JP4200107B2 - Method for analyzing impurities in silicon - Google Patents

Method for analyzing impurities in silicon Download PDF

Info

Publication number
JP4200107B2
JP4200107B2 JP2004004529A JP2004004529A JP4200107B2 JP 4200107 B2 JP4200107 B2 JP 4200107B2 JP 2004004529 A JP2004004529 A JP 2004004529A JP 2004004529 A JP2004004529 A JP 2004004529A JP 4200107 B2 JP4200107 B2 JP 4200107B2
Authority
JP
Japan
Prior art keywords
silicon
solution
nitric acid
dissolution
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004004529A
Other languages
Japanese (ja)
Other versions
JP2005195551A (en
Inventor
朋浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2004004529A priority Critical patent/JP4200107B2/en
Publication of JP2005195551A publication Critical patent/JP2005195551A/en
Application granted granted Critical
Publication of JP4200107B2 publication Critical patent/JP4200107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、シリコン、特に、冶金級シリコン中に存在するホウ素等の不純物を定量するための分析方法に関する。詳しくは、シリコン中の上記不純物を高精度で定量することが可能な分析方法を提供するものである。   The present invention relates to an analytical method for quantifying impurities such as boron present in silicon, particularly metallurgical grade silicon. Specifically, the present invention provides an analysis method capable of quantifying the impurities in silicon with high accuracy.

高純度シラン合成プロセスにおいては、原料として使用量の多い冶金級シリコン中の不純物量をコントロールすることが求められている。そのために、不純物量を正確に定量する分析手段が必要となっている。   In a high-purity silane synthesis process, it is required to control the amount of impurities in metallurgical grade silicon that is used in large quantities as a raw material. For this purpose, an analysis means for accurately quantifying the amount of impurities is required.

従来、シリコンウエハーにおける不純物の分析に対して要求される精度が比較的低い冶金級シリコン等のシリコン中の不純物の分析は、誘導結合プラズマ発光分光分析(ICP−AES)等の誘導結合プラズマ発光分析(ICP)で正確に行なうことが可能である。   Conventionally, the analysis of impurities in silicon, such as metallurgical grade silicon, which is relatively low in accuracy required for the analysis of impurities in silicon wafers, is performed by inductively coupled plasma emission spectrometry (ICP-AES) or the like. (ICP) can be performed accurately.

上記方法において、シリコン及び不純物は溶液として分析装置に供給する必要がある。従来、シリコンを溶解するには、硝酸及びフッ酸の水溶液中で加熱溶解する方法が知られており、かかる操作によって得られた溶解液を純水により適当な希釈倍率に調製してICPの分析装置に供給する方法が考えられる。   In the above method, silicon and impurities need to be supplied to the analyzer as a solution. Conventionally, in order to dissolve silicon, a method of dissolving by heating in an aqueous solution of nitric acid and hydrofluoric acid is known, and an ICP analysis is performed by preparing a solution obtained by such an operation with pure water to an appropriate dilution ratio. A method of supplying the apparatus is conceivable.

しかしながら、上記方法はICPによる不純物、特に、ホウ素の定量精度が十分ではなく、更に改良の余地があった。   However, the above-mentioned method has not enough accuracy for determination of impurities by ICP, particularly boron, and there is room for further improvement.

従って、本発明の目的は、ICPによるシリコン中の不純物の分析において、その精度を改良した定量分析方法を提供することにある。   Accordingly, an object of the present invention is to provide a quantitative analysis method with improved accuracy in the analysis of impurities in silicon by ICP.

本発明者は、上記技術課題を解決すべく鋭意研究を行ってきた。その結果、溶解に使用する硝酸が、ICP、特に、ICP−AESによる分析において測定対象となる不純物の回収率を低下する影響を及ぼすという知見を得た。そして、上記知見に基づき、シリコンの溶解液より硝酸を除去し、これを塩酸水溶液に再溶解したものをICPに供したところ、その測定感度を低下させることなく、前記回収率を飛躍的に向上せしめることができ、かかる分析における定量精度が極めて効果的に向上し得ることを見出し、本発明を完成するに至った。   The inventor has conducted intensive research to solve the above technical problems. As a result, it was found that nitric acid used for dissolution has an effect of reducing the recovery rate of impurities to be measured in the analysis by ICP, particularly ICP-AES. And based on the above knowledge, nitric acid was removed from the silicon solution, and this was redissolved in an aqueous hydrochloric acid solution and subjected to ICP. The recovery rate was dramatically improved without reducing the measurement sensitivity. As a result, the inventors have found that the quantitative accuracy in such analysis can be improved extremely effectively, and have completed the present invention.

即ち、本発明は、硝酸及びフッ酸の水溶液中でシリコンよりなる試料を溶解してシリコン溶解液を得る溶解工程、上記溶解工程によって得られたシリコン溶解液を100〜160℃の温度に加熱することにより濃縮して硝酸が除去された濃縮液を得る濃縮工程、上記濃縮工程より得られた濃縮液を塩酸水溶液に溶解する再溶解工程、及び、再溶解工程より得られる再溶解液を誘導結合プラズマ発光分析により分析することにより該再溶解液に含有されている不純物を定量する定量工程より成ることを特徴とするシリコン中のホウ素の分析方法である。
That is, the present invention dissolves a sample made of silicon in an aqueous solution of nitric acid and hydrofluoric acid to obtain a silicon solution, and heats the silicon solution obtained by the dissolution step to a temperature of 100 to 160 ° C. Concentration step to obtain a concentrate from which nitric acid has been removed by concentration, a re-dissolution step for dissolving the concentrate obtained from the concentration step in an aqueous hydrochloric acid solution, and a re-dissolution solution obtained from the re-dissolution step inductively coupled It is a method for analyzing boron in silicon, characterized by comprising a quantitative step of quantifying impurities contained in the redissolved solution by analysis by plasma emission analysis.

本発明の分析方法は、簡易な操作によってシリコン中の不純物元素の定量を高い精度で行なうことが可能である。特に、不純物として含有されるホウ素の回収率は92〜95%或いはそれ以上に達し、シリコン中のホウ素の定量方法として高く評価することができる。   The analysis method of the present invention can determine the impurity element in silicon with high accuracy by a simple operation. In particular, the recovery rate of boron contained as impurities reaches 92 to 95% or more, and can be highly evaluated as a method for quantifying boron in silicon.

本発明において、分析の対象となるシリコンは特に制限されないが、高純度シラン製造プロセスにおいて使用される冶金級シリコン中を対象とし、その不純物の測定に対して好適である。上記冶金級シリコンは、珪石を還元して作られるものであり、約90〜99.9重量%の純度を有するシリコンである。   In the present invention, the silicon to be analyzed is not particularly limited, but is suitable for the measurement of impurities in metallurgical grade silicon used in a high purity silane production process. The metallurgical grade silicon is made by reducing silica and has a purity of about 90 to 99.9% by weight.

本発明において、シリコンは、分析に際して、適当な粒径に粉砕することが好ましい。一般には、10〜2000μmの大きさが好ましい。   In the present invention, silicon is preferably pulverized to an appropriate particle size for analysis. In general, a size of 10 to 2000 μm is preferable.

本発明のシリコン中の不純物の分析方法は、(1)溶解工程、(2)濃縮工程、(3)再溶解工程、及び(4)定量工程より成る。   The method for analyzing impurities in silicon according to the present invention comprises (1) a dissolution step, (2) a concentration step, (3) a redissolution step, and (4) a quantitative step.

(1)溶解工程
本発明において、溶解工程は、硝酸及びフッ酸の水溶液中でシリコンよりなる試料を溶解してシリコン溶解液を得る工程である。
(1) Dissolution Step In the present invention, the dissolution step is a step of obtaining a silicon solution by dissolving a sample made of silicon in an aqueous solution of nitric acid and hydrofluoric acid.

上記シリコンの溶解の条件は、硝酸及びフッ酸の水溶液を使用する方法であれば、公知の条件が特に制限なく採用される。好ましい方法を例示すれば、シリコンの粉砕物中に硝酸水溶液を投入後、これにフッ酸水溶液を徐々に添加する方法が好適である。この場合、得られるシリコン溶解液の温度上昇による不純物の揮散を防止するために、硝酸水溶液の使用量を増やすことによって徐熱を効率よく行なうようにする方法、硝酸水溶液を氷冷することによって徐熱を行なう方法などが挙げられる。   The conditions for dissolving the silicon are not particularly limited as long as they are a method using an aqueous solution of nitric acid and hydrofluoric acid. For example, a preferable method is to add an aqueous nitric acid solution to a pulverized silicon and then gradually add an aqueous hydrofluoric acid solution thereto. In this case, in order to prevent the volatilization of impurities due to the temperature rise of the silicon solution to be obtained, a method of efficiently performing slow heating by increasing the amount of nitric acid aqueous solution used, or by gradually cooling the nitric acid aqueous solution with ice cooling. The method of performing heat etc. are mentioned.

上記方法によって、溶解時の液温度を40℃以下、10〜40℃に調節することが好ましい。   It is preferable to adjust the liquid temperature at the time of dissolution to 40 ° C. or lower and 10 to 40 ° C. by the above method.

また、上記硝酸水溶液の濃度は特に制限されないが、30〜70重量%程度が好ましい。一方、フッ酸水溶液の濃度は、30〜50重量%程度が好ましい。   The concentration of the aqueous nitric acid solution is not particularly limited, but is preferably about 30 to 70% by weight. On the other hand, the concentration of the hydrofluoric acid aqueous solution is preferably about 30 to 50% by weight.

尚、これら硝酸水溶液、フッ酸水溶液は、不純物が極力除去されたものを使用することが好ましく、測定対象とする不純物の濃度がそれぞれ100ppt以下であることが好ましい。   The nitric acid aqueous solution and hydrofluoric acid aqueous solution are preferably those from which impurities are removed as much as possible, and the concentration of the impurity to be measured is preferably 100 ppt or less.

また、溶解に使用する容器は、ポリ四フッ化エチレン等のフッ素樹脂製のものが好適である。   The container used for dissolution is preferably made of a fluororesin such as polytetrafluoroethylene.

(2)濃縮工程
本発明において、濃縮工程は、上記溶解工程によって得られたシリコン溶解液を濃縮して硝酸が除去された濃縮液を得る工程である。
(2) Concentration process In this invention, a concentration process is a process of concentrating the silicon solution obtained by the said melt | dissolution process, and obtaining the concentrate from which nitric acid was removed.

従って、濃縮によって硝酸の殆どが除去される条件が特に制限なく採用される。好適な条件を例示すれば、ホットプレートの如き加熱器を使用し、シリコン溶解液を入れた容器を、100〜160℃で2〜5時間加熱する方法が好適である。
Therefore, the conditions under which most of the nitric acid is removed by concentration are employed without any particular limitation. As an example of suitable conditions, a method of heating a container containing a silicon solution at 100 to 160 ° C. for 2 to 5 hours using a heater such as a hot plate is preferable.

硝酸は、完全に除去することが好ましいが、本発明においては、1重量%程度まで、許容することができる。   Nitric acid is preferably completely removed, but in the present invention, it can be tolerated up to about 1% by weight.

尚、フッ酸は反応によって殆ど消失するが、過剰に使用した場合は、これも除去することが好ましい。一般に、フッ酸は、上記硝酸の除去条件において同時に除去される。   Although hydrofluoric acid almost disappears due to the reaction, it is preferably removed when used in excess. In general, hydrofluoric acid is simultaneously removed under the above-mentioned nitric acid removal conditions.

(3)再溶解工程
本発明において、再溶解工程は、上記濃縮工程より得られた、硝酸を除去された濃縮液を塩酸水溶液に溶解する工程である。
(3) Re-dissolution process In this invention, a re-dissolution process is a process of melt | dissolving the concentrated liquid obtained from the said concentration process from which the nitric acid was removed in hydrochloric acid aqueous solution.

かかる濃縮液は、硝酸等の除去により、一部固体の析出が起こる場合が多く、該固体を溶解してICPによる分析を可能とする必要がある。   In such a concentrated liquid, precipitation of a part of solid often occurs due to removal of nitric acid or the like, and it is necessary to dissolve the solid to enable analysis by ICP.

本発明においては、上記析出した固体の再溶解に塩酸水溶液を使用することを特徴とする。即ち、塩酸水溶液の使用により、分析感度を低下させることなく、ICPにおける回収率を上げることができる。   In the present invention, an aqueous hydrochloric acid solution is used for redissolving the precipitated solid. That is, by using an aqueous hydrochloric acid solution, the recovery rate in ICP can be increased without lowering the analytical sensitivity.

上記塩酸水溶液の濃度は、5〜35重量%程度が好ましい。   The concentration of the hydrochloric acid aqueous solution is preferably about 5 to 35% by weight.

尚、この塩酸水溶液は、不純物が極力除去されたものを使用することが好ましく、測定対象とする不純物の濃度が100ppt以下であることが好ましい。   In addition, it is preferable to use this hydrochloric acid aqueous solution from which impurities are removed as much as possible, and it is preferable that the concentration of impurities to be measured is 100 ppt or less.

また、上記方法によって得られた再溶解液は、必要に応じて純水で適当な濃度に希釈して、再溶解液として続く定量工程に供することができる。   Moreover, the redissolved solution obtained by the above method can be diluted to an appropriate concentration with pure water as necessary, and used as a redissolved solution for the subsequent quantitative step.

更に、ICP−AESの分析装置におけるトラブルを防止するため、上記再溶解液は、ろ過してパーティクルを除去する操作を行うことが好ましい。   Furthermore, in order to prevent troubles in the ICP-AES analyzer, the re-dissolved solution is preferably filtered to remove particles.

(4)定量工程
本発明において、定量工程は、上記再溶解工程より得られる再溶解液をICPにより分析することにより該再溶解液に含有されている不純物を定量する工程である。
(4) Quantification process In this invention, a quantification process is a process of quantifying the impurity contained in this re-dissolution liquid by analyzing the re-dissolution liquid obtained from the said re-dissolution process by ICP.

ICPによる分析は、公知の装置を使用して公知の方法によって行なうことができる。具体的には、ICP−AES、ICP−MS等を挙げることができるが、本発明においては、ICP−AESによる分析方法が特に好ましい。   Analysis by ICP can be performed by a known method using a known apparatus. Specific examples include ICP-AES and ICP-MS. In the present invention, an analysis method using ICP-AES is particularly preferable.

本発明を更に具体的に説明するため以下実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

実施例1
50mlのテフロン(登録商標)製ビーカーに冶金級シリコン試料を0.5g〜1.0g精秤した。その中に7N−HNO30mlを加えた。さらに、HF(50重量%)を徐々に加えて試料を分解した。それをホットプレート上に乗せ、温度140℃で2時間加熱させた後、ホットプレート温度160℃で1時間、さらにホットプレート温度140℃に調整し、残液が少量になるまで加熱した。その中に、回収試薬として、HCl(35重量%)を2ml添加し、さらに純水5mlを加え、ホットプレート温度140℃で5分間加熱した。ビーカーをホットプレートから降ろし、常温まで冷ました。ビーカー内の試料液をポリエチレン製漏斗とろ紙を用いて、ポリエチレン製100mlメスフラスコにろ過し、さらに純水にて、100mlまでメスアップした。
Example 1
A metallurgical grade silicon sample was accurately weighed in a 50 ml Teflon (registered trademark) beaker. Into this, 30 ml of 7N-HNO 3 was added. Further, HF (50% by weight) was gradually added to decompose the sample. It was placed on a hot plate and heated at a temperature of 140 ° C. for 2 hours, then adjusted to a hot plate temperature of 160 ° C. for 1 hour and further to a hot plate temperature of 140 ° C., and heated until the residual liquid became small. 2 ml of HCl (35% by weight) was added as a recovery reagent, 5 ml of pure water was further added, and heated at a hot plate temperature of 140 ° C. for 5 minutes. The beaker was removed from the hot plate and cooled to room temperature. The sample solution in the beaker was filtered into a polyethylene 100 ml volumetric flask using a polyethylene funnel and filter paper, and further made up to 100 ml with pure water.

この液をICP−AES装置として2波シーケンシャル形プラズマ発光分析装置 ICPS−1000V形(株式会社島津製作所社製)に導入して分析した結果、ホウ素の検出下限は10ppbであり、高感度で分析できた。この時のホウ素の回収率は92%であった。   As a result of introducing this solution into an ICPS-1000V type ICPS-1000V type (manufactured by Shimadzu Corporation) as an ICP-AES device and analyzing it, the lower limit of detection of boron is 10 ppb, which can be analyzed with high sensitivity. It was. The boron recovery rate at this time was 92%.

比較例
50mlのテフロン(登録商標)製ビーカーに冶金級シリコン試料を0.5g〜1.0g精秤した。その中に7N−HNO5mlを加えた。これを冷水中に浸け、さらに、HF(50重量%)を徐々に加えて試料を分解した。それをウォーターバス中にて温度60℃で2〜3時間加熱させた後、ビーカーをウォーターバスから降ろし、常温まで冷ました。ビーカー内の試料液をポリエチレン製漏斗とろ紙を用いて、ポリエチレン製50mlメスフラスコにろ過し、さらに純水にて、50mlまでメスアップした。
Comparative Example A metallurgical grade silicon sample was precisely weighed in a 50 ml Teflon (registered trademark) beaker. It was added 7N-HNO 3 5 ml therein. This was immersed in cold water, and HF (50% by weight) was gradually added to decompose the sample. After heating it in a water bath at a temperature of 60 ° C. for 2-3 hours, the beaker was removed from the water bath and cooled to room temperature. The sample solution in the beaker was filtered into a polyethylene 50 ml volumetric flask using a polyethylene funnel and filter paper, and further diluted to 50 ml with pure water.

この液をICP−AES装置として2波シーケンシャル形プラズマ発光分析装置 ICPS−1000V形(株式会社島津製作所社製)に導入して分析した結果、ホウ素の検出下限は100ppbであった。また、この時のホウ素の回収率は55%であった。
As a result of introducing this solution into a two-wave sequential plasma emission analyzer ICPS-1000V type (manufactured by Shimadzu Corporation) as an ICP-AES apparatus, the lower limit of detection of boron was 100 ppb. Further, the recovery rate of boron at this time was 55%.

Claims (4)

硝酸及びフッ酸の水溶液中でシリコンよりなる試料を溶解してシリコン溶解液を得る溶解工程、上記溶解工程によって得られたシリコン溶解液を100〜160℃の温度に加熱することにより濃縮して硝酸が除去された濃縮液を得る濃縮工程、上記濃縮工程より得られた濃縮液を塩酸水溶液に溶解する再溶解工程、及び、再溶解工程より得られる再溶解液を誘導結合プラズマ発光分析により分析することにより該再溶解液に含有されている不純物を定量する定量工程より成ることを特徴とするシリコン中のホウ素の分析方法。 A dissolution step of dissolving a sample made of silicon in an aqueous solution of nitric acid and hydrofluoric acid to obtain a silicon solution, the silicon solution obtained by the dissolution step is concentrated by heating to a temperature of 100 to 160 ° C. Step for obtaining a concentrated solution from which concentration has been removed, a re-dissolution step for dissolving the concentrated solution obtained in the above-mentioned concentration step in an aqueous hydrochloric acid solution, and analyzing the re-dissolved solution obtained from the re-dissolution step by inductively coupled plasma emission spectrometry A method for analyzing boron in silicon, comprising: a quantitative step for quantitatively determining impurities contained in the redissolved solution. シリコンの溶解を40℃以下の温度において行なう請求項1記載の分析方法。   The analysis method according to claim 1, wherein the silicon is dissolved at a temperature of 40 ° C. or lower. 前記濃縮工程において、硝酸の除去を濃縮液中の硝酸が1重量%以下となるまで行なう請求項1又は2に記載の分析方法。   The analysis method according to claim 1 or 2, wherein in the concentration step, nitric acid is removed until the nitric acid in the concentrated solution is 1 wt% or less. シリコンが、冶金級シリコンである請求項1〜3の何れか一項に記載の分析方法。   The analysis method according to any one of claims 1 to 3, wherein the silicon is metallurgical grade silicon.
JP2004004529A 2004-01-09 2004-01-09 Method for analyzing impurities in silicon Expired - Lifetime JP4200107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004004529A JP4200107B2 (en) 2004-01-09 2004-01-09 Method for analyzing impurities in silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004004529A JP4200107B2 (en) 2004-01-09 2004-01-09 Method for analyzing impurities in silicon

Publications (2)

Publication Number Publication Date
JP2005195551A JP2005195551A (en) 2005-07-21
JP4200107B2 true JP4200107B2 (en) 2008-12-24

Family

ID=34819124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004004529A Expired - Lifetime JP4200107B2 (en) 2004-01-09 2004-01-09 Method for analyzing impurities in silicon

Country Status (1)

Country Link
JP (1) JP4200107B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590183A (en) * 2012-03-06 2012-07-18 浙江出入境检验检疫局检验检疫技术中心 Detection method capable of quantitatively screening substance of very high concern in rubber and plastic products using microwave digestion-ICP-AES method
CN103728289A (en) * 2013-12-16 2014-04-16 金川集团股份有限公司 Method for rapidly measuring gold and silver in crude copper

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800806B2 (en) * 2006-03-23 2011-10-26 日本碍子株式会社 Method for preparing sample solution for impurity analysis in silicon compound-containing sample
JP5131245B2 (en) * 2009-05-21 2013-01-30 株式会社Sumco Method for analyzing metal impurities in silicon powder
JP6329920B2 (en) * 2015-04-14 2018-05-23 信越化学工業株式会社 Method for evaluating polycrystalline silicon mass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590183A (en) * 2012-03-06 2012-07-18 浙江出入境检验检疫局检验检疫技术中心 Detection method capable of quantitatively screening substance of very high concern in rubber and plastic products using microwave digestion-ICP-AES method
CN102590183B (en) * 2012-03-06 2014-01-08 浙江出入境检验检疫局检验检疫技术中心 Detection method capable of quantitatively screening substance of very high concern in rubber and plastic products using microwave digestion-ICP-AES method
CN103728289A (en) * 2013-12-16 2014-04-16 金川集团股份有限公司 Method for rapidly measuring gold and silver in crude copper

Also Published As

Publication number Publication date
JP2005195551A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
CN103115838A (en) Novel method for measuring silicon dioxide in slag by using precipitant
CN104280367A (en) Method for efficiently and accurately detecting content of silicon dioxide in quartz sand
TW201527731A (en) Method for determining a concentration of metal impurities contaminating a silicon product
JP4200107B2 (en) Method for analyzing impurities in silicon
JP3768442B2 (en) Analytical sample preparation method and element quantification method
CN109540874B (en) Method for detecting content of inorganic elements in sample of lithium lanthanum zirconium oxygen type solid electrolyte
JPH09257669A (en) Method for analyzing amount of impurity in silicon dioxide
CN104897512B (en) The rapid analysis method of acid non-soluble substance in a kind of goldmud from cyanide processing
CN104535559A (en) Method for measuring molten salt chloride residues and recycling chemical components in regenerated substances
CN105954261A (en) Method for determining contents of silicon dioxide, aluminum sesquioxide and magnesium oxide in carbide slag
CN104502179A (en) Test sample treatment method for simultaneously measuring content of silicon and phosphor in silicon-manganese alloy by ICP
WO2018072500A1 (en) Method for detecting content of tin in high-concentration tin hydroxide product
CN101672819B (en) Method for quickly detecting iodine in ore
JP2011158326A (en) Method for quantifying very small amount of chlorine in silver powder
JP2019191012A (en) Element analysis method of inorganic sample
CN104458369B (en) A kind of preparation method of plasma spectroscopy detection titanium oxide solution sample
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP6217932B2 (en) Method for quantifying the amount of SiO2 contained in a Cu metal material
JP2001077158A (en) Analyzing method of metallic contamination on surface of silicon wafer
JP2020193939A (en) Method for preparing sample for quantification and method for manufacturing silver chloride
Ren et al. KH2PO4 Production by Cooling Crystallization Using Its Phase Equilibrium in the KH2PO4‐KCl‐C2H5OH‐H2O System
TW201937148A (en) Method for preparing sample for analysis
JP2005114505A (en) Method for determinating very small amount of selenium in glass
CN103616369A (en) Method for improving enrichment ratio of boron and phosphorus in ICP (inductively coupled plasma) impurity detection of trichlorosilane
JP6222526B2 (en) Method for quantifying AlN contained in Al or Al alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4200107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141010

Year of fee payment: 6

EXPY Cancellation because of completion of term