JP4200406B2 - Release film production method - Google Patents

Release film production method Download PDF

Info

Publication number
JP4200406B2
JP4200406B2 JP10206599A JP10206599A JP4200406B2 JP 4200406 B2 JP4200406 B2 JP 4200406B2 JP 10206599 A JP10206599 A JP 10206599A JP 10206599 A JP10206599 A JP 10206599A JP 4200406 B2 JP4200406 B2 JP 4200406B2
Authority
JP
Japan
Prior art keywords
film
stretching
release
aliphatic polyester
release film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10206599A
Other languages
Japanese (ja)
Other versions
JP2000289170A (en
Inventor
勝文 熊野
尚伸 小田
啓治 森
久人 小林
正 奥平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10206599A priority Critical patent/JP4200406B2/en
Publication of JP2000289170A publication Critical patent/JP2000289170A/en
Application granted granted Critical
Publication of JP4200406B2 publication Critical patent/JP4200406B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、脂肪族ポリエステルフィルムを用いた離型フィルムの製造方法に関し、従来通りの粘着ラベル、粘着テープ等の台紙、セラミックシート製造時の支持体である離型フィルムとして使用でき、離型フィルムとして使用した後には自然界で分解し、焼却処理などの必要が無い離型フィルムの製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレートやポリエチレンナフタレート等からなるポリエステルフィルムは、離型フィルムなどの材料として広く使用されている。離型フィルムの製造方法としては、例えばポリエステルフィルムに、付加反応型、縮合反応型等のシリコーン樹脂などを塗工して製造され、粘着ラベル、粘着テープ等の台紙、セラミックシート製造時の支持体などに広く使用されている。
【0003】
しかし、近年、離型フィルムを使用した後の不要となったフィルムの廃棄において、環境意識の高揚や、廃棄物処理問題から焼却処分の必要のない生分解性離型フィルムへの要求が高まりつつある。この要求に対して、従来から離型フィルムの支持体として使用されてきたポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルムは生分解性が無く、焼却処分せざるを得ない状況にある。
【0004】
これに対し、ポリ乳酸をはじめとする脂肪族ポリエステル系フィルムは、自然環境下に棄却された場合に分解すること(例えば、ポリ乳酸フィルムは土壌中において自然に加水分解したのち微生物によって無害な分解物となること)を主眼にして開発されてきた。
【0005】
このような状況のなか、乳酸系ポリマーからなる一軸延伸フィルムを基材とした離型性のある生分解性フィルムが、例えば、特開平9−235455号公報に開示されている。しかしながら、前記フィルムは延伸による配向結晶化が不十分なため、離型フィルムとして用いた場合に必要な特性である機械強度や耐熱性を十分満足するものではなかった。そのため、このフィルムを基材として粘着ラベル、粘着テープ等の台紙、セラミックシートを製造する後加工工程において寸法変化を生じたり、しわが発生するなどの問題があることが明らかになった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、かかる従来技術の欠点を解消し、離型フィルムを使用して、粘着ラベルや粘着テープなどの台紙、セラミックシートなどを製造する際の後加工適性に優れ、かつ従来通りの離型フィルムとして使用が可能であり、さらに離型フィルムとして使用した後には自然界で分解し、焼却処理などの必要が無い離型フィルムの製造方法を提供することにある。
【0007】
【課題を解決するための手段】
すなわち、本発明の課題は下記の手段により達成できる。
1. 主たる繰り返し単位が一般式−O−CHR−CO−(RはHまたは、炭素数1〜3のアルキル基)である脂肪族ポリエステルを主成分としたポリマーからなり、厚み方向の屈折率(Nz)が1.440〜1.455であり、長手方向の屈折率(Nx)から幅方向の屈折率(Ny)を差し引いた値(Nx-Ny)が−0.020〜0であり、更に120℃における長手方向の熱収縮率が5%以下である脂肪族ポリエステル二軸延伸フィルムを基材とし、その少なくとも片面に離型層を設けてなる離型フィルムの製造方法であって、未延伸フィルムを二軸延伸するに際し、縦延伸を二段以上で行い、縦・横それぞれの延伸方向での最終的な延伸倍率が互いに少なくとも3倍以上であり、二軸延伸後、145℃〜融解温度Tm(℃)の温度範囲で熱固定し、引き続いて125℃〜(Tm−20℃)で0.1〜8%の横弛緩熱処理を行って基材を得ることを特徴とする離型フィルムの製造方法
2. 前記脂肪族ポリエステル二軸延伸フィルムの120℃における長手方向の熱収縮率が3%以下であることを特徴とする1記載の離型フィルムの製造方法
3. 前記脂肪族系ポリエステルがポリ乳酸であることを特徴とする1または2記載の離型フィルムの製造方法
【0008】
【発明の実施の形態】
(脂肪族ポリエステルフィルム)
本発明で用いる、主たる繰り返し単位が、一般式−O−CHR−CO−(RはHまたは炭素数1〜3のアルキル基)で示される単位からなる脂肪族ポリエステルとしては、例えば、ポリ乳酸、ポリグリコール酸、ポリ(2−オキシ酪酸)などを挙げることができるが、これらの一種または二種以上が選択して用いられる。二種以上を用いる場合は、混合物、共重合体でもよい。また、ポリマー中に不斉炭素を有するものでは、L−体、DL−体、D−体といった光学異性体が存在するが、これらのいずれでもよく、また、二種以上の異性体が混在したものであってもよい。なお、かかる脂肪族ポリエステルに含まれる上記一般式で示される繰り返し単位以外の繰り返し単位としては、オキシカルボン酸由来の脂肪族ポリエステル単位、および/またはジオールとジカルボン酸より得られる脂肪族カルボン酸単位などが挙げられる。
【0009】
また、これらを単独重合体で使用するほかに、重合体混合物、共重合体として使用してもかまわない。ポリマー中に不斉炭素を有するものは、L−体、DL−体、D−体といった光学異性体が存在するが、それらのいずれでも良く、また、それら異性体の混合物でも良い。これらフィルムの素材となる前記ポリマーは、対応するα−オキシ酸の脱水環状エステル化合物を用い、開環重合などの公知の方法で製造することができる。
【0010】
本発明で使用する脂肪族ポリエステルの重量平均分子量は、1〜50万が好ましい。重量平均分子量が1万未満であると、得られたフィルムの物性が著しく劣り、且つ、分解速度が速すぎるため、本発明の目的を達し得ない。また、フィルム製造時の押出し性、二軸延伸性も低下する。一方、重量平均分子量が50万を超えると、ポリマーの粘度が高くなり、溶融押出しが困難になるという問題がある。好ましい範囲は、5〜30万である。
【0011】
本発明のフィルムの好適な製造方法は、脂肪族ポリエステルを特定の押出し温度で押出し成形して未延伸フィルムとし、該未延伸フィルムを特定の条件で二軸延伸する方法である。
【0012】
脂肪族ポリエステル樹脂を押出し成形する方法は、公知のT−ダイ法、インフレーション法などが適用できる。押出し温度は、脂肪族ポリエステル樹脂の融解温度をTm(℃)とすると、Tm〜(Tm+70℃)の範囲が好ましく、特に好ましくは、(Tm+20℃)〜(Tm+50℃)の範囲である。押出し温度がTmより低い場合は、押出安定性が悪化する傾向があり、また過負荷に陥りやすい。一方、押出し温度が(Tm+70℃)よりも高い場合は、ポリマーの分解が激しくなり、後工程の延伸を行ってもフィルムを本発明で規定した特性を満足することができない。押出機のダイは、環状または線状のスリットを有するものが用いられる。また、ダイの温度は通常前記の押出温度と同程度とする。
【0013】
得られた未延伸フィルムを二軸延伸するには、一軸目の延伸と二軸目の延伸を逐次に行っても、同時に行っても良い。ここで一軸目とは、フィルムの縦方向及び横方向のいずれか一方であり、二軸目とはフィルムの横方向及び縦方向のいずれか他方であり、一軸目と直交方向を意味する。なお、「縦方向」は「フィルムの長手方向」と同義であり、「横方向」は「フィルムの幅方向」と同義である。
【0014】
延伸温度は、脂肪族ポリエステル樹脂のガラス転移温度をTg(℃)とすると、Tg〜(Tg+50℃)の範囲が好ましく、特に好ましくは(Tg+10℃)〜(Tg+40℃)の範囲である。延伸温度がTgより低い場合は、延伸が困難となり、(Tg+50℃)を越えると、フィルムの厚み均一性や機械的強度が低下するのみならず、フィルムを本発明で規定した特性を満足することが困難となる。
【0015】
縦、横の延伸は1段階でも多段階に分けて行っても良いが、それぞれの延伸方向での最終的な延伸倍率が互いに少なくとも3倍以上で、好ましくは、3.5倍以上で、かつ、縦・横の面積倍率で9倍以上、好ましくは12倍以上であることが、厚みの均一性や機械的性質の点から必要である。縦、横の延伸倍率の少なくとも一方が3倍未満であったり、縦・横の面積倍率が9倍未満では、フィルムの厚み均一性や機械的強度が不十分となり、フィルムを本発明で規定した特性を満足することが困難となる。
【0016】
特に、フィルムの厚み方向の屈折率(Nz)及び120℃での長手方向の熱収縮率を前記規定の範囲とするには、縦延伸を二段以上で行い、そのうちの少なくとも一段の縦延伸工程を、(Tg+20℃)〜(Tg+40℃)の範囲で、延伸速度を10000%/分以上、好ましくは15000%/分以上、より好ましくは20000%/分以上とした延伸条件で行うことが重要である。
【0017】
また、二軸延伸後の熱固定は、加工時の寸法安定性の点から、145℃〜Tmの範囲で、好ましくは150℃〜Tmの範囲で、1秒〜3分間程度行うことが好ましい。また、同様の理由より、熱固定に引き続き、横弛緩処理を行うのが好ましく、詳しくは125℃〜(Tm−20℃)で0.1〜8%程度の横弛緩処理を行うことが好ましい。このような熱固定条件や横弛緩処理を行うことは、120℃での長手方向の熱収縮率を5%以下とするのに好適であり、その結果、加工時にしわの発生が少ない製品を得ることができる。
【0018】
本発明の離型フィルムの製造方法においては、押出し時に共押出し法を用いたり、押出しから熱固定までの連続した工程において種々のコーティング法を適用することによって、多層化してもよい。
【0019】
また、本発明の離型フィルムにおいては、離型層との密着性を向上させるために、離型層を積層する前にプライマーコート、コロナ処理、プラズマ処理や火炎処理などを施しても良い。
【0020】
本発明における脂肪族ポリエステル二軸延伸フィルムの厚み方向の屈折率(Nz)は、1.440〜1.455が好ましく、さらに好ましくは1.445〜1.455である。Nzが1.440未満では、フィルムを製膜時に破断が発生しやすくなる。また1.455を超えると、離型層を付与する工程や、離型フィルムを使用して粘着ラベルや粘着テープなどの台紙、セラミックシートなどを製造する後加工工程において加熱された際に、平面性が悪化するため好ましくない。
【0021】
さらに、フィルムの長手方向の屈折率(Nx)から幅方向の屈折率(Ny)を差し引いた値(Nx−Ny)を−0.020〜0の範囲とすることにより、厚みムラを小さくすることができ、かつ離型フィルムを使用して粘着ラベルや粘着テープなどの台紙、セラミックシートなどを製造する後加工工程などにおいて、加熱された状態で搬送張力を受けても、引き伸ばされにくいものとなり、平面性の悪化がより生じにくいものとなる。(Nx−Ny)は、−0.020〜0とすることが好ましく、特に好ましくは−0.015〜0である。
【0022】
(Nx−Ny)を上記規定の範囲とするためには、延伸時の縦・横の倍率及び速度などをバランスさせることが好ましい。
【0023】
また、本発明により得られる基材フィルムの120℃における長手方向の熱収縮率は、5%以下が好ましく、特に好ましくは3%以下である。前記熱収縮率が5%を超えると、離型層を付与する工程や離型フィルムを使用する後加工工程において、フィルムに、ずれやしわが発生し、製品収率が低下する。
【0024】
本発明における脂肪族ポリエステルは、公知の添加剤を必要に応じて含有させることができる。例えば、不活性粒子、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤などを含有させてもよい。
【0025】
本発明における脂肪族ポリエステルフィルムにおいて、ハンドリング性(滑り性、巻き特性、耐ブロッキング性など)を改良するために不活性粒子をフィルム中に含有させることが好ましい。不活性粒子としては、シリカ、二酸化チタン、タルク、カオリナイト等の金属酸化物、炭酸カルシウム、リン酸カルシウム、硫酸バリウム等の金属の塩または架橋ポリスチレン樹脂、架橋アクリル樹脂、シリコン樹脂、架橋ポリエステル樹脂等の有機ポリマーからなる粒子などが例示される。
【0026】
これらの不活性粒子は、いずれか一種を単独で含有させてもよく、また2種以上を併用してもよい。不活性粒子の平均粒径は0.01〜3.0μmが好ましく、特に好ましくは0.05〜2.5μmである。また、粒子含有量は0.005〜2重量%であることが好ましく、特に好ましくは0.01〜1.0重量%である。
【0027】
特に、表面平滑性と滑り性を両立するために、2種以上の平均粒径の異なる不活性粒子を併用することが好ましい。特に、フィルムの製膜中に変形する滑剤粒子(例えば、架橋ポリスチレン、架橋アクリル等の架橋度の低い有機粒子、一次粒子の凝集体であるシリカ等の無機滑剤)とフィルム製膜中に変形しない通常の滑剤粒子を組み合わせることが好ましい。さらに、前記平均粒径の範囲内で、平均粒径が0.5μm以上異なる粒子を2種類併用すると、巻き性、耐摩耗性の点から好ましい。
【0028】
(離型層)本発明における離型層を構成する樹脂は、シリコーン樹脂、フッ素樹脂、各種ワックス、脂肪族オレフィンなどが例示されるが、特にシリコーン樹脂が好ましい。本発明の離型層として、例えばシリコーン樹脂を用いた場合、その離型層は、例えば硬化性シリコーン樹脂を含む塗液をポリエステルフィルムの表面に塗布し、乾燥、硬化させることにより形成することができる。
【0029】
硬化性シリコーン樹脂としては、例えば付加反応系のもの、縮合反応系のもの、紫外線もしくは電子線硬化系のものなどいずれの反応系のものも用いることができる。
【0030】
付加反応系のシリコーン樹脂としては、例えば末端にビニル基を導入したポリジメチルシロキサンとハイドロジエンシロキサンとを、白金触媒を用いて反応させ、3次元架橋構造をつくるものが挙げられる。
【0031】
縮合反応系のシリコーン樹脂としては、例えば、末端にOH基をもつポリジメチルシロキサンと末端にH基をもつポリジメチルシロキサンを有機錫触媒を用いて縮合反応させ、3次元架橋構造をつくるものが挙げられる。
【0032】
紫外線硬化系のシリコーン樹脂としては、例えば最も基本的なタイプとして通常のシリコーンゴム架橋と同じラジカル反応を利用するもの、不飽和基を導入して光硬化させるもの、紫外線でオニウム塩を分解して強酸を発生させ、これでエポキシ基を開裂させて架橋させるもの、ビニルシロキサンへのチオールの付加反応で架橋するもの等が挙げられる。また、前記紫外線の代わりに電子線を用いることもできる。電子線は紫外線よりもエネルギーが強く、紫外線硬化の場合のように開始剤を用いなくても、ラジカルによる架橋反応を行うことが可能である。
【0033】
(シリコーン樹脂塗膜の塗設)
本発明において、脂肪族系ポリエステルフィルムの少なくとも片面に、前記の付加反応系、縮合反応系、紫外線硬化系のシリコーン樹脂を樹脂成分とするいずれかの塗布液を塗布し、加熱乾燥、熱硬化または紫外線硬化することにより離型性塗膜を塗設することが好ましい。塗布法としては、公知の任意の塗工法が適用でき、例えばグラビアコート法やリバースコート法などのロールコート法、マイヤーバーなどのバーコート法、スプレーコート法、エアーナイフコート法等の従来から知られている方法を使用することができる。
【0034】
(乾燥及び硬化)
シリコーン樹脂層の乾燥及び硬化は同時に行うことができ、条件としては乾燥温度が100℃以上で、乾燥時間を20秒以上にすることが好ましい。乾燥温度が100℃未満、及び乾燥時間が20秒未満ではシリコーン樹脂の硬化が不完全であり、重剥離化(目標剥離力に達しない)やシリコーン樹脂層の背面転写(裏移り)の原因となり、好ましくない。
【0035】
硬化シリコーン樹脂層の乾燥後の塗布量は、0.05〜0.2g/m2の範囲が好ましい。シリコーン樹脂層の乾燥塗布量が0.05g/m2未満では、剥離性能が低下し、本来の剥離性能が出なくなる傾向がある。また、乾燥塗布量が0.2g/m2を超えると、硬化に時間がかかり生産上不都合が生じる。
【0036】
【実施例】
以下、実施例、比較例を挙げて本発明の内容及び効果を具体的に説明するが、本発明は、その要旨を逸脱しない限り以下の実施例に限定されるものではない。なお、実施例、比較例における物性の評価方法は以下の通りである。
【0037】
(1)厚み方向、長手方向および幅方向の屈折率(Nz、Nx、Ny)
株式会社アタゴ製アッベ屈折率計1Tを用いて、フィルムの各方向の屈折率を測定した。
【0038】
(2)フィルムの120℃における長手方向の熱収縮率
長手方向に250mm、幅方向に10mmに切り取ったフィルム片に対して、長手方向に200mmの間隔を開けて2つの印をつけ、該フィルムを23℃で長手方向に5gfの一定張力で引っ張った状態で上記2つの印の間隔(A)を測定し、続いて、フィルム片に張力をかけず、該フィルム片を120℃の雰囲気のオーブンに120℃で5分間入れた後、上記2つの印の間隔(B)を測定し、下記式より、フィルムの120℃における長手方向の熱収縮率(HS120MD)を求めた。
HS120MD(%)=[(A−B)/A]×100
【0039】
(3)加工適性
離型フィルムを用い、セラミックシート製造時のキャスト成形工程での工程異常(しわ、走行ズレ)の有無を目視評価した。
○:しわ、蛇行などの発生が無い
△:しわおよび走行ずれが若干発生
×:平面性悪化が見られ、しわや走行ずれ多い
【0040】
(4)生分解性
離型フィルムを60℃のコンポスト中に1ヶ月間保存し、1ヶ月後にこのフィルムを取りだし、その外観変化と長手方向の引張強度の保持率(%)[(保存後の引張強度/保存前の引張強度)×100]から生分解性の有無を判定した。
○:生分解性有り(顕著な外観変化が認められ、引張強度の保持率が50%以下)
×:生分解性無し(顕著な外観変化がほとんど無く、引張強度の保持率が50%超)
【0041】
(5)常態剥離評価
フィルムの離型層面にポリエステル粘着テープ(ニットー31B)を貼合わせ、線圧5kgf/mmの圧着ローラーで圧着した。室温で20時間放置後、離型層と粘着テープとの剥離力を引張り試験機(剥離角度90°)にて測定し、下記評価にて判定した。
A:8〜17未満(gf/50mm巾)
B:17以上 (gf/50mm巾)
C:8未満 (gf/50mm巾)
剥離力の好ましい範囲は、8gf/50mm巾以上、17gf/50mm巾未満であり、剥離力は強すぎても弱すぎても好ましくない。
【0042】
実施例1
重量平均分子量25万のポリ−L−乳酸100重量部に対し、表面突起を形成するための不活性粒子として平均粒子径が2.0μmの凝集体シリカ粒子を0.05重量部添加したポリマーを、Tダイ付き口径30mm押出機を使用して、樹脂温度210℃で押出した後、25℃のチルロールで冷却し、厚さ620μmの未延伸フィルムを得た。複数本のセラミックロールによりフィルム温度を95℃に予熱しロール間で25000%/分の延伸速度で縦方向に1.5倍延伸し、更に100℃で2.6倍縦方向に延伸した。次いでテンター式延伸機で横方向に80℃で3.9倍延伸した後、160℃で熱固定した後、130℃で2.5%横弛緩処理を行ない、厚さ50μmのポリ−L−乳酸の二軸延伸フィルムを得た。
【0043】
このフィルムを基材として、付加反応硬化型シリコーン樹脂KS−830(信越化学(株)製)を溶剤希釈し、シリコーン樹脂100重量%に対し、1重量%の白金触媒を添加し、シリコーン樹脂含有塗布液(濃度:3重量%)を作成した。次に、ワイヤーバーにて、フィルム表面にシリコーン樹脂塗布液を塗布し、120℃で30秒間、乾燥、硬化させ、離型フィルム(離型層の乾燥固形分:0.05g/m2)を得た。表1にこの離型フィルムの特性を示す。
【0044】
比較例1
実施例1において、縦延伸を複数本のセラミックロールによりフィルム温度98℃に予熱し、ロール間で25000%/分の延伸速度で縦方向に2.5倍に一段で延伸した以外は、実施例1と同様の方法で離型フィルムを得た。表1にこの離型フィルムの特性を示す。
【0045】
比較例2
実施例1において、縦延伸を64℃で3.5倍に一段で延伸した以外は、実施例1と同様の方法で離型フィルムを得た。表1にこの離型フィルムの特性を示す。
【0046】
比較例3
実施例1において、縦延伸速度を4000%/分にした以外は、実施例1と同様の方法で離型フィルムを得た。表1にこの離型フィルムの特性を示す。
【0047】
比較例4
実施例1において、熱固定温度を135℃で実施した以外は、実施例1と同様の方法で離型フィルムを得た。表1にこの離型フィルムの特性を示す。
【0048】
実施例2
実施例1において、熱固定温度を155℃で実施した以外は、実施例1と同様の方法で離型フィルムを得た。表1にこの離型フィルムの特性を示す。
【0049】
【表1】

Figure 0004200406
【0050】
【発明の効果】
本発明は、脂肪族ポリエステルフィルムを用いた離型フィルムの製造方法に関し、離型フィルムを使用して、粘着ラベルや粘着テープなどの台紙、セラミックシートなどを製造する際の後加工適性に優れ、かつ従来通りの離型フィルムとして使用が可能であり、離型フィルムとして使用した後には自然界で分解し、焼却処理などの必要が無く、離型フィルムとして極めて有用である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a release film using an aliphatic polyester film, and can be used as a release film as a support when producing a conventional adhesive label, adhesive tape or other backing paper, or ceramic sheet. It is related with the manufacturing method of a release film which decomposes | disassembles in nature after using it and does not need an incineration process etc.
[0002]
[Prior art]
Polyester films made of polyethylene terephthalate or polyethylene naphthalate are widely used as materials for release films and the like. As a method for producing a release film, for example, a polyester film is produced by coating an addition reaction type, a condensation reaction type or the like with a silicone resin. Widely used in
[0003]
However, in recent years, there has been a growing demand for biodegradable release films that do not require incineration due to environmental awareness and waste disposal problems in the disposal of films that are no longer needed after using release films. is there. In response to this requirement, the polyethylene terephthalate film and polyethylene naphthalate film that have been used as a support for a release film have not been biodegradable and must be incinerated.
[0004]
In contrast, aliphatic polyester-based films such as polylactic acid decompose when discarded in the natural environment (for example, polylactic acid films are naturally hydrolyzed in soil and then harmless by microorganisms. It has been developed with a focus on becoming a thing.
[0005]
Under such circumstances, a releasable biodegradable film based on a uniaxially stretched film made of a lactic acid-based polymer is disclosed in, for example, JP-A-9-235455. However, since the film is insufficiently oriented and crystallized by stretching, the film does not sufficiently satisfy mechanical strength and heat resistance, which are necessary characteristics when used as a release film. For this reason, it has become clear that there are problems such as dimensional changes and wrinkles occurring in the post-processing steps of manufacturing adhesive films such as adhesive labels and adhesive tapes and ceramic sheets using this film as a base material.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to eliminate such drawbacks of the prior art, and is excellent in post-processing suitability when using a release film to produce a backing sheet such as an adhesive label or an adhesive tape, a ceramic sheet, and the like. An object of the present invention is to provide a method for producing a release film that can be used as a release film and further decomposes in nature after being used as a release film, and does not require incineration.
[0007]
[Means for Solving the Problems]
That is, the object of the present invention can be achieved by the following means.
1. It consists of a polymer mainly composed of an aliphatic polyester whose main repeating unit is a general formula -O-CHR-CO- (R is H or an alkyl group having 1 to 3 carbon atoms), and has a refractive index (Nz) in the thickness direction. Is 1.440 to 1.455, a value obtained by subtracting the refractive index (Ny) in the width direction from the refractive index (Nx) in the longitudinal direction (Nx−Ny) is −0.020 to 0, and further 120 ° C. longitudinal thermal shrinkage as a base material of an aliphatic polyester biaxially oriented film is 5% or less, a process for the preparation of at least release one surface provided with a release layer ing film in an unstretched film When biaxially stretching, the longitudinal stretching is performed in two or more stages, and the final stretching ratio in each of the longitudinal and transverse stretching directions is at least 3 times, and after biaxial stretching, 145 ° C. to melting temperature Tm (° C) Method for producing a release film, characterized in that to obtain 125 ℃ ~ (Tm-20 ℃ ) in 0.1 to 8% of the transverse relaxation heat treatment to go to substrates have.
2. 2. The method for producing a release film according to 1, wherein the aliphatic polyester biaxially stretched film has a thermal shrinkage in the longitudinal direction at 120 ° C. of 3% or less.
3. 3. The method for producing a release film according to 1 or 2, wherein the aliphatic polyester is polylactic acid.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
(Aliphatic polyester film)
Examples of the aliphatic polyester comprising a unit represented by the general formula —O—CHR—CO— (R is H or an alkyl group having 1 to 3 carbon atoms) used in the present invention include polylactic acid, Examples thereof include polyglycolic acid and poly (2-oxybutyric acid), and one or more of these are selected and used. When using 2 or more types, a mixture and a copolymer may be sufficient. In addition, in the polymer having an asymmetric carbon, there are optical isomers such as L-form, DL-form, and D-form, any of which may be present, and two or more isomers are mixed. It may be a thing. Examples of the repeating unit other than the repeating unit represented by the above general formula contained in the aliphatic polyester include an aliphatic polyester unit derived from oxycarboxylic acid and / or an aliphatic carboxylic acid unit obtained from diol and dicarboxylic acid. Is mentioned.
[0009]
In addition to using these as homopolymers, they may be used as a polymer mixture or copolymer. Those having an asymmetric carbon in the polymer have optical isomers such as L-form, DL-form, and D-form, and any of them may be used, or a mixture of these isomers may be used. The polymer used as the material of these films can be produced by a known method such as ring-opening polymerization using a corresponding dehydrated cyclic ester compound of α-oxyacid.
[0010]
The weight average molecular weight of the aliphatic polyester used in the present invention is preferably 1 to 500,000. When the weight average molecular weight is less than 10,000, the properties of the obtained film are remarkably inferior, and the decomposition rate is too high, so that the object of the present invention cannot be achieved. Moreover, the extrudability at the time of film manufacture and biaxial stretching property also fall. On the other hand, when the weight average molecular weight exceeds 500,000, there is a problem that the viscosity of the polymer becomes high and melt extrusion becomes difficult. A preferable range is 5 to 300,000.
[0011]
A preferred method for producing the film of the present invention is a method in which an aliphatic polyester is extruded at a specific extrusion temperature to form an unstretched film, and the unstretched film is biaxially stretched under specific conditions.
[0012]
As a method of extruding the aliphatic polyester resin, a known T-die method, inflation method, or the like can be applied. The extrusion temperature is preferably in the range of Tm to (Tm + 70 ° C.), and more preferably in the range of (Tm + 20 ° C.) to (Tm + 50 ° C.), where Tm (° C.) is the melting temperature of the aliphatic polyester resin. When the extrusion temperature is lower than Tm, the extrusion stability tends to be deteriorated, and it tends to be overloaded. On the other hand, when the extrusion temperature is higher than (Tm + 70 ° C.), the polymer is severely decomposed, and the film does not satisfy the characteristics defined in the present invention even if it is subjected to subsequent stretching. As the die of the extruder, one having an annular or linear slit is used. The die temperature is usually about the same as the extrusion temperature.
[0013]
In order to biaxially stretch the obtained unstretched film, the first-axis stretching and the second-axis stretching may be performed sequentially or simultaneously. Here, the first axis is one of the longitudinal direction and the lateral direction of the film, and the second axis is the other of the lateral direction and the longitudinal direction of the film, and means the direction orthogonal to the first axis. The “longitudinal direction” is synonymous with the “longitudinal direction of the film”, and the “lateral direction” is synonymous with the “width direction of the film”.
[0014]
When the glass transition temperature of the aliphatic polyester resin is Tg (° C.), the stretching temperature is preferably in the range of Tg to (Tg + 50 ° C.), particularly preferably in the range of (Tg + 10 ° C.) to (Tg + 40 ° C.). When the stretching temperature is lower than Tg, stretching becomes difficult, and when it exceeds (Tg + 50 ° C.), not only the film thickness uniformity and mechanical strength are lowered, but the film satisfies the characteristics defined in the present invention. It becomes difficult.
[0015]
The longitudinal and lateral stretching may be performed in one stage or in multiple stages, but the final stretching ratio in each stretching direction is at least 3 times, preferably 3.5 times or more, and The vertical / horizontal area magnification is 9 times or more, preferably 12 times or more from the viewpoint of thickness uniformity and mechanical properties. If at least one of the longitudinal and lateral stretching ratios is less than 3 times, or if the longitudinal and lateral area magnifications are less than 9 times, the film thickness uniformity and mechanical strength are insufficient, and the film is defined in the present invention. It becomes difficult to satisfy the characteristics.
[0016]
In particular, in order to set the refractive index (Nz) in the thickness direction of the film and the heat shrinkage rate in the longitudinal direction at 120 ° C. within the specified range, longitudinal stretching is performed in two or more stages, and at least one of the longitudinal stretching steps In the range of (Tg + 20 ° C.) to (Tg + 40 ° C.), it is important that the stretching speed is 10,000% / min or more, preferably 15000% / min or more, more preferably 20000% / min or more. is there.
[0017]
The heat setting after biaxial stretching is preferably performed in the range of 145 ° C. to Tm, preferably in the range of 150 ° C. to Tm for about 1 second to 3 minutes from the viewpoint of dimensional stability during processing. Further, for the same reason, it is preferable to perform a lateral relaxation treatment subsequent to heat fixation, and more specifically, it is preferable to perform a lateral relaxation treatment of about 0.1 to 8% at 125 ° C. to (Tm−20 ° C.). Performing such heat setting conditions and lateral relaxation treatment is suitable for setting the heat shrinkage rate in the longitudinal direction at 120 ° C. to 5% or less, and as a result, a product with less generation of wrinkles during processing is obtained. be able to.
[0018]
In the method for producing a release film of the present invention, a multilayer may be formed by using a coextrusion method at the time of extrusion, or by applying various coating methods in a continuous process from extrusion to heat setting.
[0019]
Moreover, in the release film of this invention, in order to improve adhesiveness with a release layer, you may perform a primer coat, a corona treatment, a plasma treatment, a flame treatment, etc. before laminating | stacking a release layer.
[0020]
As for the refractive index (Nz) of the thickness direction of the aliphatic polyester biaxially stretched film in this invention, 1.440-1.455 are preferable, More preferably, it is 1.445-1.455. If Nz is less than 1.440, the film tends to break during film formation. Moreover, when it exceeds 1.455, it is flat when heated in a post-processing step in which a release layer is applied, a backing film such as an adhesive label or an adhesive tape, or a ceramic sheet is manufactured using a release film. It is not preferable because the properties deteriorate.
[0021]
Furthermore, the thickness unevenness is reduced by setting the value (Nx−Ny) obtained by subtracting the refractive index (Ny) in the width direction from the refractive index (Nx) in the longitudinal direction of the film to a range of −0.020 to 0. It is difficult to stretch even if it is subjected to transport tension in a heated state in post-processing processes such as mounting labels such as adhesive labels and adhesive tapes, ceramic sheets, etc. using a release film. Deterioration of flatness is less likely to occur. (Nx-Ny) is preferably -0.020-0, particularly preferably -0.015-0.
[0022]
In order to set (Nx−Ny) within the specified range, it is preferable to balance the vertical and horizontal magnifications and speeds during stretching.
[0023]
Further, the thermal shrinkage in the longitudinal direction at 120 ° C. of the base film obtained by the present invention is preferably 5% or less, particularly preferably 3% or less. When the heat shrinkage rate exceeds 5%, in the step of applying a release layer or the post-processing step of using a release film, the film is displaced or wrinkled, and the product yield is reduced.
[0024]
The aliphatic polyester in the present invention can contain known additives as required. For example, inert particles, antiblocking agents, heat stabilizers, antioxidants, antistatic agents, light resistance agents, impact resistance improvers, and the like may be included.
[0025]
In the aliphatic polyester film of the present invention, it is preferable to contain inert particles in the film in order to improve handling properties (sliding properties, winding properties, anti-blocking properties, etc.). Examples of inert particles include metal oxides such as silica, titanium dioxide, talc, and kaolinite, metal salts such as calcium carbonate, calcium phosphate, and barium sulfate, or crosslinked polystyrene resins, crosslinked acrylic resins, silicone resins, and crosslinked polyester resins. Examples thereof include particles made of an organic polymer.
[0026]
These inert particles may be contained alone or in combination of two or more. The average particle size of the inert particles is preferably from 0.01 to 3.0 μm, particularly preferably from 0.05 to 2.5 μm. The particle content is preferably 0.005 to 2% by weight, particularly preferably 0.01 to 1.0% by weight.
[0027]
In particular, in order to achieve both surface smoothness and slipperiness, it is preferable to use two or more kinds of inert particles having different average particle diameters in combination. In particular, lubricant particles that deform during film formation (for example, organic particles with a low degree of crosslinking such as crosslinked polystyrene and crosslinked acrylic, and inorganic lubricants such as silica that are aggregates of primary particles) and do not deform during film formation. It is preferable to combine ordinary lubricant particles. Furthermore, it is preferable from the viewpoints of winding properties and wear resistance to use two kinds of particles having an average particle diameter of 0.5 μm or more in combination within the range of the average particle diameter.
[0028]
The resin constituting the release layer in the (release layer) The present invention, silicone resins, fluorocarbon resins, various waxes, and the like aliphatic olefins are exemplified, especially silicon corn resin. For example, when a silicone resin is used as the release layer of the present invention, the release layer can be formed by, for example, applying a coating liquid containing a curable silicone resin to the surface of the polyester film, and drying and curing. it can.
[0029]
As the curable silicone resin, any reaction system such as an addition reaction system, a condensation reaction system, or an ultraviolet ray or electron beam curing system can be used.
[0030]
Examples of the addition reaction type silicone resin include those in which a polydimethylsiloxane having a vinyl group introduced at the terminal thereof and a hydrodienesiloxane are reacted using a platinum catalyst to form a three-dimensional crosslinked structure.
[0031]
Examples of the silicone resin in the condensation reaction system include those in which a polydimethylsiloxane having an OH group at the end and a polydimethylsiloxane having an H group at the end are subjected to a condensation reaction using an organotin catalyst to form a three-dimensional crosslinked structure. It is done.
[0032]
Examples of UV curable silicone resins include those that use the same radical reaction as ordinary silicone rubber crosslinks as the most basic types, those that introduce photopolymerization by introducing unsaturated groups, and those that decompose onium salts with UV light. Examples include those that generate a strong acid and then cleave the epoxy group to crosslink, and those that crosslink by the addition reaction of thiol to vinylsiloxane. Further, an electron beam can be used instead of the ultraviolet rays. Electron beams have stronger energy than ultraviolet rays, and can use a radical crosslinking reaction without using an initiator as in the case of ultraviolet curing.
[0033]
(Coating of silicone resin coating)
In the present invention, at least one surface of the aliphatic polyester film is coated with any one of the above-described addition reaction system, condensation reaction system, and ultraviolet curable silicone resin as a resin component, and then dried by heating, thermosetting or It is preferable to apply a releasable coating film by UV curing. As the coating method, any known coating method can be applied. For example, a roll coating method such as a gravure coating method or a reverse coating method, a bar coating method such as a Mayer bar, a spray coating method, an air knife coating method, etc. Can be used.
[0034]
(Drying and curing)
The silicone resin layer can be dried and cured at the same time. The conditions are preferably a drying temperature of 100 ° C. or higher and a drying time of 20 seconds or longer. If the drying temperature is less than 100 ° C and the drying time is less than 20 seconds, curing of the silicone resin is incomplete, causing heavy release (not reaching the target release force) and back transfer (back-off) of the silicone resin layer. It is not preferable.
[0035]
Coating amount after drying of cured silicone resin layer is in the range of 0.05 to 0.2 g / m 2 is preferred. When the dry coating amount of the silicone resin layer is less than 0.05 g / m 2 , the peeling performance tends to deteriorate and the original peeling performance tends not to be obtained. On the other hand, if the dry coating amount exceeds 0.2 g / m 2 , it takes time to cure and inconveniences in production arise.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example are given and the content and effect of this invention are demonstrated concretely, this invention is not limited to a following example, unless it deviates from the summary. In addition, the evaluation method of the physical property in an Example and a comparative example is as follows.
[0037]
(1) Refractive index (Nz, Nx, Ny) in thickness direction, longitudinal direction and width direction
The refractive index in each direction of the film was measured using an Abbe refractometer 1T manufactured by Atago Co., Ltd.
[0038]
(2) Heat shrinkage rate in the longitudinal direction at 120 ° C. of the film The film piece cut to 250 mm in the longitudinal direction and 10 mm in the width direction is marked with two marks at intervals of 200 mm in the longitudinal direction, The distance (A) between the two marks was measured while being pulled at a constant tension of 5 gf in the longitudinal direction at 23 ° C., and then the film piece was placed in an oven at 120 ° C. without applying tension to the film piece. After 5 minutes at 120 ° C., the distance (B) between the two marks was measured, and the thermal shrinkage (HS120 MD ) in the longitudinal direction at 120 ° C. of the film was determined from the following formula.
HS120 MD (%) = [(A−B) / A] × 100
[0039]
(3) Using a processability release film, the presence / absence of process abnormalities (wrinkles, running deviation) in the casting process during the production of the ceramic sheet was visually evaluated.
○: No occurrence of wrinkles, meandering, etc. Δ: Some wrinkles and running deviations occurred: Flatness deteriorated, wrinkles and running deviations were much [0040]
(4) The biodegradable release film was stored in compost at 60 ° C. for 1 month, and this film was taken out after 1 month, and its appearance change and retention rate of tensile strength in the longitudinal direction (%) [(after storage Tensile strength / tensile strength before storage) × 100], the presence or absence of biodegradability was determined.
○: Biodegradable (conspicuous appearance change is recognized, tensile strength retention is 50% or less)
X: No biodegradability (there is almost no noticeable change in appearance and the tensile strength retention exceeds 50%)
[0041]
(5) A polyester pressure-sensitive adhesive tape (Nitto 31B) was bonded to the release layer surface of the normal peel evaluation film, and pressure-bonded with a pressure roller having a linear pressure of 5 kgf / mm. After leaving at room temperature for 20 hours, the peeling force between the release layer and the adhesive tape was measured with a tensile tester (peeling angle 90 °) and judged by the following evaluation.
A: Less than 8-17 (gf / 50mm width)
B: 17 or more (gf / 50 mm width)
C: Less than 8 (gf / 50mm width)
A preferable range of the peeling force is 8 gf / 50 mm width or more and less than 17 gf / 50 mm width, and it is not preferable that the peeling force is too strong or too weak.
[0042]
Example 1
A polymer obtained by adding 0.05 parts by weight of aggregate silica particles having an average particle diameter of 2.0 μm as inert particles for forming surface protrusions to 100 parts by weight of poly-L-lactic acid having a weight average molecular weight of 250,000. Then, after extrusion at a resin temperature of 210 ° C. using a 30 mm diameter extruder with a T-die, it was cooled with a chill roll at 25 ° C. to obtain an unstretched film having a thickness of 620 μm. The film temperature was preheated to 95 ° C. with a plurality of ceramic rolls, stretched 1.5 times in the machine direction between the rolls at a stretching speed of 25000% / min, and further stretched 2.6 times in the machine direction at 100 ° C. Next, the film was stretched 3.9 times in the transverse direction at 80 ° C. by a tenter type stretching machine, heat-set at 160 ° C., then subjected to 2.5% transverse relaxation treatment at 130 ° C., and poly-L-lactic acid having a thickness of 50 μm. A biaxially stretched film was obtained.
[0043]
Using this film as a base material, an addition reaction curable silicone resin KS-830 (manufactured by Shin-Etsu Chemical Co., Ltd.) is diluted with a solvent, and 1% by weight of a platinum catalyst is added to 100% by weight of the silicone resin. A coating solution (concentration: 3% by weight) was prepared. Next, a silicone resin coating solution is applied to the film surface with a wire bar, dried and cured at 120 ° C. for 30 seconds, and a release film (dry solid content of the release layer: 0.05 g / m 2 ) is obtained. Obtained. Table 1 shows the characteristics of this release film.
[0044]
Comparative Example 1
In Example 1, except that the longitudinal stretching was preheated to a film temperature of 98 ° C. by a plurality of ceramic rolls, and the film was stretched 2.5 times in the longitudinal direction at a stretching speed of 25000% / min between the rolls. A release film was obtained in the same manner as in Example 1. Table 1 shows the characteristics of this release film.
[0045]
Comparative Example 2
In Example 1, a release film was obtained in the same manner as in Example 1 except that the longitudinal stretching was performed at 64 ° C. in a single step at 3.5 times. Table 1 shows the characteristics of this release film.
[0046]
Comparative Example 3
In Example 1, a release film was obtained in the same manner as in Example 1 except that the longitudinal stretching speed was set to 4000% / min. Table 1 shows the characteristics of this release film.
[0047]
Comparative Example 4
A release film was obtained in the same manner as in Example 1 except that the heat setting temperature was 135 ° C. in Example 1. Table 1 shows the characteristics of this release film.
[0048]
Example 2
In Example 1, a release film was obtained in the same manner as in Example 1 except that the heat setting temperature was 155 ° C. Table 1 shows the characteristics of this release film.
[0049]
[Table 1]
Figure 0004200406
[0050]
【The invention's effect】
The present invention relates to a method for producing a release film using an aliphatic polyester film, and using the release film , it is excellent in post-processing suitability when producing a mount such as an adhesive label or an adhesive tape, a ceramic sheet, Moreover, it can be used as a conventional release film, and after use as a release film, it is decomposed in nature and does not require an incineration process, and is extremely useful as a release film.

Claims (3)

主たる繰り返し単位が一般式−O−CHR−CO−(RはHまたは、炭素数1〜3のアルキル基)である脂肪族ポリエステルを主成分としたポリマーからなり、厚み方向の屈折率(Nz)が1.440〜1.455であり、長手方向の屈折率(Nx)から幅方向の屈折率(Ny)を差し引いた値(Nx-Ny)が−0.020〜0であり、更に120℃における長手方向の熱収縮率が5%以下である脂肪族ポリエステル二軸延伸フィルムを基材とし、その少なくとも片面に離型層を設けてなる離型フィルムの製造方法であって、未延伸フィルムを二軸延伸するに際し、縦延伸を二段以上で行い、縦・横それぞれの延伸方向での最終的な延伸倍率が互いに少なくとも3倍以上であり、二軸延伸後、145℃〜融解温度Tm(℃)の温度範囲で熱固定し、引き続いて125℃〜(Tm−20℃)で0.1〜8%の横弛緩熱処理を行って基材を得ることを特徴とする離型フィルムの製造方法It consists of a polymer mainly composed of an aliphatic polyester whose main repeating unit is a general formula -O-CHR-CO- (R is H or an alkyl group having 1 to 3 carbon atoms), and has a refractive index (Nz) in the thickness direction. Is 1.440 to 1.455, a value obtained by subtracting the refractive index (Ny) in the width direction from the refractive index (Nx) in the longitudinal direction (Nx−Ny) is −0.020 to 0, and further 120 ° C. longitudinal thermal shrinkage as a base material of an aliphatic polyester biaxially oriented film is 5% or less, a process for the preparation of at least release one surface provided with a release layer ing film in an unstretched film When biaxially stretching, the longitudinal stretching is performed in two or more stages, and the final stretching ratio in each of the longitudinal and transverse stretching directions is at least 3 times, and after biaxial stretching, 145 ° C. to melting temperature Tm (° C) Method for producing a release film, characterized in that to obtain 125 ℃ ~ (Tm-20 ℃ ) in 0.1 to 8% of the transverse relaxation heat treatment to go to substrates have. 前記脂肪族ポリエステル二軸延伸フィルムの120℃における長手方向の熱収縮率が3%以下であることを特徴とする請求項1記載の離型フィルムの製造方法The method for producing a release film according to claim 1, wherein the aliphatic polyester biaxially stretched film has a thermal shrinkage in the longitudinal direction at 120 ° C of 3% or less. 前記脂肪族系ポリエステルがポリ乳酸であることを特徴とする請求項1または2記載の離型フィルムの製造方法The method for producing a release film according to claim 1 or 2, wherein the aliphatic polyester is polylactic acid.
JP10206599A 1999-04-09 1999-04-09 Release film production method Expired - Fee Related JP4200406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10206599A JP4200406B2 (en) 1999-04-09 1999-04-09 Release film production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10206599A JP4200406B2 (en) 1999-04-09 1999-04-09 Release film production method

Publications (2)

Publication Number Publication Date
JP2000289170A JP2000289170A (en) 2000-10-17
JP4200406B2 true JP4200406B2 (en) 2008-12-24

Family

ID=14317375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10206599A Expired - Fee Related JP4200406B2 (en) 1999-04-09 1999-04-09 Release film production method

Country Status (1)

Country Link
JP (1) JP4200406B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128042A1 (en) 2011-03-24 2012-09-27 日東電工株式会社 Method for producing release liner

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002178454A (en) * 2000-12-11 2002-06-26 Toyobo Co Ltd Release film
JP4898017B2 (en) * 2001-05-28 2012-03-14 ユニチカ株式会社 Biaxially stretched polyamide film
JP2006212954A (en) * 2005-02-04 2006-08-17 Mitsui Chemicals Inc Mold release film
JP5376749B2 (en) * 2005-10-26 2013-12-25 帝人株式会社 Polylactic acid film
JP5180826B2 (en) * 2006-06-27 2013-04-10 三井化学株式会社 Film and release film
JP2008062589A (en) * 2006-09-09 2008-03-21 Tohcello Co Ltd Polylactic acid release film
DE102009042008A1 (en) * 2009-09-21 2011-03-24 Huhtamaki Forchheim Zweigniederlassung Der Huhtamaki Deutschland Gmbh & Co. Kg Mainly biodegradable release film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128042A1 (en) 2011-03-24 2012-09-27 日東電工株式会社 Method for producing release liner
US9394467B2 (en) 2011-03-24 2016-07-19 Nitto Denko Corporation Method for producing release liner

Also Published As

Publication number Publication date
JP2000289170A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
KR20130031242A (en) Heat-shrinkable polyester film, packaging body thereof, the method for producing heat-shrinkable polyester film
US8722161B2 (en) Heat shrinkable polyester film, method for producing same, and packaged body
JP5363176B2 (en) Release film
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
JP4200406B2 (en) Release film production method
JP4232004B2 (en) Biaxially oriented polyester film
JP4200405B2 (en) Release film production method
WO2020071280A1 (en) Biaxially oriented polyamide film and polyamide film mill roll
JP4214254B2 (en) Release film production method
JP4644885B2 (en) Aliphatic polyester film
KR20160016995A (en) Heat shrinkable polyester film with excellent slip property
JP2001225416A (en) Polylactic acid release film
JP3206747B2 (en) Aliphatic polyester film
JP5391666B2 (en) Biaxially stretched film
JP4378575B2 (en) Manufacturing method of adhesive tape
KR20150092981A (en) Heat shrinkable polyester film with excellent slip property
JP2000238128A (en) Aliphatic polyester film
JP4277349B2 (en) Aliphatic polyester film
JP4310666B2 (en) Aliphatic polyester biaxially stretched film
JP4636173B2 (en) Method for producing polylactic acid biaxially stretched film
JP2001288281A (en) Aliphatic polyester based film
WO2021166881A1 (en) Multilayer film
JP2000238123A (en) Aliphatic polyester film
JP2000239410A (en) Aliphatic polyester film
JP3708059B2 (en) Heat-shrinkable polylactic acid-based biaxially stretched film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees