JP4219628B2 - プラズマ処理装置および基板載置台 - Google Patents

プラズマ処理装置および基板載置台 Download PDF

Info

Publication number
JP4219628B2
JP4219628B2 JP2002199102A JP2002199102A JP4219628B2 JP 4219628 B2 JP4219628 B2 JP 4219628B2 JP 2002199102 A JP2002199102 A JP 2002199102A JP 2002199102 A JP2002199102 A JP 2002199102A JP 4219628 B2 JP4219628 B2 JP 4219628B2
Authority
JP
Japan
Prior art keywords
substrate
mounting table
electrode
exposed
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002199102A
Other languages
English (en)
Other versions
JP2003124201A (ja
Inventor
八城 飯塚
太郎 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002199102A priority Critical patent/JP4219628B2/ja
Priority to KR1020047001126A priority patent/KR100540052B1/ko
Priority to US10/484,430 priority patent/US7513954B2/en
Priority to PCT/JP2002/007507 priority patent/WO2003010809A1/ja
Publication of JP2003124201A publication Critical patent/JP2003124201A/ja
Application granted granted Critical
Publication of JP4219628B2 publication Critical patent/JP4219628B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32697Electrostatic control
    • H01J37/32706Polarising the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ処理装置およびそれに用いられる基板載置台に関する。
【0002】
【従来の技術】
半導体製造工程においては、被処理体である半導体ウエハ(以下、単にウエハと記す)にプラズマを用いてエッチング、CVD成膜等の所定の処理を施すプラズマ処理装置が利用されている。このようなプラズマ処理装置においては、真空の処理容器内に設けられた載置台または下部電極上にウエハを載置し、処理容器内にプラズマを発生させ、このプラズマによってウエハ表面に所定のプラズマ処理を施すようにしている。
【0003】
上記のプラズマ処理装置において、ウエハを載置する載置台またはその中に埋設された下部電極に高周波電力を印加することにより載置台または下部電極に負の自己バイアス電圧(VDC)を生じさせ、この自己バイアス電圧によりプラズマ中のイオンをウエハに引き込んでプラズマ処理を促進する技術が知られている。この場合、自己バイアス電圧はウエハに入射するイオンの角度、エネルギ等を大きく左右し、例えばプラズマエッチングを行う場合には、自己バイアス電圧が大きすぎるとウエハ表面がダメージを受ける等の不都合が生じ、小さすぎるとイオンの作用が不十分となる。したがって、プラズマ処理を適切に行うためには、プラズマ処理中の自己バイアス電圧を検出し、その大きさを調節することが望ましい。
【0004】
このため、特開平8−335567号公報には、ウエハが載置される下部電極と、ウエハ周辺にこの下部電極と導通した測定電極とを有し、下部電極に高周波電力を給電する給電経路において自己バイアス電圧を測定する技術が開示されている。
【0005】
【発明が解決しようとする課題】
しかし、高周波電力が印加される電極の表面を絶縁体で被覆した構造の載置台を用いる場合には、上記公報のように高周波電力が印加される電極の給電経路において自己バイアス電圧を測定することは困難であり、絶縁体に亀裂等が生じて電極がプラズマに露出した場合に初めて自己バイアス電圧が検出される。したがって、このような載置台を用いる場合、自己バイアス電圧は絶縁体に亀裂等が生じたことを示すインターロック的に使用されているに過ぎないのが現状である。
【0006】
本発明は、かかる事情に鑑みてなされたものであって、表面が絶縁体で被覆された構造の載置台を用いつつ、プラズマ処理中にその中の高周波電極の自己バイアス電圧を測定することが可能なプラズマ処理装置を提供することを目的とする。また、その表面が絶縁体で被覆され、かつ、プラズマ処理中にその中の高周波電極の自己バイアス電圧を測定することが可能な基板載置台を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明の第1の観点では、被処理基板を収容して処理ガスのプラズマで処理する処理容器と、前記処理容器内に設けられ、かつ、少なくとも表面部分が絶縁体部材で構成された、被処理基板が載置される基板載置台と、前記処理容器内に処理ガスを供給するガス供給手段と、前記基板載置台に高周波電力を印加する高周波電源と、前記基板載置台に設けられ、前記高周波電源と接続された高周波電極と、前記基板載置台に露出して設けられ、前記高周波電極と接続された露出電極とを具備し、前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とするプラズマ処理装置を提供する。
【0008】
また、本発明の第2の観点では、被処理基板を収容して処理ガスのプラズマで処理する処理容器と、前記処理容器内に設けられ、かつ、少なくとも表面部分が絶縁体部材で構成された、被処理基板が載置される基板載置台と、前記処理容器内に処理ガスを供給するガス供給手段と、前記基板載置台に高周波電力を印加する高周波電源と、前記基板載置台に設けられ、前記高周波電源と接続された高周波電極と、前記基板載置台に露出して設けられ、前記高周波電極と接続された露出電極と、前記処理容器内に形成されたプラズマから前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路とを具備し、前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とするプラズマ処理装置を提供する。
【0009】
また、本発明の第3の観点では、被処理基板を収容して処理ガスのプラズマで処理する処理容器と、前記処理容器内に設けられ、かつ、少なくとも表面部分が絶縁体部材で構成された、被処理基板が載置される基板載置台と、前記処理容器内に処理ガスを供給するガス供給手段と、前記処理容器内に誘導電磁界を形成するアンテナと、前記アンテナに高周波電力を供給する第1の高周波電源と、前記基板載置台に高周波電力を印加する第2の高周波電源と、前記基板載置台に設けられ、前記第2の高周波電源と接続された高周波電極と、前記基板載置台に露出して設けられ、前記高周波電極と接続された露出電極と、前記処理容器内に形成されたプラズマから前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路とを具備し、前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とするプラズマ処理装置を提供する。
【0010】
また、本発明の第4の観点では、被処理基板にプラズマ処理を施す際に被処理基板が載置される、少なくとも表面部分が絶縁体部材で構成された基板載置台であって、高周波電力が印加される高周波電極と、前記高周波電極と接続され、露出して設けられた露出電極とを具備し、前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とする基板載置台を提供する。
【0011】
また、本発明の第5の観点では、被処理基板にプラズマ処理を施す際に被処理基板が載置される、少なくとも表面部分が絶縁体部材で構成された基板載置台であって、高周波電力が印加される高周波電極と、前記高周波電極と接続され、露出して設けられた露出電極と、被処理基板にプラズマ処理を施す際にプラズマから前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路と
を具備し、前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とする基板載置台を提供する。
【0012】
以上のような構成の本発明によれば、高周波電極と接続され、露出して設けられた露出電極を具備するので、表面部分が絶縁体の基板載置台上に載置された被処理基板にプラズマ処理を施す際に、プラズマと前記露出電極とを接触させることができ、高周波電極の自己バイアス電圧を測定することができる。具体的には、容器内に生成されたプラズマから前記露出電極を介して流れる電流から高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路を具備することにより、プラズマから前記露出電極を介して流れる電流からプラズマの自己バイアス電圧を測定することができる。
【0013】
本発明において、前記基板載置台に載置された被処理基板の上方位置と前記露出電極とを繋ぐ導体と、この導体を保護する保護カバーとを有する着脱自在の測定治具をさらに具備し、前記自己バイアス電圧測定回路が、前記処理容器内に形成されたプラズマから前記導体および前記露出電極を介して流れる電流に基づいて高周波電極の自己バイアス電圧を測定するものとすることにより、被処理基板の存在位置におけるプラズマから自己バイアス電圧を測定することができ、測定精度をより高くすることができるとともに、その計測値を基準となる自己バイアス電圧値とすることができる。
【0014】
また、前記露出電極は、処理装置内に露出されていればよいが、プラズマの基板へのダメージ等を考慮して基板周辺に配置し、その表面が前記載置台の表面と面一またはそれよりも奥まった位置に設けられていることが好ましい。特に、前記露出電極の表面を前記載置台の表面よりも奥まった位置に設けた場合には、プラズマ処理中に前記露出電極にスパッタが集中することを防止することができるのでより好ましい。
【0015】
さらに、前記露出電極は、Ti,SiC,W,Co,Cu,NiおよびTaのうちいずれか1種からなることが好ましい。例えば、次工程でTi,W,Co,Cu,NiおよびTaのいずれかを含む膜を成膜する場合には、それと同じ金属で前記露出電極を構成することにより、前記露出電極がスパッタされることにより被処理基板へ与える不純物汚染等の悪影響を低減することができる。また、SiCで前記露出電極を構成した場合にはSiがスパッタされるが、被処理基板がシリコンウエハの場合にはSi上にスパッタされたSiが堆積することになるので重大な問題とはならない。
【0016】
さらにまた、前記露出電極は、前記基板載置台に載置された被処理基板の外縁部よりも外側に設けられていることが好ましい。さらにまた、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることが好ましい。これにより、前記露出電極の存在によって被処理基板の処理が面内不均一となることを防止することができる。なお、前記露出電極は、前記載置台の被処理基板が載置される上面側に設けることが好ましいが、これに限らず載置台の側面または下面側等、高周波電極の自己バイアス電圧を測ることができる可能性があれば設ける位置は問わない。
【0017】
さらにまた、前記載置台に設けられ、前記基板載置台に載置された被処理基板を加熱する、表面が絶縁体で被覆された発熱体をさらに具備することが好ましく、この場合には前記高周波電極および前記発熱体は、いずれも前記絶縁体部材に埋設された構成とすることができる。
【0018】
【発明の実施の形態】
以下、添付図面を参照して、本発明の実施の形態について説明する。
図1は、本発明の一実施形態に係るプリクリーニング装置を備えたメタル成膜システムを示す概略構成図である。このメタル成膜システム1は、中央に搬送室10が配置され、その周囲に2つのカセットチャンバー11,12,脱ガス用チャンバー13、Ti成膜装置14、本実施形態に係るプリクリーニング装置15、TiN成膜装置16、Al成膜装置17および冷却チャンバー18が設けられたマルチチャンバータイプである。
【0019】
このようなメタル成膜システム1においては、コンタクトホールまたはビアホールが形成された半導体ウエハ(以下、単にウエハという。)Wにバリア層を形成し、その上からAl(アルミニウム)をホール内に埋め込みAl層を形成してAl配線の形成を行う。具体的には、まず搬送アーム19により、カセットチャンバー11からウエハWを一枚取り出し、プリクリーニング装置15に装入してエッチングを行いウエハWの表面に形成されている自然酸化膜を除去する。次に、搬送アーム19によりウエハWを脱ガス用チャンバー13に装入してウエハWの脱ガスを行う。その後、ウエハWをTi成膜装置14に装入してTi膜の成膜を行い、さらにTiN成膜装置16に装入してTiNの成膜を行ってバリア層を形成する。次いで、Al成膜装置17でAl層を形成する。ここまでで所定の成膜は終了し、その後ウエハWは冷却チャンバー18で冷却され、カセットチャンバー12に収容される。
【0020】
このようにして、例えば、層間絶縁膜にパターン形成して不純物拡散領域に貫通するコンタクトホールが形成されたウエハW上に、この不純物拡散領域および層間絶縁膜上に形成されたバリア層と、このバリア層上に形成され、不純物拡散領域と導通する金属層とを有するデバイスが製造される。
【0021】
次に、上記メタル成膜システム1に搭載されている本発明の一実施形態に係るプリクリーニング装置15について詳細に説明する。図2は、プリクリーニング装置15を示す概略断面図である。図2に示すように、プリクリーニング装置15は、上部の開口した有底円筒状のチャンバー21と、チャンバー21の上方に後述するガス供給部45およびガスケット46を介して連続的に設けられた有蓋円筒状のベルジャー22とからなる処理容器20を有している。
【0022】
チャンバー21内には、その上部で被処理体であるウエハWを水平に支持するためのサセプタ(基板載置台)23が、円筒状の支持部材32に支持された状態で配置されている。このサセプタ23は、AlN、Al等のセラミックスのような絶縁体からなるサセプタ本体(絶縁体部材)27中に、バイアス電圧を印加する下部電極25と、W,Mo等からなる発熱体26とが埋設されて構成されており、サセプタ本体27と発熱体26とでセラミックヒーターを構成している。発熱体26には直流の電源41が接続されており、電源41から給電することにより発熱体26を加熱状態として、ウエハWを所定の温度に加熱することができる。
【0023】
サセプタ23の上方には、サセプタ23に載置されたウエハWのエッジを覆うように、石英、AlN等の誘電体からなる環状のシャドウリング30が設けられている。このシャドウリング30は、その下面に接続された支持柱33を介して環状部材34に連結されており、環状部材34には棒状の接続部材36を介して昇降機構37が接続されている。この昇降機構37によって接続部材36を昇降させることにより、環状部材34、支持柱33およびシャドウリング30を一体的に昇降させることが可能である。また、接続部材36の周囲はベローズ35により囲繞されており、接続部材36の近傍から内部への大気の浸入が防止されている。このシャドウリング30は、ウエハWのエッジをマスクするとともに、ウエハW表面上に均一な密度のプラズマを形成するためのフォーカスリングとしての機能をも有している。このシャドウリング30は、チャンバー21内にウエハWを搬入し、サセプタ23を貫通して上下駆動するウエハ支持ピン(図示せず)上に受け渡す際には所定位置まで上昇され、前記ウエハ支持ピン上にウエハWが受け渡された後にウエハWをサセプタ23上に載置する際には、前記ウエハ支持ピンとともに下降される。
【0024】
チャンバー21とベルジャー22の間には、環状のガス供給部45およびガスケット46が設けられており、このガス供給部45内側の全周にわたって形成されたガス吐出孔より、ガス供給機構60から供給されるガスが処理容器20内に供給される。ガス供給機構60は、Arガスを供給するArガス供給源61、および、Hガスを供給するHガス供給源62を有している。Arガス供給源61には、ガスライン63が接続され、このガスライン63上にマスフローコントローラ67とその前後の開閉バルブ65,69とが設けられている。また、Hガス供給源62にはガスライン64が接続され、このガスライン64上にマスフローコントローラ68とその前後の開閉バルブ66,70とが設けられている。これらガスライン63,64はガスライン71に接続され、このガスライン71がガス供給部45と接続されている。
【0025】
ベルジャー22は、例えば石英やセラミックス材料等の電気絶縁材料で形成されており、その外側にはプラズマ発生手段としてのコイル42が巻回されている。コイル42には、例えば450kHzの周波数を有する高周波電源44が整合器43を介して接続され、この高周波電源44から整合器43を介してコイル42に高周波電力を供給することにより、電気絶縁材料を介してベルジャー22内に誘導電磁界が形成され、これにより上記ガス供給機構60から供給されたガスのプラズマが生成するようになっている。
【0026】
上記下部電極25には、例えば13.56MHzの周波数を有する高周波電源39が整合器38を介して接続されており、上記のようにプラズマを生成した状態で、この高周波電源39から下部電極25に高周波電力を供給することにより、下部電極25に所定のバイアス電圧が生じ、これによりウエハWにイオンが引き込まれるように構成されている。図3は、整合器38の回路図である。この整合器38は、下部電極25および高周波電源39の間に介在して下部電極25を浮遊電位とするブロッキングコンデンサ81と、このブロッキングコンデンサ81の下部電極25側の端子に一端が接続され、下部電極25からの電流より直流成分を取り出すコイル82と、このコイル82の他端に接続された抵抗83およびコンデンサ84と、抵抗83に接続された電圧計85とを有している。コンデンサ84の他端は接地されている。このような構成により、整合器38は、高周波電源39からの高周波電力をブロッキングコンデンサ81を介して下部電極25に供給するとともに、下部電極25からの電流に含まれる直流電流の電圧を電圧計85によって測定し、その測定結果が表示装置40に出力されるようになっている。
【0027】
チャンバー21の底壁には、排気管50が接続されており、この排気管50には真空ポンプを含む排気装置51が接続されている。この排気装置51を作動させることにより、処理容器20内は所定の真空度に維持可能になっている。
【0028】
さらに、チャンバー21の側壁は開口47を有しており、チャンバー21の外側の開口47と対応する位置にはゲートバルブ48が設けられ、このゲートバルブ48を開にした状態でウエハWが隣接するロードロック室(図示せず)とチャンバー21内との間で搬送されるようになっている。
【0029】
次に、上記サセプタ23およびその近傍の構造について詳細に説明する。図4は、上記サセプタ23およびその近傍を拡大して示す断面図であり、図5は平面図である。これらに示すように、サセプタ本体27の上面にはウエハWと略同型に凹部24が形成されており、この凹部24にウエハWが載置されるようになっている。この凹部24の下方にメッシュ状に形成された円盤状の下部電極25が埋設され、さらにこの下部電極25の下方に発熱体26が埋設されている。また、サセプタ本体27表面の凹部24周辺には、下部電極25に達する孔部28が、凹部24と略同心円上に等間隔で4箇所に設けられており、これら4箇所の孔部28にはそれぞれ例えばTiのような金属からなる露出電極29が下部電極25と導通するように配設されている(図4参照)。この露出電極29は下部電極25の自己バイアス電圧を測定するために設けられている。そして、プラズマからこの露出電極29を介して整合器38に至る自己バイアス電圧測定回路90が形成されている。この自己バイアス電圧測定回路90については後述する。
【0030】
露出電極29は、その上面がサセプタ本体27の上面よりも低くなるように配置されている。このようにすることで露出電極29がスパッタされることが抑制され、ウエハWの汚染が防止される。なお、露出電極29の上面がサセプタ本体27の上面と面一であってもよい。また、孔部28の径は特に限定されるものではないが、小さすぎると後述するようにして自己バイアス電圧を測定することが困難となり、大きすぎるとスパッタされ、ウエハWが汚染されるので、0.1〜10mm径とすることが好ましい。より好ましくは0.5〜5mmである。露出電極29の形状は典型的には円形であるが、円形に限らず、矩形、三角形、楕円形等であってもよい。また、露出電極29の位置はサセプタ本体27の上面に限らず、サセプタ本体27の側面や下面であってもよいし、支持部材32の側面であってもよい。
【0031】
また、前記シャドウリング30のサセプタ23に形成された孔部28と対応する位置には、上下に貫通する貫通孔31が設けられており、この貫通孔31を介して孔部28内の露出電極29が処理容器20内のプラズマにさらされるようになっている。
【0032】
なお、シャドウリング30の位置決め精度が必ずしも高くない場合には、シャドウリング30の貫通孔31と露出電極29の位置がずれて、正確に自己バイアス電圧を測定し得ないおそれがある。このようなことを回避するためには、図6に示すように、露出電極29の代わりに、孔部28の上部で孔部28よりも広くなるような頂部を有する露出電極29′を設け、シャドウリング30の貫通孔31の下に露出電極29′よりも幅広の座繰り部31aを設けることが好ましい。これにより、シャドウリング30の位置が多少ずれても貫通孔の下に必ず露出電極29′が存在する状態とすることができ、シャドウリング30の位置が多少ずれても、精度良く自己バイアス電圧を測定することができる。
【0033】
次に、このように構成されるプリクリーニング装置15によりウエハW上に形成された自然酸化膜をエッチング除去する際の動作について説明する。
まず、ゲートバルブ48を開にして、メタル成膜システム1の搬送室10に設けられた搬送アーム19によりチャンバー21内にウエハWを装入し、シャドウリング30を上昇させた状態でサセプタ23から突出させたウエハ支持ピン(図示せず)上にウエハWを受け渡す。次いで、前記ウエハ支持ピンおよびシャドウリング30を下降させ、ウエハWをサセプタ23上に載置し、シャドウリング30でウエハWの外周縁部をマスクする。その後、ゲートバルブ48を閉にして、排気装置51により処理容器20内を排気して所定の減圧状態にし、この減圧状態でArガス供給源61およびHガス供給源62から処理容器20内に所定流量でArガスおよびHガスを導入しつつ、高周波電源44からコイル42への高周波電力の供給を開始してベルジャー22内に誘導電磁界を形成して上記ガスのプラズマを生成させるとともに、高周波電源39からサセプタ23の下部電極25に高周波電力を供給し、その際に下部電極25に印加される自己バイアス電圧に基づいてプラズマ中のイオンがウエハWに引き込まれ、これによりウエハW上の自然酸化膜がエッチング除去される。このエッチングは、発熱体26によりウエハWを200〜500℃に加熱した状態で行う。
【0034】
この際に、自己バイアス電圧はウエハに入射するイオンの角度、エネルギ等を大きく左右し、自己バイアス電圧が大きすぎるとウエハ表面がダメージを受ける等の不都合が生じ、小さすぎるとイオンの作用が不十分となる。このため、本実施形態では、プラズマから露出電極29,29′を介して流れる電流に基づいて自己バイアス電圧測定回路90により下部電極25の自己バイアス電圧を測定する。
【0035】
図7は、プリクリーニング装置15によってプラズマエッチングを行っている際のプラズマ、サセプタ23、整合器38、および高周波電源39の等価回路を示す回路図であり、この回路が上記自己バイアス電圧測定回路90を構成する。図7に示すようにこの等価回路は、プラズマインピーダンスZpを有するプラズマ100と、プラズマ100と直列に接続され、サセプタ23とプラズマとの界面に形成されたプラズマシース101と、このプラズマシース101と直列に接続されたサセプタ23と、前述した整合器38および高周波電源39から構成されている。このプラズマシース101は、シース部分の容量を示すコンデンサ102と、この界面で電流の流れが制限されることを示すダイオード103と、シース部分でイオンが受ける抵抗を示す抵抗104とが並列に接続された回路として示されている。また、サセプタ23は、サセプタ本体27をプラズマおよび下部電極25で挟んで構成されるコンデンサ106と、露出電極29を示す抵抗107とが並列に接続された回路として示されている。
【0036】
以上のような構成において、プラズマシース101の抵抗104にはイオン電流Iionが流れ、サセプタ23においては電流の高周波成分はコンデンサ106を介して流れるとともに、コンデンサ106と並列に接続された露出電極29に対応する抵抗107には直流のイオン電流Iion-Expoが流れ、高周波成分と直流のイオン電流Iion-Expoとが混合した状態となる。このように高周波成分と直流のイオン電流Iion-Expoとが混合した電流は整合器38に至り、そのコイル82によって高周波成分がカットされて直流のイオン電流Iion-Expoが取り出され、電圧計85において露出電極29に生じた自己バイアス電圧VDCExpoが測定され、それが表示装置40に表示される。
【0037】
ここで、露出電極29上面の面積の合計をAとすると、Iion-Expo=enと表すことができる(ただし、nはプラズマシース端部のイオン濃度、uはイオンのボーム速度)。同様に、下部電極25の面積をAとして、下部電極25を流れる電流をIion-electrodeとすると、Iion-electrode=enと表すことができる。すなわち、Iion-electrode=(A/A)Iion-Expoである。一方、抵抗107の抵抗をrとし、抵抗83の抵抗値をRとすると、露出電極29に生じた自己バイアス電圧VDCExpoは、VDCExpo=(r+R)Iion-Expoと表すことができ、rに対してRを十分に大きな値とすればVDCExpo≒RIion-Expoと近似することができる。また、下部電極25に生じる自己バイアス電圧VDCelectrodeは、同様にVDCelectrode=RIion-electrodeと表すことができる。これらの関係から、VDCelectorode=R×(A/A)VDCExpo/R=(A/A)VDCExpoとなる。
【0038】
以上のようにして、自己バイアス電圧測定回路90により露出電極29に生じた自己バイアス電圧VDCExpoが測定され、その値が表示装置40に表示される。そして、表示されたVDCExpoの値に係数(A/A)を乗じることにより、下部電極25に生じた自己バイアス電圧VDCelectrodeをリアルタイムで求めることができる。もちろん、演算装置を介在させて自己バイアス電圧VDCelectrodeが直接表示されるようにしてもよい。
【0039】
このように本実施形態によれば、露出電極29を介して、プラズマを生成している際の下部電極25の自己バイアス電圧を測定することができる。したがって、測定された自己バイアス電圧が適正な値となるように高周波電源39の出力を設定することにより、ウエハWにダメージを与えることなく、プラズマを用いたプリクリーニングを適切に行うことができ、CoSi膜、WSi膜、W膜、Cu膜等の金属膜または金属シリサイド膜上の自然酸化膜を適切に除去することができる。
【0040】
この場合に、このようなプラズマを用いたプリクリーニングを行っている際に、リアルタイムで下部電極25の自己バイアス電圧を把握し、その値が適正な値となるように高周波電源39の出力を制御するようにすることもできるし、また、予めダミーウエハを用いてプリクリーニングの際の高周波電源の出力と下部電極の自己バイアス電圧との関係、および下部電極の自己バイアス電圧とエッチングレート等のエッチング性との関係を求めておき、この関係から、適正なエッチングを行うことができる適正な自己バイアス電圧を求め、そのような適正な自己バイアス電圧になるように高周波電源39の出力を設定して実際のプリクリーニング処理を行うようにしてもよい。このようにしてプリクリーニングすることにより、CoSi膜、WSi膜、W膜、Cu膜等の金属膜または金属シリサイド膜上の自然酸化膜を適切に除去することができる。さらに、上述のように下部電極の自己バイアス電極を測定してその値が適切な範囲から外れた場合に、その際のウエハWを不良品としてピックアップすることもできる。
【0041】
このようにしてプラズマによりプリクリーニングを行った後、排気装置51の排気量ならびにArガス供給源61およびHガス供給源62からのガス供給量を調節して処理容器20内を搬送室10と同等の真空度にするとともに、前記支持ピンをサセプタ23から突出させてウエハWを持ち上げ、ゲートバルブ48を開にして搬送アーム19をチャンバー21内に進入させてウエハWを取り出すことにより、プリクリーニング装置15における工程は終了する。
【0042】
このように本実施形態においては、プラズマ密度と自己バイアス電圧とを独立にコントロールすることができ、かつプラズマ密度を高くしつつ低バイアス電圧とすることが可能な誘導結合型プラズマを用いたプリクリーニング装置によって、下部電極の自己バイアス電圧を測定してイオン引き込みを適正に制御しつつウエハWのプリクリーニングを行うので、ウエハWにダメージを与えることなく高効率で自然酸化膜の除去を行うことができる。
【0043】
次に、本実施形態のプリクリーニング装置15を用いて上述のプロセスによりプリクリーニングを行う際に自己バイアス電圧を測定した結果を示す。
図8は、処理容器20内の圧力:66.5mPa(0.5mTorr)、発熱体26の加熱温度:200℃、処理ガス流量:Arガス0.003L/min(3sccm)のプロセス条件で、高周波電源44の出力(図8にはICPパワーと示す。以下の図9も同様。)を50W、100W、250W、500W、750W、1000Wとし、それぞれの出力において高周波電源39の出力を50〜500Wと変化させた場合における、高周波電源39の出力(図8にはバイアスパワーと示す。以下の図9も同様。)と測定された自己バイアス電圧(図8にはVDCと示す。以下の図9以降も同様。)との関係を示すグラフである。
【0044】
図9は、処理容器20内の圧力:66.5mPa(0.5mTorr)、発熱体26の加熱温度:200℃、処理ガス流量:Arガス0.008L/min(8sccm)、Hガス0.012L/min(12sccm)のプロセス条件で、同様に種々の高周波電源44の出力において、高周波電源39の出力を変化させた場合における、高周波電源39の出力と測定された自己バイアス電圧との関係を示すグラフである。
【0045】
図8および図9に示すように、それぞれの高周波電源44の出力において、高周波電源39の出力と自己バイアス電圧との関係は直線状であり、その傾きは高周波電源44の出力によって異なっている。
【0046】
また、処理容器20内の圧力:66.5mPa(0.5mTorr)、発熱体26の加熱温度:200℃、処理ガス流量:Arガス0.003L/min(3sccm)、高周波電源44の出力500Wのプロセス条件で、高周波電源39の出力と自己バイアス電圧との関係を3回繰り返して調査した。その結果、3回の調査はいずれも図8に示した場合と同様の結果を示し、本実施形態において測定される自己バイアス電圧は再現性および信頼性に優れることが確認された。
【0047】
次に、本実施形態において測定される自己バイアス電圧とエッチング速度およびエッチング均一性との関係を調査した結果を示す。
図10は、処理容器20内の圧力:66.5mPa(0.5mTorr)、発熱体26の加熱温度:200℃、処理ガス流量:Arガス0.003L/min(3sccm)、高周波電源44の出力:500W、処理時間:30秒のプロセス条件で、高周波電源39の出力を変化させて種々の自己バイアス電圧でプリクリーニングを2回行った場合における、自己バイアス電圧とエッチング速度との関係を示すグラフである。図10より、自己バイアス電圧とエッチング速度とは比例しており、自己バイアス電圧の値を制御することによって、エッチング速度をコントロールすることができることがわかる。
【0048】
また、この場合における初回と2回目とのそれぞれのプリクリーニングについて、エッチング量の最大値max、最小値minおよび平均値Aveを求め、{(max−min)/(2×Ave)}×100(%)により算出された値でエッチング均一性を評価した。図11は、横軸に自己バイアス電圧をとり、縦軸にエッチング均一性の評価値をとって両者の関係を示したグラフである。図11より、自己バイアス電圧を高くすることにより優れたエッチング均一性が実現されることがわかる。さらに、それぞれの自己バイアス電圧における初回と2回目とのエッチング均一性の評価値の再現性をみると、自己バイアス電圧0Vで評価値に差がみられるが、自己バイアス電圧20V以上では高い再現性で優れたエッチング均一性が得られている。したがって、自己バイアス電圧を20V以上とすることにより、均一なエッチングが実現される。より好ましい自己バイアス電圧は50V以上である。
【0049】
以上のように、プリクリーニングのエッチング速度およびエッチング均一性は、自己バイアス電圧と密接な関係を有しており、したがって、自己バイアス電圧を測定し、その値を所望の値に制御することにより、プリクリーニングのエッチング速度およびエッチング均一性を所望にコントロールすることが可能であることが確認された。
【0050】
次に、本発明の他の実施形態について説明する。
本実施形態は、従前の実施形態の装置と同様の露出電極を設けたプリクリーニング装置に測定治具を取り付けてウエハ表面上の自己バイアス電圧を測定可能としたものである。図12は、図6に示す形態のサセプタ部分に本実施形態の測定治具を取り付けた状態を示す断面図であり、図13は本実施形態に用いた測定治具を示す斜視図である。なお、本実施形態に係るプリクリーニング装置の他の部分は従前の実施形態と同じである。
【0051】
図12に示すように、測定治具110は、ウエハWの周縁部とシャドウリング30の貫通孔31部分とに跨るように配置される。この測定治具110は着脱自在であり、自己バイアス電圧を測定する際に取り付けられ、実際のエッチングの際には取り外される。この測定治具110は、ウエハWの表面と露出電極29′を繋ぐ電極111と、この電極111を収容し保護するケーシング112とを有している。電極111は、ケーシング112に嵌め込まれた状態で固定されている。
【0052】
電極111は屈曲した棒状をなし、ケーシング112の下方に露出し水平状態でウエハWの表面上に位置されるウエハ接触部111aと、シャドウリング30の上方から貫通孔31を介して露出電極29′に至る露出電極接触部111bと、その間の中間部111cとを有している。中間部111cは、シャドウリング30を逃げるように屈曲している。電極111の材質としてはTiが例示されるが、これに限るものではない。
【0053】
ケーシング112は電極111を覆うように形成されており、図13に示すように、ケーシング112内部に電極111を嵌め込んだ状態で電極111に沿って垂直に2分割された分割部を溶接または溶着し、電極111の露出部以外を遮蔽する構造となっている。これにより、より高い測定精度を得ることができる。このケーシング112は、電極111のウエハ接触部111aに対応するウエハ側部112aと、シャドウリング30上に置かれるシャドウリング側部112bとを有している。ケーシング112はプラズマに耐性を有する材料、例えば石英で形成されている。
【0054】
このような測定治具110を用いることにより、実際に自己バイアス電圧を求めたい位置であるウエハWの存在位置のプラズマから電極111および露出電極129′を介して自己バイアス電圧を測定することができ、測定精度をより高くすることができるとともに、ウエハ近傍の電極により求めた自己バイアス電圧値の基準となる自己バイアス電圧値を得ることができる。この際には、上述の図7を参照して説明した手法に準じて下部電極の自己バイアス電圧を把握することができる。
【0055】
次に、このような測定治具を用いた場合と測定治具を用いずに露出電極のみの場合とを比較した実験結果について説明する。
ここでは、上記実施形態のようにAlN製のサセプタ本体の上にウエハを載置し、シャドウリングを用いた場合と、図14に示すようにシャドウリングを用いずに、AlN製のサセプタ本体の上およびウエハの周囲に石英マスクを用いた場合について実験を行った。
【0056】
図15は、処理容器内20の圧力:66.5mPa(0.5mTorr)、誘導結合プラズマ生成用の高周波電源44の出力:500Wとした時の、高周波電源39のバイアスパワーと測定された自己バイアス電圧との関係を示す図である。この図に示すように、これらの関係はいずれも直線に近似されることが確認された。また、AlN製サセプタ本体上に直接ウエハを載せてシャドウマスクを用いた場合には、測定治具を用いた場合も用いない場合もほぼ同様の関係を示した。ただし、石英マスクを用いた場合には、同じバイアスパワーでも自己バイアス電圧の絶対値が小さくなることが確認された。
【0057】
図16は、石英マスクを用いた場合において、横軸に測定治具を用いずに露出電極を用いた場合の自己バイアス電圧(露出電極VDC)をとり、縦軸に測定治具を用いてウエハ存在位置で測定した自己バイアス電圧(測定治具VDC)をとってこれらの関係を示す図である。この図に示すようにこれらの間には直線関係があることがわかる。したがって、常にモニタすることができる露出電極を用いた自己バイアス電圧値から、ウエハ存在位置での自己バイアス電圧を求めることができる。
【0058】
図17は、AlN製サセプタ本体上に直接ウエハを載せてシャドウリングを用いた場合と石英マスクを用いた場合とにおいて、それぞれ測定治具を用いた場合と用いない場合とでの測定された自己バイアス電圧とエッチング速度との関係を示す図である。ここでは、処理容器20内の圧力:66.5mPa(0.5mTorr)、発熱体26の加熱温度:200℃、処理ガス流量:Arガス0.003L/min(3sccm)、誘導結合プラズマ生成用の高周波電源44のパワーを500Wとし、高周波電源39のバイアスパワーを変化させることによって自己バイアス電圧を変化させた。この図に示すように、AlN製サセプタ本体上に直接ウエハを載せてシャドウマスクを用いた場合には、測定治具を用いた場合も用いなかった場合も、ほぼ同様の関係を示した。また、測定治具を用いてウエハ存在位置で自己バイアス電圧を測定した場合には、石英マスクを用いた場合も用いなかった場合も、ほぼ同様の関係を示した。これに対して測定治具を用いなかった場合には、石英マスクを用いた場合と用いなかった場合とで、結果が異なっていた。つまり、ウエハの存在位置で自己バイアス電圧を測定した場合には、その値とエッチングレートとの関係は、ウエハの下地にかかわらないが、測定治具を用いない場合には、ウエハの下地によってその関係が変化した。
【0059】
なお、本発明は上記実施形態に限定されることなく種々変形可能である。
例えば、上記実施形態では、サセプタ本体27をAlN,Al等のセラミックスで構成し、シャドウリング30を石英、AlN等で構成した場合について示したが、サセプタ本体27を石英、SiC、Si等で構成してもよいし、シャドウリング30をAl、SiC、Si等で構成してもよい。ただし、これらの部材にAlを含む材料を用いた場合にはAlがスパッタされ、SiCやSiを用いた場合にはSiがスパッタされるため、石英を用いることが好ましい。また、上記実施形態では、メタル成膜システム1においてプリクリーニング後にTi成膜装置14でTi成膜を行うため、プラズマによりスパッタされる露出電極29をTiで構成したが、プリクリーニング後の成膜プロセスに応じて露出電極29はW、Co、Cu、Ni、Ta、SiCのいずれで構成してもよい。さらに、本発明におけるサセプタ23は上記構成に限らず、例えば電極の上面のみを絶縁体で被覆した構造であってもよい。さらにまた、上記実施形態では露出電極29を下部電極25とは別個に設けた場合について示したが、露出電極を別個に設けずに、サセプタ本体27の孔部28の底部において下部電極25を露出させ、この下部電極25の露出した部分を露出電極として用いてもよい。
【0060】
さらにまた、希ガスとしてArを用いた場合について示したが、これに限られるものではなく、Ne、Heを用いてもよい。測定治具についても上記形態に限るものではない。
【0061】
さらにまた、上記実施形態では本発明をメタル成膜システム1に搭載されたプリクリーニング装置15に適用した場合を示したが、通常のプラズマエッチング装置やプラズマCVD成膜装置、プラズマアッシング装置等に適用することも可能であり、プラズマの種類も上記のような誘導結合型プラズマに限られず、容量結合型プラズマであってもよい。さらにまた、被処理基板として半導体ウエハを用いた場合について説明したが、これに限らず液晶表示装置用ガラス基板等、他の基板であってもよい。
【0062】
【発明の効果】
以上説明したように、本発明によれば、高周波電極と接続され、露出して設けられた露出電極を具備するので、表面部分が絶縁体の基板載置台上に載置された被処理基板にプラズマ処理を施す際に、プラズマと前記露出電極とを接触させることができ、高周波電極の自己バイアス電圧を測定することができる。具体的には、容器内に生成されたプラズマから前記露出電極を介して流れる電流からプラズマの自己バイアス電圧を測定する自己バイアス電圧測定回路を具備することにより、プラズマから前記露出電極を介して流れる電流から高周波電極の自己バイアス電圧を測定することができる。したがって、基板載置台がその表面を絶縁体で被覆された構造でありながら、自己バイアス電圧を測定しつつプラズマ処理を行うことの可能なプラズマ処理装置およびそれに用いられる基板載置台が実現される。
【図面の簡単な説明】
【図1】本発明の実施形態に係るプラズマ処理方法が適用されるプリクリーニング装置を備えたメタル成膜システムを示す概略構成図。
【図2】図1に示したプリクリーニング装置の概略断面図。
【図3】図2に示した整合器を構成する回路の一例を示す回路図。
【図4】図2におけるサセプタおよびその近傍を示す断面図。
【図5】図2におけるサセプタおよびその近傍を示す平面図。
【図6】露出電極およびシャドウリングの変形例を説明するためのサセプタおよびその近傍を示す拡大断面図。
【図7】図2に示したプリクリーニング装置でプリクリーニングを行っている状態の等価回路を示す回路図。
【図8】下部電極に印加される高周波電源の出力と測定された自己バイアス電圧との関係を示すグラフ。
【図9】別のプロセス条件とした場合における、下部電極に印加される高周波電源の出力と測定された自己バイアス電圧との関係を示すグラフ。
【図10】自己バイアス電圧とエッチング速度との関係を示すグラフ。
【図11】自己バイアス電圧とエッチング均一性との関係を示すグラフ。
【図12】図6に示す形態のサセプタ部分に測定治具を取り付けた状態を示す断面図。
【図13】図12の測定治具を示す斜視図。
【図14】シャドウリングの代わりに石英マスクを用いた状態を示す断面図。
【図15】測定治具を用いた場合と用いない場合とにおいて、下部電極に印加されるバイアスパワーと自己バイアス電圧との関係を示すグラフ。
【図16】測定治具を用いずに露出電極を用いて測定した自己バイアス電圧と、測定治具を用いてウエハ存在位置で測定した自己バイアス電圧との関係を示すグラフ。
【図17】測定治具を用いた場合と用いない場合とにおける自己バイアス電圧とエッチング速度の関係を示すグラフ。
【符号の説明】
1;メタル成膜システム
15;プリクリーニング装置
20;処理容器
21;チャンバー
22;ベルジャー
23;サセプタ
38;整合器
24;凹部
25;下部電極
26;発熱体
27;サセプタ本体
28;孔部
29,29′;露出電極
30;シャドウリング
31;貫通孔
38;整合器
39;イオン引き込み用の高周波電源
40;表示装置
41;電源
42;コイル
43;整合器
44;誘導結合プラズマ生成用の高周波電源
110;測定治具
111;電極
112;ケーシング
W;ウエハ

Claims (17)

  1. 被処理基板を収容して処理ガスのプラズマで処理する処理容器と、
    前記処理容器内に設けられ、かつ、少なくとも表面部分が絶縁体部材で構成された、被処理基板が載置される基板載置台と、
    前記処理容器内に処理ガスを供給するガス供給手段と、
    前記基板載置台に高周波電力を印加する高周波電源と、
    前記基板載置台に設けられ、前記高周波電源と接続された高周波電極と、
    前記基板載置台に露出して設けられ、前記高周波電極と接続された露出電極と
    を具備し、
    前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とするプラズマ処理装置。
  2. 被処理基板を収容して処理ガスのプラズマで処理する処理容器と、
    前記処理容器内に設けられ、かつ、少なくとも表面部分が絶縁体部材で構成された、被処理基板が載置される基板載置台と、
    前記処理容器内に処理ガスを供給するガス供給手段と、
    前記基板載置台に高周波電力を印加する高周波電源と、
    前記基板載置台に設けられ、前記高周波電源と接続された高周波電極と、
    前記基板載置台に露出して設けられ、前記高周波電極と接続された露出電極と、
    前記処理容器内に形成されたプラズマから前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路と
    を具備し、
    前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とするプラズマ処理装置。
  3. 被処理基板を収容して処理ガスのプラズマで処理する処理容器と、
    前記処理容器内に設けられ、かつ、少なくとも表面部分が絶縁体部材で構成された、被処理基板が載置される基板載置台と、
    前記処理容器内に処理ガスを供給するガス供給手段と、
    前記処理容器内に誘導電磁界を形成するアンテナと、
    前記アンテナに高周波電力を供給する第1の高周波電源と
    前記基板載置台に高周波電力を印加する第2の高周波電源と、
    前記基板載置台に設けられ、前記第2の高周波電源と接続された高周波電極と、
    前記基板載置台に露出して設けられ、前記高周波電極と接続された露出電極と、
    前記処理容器内に形成されたプラズマから前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路と
    を具備し、
    前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とするプラズマ処理装置。
  4. 前記基板載置台に載置された被処理基板の表面と前記露出電極とを繋ぐ導体と、この導体を保護する保護カバーとを有する着脱自在の測定治具をさらに具備し、前記自己バイアス電圧測定回路は、前記処理容器内に形成されたプラズマから前記導体および前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定することを特徴とする請求項2または請求項3に記載のプラズマ処理装置。
  5. 前記露出電極は、その表面が前記絶縁体部材の表面と面一またはそれよりも奥まった位置に設けられていることを特徴とする請求項1から請求項4のいずれか1項に記載のプラズマ処理装置。
  6. 前記露出電極は、Ti,SiC,W,Co,Cu,NiおよびTaのうちいずれか1種からなることを特徴とする請求項1から請求項5のいずれか1項に記載のプラズマ処理装置。
  7. 前記露出電極は、前記基板載置台に載置された被処理基板の外縁部よりも外側に設けられていることを特徴とする請求項1から請求項6のいずれか1項に記載のプラズマ処理装置。
  8. 前記基板載置台に設けられ、前記基板載置台に載置された被処理基板を加熱する、表面が絶縁体で被覆された発熱体をさらに具備することを特徴とする請求項1から請求項7のいずれか1項に記載のプラズマ処理装置。
  9. 前記高周波電極および前記発熱体は、いずれも前記絶縁体部材に埋設されていることを特徴とする請求項8に記載のプラズマ処理装置。
  10. 被処理基板にプラズマ処理を施す際に被処理基板が載置される、少なくとも表面部分が絶縁体部材で構成された基板載置台であって、
    高周波電力が印加される高周波電極と、
    前記高周波電極と接続され、露出して設けられた露出電極と
    を具備し、
    前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とする基板載置台。
  11. 被処理基板にプラズマ処理を施す際に被処理基板が載置される、少なくとも表面部分が絶縁体部材で構成された基板載置台であって、
    高周波電力が印加される高周波電極と、
    前記高周波電極と接続され、露出して設けられた露出電極と、
    被処理基板にプラズマ処理を施す際にプラズマから前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定する自己バイアス電圧測定回路と
    を具備し、
    前記露出電極は、前記基板載置台に載置された被処理基板と同心の円周上に等間隔で複数箇所に設けられていることを特徴とする基板載置台。
  12. 載置された被処理基板の表面と前記露出電極とを繋ぐ導体と、この導体を保護する保護カバーとを有する着脱自在の測定治具をさらに具備し、前記自己バイアス電圧測定回路は、前記処理容器内に形成されたプラズマから前記導体および前記露出電極を介して流れる電流に基づいて前記高周波電極の自己バイアス電圧を測定することを特徴とする請求項11に記載の基板載置台。
  13. 前記露出電極は、その表面が前記絶縁体部材の表面と面一またはそれよりも奥まった位置に設けられていることを特徴とする請求項10から請求項12のいずれか1項に記載の基板載置台。
  14. 前記露出電極は、Ti,SiC,W,Co,Cu,NiおよびTaのうちいずれか1種からなることを特徴とする請求項10から請求項13のいずれか1項に記載の基板載置台。
  15. 前記露出電極は、前記基板載置台に載置された被処理基板の外縁部よりも外側に設けられていることを特徴とする請求項10から請求項14のいずれか1項に記載の基板載置台。
  16. 前記基板載置台に載置された被処理基板を加熱する、表面が絶縁体で被覆された発熱体をさらに具備することを特徴とする請求項10から請求項15のいずれか1項に記載の基板載置台。
  17. 前記高周波電極および前記発熱体は、いずれも前記絶縁体部材に埋設されていることを特徴とする請求項16に記載の基板載置台。
JP2002199102A 2001-07-27 2002-07-08 プラズマ処理装置および基板載置台 Expired - Fee Related JP4219628B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002199102A JP4219628B2 (ja) 2001-07-27 2002-07-08 プラズマ処理装置および基板載置台
KR1020047001126A KR100540052B1 (ko) 2001-07-27 2002-07-24 플라즈마 처리 장치 및 기판 탑재대
US10/484,430 US7513954B2 (en) 2001-07-27 2002-07-24 Plasma processing apparatus and substrate mounting table employed therein
PCT/JP2002/007507 WO2003010809A1 (fr) 2001-07-27 2002-07-24 Dispositif de traitement au plasma et table de montage de substrat

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001227649 2001-07-27
JP2001-227649 2001-07-27
JP2002199102A JP4219628B2 (ja) 2001-07-27 2002-07-08 プラズマ処理装置および基板載置台

Publications (2)

Publication Number Publication Date
JP2003124201A JP2003124201A (ja) 2003-04-25
JP4219628B2 true JP4219628B2 (ja) 2009-02-04

Family

ID=26619426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002199102A Expired - Fee Related JP4219628B2 (ja) 2001-07-27 2002-07-08 プラズマ処理装置および基板載置台

Country Status (4)

Country Link
US (1) US7513954B2 (ja)
JP (1) JP4219628B2 (ja)
KR (1) KR100540052B1 (ja)
WO (1) WO2003010809A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200415681A (en) * 2002-10-17 2004-08-16 Matsushita Electric Ind Co Ltd Plasma processing apparatus
CN100508117C (zh) * 2003-05-02 2009-07-01 东京毅力科创株式会社 等离子体处理装置
JP4394073B2 (ja) 2003-05-02 2010-01-06 東京エレクトロン株式会社 処理ガス導入機構およびプラズマ処理装置
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
US20050196971A1 (en) * 2004-03-05 2005-09-08 Applied Materials, Inc. Hardware development to reduce bevel deposition
US7323116B2 (en) * 2004-09-27 2008-01-29 Lam Research Corporation Methods and apparatus for monitoring a process in a plasma processing system by measuring self-bias voltage
JP4672597B2 (ja) * 2005-06-02 2011-04-20 日本碍子株式会社 基板処理装置
JP4724487B2 (ja) * 2005-08-02 2011-07-13 横浜ゴム株式会社 タイヤ加硫成形用金型の洗浄方法及びその装置
JP4722669B2 (ja) * 2005-10-26 2011-07-13 株式会社日立ハイテクインスツルメンツ プラズマ洗浄装置
JP2007324295A (ja) * 2006-05-31 2007-12-13 Dainippon Screen Mfg Co Ltd ウエハ薄化装置及びウエハ処理システム
KR100804787B1 (ko) 2006-06-05 2008-02-20 주식회사 뉴파워 프라즈마 능동 바이어스 제어 회로를 갖는 플라즈마 처리 장치 및 그제어 방법
JP5111876B2 (ja) 2007-01-31 2013-01-09 東京エレクトロン株式会社 基板載置構造体及び基板処理装置
JP2008226514A (ja) * 2007-03-09 2008-09-25 Matsushita Electric Ind Co Ltd プラズマ処理装置
US8241457B2 (en) 2007-03-30 2012-08-14 Tokyo Electron Limited Plasma processing system, plasma measurement system, plasma measurement method, and plasma control system
JP2008277275A (ja) * 2007-03-30 2008-11-13 Tokyo Electron Ltd プラズマ処理装置、計測装置、計測方法および制御装置
JP5358165B2 (ja) * 2008-11-26 2013-12-04 ルネサスエレクトロニクス株式会社 半導体集積回路装置の製造方法
DE102009015749B3 (de) * 2009-03-31 2011-01-20 Globalfoundries Dresden Module One Llc & Co. Kg Erhöhen der Haftung von dielektrischen Zwischenschichtmaterialien von Halbleiterbauelementen durch Unterdrücken der Silizidbildung am Substratrand
KR101071180B1 (ko) * 2009-04-03 2011-10-10 한국생산기술연구원 반도체 웨이퍼 관통 비아홀 내의 금속 필링장치 및 이를 이용한 필링방법
JP5698043B2 (ja) * 2010-08-04 2015-04-08 株式会社ニューフレアテクノロジー 半導体製造装置
DE102012200878B4 (de) * 2012-01-23 2014-11-20 Forschungsverbund Berlin E.V. Verfahren und Vorrichtung zum Erzeugen von Plasmapulsen
TWI476831B (en) * 2012-03-28 2015-03-11 Tgl tio2/sio2/nitride dry etch
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9997381B2 (en) * 2013-02-18 2018-06-12 Lam Research Corporation Hybrid edge ring for plasma wafer processing
US11195756B2 (en) * 2014-09-19 2021-12-07 Applied Materials, Inc. Proximity contact cover ring for plasma dicing
US20160365261A1 (en) * 2015-06-11 2016-12-15 Lam Research Corporation Plasma etching device with doped quartz surfaces
WO2019096425A1 (en) * 2017-11-20 2019-05-23 Applied Materials, Inc. Substrate support for processing a substrate, vacuum processing apparatus and substrate processing system
JP6846384B2 (ja) 2018-06-12 2021-03-24 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理装置の高周波電源を制御する方法
KR20210125155A (ko) * 2020-04-07 2021-10-18 삼성디스플레이 주식회사 표시 장치의 제조방법
CN112951691A (zh) * 2021-02-10 2021-06-11 北京北方华创微电子装备有限公司 下电极组件及半导体设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126832A (ja) * 1983-12-14 1985-07-06 Hitachi Ltd ドライエツチング方法および装置
JP2830978B2 (ja) * 1990-09-21 1998-12-02 忠弘 大見 リアクティブイオンエッチング装置及びプラズマプロセス装置
JPH06232088A (ja) 1993-01-29 1994-08-19 Tokyo Electron Ltd プラズマ装置及びプラズマ処理方法
KR100290748B1 (ko) * 1993-01-29 2001-06-01 히가시 데쓰로 플라즈마 처리장치
US5811022A (en) * 1994-11-15 1998-09-22 Mattson Technology, Inc. Inductive plasma reactor
US5688358A (en) * 1995-03-08 1997-11-18 Applied Materials, Inc. R.F. plasma reactor with larger-than-wafer pedestal conductor
JP3208044B2 (ja) * 1995-06-07 2001-09-10 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JPH0923795A (ja) 1995-07-10 1997-01-28 Daiwa Seiko Inc 魚釣用電動リ−ル
JPH0927395A (ja) * 1995-07-12 1997-01-28 Kobe Steel Ltd プラズマ処理装置及び該装置を用いたプラズマ処理方法
GB9620151D0 (en) * 1996-09-27 1996-11-13 Surface Tech Sys Ltd Plasma processing apparatus
JP3296292B2 (ja) * 1998-06-26 2002-06-24 松下電器産業株式会社 エッチング方法、クリーニング方法、及びプラズマ処理装置
JP4151749B2 (ja) * 1998-07-16 2008-09-17 東京エレクトロンAt株式会社 プラズマ処理装置およびその方法
JP2000164712A (ja) * 1998-11-27 2000-06-16 Sony Corp 電子装置の製造方法
US6364954B2 (en) * 1998-12-14 2002-04-02 Applied Materials, Inc. High temperature chemical vapor deposition chamber
US6409896B2 (en) * 1999-12-01 2002-06-25 Applied Materials, Inc. Method and apparatus for semiconductor wafer process monitoring
TW483037B (en) * 2000-03-24 2002-04-11 Hitachi Ltd Semiconductor manufacturing apparatus and method of processing semiconductor wafer using plasma, and wafer voltage probe
JP2001298020A (ja) * 2000-04-18 2001-10-26 Nhk Spring Co Ltd セラミックヒータ及びそれを用いた成膜処理装置
JP2001308065A (ja) * 2000-04-19 2001-11-02 Nec Corp ドライエッチング装置およびドライエッチング方法
US6494958B1 (en) * 2000-06-29 2002-12-17 Applied Materials Inc. Plasma chamber support with coupled electrode
US6521292B1 (en) * 2000-08-04 2003-02-18 Applied Materials, Inc. Substrate support including purge ring having inner edge aligned to wafer edge

Also Published As

Publication number Publication date
JP2003124201A (ja) 2003-04-25
KR20040021653A (ko) 2004-03-10
WO2003010809A1 (fr) 2003-02-06
US7513954B2 (en) 2009-04-07
KR100540052B1 (ko) 2006-01-11
US20040163762A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP4219628B2 (ja) プラズマ処理装置および基板載置台
KR101145538B1 (ko) 배치식 플라즈마 처리 장치
KR100351646B1 (ko) 플라즈마처리장치
US7658816B2 (en) Focus ring and plasma processing apparatus
TW323387B (ja)
US8152925B2 (en) Baffle plate and substrate processing apparatus
TWI234417B (en) Plasma procesor and plasma processing method
JP4578651B2 (ja) プラズマ処理方法およびプラズマ処理装置、プラズマエッチング方法
JP4597894B2 (ja) 基板載置台および基板処理装置
US20080236493A1 (en) Plasma processing apparatus
US20080011425A1 (en) Plasma Processing Apparatus And Method
US20060081564A1 (en) Method and system for arc suppression in a plasma processing system
TW202111851A (zh) 基板處理系統中的搬運方法
JP4753888B2 (ja) 基板保持機構及びプラズマ処理装置
JP2004047511A (ja) 離脱方法、処理方法、静電吸着装置および処理装置
JP2019176031A (ja) プラズマ処理装置、及び被処理体の搬送方法
JP4686867B2 (ja) プラズマ処理装置
US20070256638A1 (en) Electrode plate for use in plasma processing and plasma processing system
JP3549188B2 (ja) 半導体基板への薄膜成膜方法
JP4079834B2 (ja) プラズマ処理方法
JP3423186B2 (ja) 処理方法
JP3880896B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP3045444B2 (ja) プラズマ処理装置およびその制御方法
JP4091445B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP3372244B2 (ja) プラズマ処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees