JP4197805B2 - Multilayer printed wiring board and manufacturing method thereof - Google Patents

Multilayer printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4197805B2
JP4197805B2 JP18741899A JP18741899A JP4197805B2 JP 4197805 B2 JP4197805 B2 JP 4197805B2 JP 18741899 A JP18741899 A JP 18741899A JP 18741899 A JP18741899 A JP 18741899A JP 4197805 B2 JP4197805 B2 JP 4197805B2
Authority
JP
Japan
Prior art keywords
layer
interlayer resin
insulation layer
resin
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18741899A
Other languages
Japanese (ja)
Other versions
JP2001015931A (en
Inventor
東冬 王
浩司 関根
元雄 浅井
憲一 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP18741899A priority Critical patent/JP4197805B2/en
Priority to MYPI99004184A priority patent/MY139405A/en
Priority to EP06115377A priority patent/EP1727409B1/en
Priority to DE69941937T priority patent/DE69941937D1/en
Priority to EP07110630A priority patent/EP1830616B1/en
Priority to DE69939913T priority patent/DE69939913D1/en
Priority to EP06115380A priority patent/EP1699278B1/en
Priority to EP08160500A priority patent/EP1978796B1/en
Priority to EP06115385A priority patent/EP1699280B1/en
Priority to EP08160963A priority patent/EP1978797B1/en
Priority to DE69938854T priority patent/DE69938854D1/en
Priority to KR1020067014993A priority patent/KR100673910B1/en
Priority to DE69942468T priority patent/DE69942468D1/en
Priority to KR1020067014992A priority patent/KR100675615B1/en
Priority to EP99943468A priority patent/EP1119227B1/en
Priority to US09/806,203 priority patent/US7535095B1/en
Priority to DE69943397T priority patent/DE69943397D1/en
Priority to EP06115382A priority patent/EP1699279B8/en
Priority to EP07110631A priority patent/EP1830617B1/en
Priority to EP08157080A priority patent/EP1968368A3/en
Priority to DE69934130T priority patent/DE69934130T2/en
Priority to PCT/JP1999/005266 priority patent/WO2000019789A1/en
Priority to EP07108839A priority patent/EP1893006B1/en
Priority to KR1020067014991A priority patent/KR100776865B1/en
Priority to KR1020017003881A priority patent/KR100697640B1/en
Publication of JP2001015931A publication Critical patent/JP2001015931A/en
Priority to US11/188,886 priority patent/US7504719B2/en
Priority to US12/146,204 priority patent/US8006377B2/en
Priority to US12/146,165 priority patent/US8020291B2/en
Priority to US12/146,105 priority patent/US8030577B2/en
Priority to US12/146,212 priority patent/US8018045B2/en
Application granted granted Critical
Publication of JP4197805B2 publication Critical patent/JP4197805B2/en
Priority to US12/409,670 priority patent/US7994433B2/en
Priority to US12/409,683 priority patent/US8533943B2/en
Priority to US12/420,469 priority patent/US8093507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘電率が低く、剛性等の機械的特性に優れるシクロオレフィン系樹脂からなる層間樹脂絶縁層を有する多層プリント配線板の製造方法に関する。
【0002】
【従来の技術】
いわゆる多層ビルドアップ配線基板と呼ばれる多層プリント配線板は、セミアディティブ法等により製造されており、コアと呼ばれる0.6〜1.5mm程度のガラスクロス等で補強された樹脂基板の上に、銅等による導体回路と層間樹脂絶縁層とを交互に積層することにより作製される。この多層プリント配線板の層間樹脂絶縁層を介した導体回路間の接続は、バイアホールにより行われている。
【0003】
従来、ビルドアップ多層プリント配線板は、例えば、特開平9−130050号公報等に開示された方法により製造されている。
すなわち、まず、銅箔が貼り付けられた銅貼積層板に貫通孔を形成し、続いて無電解銅めっき処理を施すことによりスルーホールを形成する。続いて、基板の表面を導体パターン状にエッチング処理して導体回路を形成し、この導体回路の表面に無電解めっきやエッチング等により粗化面を形成し、その粗化面を有する導体回路上に層間樹脂絶縁層を形成した後、露光、現像処理を行うか、レーザ処理によりバイアホール用開口を形成し、その後、UV硬化、本硬化を経て層間樹脂絶縁層を形成する。
【0004】
さらに、層間樹脂絶縁層に粗化形成処理を施した後、形成された粗化面に薄い無電解めっき膜を形成し、この無電解めっき膜上にめっきレジストを形成した後、電解めっきにより厚付けを行い、めっきレジスト剥離後にエッチングを行って、下層の導体回路とバイアホールにより接続された導体回路を形成する。
【0005】
これを繰り返した後、最外層として導体回路を保護するためのソルダーレジスト層を形成し、ソルダーレジスト層に開口を形成し、開口部分の導体層にめっき等を施してパッドとした後、半田バンプを形成することにより、ビルドアップ多層プリント配線板を製造する。
【0006】
しかしながら、このようにして製造した多層プリント配線板では、層間樹脂絶縁層にエポキシ樹脂、アクリル樹脂等の混合物を使用しているため誘電率がGHz領域において、3.5以上と高い。
そのため、GHz帯域の高周波数信号を用いたLSIチップ等を搭載すると、層間樹脂絶縁層が高誘電率であることに起因して、信号遅延や信号エラーが発生しやすくなってしまうという問題があった。
【0007】
【発明が解決しようとする課題】
そこで、このような問題を解決するために、線状のポリオレフィン系樹脂を層間樹脂絶縁層として用いたプリント配線板が提案されている。このプリント配線板では、層間樹脂絶縁層の誘電率は低下するものの、層間樹脂絶縁層自体が柔らかすぎるため、形成された導体回路が層間樹脂絶縁層中に沈みやすく、その結果、導体回路同士の接続に問題が発生しやすく、プリント配線板の信頼性が低いという問題があった。
【0008】
また、上記線状ポリオレフィン樹脂を用いて層間樹脂絶縁層を形成する際には、樹脂シートを導体回路上に圧着、ラミネートすることにより層間樹脂絶縁層を形成していたが、フィルムが柔らすぎるため、その取扱いが難しいという問題もあった。
【0009】
本発明は、このような従来技術の問題点を解決するためになされたものであり、その目的は、誘電率や誘電正接が小さく、GHz帯域の高周波信号を用いた場合にも信号遅延や信号エラーが発生しにくく、また、剛性等の機械的特性にも優れるため、導体回路同士の接続の信頼性が高い層間樹脂絶縁層を有する多層プリント配線板の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記目的の実現に向け鋭意研究した結果、シクロオレフィン系樹脂、なかでも、熱硬化性のシクロオレフィン系樹脂を層間樹脂絶縁層に用いることにより、上記した低誘電率、低誘電正接等の電気的特性や剛性等の機械的特性についても、その要求特性を充分に満足する層間樹脂絶縁層を形成することができることを見いだし、以下に示す内容を要旨構成とする本発明に想到した。
【0013】
即ち、本発明の多層プリント配線板の製造方法は、基板上に導体回路と樹脂絶縁層とが順次形成され、これら導体回路がバイアホールを介して接続されてなる多層プリント配線板の製造方法において、
上記基板の両面に形成された導体回路上に、
シクロオレフィン系樹脂からなるフィルムを真空圧着ラミネートすることにより層間樹脂絶縁層を形成する層間樹脂絶縁層形成工程と
バイアホール用開孔に対応する部分に複数の貫通孔が形成されたマスクを介してエキシマレーザ光を上記層間樹脂絶縁層に照射することにより、一度に上記層間樹脂絶縁層に複数のバイアホール用開孔を形成するバイアホール用開孔形成工程と
上記バイアホール用開孔を有する層間樹脂絶縁層の表面を粗化する粗化処理工程と、
粗化された上記層間樹脂絶縁層上にNi、Ti、Pd又はNi−Cu合金からなる中間層を形成する中間層形成工程と、
上記層間樹脂絶縁層の上記バイアホール用開孔に上記中間層を介してバイアホールを形成するとともに、上記層間樹脂絶縁層の上に上記中間層を介して導体回路を形成する導体回路形成工程とを少なくとも1回行うことを特徴とする。
【0015】
【発明の実施の形態】
本発明の多層プリント配線板は、基板上に導体回路と樹脂絶縁層とが順次形成され、これら導体回路がバイアホールを介して接続されてなる多層プリント配線板において、
上記樹脂絶縁層は、シクロオレフィン系樹脂からなることを特徴とする。
【0016】
このような本発明の多層プリント配線板によれば、上記層間樹脂絶縁層がシクロオレフィン系樹脂により構成されているので、エポキシ樹脂等からなる層間樹脂絶縁層と比べて誘電率や誘電正接が大きく低下し、信号伝搬の遅延や信号の電送損失等に起因する信号エラーを防止することができる。
【0017】
また、上記シクロオレフィン系樹脂は、機械的特性、特に剛性が高いため、しっかりとした層間樹脂絶縁層の上に導体回路を形成することができ、そのため、導体回路同士の接続信頼性を充分に確保することができる。
【0018】
また、上記シクロオレフィン系樹脂は、導体回路との密着性にも優れるため、層間樹脂絶縁層が導体回路から剥離するのを防止することができ、剥離に起因する層間樹脂絶縁層のクラックの発生等も防止することができる。
さらに、上記シクロオレフィン系樹脂は、吸水率も小さいため、導体回路間の電気絶縁性が高くなり、信頼性も向上する。
【0019】
上記シクロオレフィン系樹脂の種類は特に限定されるものではないが、1GHzにおける誘電率は、3.0以下であり、誘電正接は、0.01以下であることが望ましい。上記誘電率は、2.4〜2.7がより好ましい。
このような低誘電率のものを使用することにより、信号伝搬の遅延や信号の電送損失等に起因する信号エラーを防止することができる。
【0020】
また、上記シクロオレフィン系樹脂は、2−ノルボルネン、5−エチリデン−2−ノルボルネンまたはこれらの誘導体からなる単量体の単独重合体または共重合体であることが望ましい。上記誘導体としては、上記2−ノルボルネン等のシクロオレフィンに、架橋を形成するためのアミノ基や無水マレイン酸残基あるいはマレイン酸変性したもの等が結合したもの等が挙げられる。
上記共重合体を合成する場合の単量体としては、例えば、エチレン、プロピレン等が挙げられる。
【0021】
上記シクロオレフィン系樹脂は、上記した樹脂の2種以上の混合物であってもよく、シクロオレフィン系樹脂以外の樹脂を含むものであってもよい。
また、上記シクロオレフィン系樹脂が共重合体でなる場合には、ブロック共重合体であってもよく、ランダム共重合体であってもよい。
【0022】
また、上記シクロオレフィン系樹脂は、熱硬化性シクロオレフィン系樹脂であることが望ましい。加熱を行って架橋を形成させることにより、より剛性が高くなり、機械的特性が向上するからである。
上記シクロオレフィン系樹脂のガラス転移温度(Tg)は、130〜200℃であることが望ましい。
【0023】
上記シクロオレフィン系樹脂は、既に樹脂シート(フィルム)として成形されたものを使用してもよく、単量体もしくは一定の分子量を有する低分子量の重合体が、キシレン、シクロヘキサン等の溶剤に分散した未硬化溶液の状態であってもよい。
また、樹脂シートの場合には、いわゆるRCC(RESIN COATED COPPER:樹脂付銅箔)を用いてもよい。
【0024】
上記シクロオレフィン系樹脂は、フィラー等を含まないものであってもよく、水酸化アルミニウム、水酸化マグネシウム、リン酸エステル等の難燃剤を含むものであってもよい。
【0025】
次に、このようなシクロオレフィン系樹脂を用いた多層プリント配線板の製造方法について説明する。
【0026】
(1) まず、樹脂基板の表面に下層導体回路を有する配線基板を作製する。
樹脂基板としては、無機繊維を有する樹脂基板が望ましく、具体的には、例えば、ガラス布エポキシ基板、ガラス布ポリイミド基板、ガラス布ビスマレイミド−トリアジン樹脂基板、ガラス布フッ素樹脂基板等が挙げられる。
また、上記樹脂基板の両面に銅箔を貼った銅張積層板を用いてもよい。
【0027】
通常、この樹脂基板にドリルで貫通孔を設け、該貫通孔の壁面および銅箔表面に無電解めっきを施してスルーホールを形成する。無電解めっきとしては銅めっきが好ましい。さらに、銅箔の厚付けのために電気めっきを行ってもよい。この電気めっきとしては銅めっきが好ましい。
この後、スルーホール内壁等に粗化処理を施し、スルーホールを樹脂ペースト等で充填し、その表面を覆う導電層を無電解めっきもしくは電気めっきにて形成してもよい。
【0028】
上記粗化処理の方法としては、例えば、黒化(酸化)−還元処理、有機酸と第二銅錯体の混合水溶液によるスプレー処理、Cu−Ni−P針状合金めっきによる処理等が挙げられる。
上記工程を経て、基板上の全面に形成された銅のベタパターン上にフォトリソグラフィーの手法を用いてエッチングレジストを形成し、続いて、エッチングを行うことにより、下層導体回路を形成する。この後、必要により、導体回路の形成により、エッチングされ、凹部となった部分に樹脂等を充填してもよい。
(2) 次に、形成された下層導体回路に、必要により粗化処理を施す。粗化処理の方法としては、上記した方法、すなわち、黒化(酸化)−還元処理、有機酸と第二銅錯体の混合水溶液によるスプレー処理、Cu−Ni−P針状合金めっきによる処理等が挙げられる。
また、下層導体回路に粗化処理を施さず、下層導体回路が形成された基板を樹脂成分を溶解した溶液に浸漬することにより、下層導体回路の表面に樹脂からなる層を形成し、その上に形成する層間樹脂絶縁層との密着性を確保してもよい。
【0029】
(3) 次に、上記(2) で作製した下層導体回路を有する配線基板の両面に、上記シクロオレフィン系樹脂からなる層間樹脂絶縁層を形成する。
この層間樹脂絶縁層は、シクロオレフィン系樹脂形成用の未硬化液を塗布した後、加熱等により硬化させる方法により、または、樹脂シートを加熱下に真空圧着ラミネートすることにより形成するが、取扱いが簡単なことから、樹脂シートをラミネートする方法が好ましい。この場合の加熱条件としては、100〜180℃、0.5〜20分が好ましい。
【0030】
(4) 次に、層間樹脂絶縁層にレーザ光を照射することにより、バイアホール用開口を設ける。このとき、使用されるレーザ光としては、例えば、炭酸ガス(CO2 )レーザ、紫外線レーザ、エキシマレーザ等が挙げられるが、これらのなかでは、エキシマレーザや短パルスの炭酸ガスレーザが好ましい。
【0031】
エキシマレーザは、バイアホール用開孔を形成する部分に貫通孔が形成されたマスク等を用いることにより、一度に多数のバイアホール用開孔を形成することができ、また、短パルスの炭酸ガスレーザは、開口内の樹脂残りが少なく、開口周縁の樹脂に対するダメージが小さいからである。
マスクの貫通孔は、レーザ光のスポット形状を真円にするために、真円である必要があり、上記貫通孔の径は、0.1〜2mm程度が望ましい。
【0032】
レーザ光にて開口を形成した場合、特に炭酸ガスレーザを用いた場合には、デスミア処理を行うことが望ましい。上記デスミア処理は、クロム酸、過マンガン酸塩等の水溶液からなる酸化剤を使用して行うことができる。また、酸素プラズマ、CF4 と酸素の混合プラズマやコロナ放電等で処理してもよい。また、低圧水銀ランプを用いて紫外線を照射することにより、表面改質することもできる。
【0033】
(5) 層間樹脂絶縁層は、特に粗化処理等を行うことなく、その上に金属層を形成してもよく、プラズマ処理するか、または、酸等で処理することにより、その表面を粗化した後、金属層を形成してもよい。
プラズマ処理を行った場合には、上層として形成する導体回路と層間樹脂絶縁層との密着性を確保するために、層間樹脂絶縁層との密着性に優れたNi、Ti、Pd等の金属を中間層として形成してもよい。上記金属からなる中間層は、スパッタリング等の物理的蒸着法(PVD)により形成することが望ましく、その厚さは、0.1〜2.0μm程度であることが望ましい。
【0034】
(6) 上記工程の後、金属からなる薄膜層を形成する。この薄膜層の材質は、銅または銅−ニッケル合金が好ましい。この薄膜層は、物理的蒸着法(PVD法)や化学蒸着法(CVD法)により形成することもでき、無電解めっきを施すことにより形成することもできる。
上記PVD法としては、例えば、スパッタリング、イオンビームスパッタリング等が挙げられ、上記CVD法としては、有機金属を供給材料とするPE−CVD(Plasma Enhanced CVD)法等が挙げられる。
【0035】
この薄膜の膜厚は、0.1〜5μmが好ましい。このような膜厚とするのは、後に行う電気めっきの導電層としての機能を損なうことなく、エッチング除去できるようにするためである。なお、この薄膜の形成工程は必須ではなく、省略することもできる。
【0036】
(7) 上記(6) で形成した無電解めっき膜上にめっきレジストを形成する。
このめっきレジストは、感光性ドライフィルムをラミネートした後、露光、現像処理を行うことにより形成される。
【0037】
(8) 次に、層間樹脂絶縁層上に形成された金属薄膜をめっきリードとして電気めっきを行い、導体回路を厚付けする。電気めっき膜の膜厚は、5〜30μmが好ましい。
この時、バイアホール用開口を電気めっきで充填してフィルドビア構造としてもよい。
【0038】
(9) 電気めっき膜を形成した後、めっきレジストを剥離し、めっきレジストの下に存在していた無電解めっき膜と上記中間層とをエッチングにより除去し、独立した導体回路とする。上記電気めっきとしては、銅めっきを用いることが望ましい。
エッチング液としては、例えば、硫酸−過酸化水素水溶液、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩水溶液、塩化第二鉄、塩化第二銅の水溶液、塩酸、硝酸、熱希硫酸等が挙げられる。また、前述した第二銅錯体と有機酸とを含有するエッチング液を用いて、導体回路間のエッチングと同時に粗化面を形成してもよい。
【0039】
(10)この後、上記(2) 〜(9) の工程を繰り返して上層の上層導体回路を設け、最上層にソルダーレジスト層を設け、該ソルダーレジスト層を開口してハンダバンプを設けることにより、例えば、片面3層の6層両面多層プリント配線板を得る。
以下、実施例をもとに説明する。
【0040】
【実施例】
(実施例1)
(1) 厚さ1mmのガラスエポキシ樹脂またはBT(ビスマレイミド−トリアジン)樹脂からなる基板1の両面に18μmの銅箔8がラミネートされている銅貼積層板を出発材料とした(図1(a)参照)。まず、この銅貼積層板をドリル削孔し、続いてめっきレジストを形成した後、この基板に無電解銅めっき処理を施してスルーホール9を形成し、さらに、銅箔を常法に従いパターン状にエッチングすることにより、基板の両面に内層銅パターン(下層導体回路)4を形成した。
【0041】
(2) 下層導体回路4を形成した基板を水洗いし、乾燥した後、エッチング液を基板の両面にスプレイで吹きつけて、下層導体回路4の表面とスルーホール9のランド表面と内壁とをエッチングすることにより、下層導体回路4の全表面に粗化面4a、9aを形成した(図1(b)参照)。エッチング液として、イミダゾール銅(II)錯体10重量部、グリコール酸7重量部、塩化カリウム5重量部およびイオン交換水78重量部を混合したものを使用した。
【0042】
(3) シクロオレフィン系樹脂を主成分とする樹脂充填剤10を、基板の両面に印刷機を用いて塗布することにより、下層導体回路4間またはスルーホール9内に充填し、加熱乾燥を行った。即ち、この工程により、樹脂充填剤10が下層導体回路4の間あるいはスルーホール9内に充填される(図1(c)参照)。
【0043】
(4) 上記(3) の処理を終えた基板の片面を、ベルト研磨紙(三共理化学社製)を用いたベルトサンダー研磨により、下層導体回路4の表面やスルーホール9のランド表面に樹脂充填剤10が残らないように研磨し、ついで、上記ベルトサンダー研磨による傷を取り除くためのバフ研磨を行った。このような一連の研磨を基板の他方の面についても同様に行った。そして、充填した樹脂充填剤10を加熱硬化させた(図1(d)参照)。
【0044】
このようにして、スルーホール9等に充填された樹脂充填剤10の表層部および下層導体回路4上面の粗化層4aを除去して基板両面を平滑化し、樹脂充填剤10と下層導体回路4の側面とが粗化面4aを介して強固に密着し、またスルーホール9の内壁面と樹脂充填剤10とが粗化面9aを介して強固に密着した配線基板を得た。
【0045】
(5) 次に、上記(4) の処理を終えた基板の両面に、上記(2) で用いたエッチング液と同じエッチング液をスプレイで吹きつけ、一旦平坦化された下層導体回路4の表面とスルーホール9のランド表面とをエッチングすることにより、下層導体回路4の全表面に粗化面4a、9aを形成した(図2(a)参照)。
【0046】
(6) 次に、上記工程を経た基板の両面に、厚さ50μmの熱硬化型シクロオレフィン系樹脂シートを温度50〜150℃まで昇温しながら圧力5kg/cm2 で真空圧着ラミネートし、シクロオレフィン系樹脂からなる層間樹脂絶縁層2を設けた(図2(b)参照)。真空圧着時の真空度は、10mmHgであった。
【0047】
(7) 次に、波長10.4μmのCO2 ガスレーザにて、ビーム径5mm、トップハットモード、パルス幅50μ秒、マスクの穴径0.5mm、3ショットの条件でシクロオレフィン系樹脂からなる層間樹脂絶縁層2に直径80μmのバイアホール用開口6を設けた(図2(c)参照)。この後、酸素プラズマを用いてデスミア処理を行った。
【0048】
(8) 次に、日本真空技術株式会社製のSV−4540を用いてプラズマ処理を行い、層間樹脂絶縁層2の表面を粗化した(図2(d)参照)。この際、不活性ガスとしてはアルゴンガスを使用し、電力200W、ガス圧0.6Pa、温度70℃の条件で、2分間プラズマ処理を実施した。
【0049】
(9) 次に、同じ装置を用い、内部のアルゴンガスを交換した後、Ni−Cu合金をターゲットにしたスパッタリングを、気圧0.6Pa、温度80℃、電力200W、時間5分間の条件で行い、Ni−Cu合金層12をポリオレフィン系層間樹脂絶縁層2の表面に形成した。このとき、形成されたNi−Cu合金層12の厚さは0.2μmであった(図3(a)参照)。
【0050】
(10)上記処理を終えた基板の両面に、市販の感光性ドライフィルムを貼り付け、フォトマスクフィルムを載置して、100mJ/cm2 で露光した後、0.8%炭酸ナトリウムで現像処理し、厚さ15μmのめっきレジスト3のパターンを形成した(図3(b)参照)。
【0051】
(11)次に、以下の条件で電気めっきを施して、厚さ15μmの電気めっき膜13を形成した(図3(c)参照)。なお、この電気めっき膜13により、後述する工程で導体回路5となる部分の厚付けおよびバイアホール7となる部分のめっき充填等が行われたことになる。なお、電気めっき水溶液中の添加剤は、アトテックジャパン社製のカパラシドHLである。
【0052】
〔電気めっき水溶液〕
硫酸 2.24 mol/l
硫酸銅 0.26 mol/l
添加剤 19.5 ml/l
〔電気めっき条件〕
電流密度 1 A/dm2
時間 65 分
温度 22±2 ℃
【0053】
(12)ついで、めっきレジスト3を5%NaOHで剥離除去した後、そのめっきレジスト3の下に存在していたNi−Cu合金層12を硝酸および硫酸と過酸化水素との混合液を用いるエッチングにて溶解除去し、電気銅めっき膜13等からなる厚さ16μmの導体回路5(バイアホール7を含む)を形成した(図3(d)参照)。
【0054】
(13)続いて、上記(5) 〜(13)の工程を、繰り返すことにより、さらに上層の導体回路を形成した。(図4(a)〜図5(b)参照)。
【0055】
(14)次に、ジエチレングリコールジメチルエーテル(DMDG)に60重量%の濃度になるように溶解させた、クレゾールノボラック型エポキシ樹脂(日本化薬社製)のエポキシ基50%をアクリル化した感光性付与のオリゴマー(分子量:4000)46.67重量部、メチルエチルケトンに溶解させた80重量%のビスフェノールA型エポキシ樹脂(油化シェル社製、商品名:エピコート1001)15重量部、イミダゾール硬化剤(四国化成社製、商品名:2E4MZ−CN)1.6重量部、感光性モノマーである多官能アクリルモノマー(日本化薬社製、商品名:R604)3重量部、同じく多価アクリルモノマー(共栄化学社製、商品名:DPE6A)1.5重量部、分散系消泡剤(サンノプコ社製、商品名:S−65)0.71重量部を容器にとり、攪拌、混合して混合組成物を調製し、この混合組成物に対して光重合開始剤としてベンゾフェノン(関東化学社製)2.0重量部、光増感剤としてのミヒラーケトン(関東化学社製)0.2重量部を加えて、粘度を25℃で2.0Pa・sに調整したソルダーレジスト組成物(有機樹脂絶縁材料)を得た。
なお、粘度測定は、B型粘度計(東京計器社製、DVL−B型)で60rpmの場合はローターNo.4、6rpmの場合はローターNo.3によった。
【0056】
(15)次に、多層配線基板の両面に、上記ソルダーレジスト組成物を20μmの厚さで塗布し、70℃で20分間、70℃で30分間の条件で乾燥処理を行った後、ソルダーレジスト開口部のパターンが描画された厚さ5mmのフォトマスクをソルダーレジスト層に密着させて1000mJ/cm2 の紫外線で露光し、DMTG溶液で現像処理し、200μmの直径の開口を形成した。
そして、さらに、80℃で1時間、100℃で1時間、120℃で1時間、150℃で3時間の条件でそれぞれ加熱処理を行ってソルダーレジスト層を硬化させ、はんだパッド部分が開口した、その厚さが20μmのソルダーレジスト層(有機樹脂絶縁層)14を形成した。
【0057】
(16)次に、ソルダーレジスト層(有機樹脂絶縁層)14を形成した基板を、塩化ニッケル(2.3×10-1mol/l)、次亜リン酸ナトリウム(2.8×10-1mol/l)、クエン酸ナトリウム(1.6×10-1mol/l)を含むpH=4.5の無電解ニッケルめっき液に20分間浸漬して、開口部に厚さ5μmのニッケルめっき層15を形成した。さらに、その基板をシアン化金カリウム(7.6×10-3mol/l)、塩化アンモニウム(1.9×10-1mol/l)、クエン酸ナトリウム(1.2×10-1mol/l)、次亜リン酸ナトリウム(1.7×10-1mol/l)を含む無電解めっき液に80℃の条件で7.5分間浸漬して、ニッケルめっき層15上に、厚さ0.03μmの金めっき層16を形成した。
【0058】
(17)この後、ソルダーレジスト層14の開口にはんだペーストを印刷して、200℃でリフローすることによりはんだバンプ(はんだ体)17を形成し、はんだバンプ17を有する多層配線プリント基板を製造した(図5(c)参照)。
【0059】
得られた多層プリント配線板について、誘電率、誘電正接及びピール強度を測定し、128℃で48時間の加熱処理試験、及び、−55℃〜125℃で1000回のヒートサイクル試験を実施した。そして、上記加熱処理試験の後、及び、ヒートサイクル試験の後には、層間樹脂絶縁層と下層導体回路との剥離、バイアホール部分の抵抗変化率を測定した。結果を下記の表1に示した。
【0060】
(実施例2)
(5) の工程における導体回路のエッチングを行わず、(8) の工程における層間樹脂絶縁層の粗化処理も行わなかった以外は、上記実施例1と同様にして、多層プリント配線板を製造した。そして、得られた多層プリント配線板について、実施例1と同様の試験及び評価を行った。結果を下記の表1に示した。
【0061】
(比較例1)
層間樹脂絶縁層を形成するための樹脂として、熱硬化型線状ポリオレフィン系樹脂(住友3M社製、商品名:1592)を用いた以外は、実施例1と同様にして多層プリント配線板を製造した。そして、得られた多層プリント配線板について、実施例1と同様の試験及び評価を行った。結果を下記の表1に示した。
【0062】
【表1】

Figure 0004197805
【0063】
上記表1の結果より明らかなように、実施例の多層プリント配線板は、加熱試験やヒートサイクル試験を行った後も、導体回路とバイアホールとの間の抵抗変化率は小さく、導体回路と層間樹脂絶縁層との剥離は見られなかったのに対し、比較例の多層プリント配線板は、抵抗変化率が大きいか、または、試験後に剥離が発生していた。
【0064】
【発明の効果】
以上説明したように本発明の多層プリント配線板は、層間樹脂絶縁層として、シクロオレフィン系樹脂を使用しているので、誘電率や誘電正接が小さく、そのためにGHz帯域の高周波信号を用いた場合にも、信号遅延や信号エラーが発生しにくく、また、剛性等の機械的特性に優れるため、導体回路同士の接続の信頼性が高く、導体回路と層間樹脂絶縁層をとの密着性にも優れる。
【0065】
また、本発明の多層プリント配線板の製造方法は、導体回路上にシクロオレフィン系樹脂シートをラミネートすることにより層間樹脂絶縁層を形成するので、溶剤等を用いる必要がなくなり、製造工程が簡易化され、容易に多層プリント配線板を製造することができる。
【図面の簡単な説明】
【図1】(a)〜(d)は、本発明の多層プリント配線板の製造工程の一部を示す縦断面図である。
【図2】(a)〜(d)は、本発明の多層プリント配線板の製造工程の一部を示す縦断面図である。
【図3】(a)〜(d)は、本発明の多層プリント配線板の製造工程の一部を示す縦断面図である。
【図4】(a)〜(c)は、本発明の多層プリント配線板の製造工程の一部を示す縦断面図である。
【図5】 (a)〜(c)は、本発明の多層プリント配線板の製造工程の一部を示す縦断面図である。
【符号の説明】
1 基板
2 層間樹脂絶縁層
3 めっきレジスト
4 下層導体回路
4a 粗化面
5 上層導体回路
6 バイアホール用開口
7 バイアホール
8 銅箔
9 スルーホール
9a 粗化面
10 樹脂充填剤
12 Ni−Cu合金層
13 電気めっき膜
14 ソルダーレジスト層
15 ニッケルめっき膜
16 金めっき膜
17 はんだバンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a multilayer printed wiring board having an interlayer resin insulating layer made of a cycloolefin resin having a low dielectric constant and excellent mechanical properties such as rigidity.
[0002]
[Prior art]
A multilayer printed wiring board called a so-called multilayer build-up wiring board is manufactured by a semi-additive method or the like. Copper is laid on a resin substrate reinforced with a glass cloth of about 0.6 to 1.5 mm called a core. It is produced by alternately laminating conductive circuits and interlayer resin insulation layers by the method described above. The connection between the conductor circuits through the interlayer resin insulating layer of the multilayer printed wiring board is made by via holes.
[0003]
Conventionally, a build-up multilayer printed wiring board is manufactured by a method disclosed in, for example, Japanese Patent Laid-Open No. 9-130050.
That is, first, a through-hole is formed in a copper-clad laminate on which a copper foil is affixed, and then a through-hole is formed by performing an electroless copper plating process. Subsequently, the surface of the substrate is etched into a conductor pattern to form a conductor circuit, a roughened surface is formed on the surface of the conductor circuit by electroless plating, etching, etc., on the conductor circuit having the roughened surface. After the interlayer resin insulation layer is formed, exposure and development processes are performed, or via-hole openings are formed by laser treatment, and then the interlayer resin insulation layer is formed through UV curing and main curing.
[0004]
Further, after roughening the interlayer resin insulation layer, a thin electroless plating film is formed on the formed roughened surface, a plating resist is formed on the electroless plating film, and then thickened by electrolytic plating. After the plating resist is peeled off, etching is performed to form a conductor circuit connected to the underlying conductor circuit by a via hole.
[0005]
After repeating this, a solder resist layer for protecting the conductor circuit is formed as the outermost layer, an opening is formed in the solder resist layer, and the conductor layer in the opening is plated to form a pad, and then a solder bump By forming, a build-up multilayer printed wiring board is manufactured.
[0006]
However, since the multilayer printed wiring board manufactured in this way uses a mixture of an epoxy resin, an acrylic resin, or the like for the interlayer resin insulating layer, the dielectric constant is as high as 3.5 or more in the GHz region.
Therefore, when an LSI chip or the like using a high frequency signal in the GHz band is mounted, there is a problem that signal delay and signal error are likely to occur due to the high dielectric constant of the interlayer resin insulation layer. It was.
[0007]
[Problems to be solved by the invention]
In order to solve such problems, a printed wiring board using a linear polyolefin resin as an interlayer resin insulating layer has been proposed. In this printed wiring board, although the dielectric constant of the interlayer resin insulation layer is reduced, the interlayer resin insulation layer itself is too soft, so that the formed conductor circuit is likely to sink into the interlayer resin insulation layer. There was a problem that problems in connection were likely to occur and the reliability of the printed wiring board was low.
[0008]
Moreover, when forming an interlayer resin insulation layer using the above-mentioned linear polyolefin resin, an interlayer resin insulation layer was formed by pressure bonding and laminating a resin sheet on a conductor circuit, but the film is too soft. There was also a problem that it was difficult to handle.
[0009]
The present invention has been made in order to solve such problems of the prior art, and the object thereof is to reduce the signal delay and signal even when a high frequency signal in the GHz band is used because the dielectric constant and dielectric loss tangent are small. An object of the present invention is to provide a method for producing a multilayer printed wiring board having an interlayer resin insulation layer that is less likely to cause errors and is excellent in mechanical properties such as rigidity and has high reliability in connection between conductor circuits.
[0010]
[Means for Solving the Problems]
As a result of diligent research toward the realization of the above object, the present inventors have used cycloolefin resins, especially thermosetting cycloolefin resins, in the interlayer resin insulation layer, thereby reducing the above-described low dielectric constant and low dielectric constant. It has been found that an interlayer resin insulation layer that sufficiently satisfies the required characteristics can be formed with respect to electrical characteristics such as dielectric loss tangent and mechanical characteristics such as rigidity. I came up with it.
[0013]
That is, the method for manufacturing a multilayer printed wiring board according to the present invention is a method for manufacturing a multilayer printed wiring board in which a conductor circuit and a resin insulating layer are sequentially formed on a substrate, and these conductor circuits are connected via via holes. ,
On the conductor circuit formed on both sides of the substrate,
An interlayer resin insulation layer forming step of forming an interlayer resin insulation layer by vacuum compression laminating a film made of cycloolefin resin ;
By irradiating the interlayer resin insulation layer with the excimer laser beam through a mask having a plurality of through holes formed in a portion corresponding to the opening for via holes, the interlayer resin insulation layer is formed with a plurality of via holes at a time. and the via-hole opening forming step of forming an opening,
A roughening treatment step of roughening the surface of the interlayer resin insulation layer having the via hole opening;
An intermediate layer forming step of forming an intermediate layer made of Ni, Ti, Pd or Ni-Cu alloy on the roughened interlayer resin insulation layer;
Forming a via hole in the opening for the via hole in the interlayer resin insulation layer via the intermediate layer, and forming a conductor circuit on the interlayer resin insulation layer via the intermediate layer ; Is performed at least once.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the multilayer printed wiring board of the present invention, a conductor circuit and a resin insulating layer are sequentially formed on the substrate, and these conductor circuits are connected via via holes.
The resin insulation layer is made of a cycloolefin resin.
[0016]
According to the multilayer printed wiring board of the present invention, since the interlayer resin insulation layer is made of a cycloolefin resin, the dielectric constant and the dielectric loss tangent are larger than those of an interlayer resin insulation layer made of epoxy resin or the like. It is possible to prevent signal errors caused by signal propagation delays and signal transmission losses.
[0017]
In addition, since the cycloolefin resin has high mechanical properties, particularly high rigidity, it is possible to form a conductor circuit on a firm interlayer resin insulation layer, so that the connection reliability between the conductor circuits is sufficient. Can be secured.
[0018]
In addition, the cycloolefin-based resin also has excellent adhesion to the conductor circuit, so it is possible to prevent the interlayer resin insulation layer from peeling off from the conductor circuit, and the occurrence of cracks in the interlayer resin insulation layer due to peeling. Etc. can also be prevented.
Furthermore, since the cycloolefin resin has a low water absorption rate, the electrical insulation between the conductor circuits is increased and the reliability is improved.
[0019]
The type of the cycloolefin resin is not particularly limited, but the dielectric constant at 1 GHz is preferably 3.0 or less, and the dielectric loss tangent is preferably 0.01 or less. The dielectric constant is more preferably 2.4 to 2.7.
By using such a low dielectric constant, it is possible to prevent signal errors due to signal propagation delay, signal transmission loss, and the like.
[0020]
The cycloolefin-based resin is preferably a homopolymer or copolymer of a monomer composed of 2-norbornene, 5-ethylidene-2-norbornene, or a derivative thereof. Examples of the derivative include those in which an amino group for forming a bridge, a maleic anhydride residue, or a maleic acid-modified one is bonded to the cycloolefin such as 2-norbornene.
Examples of the monomer for synthesizing the copolymer include ethylene and propylene.
[0021]
The cycloolefin-based resin may be a mixture of two or more of the above-described resins, or may include a resin other than the cycloolefin-based resin.
Moreover, when the said cycloolefin type resin consists of a copolymer, a block copolymer may be sufficient and a random copolymer may be sufficient.
[0022]
The cycloolefin resin is preferably a thermosetting cycloolefin resin. This is because by heating to form a crosslink, the rigidity becomes higher and the mechanical properties are improved.
The glass transition temperature (Tg) of the cycloolefin resin is preferably 130 to 200 ° C.
[0023]
The cycloolefin resin may be a resin sheet (film) that has already been molded, and a monomer or a low molecular weight polymer having a certain molecular weight is dispersed in a solvent such as xylene or cyclohexane. It may be in an uncured solution state.
In the case of a resin sheet, so-called RCC (RESIN COATED copper) may be used.
[0024]
The cycloolefin-based resin may not contain a filler or the like, or may contain a flame retardant such as aluminum hydroxide, magnesium hydroxide, or phosphate ester.
[0025]
Next, the manufacturing method of the multilayer printed wiring board using such a cycloolefin type resin is demonstrated.
[0026]
(1) First, a wiring substrate having a lower layer conductor circuit on the surface of a resin substrate is produced.
As the resin substrate, a resin substrate having inorganic fibers is desirable, and specific examples include a glass cloth epoxy substrate, a glass cloth polyimide substrate, a glass cloth bismaleimide-triazine resin substrate, a glass cloth fluororesin substrate, and the like.
Moreover, you may use the copper clad laminated board which stuck the copper foil on both surfaces of the said resin substrate.
[0027]
Usually, a through hole is provided in the resin substrate with a drill, and electroless plating is applied to the wall surface of the through hole and the copper foil surface to form a through hole. As the electroless plating, copper plating is preferable. Furthermore, electroplating may be performed for thickening the copper foil. As this electroplating, copper plating is preferable.
Thereafter, the inner wall or the like of the through hole may be roughened, the through hole may be filled with a resin paste or the like, and a conductive layer covering the surface may be formed by electroless plating or electroplating.
[0028]
Examples of the roughening treatment include blackening (oxidation) -reduction treatment, spray treatment with a mixed aqueous solution of an organic acid and a cupric complex, treatment with Cu—Ni—P needle-shaped alloy plating, and the like.
Through the above steps, an etching resist is formed on the copper solid pattern formed on the entire surface of the substrate by using a photolithography technique, and then etching is performed to form a lower conductor circuit. Thereafter, if necessary, a resin circuit or the like may be filled in a portion that has been etched to form a recess by forming a conductor circuit.
(2) Next, a roughening process is performed on the formed lower conductor circuit as necessary. As a roughening treatment method, the above-described methods, that is, blackening (oxidation) -reduction treatment, spray treatment with a mixed aqueous solution of an organic acid and a cupric complex, treatment with Cu-Ni-P needle alloy plating, and the like are included. Can be mentioned.
In addition, a layer made of resin is formed on the surface of the lower conductor circuit by immersing the substrate on which the lower conductor circuit is formed in a solution in which the resin component is dissolved without subjecting the lower conductor circuit to roughening. Adhesion with the interlayer resin insulation layer formed on the substrate may be ensured.
[0029]
(3) Next, an interlayer resin insulating layer made of the cycloolefin-based resin is formed on both surfaces of the wiring board having the lower conductor circuit manufactured in (2).
This interlayer resin insulation layer is formed by applying an uncured liquid for forming a cycloolefin-based resin and then curing it by heating or by laminating the resin sheet under vacuum pressure bonding while heating. In view of simplicity, a method of laminating a resin sheet is preferable. As heating conditions in this case, 100-180 degreeC and 0.5-20 minutes are preferable.
[0030]
(4) Next, a via hole opening is provided by irradiating the interlayer resin insulation layer with laser light. In this case, examples of the laser beam used include a carbon dioxide (CO 2 ) laser, an ultraviolet laser, and an excimer laser. Among these, an excimer laser and a short pulse carbon dioxide laser are preferable.
[0031]
An excimer laser can form a large number of via holes at a time by using a mask having a through hole formed in a portion where a via hole is formed, and a short pulse carbon dioxide laser. This is because the resin remaining in the opening is small and the damage to the resin on the periphery of the opening is small.
The through hole of the mask needs to be a perfect circle in order to make the spot shape of the laser beam a perfect circle, and the diameter of the through hole is preferably about 0.1 to 2 mm.
[0032]
When the opening is formed with laser light, particularly when a carbon dioxide laser is used, it is desirable to perform desmear treatment. The desmear treatment can be carried out using an oxidizing agent comprising an aqueous solution such as chromic acid or permanganate. Alternatively, the treatment may be performed by oxygen plasma, mixed plasma of CF 4 and oxygen, corona discharge, or the like. Further, the surface can be modified by irradiating with ultraviolet rays using a low-pressure mercury lamp.
[0033]
(5) The interlayer resin insulation layer may be formed with a metal layer on it without performing a roughening treatment or the like, and its surface may be roughened by plasma treatment or treatment with acid or the like. After forming, a metal layer may be formed.
When plasma treatment is performed, in order to ensure adhesion between the conductor circuit formed as the upper layer and the interlayer resin insulation layer, a metal such as Ni, Ti, Pd or the like having excellent adhesion with the interlayer resin insulation layer is used. It may be formed as an intermediate layer. The intermediate layer made of the metal is preferably formed by physical vapor deposition (PVD) such as sputtering, and the thickness is preferably about 0.1 to 2.0 μm.
[0034]
(6) After the above process, a thin film layer made of metal is formed. The material of the thin film layer is preferably copper or a copper-nickel alloy. This thin film layer can be formed by a physical vapor deposition method (PVD method) or a chemical vapor deposition method (CVD method), or can be formed by electroless plating.
Examples of the PVD method include sputtering and ion beam sputtering. Examples of the CVD method include PE-CVD (Plasma Enhanced CVD) using an organic metal as a supply material.
[0035]
The thickness of this thin film is preferably 0.1 to 5 μm. The reason why such a film thickness is used is to enable etching removal without impairing the function as a conductive layer of electroplating performed later. This thin film forming step is not essential and can be omitted.
[0036]
(7) A plating resist is formed on the electroless plating film formed in (6) above.
This plating resist is formed by laminating a photosensitive dry film, followed by exposure and development.
[0037]
(8) Next, electroplating is performed using the metal thin film formed on the interlayer resin insulation layer as a plating lead to thicken the conductor circuit. The thickness of the electroplated film is preferably 5 to 30 μm.
At this time, the via hole opening may be filled with electroplating to form a filled via structure.
[0038]
(9) After forming the electroplating film, the plating resist is peeled off, and the electroless plating film and the intermediate layer existing under the plating resist are removed by etching to form an independent conductor circuit. As the electroplating, it is desirable to use copper plating.
Examples of the etchant include sulfuric acid-hydrogen peroxide aqueous solution, ammonium persulfate aqueous solution, persulfate aqueous solution such as sodium persulfate, potassium persulfate, ferric chloride, cupric chloride aqueous solution, hydrochloric acid, nitric acid, hot dilute sulfuric acid. Etc. Moreover, you may form a roughening surface simultaneously with the etching between conductor circuits using the etching liquid containing the cupric complex mentioned above and organic acid.
[0039]
(10) Thereafter, the above steps (2) to (9) are repeated to provide an upper conductor circuit, an upper layer is provided with a solder resist layer, the solder resist layer is opened, and a solder bump is provided. For example, a six-layer double-sided multilayer printed wiring board having three layers on one side is obtained.
In the following, description will be given based on examples.
[0040]
【Example】
(Example 1)
(1) A copper-laminated laminate in which 18 μm copper foil 8 is laminated on both surfaces of a substrate 1 made of glass epoxy resin or BT (bismaleimide-triazine) resin having a thickness of 1 mm was used as a starting material (FIG. 1 (a )reference). First, after drilling the copper-clad laminate, forming a plating resist, the substrate is subjected to electroless copper plating to form through holes 9, and the copper foil is patterned in accordance with a conventional method. The inner layer copper pattern (lower layer conductor circuit) 4 was formed on both sides of the substrate.
[0041]
(2) The substrate on which the lower conductor circuit 4 is formed is washed with water and dried, and then an etching solution is sprayed onto both surfaces of the substrate to spray the surface of the lower conductor circuit 4, the land surface of the through hole 9, and the inner wall. Thus, roughened surfaces 4a and 9a were formed on the entire surface of the lower conductor circuit 4 (see FIG. 1B). As an etching solution, a mixture of 10 parts by weight of imidazole copper (II) complex, 7 parts by weight of glycolic acid, 5 parts by weight of potassium chloride and 78 parts by weight of ion-exchanged water was used.
[0042]
(3) The resin filler 10 mainly composed of cycloolefin resin is applied to both sides of the substrate by using a printing machine so that it is filled between the lower conductor circuits 4 or in the through holes 9 and dried by heating. It was. That is, by this step, the resin filler 10 is filled between the lower conductor circuits 4 or in the through holes 9 (see FIG. 1C).
[0043]
(4) Resin filling the surface of the lower conductor circuit 4 and the land surface of the through-hole 9 on one side of the substrate after the above processing (3) by belt sander polishing using belt polishing paper (manufactured by Sankyo Rikagaku) Polishing was performed so that the agent 10 did not remain, and then buffing was performed to remove scratches due to the belt sander polishing. Such a series of polishing was similarly performed on the other surface of the substrate. And the resin filler 10 with which it filled was heat-hardened (refer FIG.1 (d)).
[0044]
In this way, the surface layer portion of the resin filler 10 filled in the through holes 9 and the like and the roughened layer 4a on the upper surface of the lower conductor circuit 4 are removed to smooth both surfaces of the substrate, and the resin filler 10 and the lower conductor circuit 4 are smoothed. Thus, a wiring board was obtained in which the side surface of the through hole 9 was firmly adhered via the roughened surface 4a, and the inner wall surface of the through hole 9 and the resin filler 10 were firmly adhered via the roughened surface 9a.
[0045]
(5) Next, the same etching solution as that used in (2) above is sprayed on both surfaces of the substrate after the processing in (4) above, and the surface of the lower conductor circuit 4 once flattened is sprayed. Then, the rough surfaces 4a and 9a were formed on the entire surface of the lower conductor circuit 4 by etching the land surfaces of the through holes 9 (see FIG. 2A).
[0046]
(6) Next, a thermosetting cycloolefin resin sheet having a thickness of 50 μm is vacuum-bonded and laminated on both surfaces of the substrate subjected to the above process at a pressure of 5 kg / cm 2 while raising the temperature to 50 to 150 ° C. An interlayer resin insulation layer 2 made of an olefin resin was provided (see FIG. 2B). The degree of vacuum at the time of vacuum pressure bonding was 10 mmHg.
[0047]
(7) Next, with a CO 2 gas laser with a wavelength of 10.4 μm, an interlayer made of cycloolefin resin under the conditions of a beam diameter of 5 mm, a top hat mode, a pulse width of 50 μs, a mask hole diameter of 0.5 mm, and three shots. A via hole opening 6 having a diameter of 80 μm was provided in the resin insulating layer 2 (see FIG. 2C). Thereafter, desmear treatment was performed using oxygen plasma.
[0048]
(8) Next, plasma processing was performed using SV-4540 manufactured by Nippon Vacuum Technology Co., Ltd., and the surface of the interlayer resin insulation layer 2 was roughened (see FIG. 2D). At this time, argon gas was used as an inert gas, and plasma treatment was performed for 2 minutes under the conditions of power 200 W, gas pressure 0.6 Pa, and temperature 70 ° C.
[0049]
(9) Next, using the same apparatus, after replacing the internal argon gas, sputtering with a Ni—Cu alloy as a target was performed under conditions of atmospheric pressure 0.6 Pa, temperature 80 ° C., power 200 W, and time 5 minutes. The Ni—Cu alloy layer 12 was formed on the surface of the polyolefin-based interlayer resin insulation layer 2. At this time, the thickness of the formed Ni—Cu alloy layer 12 was 0.2 μm (see FIG. 3A).
[0050]
(10) A commercially available photosensitive dry film is pasted on both sides of the substrate after the above treatment, a photomask film is placed, exposed at 100 mJ / cm 2 , and then developed with 0.8% sodium carbonate. Then, a pattern of the plating resist 3 having a thickness of 15 μm was formed (see FIG. 3B).
[0051]
(11) Next, electroplating was performed under the following conditions to form an electroplated film 13 having a thickness of 15 μm (see FIG. 3C). In addition, with this electroplating film 13, the thickness of the portion that becomes the conductor circuit 5 and the plating filling of the portion that becomes the via hole 7 are performed in the steps described later. The additive in the electroplating aqueous solution is Kaparaside HL manufactured by Atotech Japan.
[0052]
[Electroplating aqueous solution]
Sulfuric acid 2.24 mol / l
Copper sulfate 0.26 mol / l
Additive 19.5 ml / l
[Electroplating conditions]
Current density 1 A / dm 2
Time 65 minutes Temperature 22 ± 2 ℃
[0053]
(12) Next, after removing the plating resist 3 with 5% NaOH, the Ni—Cu alloy layer 12 existing under the plating resist 3 is etched using a mixed solution of nitric acid, sulfuric acid and hydrogen peroxide. The conductive circuit 5 (including the via hole 7) having a thickness of 16 μm made of the electrolytic copper plating film 13 and the like was formed (see FIG. 3D).
[0054]
(13) Subsequently, the above steps (5) to (13) were repeated to form a further upper conductor circuit. (Refer to Drawing 4 (a)-Drawing 5 (b)).
[0055]
(14) Next, a photosensitizing agent obtained by acrylated 50% of an epoxy group of a cresol novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) dissolved in diethylene glycol dimethyl ether (DMDG) to a concentration of 60% by weight. 46.67 parts by weight of oligomer (molecular weight: 4000), 80 parts by weight of bisphenol A type epoxy resin (trade name: Epicoat 1001 manufactured by Yuka Shell Co., Ltd.) dissolved in methyl ethyl ketone, 15 parts by weight, imidazole curing agent (Shikoku Kasei Co., Ltd.) Manufactured, product name: 2E4MZ-CN) 1.6 parts by weight, polyfunctional acrylic monomer (manufactured by Nippon Kayaku Co., Ltd., product name: R604) as a photosensitive monomer, polyvalent acrylic monomer (manufactured by Kyoei Chemical Co., Ltd.) , Trade name: DPE6A) 1.5 parts by weight, dispersion antifoaming agent (manufactured by Sannopco, trade name: S-65) 0.71 layer An amount part is placed in a container, and a mixed composition is prepared by stirring and mixing. 2.0 parts by weight of benzophenone (manufactured by Kanto Chemical Co., Inc.) as a photopolymerization initiator and Michler's ketone as a photosensitizer are mixed with this mixed composition. (Kanto Chemical Co., Ltd.) 0.2 parts by weight was added to obtain a solder resist composition (organic resin insulating material) having a viscosity adjusted to 2.0 Pa · s at 25 ° C.
Viscosity measurement was performed using a B-type viscometer (DVL-B type, manufactured by Tokyo Keiki Co., Ltd.). In the case of 4 or 6 rpm, the rotor No. 3 according.
[0056]
(15) Next, the solder resist composition is applied to both surfaces of the multilayer wiring board in a thickness of 20 μm, and after drying at 70 ° C. for 20 minutes and at 70 ° C. for 30 minutes, the solder resist is applied. A photomask having a thickness of 5 mm on which an opening pattern was drawn was brought into close contact with the solder resist layer, exposed to 1000 mJ / cm 2 of ultraviolet light, and developed with a DMTG solution to form an opening having a diameter of 200 μm.
Further, the solder resist layer was cured by heating at 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, and 150 ° C. for 3 hours to open the solder pad portion. A solder resist layer (organic resin insulating layer) 14 having a thickness of 20 μm was formed.
[0057]
(16) Next, the substrate on which the solder resist layer (organic resin insulating layer) 14 was formed was made of nickel chloride (2.3 × 10 −1 mol / l), sodium hypophosphite (2.8 × 10 −1). mol / l) and sodium citrate (1.6 × 10 −1 mol / l) in a pH = 4.5 electroless nickel plating solution for 20 minutes and a nickel plating layer having a thickness of 5 μm in the opening. 15 was formed. Furthermore, the substrate gold potassium cyanide (7.6 × 10 -3 mol / l ), ammonium chloride (1.9 × 10 -1 mol / l ), sodium citrate (1.2 × 10 -1 mol / l) Immerse in an electroless plating solution containing sodium hypophosphite (1.7 × 10 −1 mol / l) at 80 ° C. for 7.5 minutes to form a thickness of 0 on the nickel plating layer 15. A 0.03 μm gold plating layer 16 was formed.
[0058]
(17) Thereafter, a solder paste is printed on the opening of the solder resist layer 14 and reflowed at 200 ° C. to form solder bumps (solder bodies) 17, thereby producing a multilayer wiring printed board having the solder bumps 17. (See FIG. 5 (c)).
[0059]
The obtained multilayer printed wiring board was measured for dielectric constant, dielectric loss tangent and peel strength, and subjected to a heat treatment test at 128 ° C. for 48 hours and a heat cycle test of 1000 times at −55 ° C. to 125 ° C. After the heat treatment test and after the heat cycle test, the interlayer resin insulation layer and the lower conductor circuit were peeled off and the resistance change rate of the via hole portion was measured. The results are shown in Table 1 below.
[0060]
(Example 2)
A multilayer printed wiring board is manufactured in the same manner as in Example 1 except that the conductor circuit is not etched in the step (5) and the roughening treatment is not performed on the interlayer resin insulating layer in the step (8). did. And about the obtained multilayer printed wiring board, the test and evaluation similar to Example 1 were done. The results are shown in Table 1 below.
[0061]
(Comparative Example 1)
A multilayer printed wiring board is manufactured in the same manner as in Example 1 except that a thermosetting linear polyolefin resin (manufactured by Sumitomo 3M, trade name: 1592) is used as the resin for forming the interlayer resin insulation layer. did. And about the obtained multilayer printed wiring board, the test and evaluation similar to Example 1 were done. The results are shown in Table 1 below.
[0062]
[Table 1]
Figure 0004197805
[0063]
As is clear from the results of Table 1 above, the multilayer printed wiring board of the example has a small resistance change rate between the conductor circuit and the via hole even after the heating test and the heat cycle test. While peeling from the interlayer resin insulating layer was not observed, the multilayer printed wiring board of the comparative example had a large resistance change rate, or peeling occurred after the test.
[0064]
【The invention's effect】
As described above, the multilayer printed wiring board of the present invention uses a cycloolefin resin as an interlayer resin insulation layer, so that the dielectric constant and dielectric loss tangent are small, and therefore when a high frequency signal in the GHz band is used. In addition, signal delays and signal errors are unlikely to occur, and since mechanical properties such as rigidity are excellent, the reliability of the connection between conductor circuits is high, and the adhesion between the conductor circuits and the interlayer resin insulation layer is also good. Excellent.
[0065]
In addition, the method for producing a multilayer printed wiring board of the present invention forms an interlayer resin insulation layer by laminating a cycloolefin resin sheet on a conductor circuit, so that it is not necessary to use a solvent and the production process is simplified. Thus, a multilayer printed wiring board can be easily manufactured.
[Brief description of the drawings]
FIGS. 1A to 1D are longitudinal sectional views showing a part of a manufacturing process of a multilayer printed wiring board according to the present invention.
FIGS. 2A to 2D are longitudinal sectional views showing a part of a manufacturing process of a multilayer printed wiring board according to the present invention.
FIGS. 3A to 3D are longitudinal sectional views showing a part of a manufacturing process of a multilayer printed wiring board according to the present invention. FIGS.
FIGS. 4A to 4C are longitudinal sectional views showing a part of a manufacturing process of a multilayer printed wiring board according to the present invention. FIGS.
FIGS. 5A to 5C are longitudinal sectional views showing a part of the manufacturing process of the multilayer printed wiring board of the present invention. FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Interlayer resin insulation layer 3 Plating resist 4 Lower layer conductor circuit 4a Roughened surface 5 Upper layer conductor circuit 6 Via hole opening 7 Via hole 8 Copper foil 9 Through hole 9a Roughened surface 10 Resin filler 12 Ni-Cu alloy layer 13 Electroplating film 14 Solder resist layer 15 Nickel plating film 16 Gold plating film 17 Solder bump

Claims (1)

基板上に導体回路と樹脂絶縁層とが順次形成され、これら導体回路がバイアホールを介して接続されてなる多層プリント配線板の製造方法において、
前記基板の両面に形成された導体回路上に、
シクロオレフィン系樹脂からなるフィルムを真空圧着ラミネートすることにより層間樹脂絶縁層を形成する層間樹脂絶縁層形成工程と
バイアホール用開孔に対応する部分に複数の貫通孔が形成されたマスクを介してエキシマレーザ光を前記層間樹脂絶縁層に照射することにより、一度に前記層間樹脂絶縁層に複数のバイアホール用開孔を形成するバイアホール用開孔形成工程と
前記バイアホール用開孔を有する層間樹脂絶縁層の表面を粗化する粗化処理工程と、
粗化された前記層間樹脂絶縁層上にNi、Ti、Pd又はNi−Cu合金からなる中間層を形成する中間層形成工程と、
前記層間樹脂絶縁層の前記バイアホール用開孔に前記中間層を介してバイアホールを形成するとともに、前記層間樹脂絶縁層の上に前記中間層を介して導体回路を形成する導体回路形成工程とを少なくとも1回行うことを特徴とする多層プリント配線板の製造方法。
In the method for manufacturing a multilayer printed wiring board in which a conductor circuit and a resin insulating layer are sequentially formed on a substrate, and these conductor circuits are connected via via holes,
On the conductor circuit formed on both sides of the substrate,
An interlayer resin insulation layer forming step of forming an interlayer resin insulation layer by vacuum compression laminating a film comprising a cycloolefin resin ;
By irradiating the interlayer resin insulating layer with an excimer laser beam through a mask having a plurality of through holes formed in a portion corresponding to the opening for via holes, the interlayer resin insulating layer is formed with a plurality of via holes at a time. Via hole forming step for forming a hole ;
A roughening treatment step of roughening the surface of the interlayer resin insulation layer having openings for the via holes;
An intermediate layer forming step of forming an intermediate layer made of Ni, Ti, Pd or Ni-Cu alloy on the roughened interlayer resin insulation layer;
Forming a via hole in the opening for the via hole in the interlayer resin insulation layer via the intermediate layer and forming a conductor circuit on the interlayer resin insulation layer via the intermediate layer ; Is performed at least once. A method for producing a multilayer printed wiring board.
JP18741899A 1998-09-28 1999-07-01 Multilayer printed wiring board and manufacturing method thereof Expired - Fee Related JP4197805B2 (en)

Priority Applications (33)

Application Number Priority Date Filing Date Title
JP18741899A JP4197805B2 (en) 1999-07-01 1999-07-01 Multilayer printed wiring board and manufacturing method thereof
MYPI99004184A MY139405A (en) 1998-09-28 1999-09-27 Printed circuit board and method for its production
DE69934130T DE69934130T2 (en) 1998-09-28 1999-09-28 PRINTED PCB AND METHOD FOR THE PRODUCTION THEREOF
EP07110631A EP1830617B1 (en) 1998-09-28 1999-09-28 Multilayer printed wiring board and method for producing the same
DE69941937T DE69941937D1 (en) 1998-09-28 1999-09-28 Multilayer printed circuit board and manufacturing method therefor
EP06115380A EP1699278B1 (en) 1998-09-28 1999-09-28 Multilayer printed wiring board and method for producing the same
EP08160500A EP1978796B1 (en) 1998-09-28 1999-09-28 Multilayer printed wiring board and method for producing the same
EP06115385A EP1699280B1 (en) 1998-09-28 1999-09-28 Multilayer printed wiring board and method for producing the same
EP08160963A EP1978797B1 (en) 1998-09-28 1999-09-28 Multilayer printed wiring board and method for producing the same
DE69938854T DE69938854D1 (en) 1998-09-28 1999-09-28 Multilayer circuit board and method of manufacture
KR1020067014993A KR100673910B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
DE69942468T DE69942468D1 (en) 1998-09-28 1999-09-28 Printed circuit board and manufacturing method for it
KR1020067014992A KR100675615B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
EP99943468A EP1119227B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
US09/806,203 US7535095B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
DE69943397T DE69943397D1 (en) 1998-09-28 1999-09-28 Multilayer printed circuit board and method for its production
EP06115377A EP1727409B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
EP07110630A EP1830616B1 (en) 1998-09-28 1999-09-28 Process for manufacturing a multilayer printed circuit board
DE69939913T DE69939913D1 (en) 1998-09-28 1999-09-28 Printed circuit board and method of manufacture
EP08157080A EP1968368A3 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
PCT/JP1999/005266 WO2000019789A1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
EP07108839A EP1893006B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
KR1020067014991A KR100776865B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
KR1020017003881A KR100697640B1 (en) 1998-09-28 1999-09-28 Printed wiring board and method for producing the same
EP06115382A EP1699279B8 (en) 1998-09-28 1999-09-28 Multilayer printed wiring board and method for producing the same
US11/188,886 US7504719B2 (en) 1998-09-28 2005-07-26 Printed wiring board having a roughened surface formed on a metal layer, and method for producing the same
US12/146,212 US8018045B2 (en) 1998-09-28 2008-06-25 Printed circuit board
US12/146,165 US8020291B2 (en) 1998-09-28 2008-06-25 Method of manufacturing a printed wiring board
US12/146,105 US8030577B2 (en) 1998-09-28 2008-06-25 Printed wiring board and method for producing the same
US12/146,204 US8006377B2 (en) 1998-09-28 2008-06-25 Method for producing a printed wiring board
US12/409,670 US7994433B2 (en) 1998-09-28 2009-03-24 Printed wiring board and method for producing the same
US12/409,683 US8533943B2 (en) 1998-09-28 2009-03-24 Printed wiring board and method for producing the same
US12/420,469 US8093507B2 (en) 1998-09-28 2009-04-08 Printed wiring board and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18741899A JP4197805B2 (en) 1999-07-01 1999-07-01 Multilayer printed wiring board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008181170A Division JP2008294459A (en) 2008-07-11 2008-07-11 Multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2001015931A JP2001015931A (en) 2001-01-19
JP4197805B2 true JP4197805B2 (en) 2008-12-17

Family

ID=16205706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18741899A Expired - Fee Related JP4197805B2 (en) 1998-09-28 1999-07-01 Multilayer printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4197805B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100394564C (en) * 2005-05-19 2008-06-11 沈育浓 Wiring substrate and manufacturing method thereof
JP4969993B2 (en) * 2006-11-01 2012-07-04 日本メクトロン株式会社 Multilayer flexible printed wiring board and manufacturing method thereof
CN101478862A (en) * 2008-11-29 2009-07-08 鸿源科技(杭州)有限公司 Process for blind hole, buried hole, and filled hole of multi-layered high density interconnected printed circuit board
JP2013219204A (en) * 2012-04-09 2013-10-24 Ngk Spark Plug Co Ltd Core board for wiring board manufacturing and wiring board
CN103781293A (en) * 2012-10-18 2014-05-07 北大方正集团有限公司 Blind hole manufacturing method of PCB
CN103281877B (en) * 2013-06-28 2015-10-07 无锡江南计算技术研究所 A kind of printed circuit board interlayer interconnected manufacture method
JP6932475B2 (en) * 2015-03-26 2021-09-08 住友ベークライト株式会社 Manufacturing method of organic resin substrate, organic resin substrate and semiconductor device
JP6160656B2 (en) * 2015-06-18 2017-07-12 ウシオ電機株式会社 Wiring board manufacturing method, wiring board, and wiring board manufacturing apparatus
JP6401136B2 (en) * 2015-09-25 2018-10-03 ウシオ電機株式会社 Wiring board manufacturing method, wiring board, and wiring board manufacturing apparatus
JP6422837B2 (en) * 2015-09-25 2018-11-14 ウシオ電機株式会社 Wiring board manufacturing method, wiring board, and wiring board manufacturing apparatus
JP2017092498A (en) * 2017-02-10 2017-05-25 ウシオ電機株式会社 Method for manufacturing wiring board, wiring board, and wiring board manufacturing apparatus
CN110324995B (en) * 2018-03-29 2021-04-20 比亚迪股份有限公司 Electronic equipment shell and electronic equipment
JP2019204974A (en) * 2019-08-21 2019-11-28 住友ベークライト株式会社 Method of manufacturing organic resin substrate, organic resin substrate, and semiconductor device
JP7057012B1 (en) * 2021-06-30 2022-04-19 尾池工業株式会社 Conductive film for high frequency circuit boards and high frequency circuit boards

Also Published As

Publication number Publication date
JP2001015931A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
JP4197805B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP4641589B2 (en) Capacitor and multilayer printed wiring board
JP2003023252A (en) Multilayered printed wiring board
JP2003023253A (en) Multilayered printed wiring board
JP2002374066A (en) Method for manufacturing multilayered printed circuit substrate
JP2002151841A (en) Method of manufacturing multilayer printed wiring board
JP2003023251A (en) Multilayered printed wiring board
JP4278806B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP4641588B2 (en) Capacitor and multilayer printed wiring board
JP2003101244A (en) Multilayer printed wiring board and method of manufacturing the same
JP4282190B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP4877694B2 (en) Manufacturing method of multilayer printed wiring board
JP4535598B2 (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
JP2005159330A (en) Method of manufacturing multilayer circuit board and multilayer circuit board manufactured by the same, and board with semiconductor chip mounted thereon and semiconductor package using the same
JP3916946B2 (en) Method for evaluating electrolytic plating solution and method for producing multilayer printed wiring board
JP4497614B2 (en) Manufacturing method of multilayer printed wiring board
JP4859270B2 (en) Capacitor, multilayer printed wiring board, and method for manufacturing multilayer printed wiring board
JP4497613B2 (en) Manufacturing method of multilayer printed wiring board
JP4605888B2 (en) Multilayer printed wiring board and method for producing multilayer printed wiring board
JP4817516B2 (en) Multilayer printed wiring board
JP4698046B2 (en) Multilayer printed circuit board
JP5116857B2 (en) Multilayer printed wiring board and method for manufacturing multilayer printed wiring board
JP3219396B2 (en) Manufacturing method of multilayer printed wiring board
JP4535559B2 (en) Multilayer printed wiring board
JP3710635B2 (en) Method for manufacturing printed wiring board

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees