the auxiliary component. 5 PbO-V 2 O 5 -B 2 O 3 -SiO 2 based glass represented in
-30% by weight, and the main component and subcomponents are fine powders having an average particle diameter of 0.2 to 0.8 μm,
In the air below ℃, and even under low oxygen partial pressure such as in N 2 etc. , it sinters densely, and in the microwave region of 2 to 6 GHz,
It is possible to manufacture a dielectric ceramic exhibiting excellent properties such as a dielectric constant of 50 or more, a Q value of 200 or more, and an absolute value of the temperature coefficient of resonance frequency of 50 ppm / ° C. or less. Even if the Pb component and V component are added, stable characteristics with respect to the firing temperature can be obtained. Further, when 0.01 to 20% by weight of Bi 2 O 3 component is added as a main component, sinterability is improved and low temperature firing becomes possible. Further, when 0.05 to 3.0% by weight of Mn component is added as an accessory component, sinterability is improved and low temperature firing becomes possible.
Further, when 0.01 to 4.0% by weight of the W component is added as an auxiliary component, the sinterability is similarly improved and low temperature firing becomes possible.

【0035】従って、本発明の組成物により製造した誘
電体磁器を積層型マイクロ波デバイスに用いれば、共振
系素子の小型化、高機能化が可能となる。
Therefore, when the dielectric ceramic produced by the composition of the present invention is used in a laminated microwave device, it is possible to downsize the resonance system element and improve its function.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で製造した誘電体磁器の焼成
温度とマイクロ波特性(誘電率、無負荷Q値、共振周波
数の温度係数)の関係を表すグラフ。
FIG. 1 is a graph showing a relationship between a firing temperature and a microwave characteristic (dielectric constant, unloaded Q value, temperature coefficient of resonance frequency) of a dielectric ceramic manufactured in one example of the present invention.

【図2】本発明の参考例の容量内蔵積層型誘電体共振器
の斜視図。
FIG. 2 is a perspective view of a multilayer dielectric resonator with a built-in capacitor according to a reference example of the present invention.

【図3】図2のI−I線断面図。FIG. 3 is a sectional view taken along line I-I of FIG.

【図4】図2のII−II線断面図。FIG. 4 is a sectional view taken along line II-II of FIG.

【図5】(a)〜(c)はそれぞれ図3のIII−II
I線断面図、IV−IV線断面図、V−V線断面図。
5 (a) to (c) are III-II of FIG. 3, respectively.
I line sectional view, IV-IV line sectional view, VV line sectional view.

【符号の説明】[Explanation of symbols]

1 誘電体層 2、3、4 内層導体 5、6、7 外部電極 1 Dielectric layer 2, 3, 4 inner layer conductor 5, 6, 7 External electrodes

フロントページの続き (56)参考文献 特開 平5−234420(JP,A) 特開 平2−263760(JP,A) 特開 昭53−74298(JP,A) 特開 平8−239263(JP,A) 特開 平6−239646(JP,A) 特開 平4−362061(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/50 CA(STN) REGISTRY(STN)Continuation of front page (56) Reference JP-A-5-234420 (JP, A) JP-A-2-263760 (JP, A) JP-A-53-74298 (JP, A) JP-A-8-239263 (JP , A) JP-A-6-239646 (JP, A) JP-A-4-362061 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C04B 35/42-35/50 CA (STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 主成分として下記式(化1)で示される
仮焼した組成物と、副成分として下記式(化2)で表さ
れるPbO−V25−B23−SiO2系ガラスを5〜
30重量%含み、前記主成分及び副成分が平均粒子径
0.2〜0.8μmの微粉末である誘電体磁器組成物。 【化1】 【化2】
1. A calcined composition represented by the following formula (Formula 1) as a main component, and PbO—V 2 O 5 —B 2 O 3 —SiO represented by the following formula (Formula 2) as an accessory component. 2 to 5 glass
A dielectric ceramic composition containing 30% by weight, wherein the main component and subcomponent are fine powders having an average particle size of 0.2 to 0.8 μm. [Chemical 1] [Chemical 2]
【請求項2】 主成分として0.01〜20重量%のB
23が添加された請求項1に記載の誘電体磁器組成
物。
2. 0.01 to 20% by weight of B as a main component
The dielectric ceramic composition according to claim 1, wherein i 2 O 3 is added.
【請求項3】 副成分として0.05〜3.0重量%の
Mn成分が添加された請求項1に記載の誘電体磁器組成
物。
3. The dielectric ceramic composition according to claim 1, wherein an Mn component of 0.05 to 3.0% by weight is added as an auxiliary component.
【請求項4】 副成分として0.01〜4.0重量%の
W(タングステン)成分が添加された請求項1に記載の
誘電体磁器組成物。
4. The dielectric ceramic composition according to claim 1, wherein 0.01 to 4.0% by weight of a W (tungsten) component is added as a subcomponent.
JP04304095A 1995-03-02 1995-03-02 Dielectric porcelain composition Expired - Fee Related JP3375450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04304095A JP3375450B2 (en) 1995-03-02 1995-03-02 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04304095A JP3375450B2 (en) 1995-03-02 1995-03-02 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH08239262A JPH08239262A (en) 1996-09-17
JP3375450B2 true JP3375450B2 (en) 2003-02-10

Family

ID=12652800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04304095A Expired - Fee Related JP3375450B2 (en) 1995-03-02 1995-03-02 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3375450B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143341A (en) * 1998-09-11 2000-05-23 Murata Mfg Co Ltd Dielectric ceramic composition and multilayer ceramic part
DE10043882B4 (en) 1999-09-07 2009-11-05 Murata Mfg. Co., Ltd., Nagaokakyo-shi Dielectric ceramic composition and monolithic ceramic component
CN105271783B (en) * 2015-10-21 2019-03-08 武汉理工大学 A kind of glass powder and preparation method thereof for 3D printing
CN114276718A (en) * 2022-01-21 2022-04-05 山东国瓷康立泰新材料科技有限公司 Effect powder for sinking ink and preparation method and application thereof

Also Published As

Publication number Publication date
JPH08239262A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
JP2000247735A (en) Production of low-temperature sintered ceramic composition
WO1997002221A1 (en) Dielectric porcelain, process for production thereof, and electronic parts produced therefrom
WO2007119494A1 (en) Dielectric ceramic composition
JP4392633B2 (en) DIELECTRIC CERAMIC COMPOSITION FOR MICROWAVE AND ITS MANUFACTURING METHOD
JP3375450B2 (en) Dielectric porcelain composition
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
JP3216967B2 (en) Low temperature fired dielectric porcelain and method of manufacturing the same
JPH05225826A (en) Dielectric porcelain composition and lamination type microwave device
JP3002613B2 (en) Dielectric porcelain composition for producing dielectric resonator or filter for microwave, method for producing the same, dielectric resonator or filter for microwave obtained using the dielectric porcelain composition, and method for producing the same
JP2781503B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
WO2004103929A1 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP3870015B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP3193157B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
EP0869514B1 (en) A method for manufacturing a dielectric ceramic composition, dielectric ceramic and multilayer high frequency device
JP3597244B2 (en) Dielectric porcelain composition
JP3329014B2 (en) Dielectric porcelain composition
JP4006655B2 (en) Dielectric porcelain composition for microwave
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JPH0959062A (en) Conductor ceramic composition, its production and laminate-type high-frequency device
JP3321980B2 (en) Dielectric porcelain composition and laminated dielectric component using this dielectric porcelain composition
JP2003238241A (en) Method of producing glass ceramics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees