JP4196974B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4196974B2
JP4196974B2 JP2005208682A JP2005208682A JP4196974B2 JP 4196974 B2 JP4196974 B2 JP 4196974B2 JP 2005208682 A JP2005208682 A JP 2005208682A JP 2005208682 A JP2005208682 A JP 2005208682A JP 4196974 B2 JP4196974 B2 JP 4196974B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
blower
fin
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005208682A
Other languages
Japanese (ja)
Other versions
JP2007024419A (en
Inventor
晃 石橋
浩招 牧野
宏樹 岡澤
誠司 平川
浩司 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005208682A priority Critical patent/JP4196974B2/en
Publication of JP2007024419A publication Critical patent/JP2007024419A/en
Application granted granted Critical
Publication of JP4196974B2 publication Critical patent/JP4196974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

この発明は、冷媒と空気等の流体間での熱交換を行うフィンチューブ型熱交換器を用いた空気調和機に関するものである。   The present invention relates to an air conditioner using a finned tube heat exchanger that performs heat exchange between a refrigerant and a fluid such as air.

従来の空気調和機は、一部の熱交換器におけるフィンの風上側縁部及び風下側縁部のそれぞれが、互いにその延長線の交差部分の角度が同じ鈍角をなす2本の直線部と、2本の直線部の間を結ぶ1本の曲線部とからなる略くの字状に形成していた(例えば、特許文献1参照)。また、熱交換器を3つの部分に分割し、それぞれ折り曲げて配置したものもあった(例えば、特許文献2参照)。また、前側熱交換器を送風ファンの周面一部を囲むように円弧状に形成し、熱交換パイプを熱交換空気の流通方向と直交する方向に複数列設け、かつ熱交換空気の風上側列と風下側列とで互いに二等辺三角形が描かれるように配置したものもあった(例えば、特許文献3参照)。また、少なくとも1つの平坦部の、熱交換パイプの近傍に位置する突起を設けて、熱交換パイプの周りの平坦部に沿って流れる風速を遅くするものもあった(例えば、特許文献4参照)。また、整流用抵抗体をパイプの下流位置でパイプに対応してそれぞれ設け、パイプにより発生する大きな後流を縮流しようとするものもあった(例えば、特許文献5参照)。   In the conventional air conditioner, each of the fin side windward edge and the windward side edge of some heat exchangers has two straight portions whose obtuse angles are the same at the intersections of the extension lines thereof, and It was formed in a substantially square shape consisting of one curved portion connecting two straight portions (see, for example, Patent Document 1). Moreover, there existed what divided | segmented the heat exchanger into three parts, and was bent and arrange | positioned, respectively (for example, refer patent document 2). Further, the front heat exchanger is formed in an arc shape so as to surround a part of the peripheral surface of the blower fan, a plurality of heat exchange pipes are provided in a direction orthogonal to the flow direction of the heat exchange air, and the windward side of the heat exchange air Some were arranged so that an isosceles triangle was drawn between the row and the leeward row (see, for example, Patent Document 3). In addition, there is a projection in which at least one flat portion is provided with a protrusion positioned in the vicinity of the heat exchange pipe to slow down the wind speed flowing along the flat portion around the heat exchange pipe (for example, see Patent Document 4). . In some cases, a rectifying resistor is provided corresponding to each pipe at a downstream position of the pipe to reduce a large wake generated by the pipe (see, for example, Patent Document 5).

特開2004−19999号公報(第9頁、図1)Japanese Patent Laying-Open No. 2004-19999 (page 9, FIG. 1) 特開平9−229403号公報(第2頁、図2)JP-A-9-229403 (2nd page, FIG. 2) 特許第3091830号公報(第5頁〜第7頁、図1、図2)Japanese Patent No. 3091830 (pages 5-7, FIG. 1 and FIG. 2) 特開平6−34154号公報(第2頁、第3頁、図1)JP-A-6-34154 (2nd page, 3rd page, FIG. 1) 実公平6−8409号公報(第2頁〜第3頁、第5図、第7図)Japanese Utility Model Publication No. 6-8409 (pages 2 to 3, FIGS. 5 and 7)

従来の一部の熱交換器の風上側縁部と風下側縁部の形状をそれぞれ2本の直線部とし、その2本の直線部の接続を曲線とした空気調和機は、風下側縁部の下側の直線部で送風機と近接する構成であリ、熱交換器風下側縁部が送風機に極端に近接する部分が生じる。熱交換器縁部が送風機に近づくため、この部分の伝熱管も送風機の近くに位置し、伝熱管の後流部に生じる死水域と呼ばれる渦領域が送風機に流入して騒音を発生する可能性があった。また、この付近の伝熱管と送風機の距離が一定でない場合、最も近接する部分の風速が早くなって不均一な風速分布が生じるため、空気流に温度むらを生じ、熱交換器性能が低下するという問題点があった。また、不均一な風速分布のために、送風機内の翼間の流れが不安定となり送風量が不安定となる問題点もあった。   An air conditioner in which the shape of the leeward edge and the leeward edge of some conventional heat exchangers is made into two straight parts, and the connection of the two straight parts is curved, is a leeward edge. In the configuration in which the lower straight portion is close to the blower, there is a portion where the heat exchanger leeward edge is extremely close to the blower. Since the edge of the heat exchanger approaches the blower, this part of the heat transfer tube is also located near the blower, and a vortex area called a dead water area that occurs in the wake of the heat transfer pipe may flow into the blower and generate noise was there. In addition, if the distance between the heat transfer tube and the blower in the vicinity is not constant, the wind speed in the nearest part increases and uneven wind speed distribution occurs, resulting in temperature unevenness in the air flow and heat exchanger performance decreases. There was a problem. In addition, due to the uneven distribution of wind speed, there is a problem that the flow between the blades in the blower becomes unstable and the flow rate becomes unstable.

また、熱交換器を分割して折り曲げて配置した構成では、フィンの伝熱面積の欠損が生じたり、熱交換器同士の結合部の空隙において空気流速が増大し、熱交換器から流出した下流側で風速分布が不均一となり、送風機における異常音源となるという問題点があった。   Further, in the configuration in which the heat exchanger is divided and bent, the heat transfer area of the fins is lost, or the air flow rate increases in the gap between the heat exchangers, and the downstream flowed out of the heat exchanger. There is a problem in that the wind speed distribution is uneven on the side, resulting in an abnormal sound source in the blower.

また、前側熱交換器を送風ファンの周面一部を囲むように円弧状に形成した構成では、蒸発器として用いた場合、熱交換器上部では重力方向に対する角度が大きくなりフィン表面上の凝縮水が滴下しやすいという問題点があった。さらに、熱交換器の伝熱管配置をニ等辺三角形となるように形成しているため、送風機近傍において熱交換器を出た流れが送風機内に流入する時の翼入射角が大きくなりすぎてしまう。翼入射角が大きいと送風機翼内において負圧面側に剥離を起こし、送風機入力及び吹出空気の逆流や送風機の失速を指すサージングと呼ばれる現象が生じるという問題点もあった。また、後側熱交換器の傾斜角度、即ち重力方向と後側熱交換器の成す角度が前側熱交換器よりも大きいため、熱交換器を蒸発器として用いた場合に後側熱交換器から凝縮水が送風機に滴下しやすいという問題点があった。この凝縮水が送風機に低下すると、吹出口から室内に飛び散ってしまう。   In addition, in the configuration in which the front heat exchanger is formed in an arc shape so as to surround a part of the peripheral surface of the blower fan, when used as an evaporator, an angle with respect to the direction of gravity increases at the top of the heat exchanger, and condensation on the fin surface There was a problem that water was easily dripped. Furthermore, since the heat exchanger tube arrangement of the heat exchanger is formed to be an isosceles triangle, the blade incident angle when the flow exiting the heat exchanger in the vicinity of the blower flows into the blower becomes too large. . When the blade incident angle is large, there is a problem that peeling occurs on the suction surface side in the blower blade, and a phenomenon called surging indicating a reverse flow of the blower input and blown air or a stall of the blower occurs. In addition, since the inclination angle of the rear heat exchanger, that is, the angle formed by the direction of gravity and the rear heat exchanger is larger than that of the front heat exchanger, when the heat exchanger is used as an evaporator, the rear heat exchanger There was a problem that the condensed water was likely to be dripped onto the blower. If this condensed water falls to a blower, it will scatter in a room from a blower outlet.

また、パイプの下流に突起を設けた構成や整流用抵抗体を設けた構成では、送風機に死水域が流入して生じる異常音をある程度低減することができるが、伝熱促進効果は小さく、通風抵抗が大きくなるという問題点があった。   In addition, in the configuration in which the projection is provided downstream of the pipe or the configuration in which the rectifying resistor is provided, the abnormal noise caused by the dead water flowing into the blower can be reduced to some extent, but the heat transfer promoting effect is small, and the ventilation There was a problem that resistance increased.

この発明は、上記のような問題点を解決するためになされたものであり、熱交換器の伝熱管及びフィンの構成及び配置を改善することにより、送風機回転音を低減でき、熱交換器の熱交換性能が良好な熱交換器を用いた空気調和機を提供することを目的とする。
さらに、送風機入力を低減できる空気調和機を提供することを目的とする。
The present invention has been made to solve the above problems, and by improving the configuration and arrangement of the heat transfer tubes and fins of the heat exchanger, it is possible to reduce the fan rotation noise and It aims at providing the air conditioner using the heat exchanger with favorable heat exchange performance.
Furthermore, it aims at providing the air conditioner which can reduce an air blower input.

この発明は、吸込口から流入する気体を吹出口に導く送風機と、前記送風機の前記吸込口側に設けられ前記吸込口から流入する気体と冷媒とで熱交換する前面熱交換器と、
前記前面熱交換器に設けられ、前記送風機の回転軸方向に所定の間隔で並設される複数のフィンに略直角に挿入され前記フィンの長手方向に列をなし気流方向に複数列設けた伝熱管と、を備え、前記前面熱交換器は、上部前面熱交換器と下部前面熱交換器とから構成され、前記上部および下部前面熱交換器の空気流の上流縁部及び下流縁部は直線で構成されるとともに、前記前面熱交換器の上下端部を除きフィン幅が一定であり、前記前面熱交換器のフィンは、前記上部前面熱交換器と前記下部前面熱交換器で連続して一体に構成された「く」の字状であり、前記前面熱交換器の最風下側の伝熱管列のうち、前記上部前面熱交換器では前記伝熱管中心を結ぶ線はフィン外形に沿うように直線とし、前記下部前面熱交換器では、送風機近傍に位置するフィン最風下列を送風機の羽根車の外周から一定距離を保つように円弧状に湾曲させて配置すると共に、前記湾曲させた部分における前記伝熱管とその気流方向後方の風下側フィン端部の距離が前記直線状に配設した前記伝熱管とその気流方向後方の風下側フィン端部の距離よりも大きくなるように構成したことを特徴とするものである。
The present invention includes a blower that guides gas flowing in from a suction port to a blower outlet, a front heat exchanger that is provided on the suction port side of the blower and exchanges heat between the gas flowing in from the suction port and a refrigerant,
A transmission provided in the front heat exchanger and inserted substantially perpendicular to a plurality of fins arranged in parallel at a predetermined interval in the rotation axis direction of the blower, forming a row in the longitudinal direction of the fins and providing a plurality of rows in the airflow direction. A heat pipe, and the front heat exchanger includes an upper front heat exchanger and a lower front heat exchanger, and an upstream edge and a downstream edge of the air flow of the upper and lower front heat exchangers are straight lines. The fin width is constant except for the upper and lower ends of the front heat exchanger, and the fins of the front heat exchanger are continuously connected to the upper front heat exchanger and the lower front heat exchanger. It is a "<" shape that is integrally formed, and in the uppermost front heat exchanger, the line connecting the heat transfer tube centers in the uppermost heat exchanger tube row is along the fin outer shape. In the lower front heat exchanger, it is positioned near the blower. To together arranged by arcuately curved so as to maintain a constant distance from the outer periphery of the impeller of the fin top leeward column blower, the heat transfer tube and downwind fin end thereof airflow aft of said curved portion The distance is greater than the distance between the heat transfer tubes arranged in the straight line and the leeward fin end at the rear of the airflow direction.

この発明による空気調和機は、送風機の位置や風路の構成を考慮して熱交換器の伝熱管とフィンの構成及び配置を改善し、送風機の回転音を低減できると共に熱交換器伝熱性能を向上できる空気調和機が得られる。   The air conditioner according to the present invention improves the configuration and arrangement of the heat transfer tubes and fins of the heat exchanger in consideration of the position of the blower and the configuration of the air path, and can reduce the rotational noise of the blower and heat transfer performance of the heat exchanger An air conditioner that can improve the efficiency is obtained.

実施の形態1.
この発明の実施の形態1による空気調和機の構成について以下に説明する。図1はこの発明の実施の形態1に係る熱交換器の内部構成を示す説明図で、図1(a)は正面図、図1(b)は図1(a)のB−B線断面図である。複数の板状のフィン1が所定の間隔(フィンピッチ)FPでほぼ平行に並べられ、このフィン1に対して垂直に伝熱管2が挿入されてフィン1に固定されている。通常、伝熱管2は複数列設けられており、ここでは2列の伝熱管2a、2bを有するものを図示している。図1(a)の紙面に垂直な方向に空気が流れる際、伝熱管1内を流れる冷媒と熱交換し、冷媒の温熱または冷熱によって空気の温度は上昇または下降する。フィン1は伝熱管2と密着しており、伝熱面積を増加するためのものである。また、1つの列で隣り合う伝熱管2の方向を段と称し、図1に示すように段間隔(段ピッチ)Dp、フィン1の間隔(フィンピッチ)Fp、フィン厚みFtで構成される。
Embodiment 1 FIG.
The configuration of the air conditioner according to Embodiment 1 of the present invention will be described below. 1 is an explanatory view showing the internal configuration of a heat exchanger according to Embodiment 1 of the present invention, FIG. 1 (a) is a front view, and FIG. 1 (b) is a cross-sectional view taken along line BB in FIG. 1 (a). FIG. A plurality of plate-like fins 1 are arranged substantially in parallel at a predetermined interval (fin pitch) FP, and heat transfer tubes 2 are inserted perpendicularly to the fins 1 and fixed to the fins 1. Normally, the heat transfer tubes 2 are provided in a plurality of rows, and here, the heat transfer tubes 2 having two rows of heat transfer tubes 2a and 2b are illustrated. When air flows in a direction perpendicular to the paper surface of FIG. 1 (a), heat is exchanged with the refrigerant flowing in the heat transfer tube 1, and the temperature of the air rises or falls due to the hot or cold heat of the refrigerant. The fin 1 is in close contact with the heat transfer tube 2 and increases the heat transfer area. Further, the direction of the heat transfer tubes 2 adjacent in one row is referred to as a step, and as shown in FIG. 1, the row is composed of a step interval (step pitch) Dp, a fin 1 interval (fin pitch) Fp, and a fin thickness Ft.

図2はこの実施の形態に係る空気調和機の冷媒回路の一例を示す冷媒回路図であり、冷房及び暖房機能を有する空気調和機を示す。図に示す冷媒回路は、圧縮機31、室内熱交換器32、絞り装置33、室外熱交換器34、流路切換弁37を接続配管で接続し、配管内には例えば二酸化炭素のような冷媒を循環させる。室内熱交換器32及び室外熱交換器34では、送風機用モータ36で回転駆動される送風機35によって送風される空気と冷媒との熱交換が行われる。室内熱交換器32及び室外熱交換器34は図1に示した基本構成を有する熱交換器である。   FIG. 2 is a refrigerant circuit diagram showing an example of the refrigerant circuit of the air conditioner according to this embodiment, and shows an air conditioner having cooling and heating functions. In the refrigerant circuit shown in the figure, the compressor 31, the indoor heat exchanger 32, the expansion device 33, the outdoor heat exchanger 34, and the flow path switching valve 37 are connected by a connecting pipe, and a refrigerant such as carbon dioxide is contained in the pipe. Circulate. In the indoor heat exchanger 32 and the outdoor heat exchanger 34, heat exchange between the air blown by the blower 35 rotated by the blower motor 36 and the refrigerant is performed. The indoor heat exchanger 32 and the outdoor heat exchanger 34 are heat exchangers having the basic configuration shown in FIG.

図2の矢印は暖房時の冷媒の流れ方向を示している。この冷凍サイクルでは、圧縮機31で圧縮されて高温高圧となった冷媒ガスが室内熱交換器32で室内空気と熱交換して凝縮し、低温高圧の液冷媒または気液ニ相冷媒となる。この際、室内空気を温める暖房が行われる。その後、絞り装置33で減圧され、低温低圧の液冷媒または気液ニ相冷媒となって室外熱交換器34に流入する。ここで室外空気と熱交換して蒸発し、高温低圧の冷媒ガスとなり、圧縮機31に再び循環する。
冷房時には流路切換弁37の接続を点線で示すように切換えて、圧縮機31−>室外熱交換器34−>絞り装置33−>室内熱交換器32−>圧縮機31に冷媒を循環させ、冷媒を室外熱交換器34で凝縮、室内熱交換器32で蒸発させる。室内熱交換器32で蒸発する際に室内空気を冷やす冷房が行われる。
通常は、室内熱交換器32と送風機35及び送風機用モータ36を1つの筐体内に格納して室内機として室内に設置し、他の部分、即ち圧縮機31、流路切換弁37、室外熱交換器34、送風機35及び送風機用モータ36を室外機として室外に設置し、室内機と室外機間は冷媒配管で接続される。
The arrow of FIG. 2 has shown the flow direction of the refrigerant | coolant at the time of heating. In this refrigeration cycle, the refrigerant gas compressed by the compressor 31 and having a high temperature and high pressure is condensed by exchanging heat with indoor air in the indoor heat exchanger 32 and becomes a low-temperature and high-pressure liquid refrigerant or a gas-liquid two-phase refrigerant. At this time, heating to warm indoor air is performed. After that, the pressure is reduced by the expansion device 33, and the liquid becomes a low-temperature and low-pressure liquid refrigerant or gas-liquid two-phase refrigerant and flows into the outdoor heat exchanger 34. Here, heat is exchanged with the outdoor air to evaporate to become high-temperature and low-pressure refrigerant gas, which is circulated again to the compressor 31.
At the time of cooling, the connection of the flow path switching valve 37 is switched as indicated by a dotted line, and the refrigerant is circulated through the compressor 31-> outdoor heat exchanger 34-> expansion device 33-> indoor heat exchanger 32-> compressor 31. The refrigerant is condensed in the outdoor heat exchanger 34 and evaporated in the indoor heat exchanger 32. When evaporating in the indoor heat exchanger 32, cooling is performed to cool the indoor air.
Usually, the indoor heat exchanger 32, the blower 35, and the blower motor 36 are stored in one housing and installed indoors as an indoor unit, and the other parts, that is, the compressor 31, the channel switching valve 37, the outdoor heat, and the like. The exchanger 34, the blower 35, and the blower motor 36 are installed outside as outdoor units, and the indoor unit and the outdoor unit are connected by a refrigerant pipe.

空気調和機のエネルギ効率は、次式で示される。
暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
即ち、室内熱交換器32及び室外熱交換器34の熱交換能力を向上すれば、エネルギ効率の高い空気調和機を実現することができる。この実施の形態では、熱交換器、特に室内熱交換器32の能力を向上しようとするものである。
さらに詳しく説明すると、熱交換器を凝縮器として運転する場合、室内熱交換器32の冷媒入口では過熱蒸気状態、即ち冷媒飽和温度よりも高い温度の蒸気で流入する。この過熱域は短く、比較的熱交換器性能へ及ぼす影響は小さい。この後、冷媒が冷却され、飽和温度に達すると冷媒は飽和状態、例えばニ相状態となる。ニ相状態の冷媒は熱伝達率が非常に大きく熱交換量のほとんどを占める。冷媒が乾き度(=蒸気質量速度/液質量速度)ゼロ以下となった場合、過冷却と呼ばれる液単相の状態になる。過冷却を付けると、熱伝達率は2相域に対し大幅に悪化し、熱交換器の能力は低下するため、圧縮機の吐出側の圧力が増加し圧縮機入力が増加するという暖房エネルギ効率悪化要素がある。一方、過冷却を付けると熱交換器出入口のエンタルピ差が増大し、熱交換量が増大する。このため、圧縮機の周波数を低減することが可能となり、圧縮機の入力を低減させることができるという暖房エネルギ効率改善効果がある。空気調和機においては、これらのエネルギ効率の悪化要因と改善要因とを考慮し、最も良い過冷却度(=飽和温度―熱交換器出口温度)を決定して運転する。
いままでの熱交換器では、伝熱管2はフィン1上にほぼ均等で規則正しく配置され、フィンと伝熱管が気流に及ぼす作用をそれぞれに詳しく考慮していなかった。ここでは、通風抵抗や、送風機へ流入する気流や、熱交換性能を考慮して、フィンの形状や伝熱管の配置を設定する。
The energy efficiency of the air conditioner is expressed by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / all inputs Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / all inputs That is, the heat exchange capacity of the indoor heat exchanger 32 and the outdoor heat exchanger 34 If improved, an air conditioner with high energy efficiency can be realized. In this embodiment, the capacity of the heat exchanger, particularly the indoor heat exchanger 32, is to be improved.
More specifically, when the heat exchanger is operated as a condenser, the refrigerant flows into the indoor heat exchanger 32 through the superheated steam state, that is, the steam having a temperature higher than the refrigerant saturation temperature. This superheat zone is short and has a relatively small effect on heat exchanger performance. Thereafter, the refrigerant is cooled, and when the saturation temperature is reached, the refrigerant enters a saturated state, for example, a two-phase state. The two-phase refrigerant has a very high heat transfer coefficient and occupies most of the heat exchange amount. When the dryness of the refrigerant becomes equal to or less than zero (= vapor mass velocity / liquid mass velocity), a liquid single-phase state called supercooling occurs. When supercooling is applied, the heat transfer rate is greatly deteriorated with respect to the two-phase region, and the capacity of the heat exchanger is reduced, so that the pressure on the discharge side of the compressor increases and the compressor input increases. There is a deteriorating factor. On the other hand, when supercooling is applied, the difference in enthalpy at the entrance and exit of the heat exchanger increases and the amount of heat exchange increases. For this reason, it becomes possible to reduce the frequency of a compressor, and there exists an effect of heating energy efficiency improvement that the input of a compressor can be reduced. The air conditioner is operated by determining the best supercooling degree (= saturation temperature−heat exchanger outlet temperature) in consideration of these energy efficiency deterioration factors and improvement factors.
In the conventional heat exchangers, the heat transfer tubes 2 are arranged almost uniformly and regularly on the fins 1, and the effects of the fins and the heat transfer tubes on the airflow have not been considered in detail. Here, the fin shape and the arrangement of the heat transfer tubes are set in consideration of the ventilation resistance, the airflow flowing into the blower, and the heat exchange performance.

図3はこの実施の形態による熱交換器を搭載した空気調和機の室内機を示す断面構成図であり、筐体の図に向かって右側の部分で室内の壁面に取り付けられる。熱交換器3は送風機、例えば貫流送風機5を取り囲むように配置され、前面側に配置される前面熱交換器3a及び背面側に配置される背面熱交換器3bに分割される。さらに前面熱交換器3aはその断面形状が「く」の字状に構成され、上部前面熱交換器3aaと下部前面熱交換器3abの2つの直線部分に分割されている。前面熱交換器3aと背面熱交換器3bは共に図1に示したフィンチューブ型熱交換器であり、複数のフィン1が送風機5の回転軸方向に所定の間隔で並設され、複数の伝熱管2がフィン1に略直角に挿入される構成である。   FIG. 3 is a cross-sectional configuration diagram showing an indoor unit of an air conditioner equipped with a heat exchanger according to this embodiment, and is attached to the wall surface of the room at the right side as viewed from the case of the housing. The heat exchanger 3 is disposed so as to surround a blower, for example, the once-through blower 5, and is divided into a front heat exchanger 3a disposed on the front side and a back heat exchanger 3b disposed on the back side. Further, the front heat exchanger 3a has a cross-sectional shape formed in a "<" shape, and is divided into two linear portions, an upper front heat exchanger 3aa and a lower front heat exchanger 3ab. The front heat exchanger 3a and the back heat exchanger 3b are both fin-tube heat exchangers shown in FIG. 1, and a plurality of fins 1 are arranged in parallel in the direction of the rotation axis of the blower 5 at a predetermined interval. The heat tube 2 is inserted into the fin 1 at a substantially right angle.

また、この実施の形態に示す構成では例えば前面熱交換器3aの前面側にはフィルター7と前面パネル8が配置され、室内空気は前面からではなく、上部に設けた吸入口9の上部グリルを通って室内機内に吸い込まれ、熱交換器3のフィン1間を流れる間に冷媒と熱交換を行う。熱交換器3を通過した空気は貫流送風機5を通過後、ケーシングと呼ばれる空気通過風路及び吹出口11を通って室内機の外、即ち室内へ吹き出される。また、スタビライザ6は下部前面熱交換器3abの下側に配置されて吹出口11と下部前面熱交換器3abを配置した空間とを分離しており、吹出口11の一部を構成すると共に、吹出口11から下部前面熱交換器3abを配置した空間への室内空気の逆流を防止している。また、電気集塵器10が上部前面熱交換器3aaの前面の空間に配設され、室内空気に混在する塵や埃を集塵している。   Further, in the configuration shown in this embodiment, for example, the filter 7 and the front panel 8 are arranged on the front side of the front heat exchanger 3a, and the indoor air is not from the front side but the upper grille of the suction port 9 provided at the upper part. The air passes through the indoor unit and is exchanged with the refrigerant while flowing between the fins 1 of the heat exchanger 3. After passing through the heat exchanger 3, the air that has passed through the heat exchanger 3 is blown out of the indoor unit, that is, into the room through an air passage air passage called a casing and the air outlet 11. The stabilizer 6 is disposed below the lower front heat exchanger 3ab to separate the air outlet 11 and the space where the lower front heat exchanger 3ab is disposed, and constitutes a part of the air outlet 11. The backflow of the room air from the blower outlet 11 to the space where the lower front heat exchanger 3ab is arranged is prevented. Moreover, the electric dust collector 10 is arrange | positioned in the space of the front surface of upper front heat exchanger 3aa, and collects the dust and dust which are mixed in room air.

熱交換器3は配置する位置によって、前面熱交換器3aと背面熱交換器3b、さらには上部前面熱交換器3aaと下部前面熱交換器3abに分割して記載するが、実際には伝熱管2内を循環する冷媒は、これらの熱交換器3で並列または直列に連続して流れる。上部前面熱交換器3aaを構成するフィン1aaのフィン幅をL1、下部前面熱交換器3abを構成するフィン1abのフィン幅をL2、背面熱交換器3bを構成するフィン1bのフィン幅をL3とする。各フィン1aa、1ab、1bの幅は、他の部品の配置や筐体の形状に応じて多少の変化はあるが、ここでのフィン幅とは各フィン1aa、1ab、1bの主な部分における幅とする。また、例えば上部前面熱交換器3aaと下部前面熱交換器3abのフィン幅をL1=L2として同等に構成した。
ここで、フィン1には複数の切り起し4を設けており、切り起し4の形状や数がフィン1間を流れる空気の通風抵抗や熱交換量に影響を及ぼす。このため、フィン1の部分によって、切り起し4の数や形状を切り起し4a、4b、4cのように変化させているが、この切り起し4については後にさらに詳しく述べる。図中、白抜き矢印は空気の流れ方向を示し、矢印Gは重力方向を示している。
The heat exchanger 3 is divided into a front heat exchanger 3a and a rear heat exchanger 3b, and further divided into an upper front heat exchanger 3aa and a lower front heat exchanger 3ab, depending on the position of the heat exchanger 3; The refrigerant circulating in 2 flows continuously in parallel or in series in these heat exchangers 3. The fin width of the fin 1aa constituting the upper front heat exchanger 3aa is L1, the fin width of the fin 1ab constituting the lower front heat exchanger 3ab is L2, and the fin width of the fin 1b constituting the rear heat exchanger 3b is L3. To do. The widths of the fins 1aa, 1ab, and 1b vary slightly depending on the arrangement of other components and the shape of the casing. The fin width here refers to the main part of each fin 1aa, 1ab, and 1b. Width. Further, for example, the fin widths of the upper front heat exchanger 3aa and the lower front heat exchanger 3ab are configured to be equal to each other with L1 = L2.
Here, the fin 1 is provided with a plurality of cut-and-raised parts 4, and the shape and number of the cut-and-raised parts 4 affect the ventilation resistance and heat exchange amount of the air flowing between the fins 1. For this reason, the number and shape of the cut-and-raised portions 4 are cut and raised as shown by 4a, 4b, and 4c depending on the portion of the fin 1. The cut-and-raised portions 4 will be described in more detail later. In the figure, white arrows indicate the direction of air flow, and arrows G indicate the direction of gravity.

伝熱管2はフィン1の長手方向に列をなし、気流方向に複数列設けられる。この実施の形態に係る熱交換器は、例えば前面熱交換器3a及び背面熱交換器3bの伝熱管2をそれぞれ3列で構成し、熱交換器3と空気流の流れから、最風上列伝熱管2a、中間列伝熱管2b、最風下列伝熱管2cと称する。各部分の大きさについての一例は以下の通りである。
例えば、フィン1の積層方向のピッチFp=0.0011m、フィン厚みFt=0.0001m、フィン幅Lは上部前面熱交換器3aaのフィン幅L1=0.0375m、下部前面熱交換器3abのフィン幅L2=0.0375m、背面熱交換器3bのフィン幅L3=0.0351mとし、L1=L2>L3としている。また、熱交換器3の段方向に隣接する伝熱管の中心間の距離Dpは熱交換器3の大部分の箇所でDp=0.019mである。この伝熱管2の中心間の距離Dpは送風機5近傍の所定の箇所で異なる距離を設定しているが、これに関しては後に記載する。
The heat transfer tubes 2 form a row in the longitudinal direction of the fins 1 and are provided in a plurality of rows in the airflow direction. In the heat exchanger according to this embodiment, for example, the heat transfer pipes 2 of the front heat exchanger 3a and the back heat exchanger 3b are configured in three rows, respectively, and from the flow of the heat exchanger 3 and the air flow, The heat tubes 2a, the intermediate row heat transfer tubes 2b, and the leemost row heat transfer tubes 2c are referred to. An example of the size of each part is as follows.
For example, the pitch Fp = 0.111 m in the stacking direction of the fins 1, the fin thickness Ft = 0.0001 m, the fin width L is the fin width L1 = 0.0375 m of the upper front heat exchanger 3aa, and the fins of the lower front heat exchanger 3ab The width L2 is set to 0.0375 m, the fin width L3 of the rear heat exchanger 3b is set to 0.0351 m, and L1 = L2> L3. Further, the distance Dp between the centers of the heat transfer tubes adjacent to each other in the step direction of the heat exchanger 3 is Dp = 0.19 m at most portions of the heat exchanger 3. The distance Dp between the centers of the heat transfer tubes 2 is set to a different distance at a predetermined location in the vicinity of the blower 5, which will be described later.

次に、熱交換器3を構成する伝熱管2の配列について記載する。図4はこの実施の形態に係る空気調和機の室内機の断面構成を示す説明図である。図4に示すように、例えば3列の伝熱管2a、2b、2cで、上部前面熱交換器3aaにおける最風上列2aと中間列2bとの距離Lp1と、中間列2bと最風下列2cとの距離Lp2を例えば略同等とし、下部前面熱交換器3abにおける最風上列2aと中間列2bとの距離Lp3を、中間列2bと最風下列2cとの距離Lp4より大きく、且つ距離Lp2より小さくして、Lp1=Lp2>Lp3>Lp4とした。ここで、伝熱管2の列数は3列に限るものではなく、3列よりも多くてもよい。その場合には、複数の中間列で構成されるが、最風上列とその隣の中間列との距離、及び最風下列とその隣の中間列との距離が前述の関係を満足するように構成すればよい。   Next, the arrangement of the heat transfer tubes 2 constituting the heat exchanger 3 will be described. FIG. 4 is an explanatory diagram showing a cross-sectional configuration of the indoor unit of the air conditioner according to this embodiment. As shown in FIG. 4, for example, with three rows of heat transfer tubes 2a, 2b, 2c, the distance Lp1 between the windward upper row 2a and the intermediate row 2b in the upper front heat exchanger 3aa, the intermediate row 2b, and the windward lower row 2c. And the distance Lp3 between the most windward row 2a and the middle row 2b in the lower front heat exchanger 3ab is larger than the distance Lp4 between the middle row 2b and the most windward row 2c, and the distance Lp2 To make it smaller, Lp1 = Lp2> Lp3> Lp4. Here, the number of rows of the heat transfer tubes 2 is not limited to three, and may be more than three. In that case, it is composed of a plurality of intermediate rows, but the distance between the windward top row and the adjacent intermediate row, and the distance between the windward bottom row and the adjacent intermediate row satisfy the above relationship. What is necessary is just to comprise.

前面熱交換器3aを構成するフィン1の形状は、以下の通りである。
上部前面熱交換器3aaにおける空気流の上流縁部Ln1および下流縁部Ln2を直線で構成し、同様に下部前面熱交換器3abにおける空気流の上流縁部Ln3および下流縁部Ln4も直線とする。
さらに、上部前面熱交換器3aaを構成するフィン1aaと下部前面熱交換器3ab構成するフィン1abは、概ね「く」の字状で、且つ一体に形成されている。ここで、一体とはフィン1が接続部のない「く」の字状の1枚の板を複数積層して熱交換器3を構成しているということである。
The shape of the fin 1 which comprises the front surface heat exchanger 3a is as follows.
The upstream edge Ln1 and the downstream edge Ln2 of the air flow in the upper front heat exchanger 3aa are configured by straight lines, and similarly, the upstream edge Ln3 and the downstream edge Ln4 of the air flow in the lower front heat exchanger 3ab are also linear. .
Furthermore, the fins 1aa constituting the upper front heat exchanger 3aa and the fins 1ab constituting the lower front heat exchanger 3ab are generally in the shape of “<” and are integrally formed. Here, the term “integral” means that the heat exchanger 3 is configured by laminating a plurality of “1” -shaped plates having no connection portion.

また、図4では太線で示している伝熱管中心を結ぶ線は重力方向上部に配置される上部前面熱交換器3aaではフィン外形に沿うように直線としているが、重力方向下部に配置される下部前面熱交換器3abでは、少なくともフィン最風下列2cを送風機5の羽根車の外周から一定距離を保つように円弧状に湾曲させて配置する。このため、下部前面熱交換器3abのフィン1abにおいて、下流縁部Ln4の付近の伝熱管2cの送風機5側にスペースができる。即ち、送風機5に近い部分の伝熱管配列を湾曲させているため、この部分の伝熱管2cと下流縁部Ln4との距離が、伝熱管2cを湾曲させていない部分よりも大きくなっている。湾曲させた部分における伝熱管2cとその気流方向後方の風下側フィン端部Ln4の距離が、直線状に配設した伝熱管2cとその気流方向後方の風下側フィン端部Ln2との距離よりも大きくなるように構成した。   In addition, in FIG. 4, the line connecting the heat transfer tube centers indicated by the bold lines is a straight line along the outer shape of the fin in the upper front heat exchanger 3aa disposed in the upper part in the gravitational direction, but the lower part disposed in the lower part in the gravitational direction. In the front heat exchanger 3ab, at least the fin most downwind row 2c is arranged to be curved in an arc shape so as to maintain a constant distance from the outer periphery of the impeller of the blower 5. For this reason, in the fin 1ab of the lower front heat exchanger 3ab, a space is formed on the blower 5 side of the heat transfer tube 2c in the vicinity of the downstream edge Ln4. That is, since the heat transfer tube array in the portion close to the blower 5 is curved, the distance between the heat transfer tube 2c and the downstream edge Ln4 in this portion is larger than the portion where the heat transfer tube 2c is not curved. The distance between the heat transfer tube 2c in the curved portion and the leeward fin end Ln4 behind the airflow direction is larger than the distance between the heat transfer tube 2c arranged in a straight line and the leeward fin end Ln2 behind the airflow direction. It was configured to be larger.

なお、ここでは前面熱交換器3aの構成や形状に関して考慮するものであり、背面熱交換器3bの構成を特に限定するものではないが、例えばここでは、背面熱交換器3bにおける最風上列2aと中間列2bとの距離Lp5と、中間列2bと最風下列2cとの距離Lp6はLp1やLp2と同等とする。また、背面熱交換器3bにおける空気流の上流縁部Ln5および下流縁部Ln6も例えば直線で構成する。   Here, the configuration and shape of the front heat exchanger 3a are considered, and the configuration of the back heat exchanger 3b is not particularly limited. The distance Lp5 between 2a and the intermediate row 2b and the distance Lp6 between the intermediate row 2b and the leeward row 2c are equivalent to Lp1 and Lp2. Further, the upstream edge portion Ln5 and the downstream edge portion Ln6 of the air flow in the back surface heat exchanger 3b are also configured by, for example, straight lines.

また、図4に示すように、上部前面熱交換器3abのフィン1aaにおける下流縁部Ln2と重力方向の成す傾斜角θ1と、背面熱交換器3bのフィン1bにおける下流縁部Ln6と重力方向の成す傾斜角θ2は略同一とし、例えばθ1=θ2=28°となるように配置する。   Further, as shown in FIG. 4, the inclination angle θ1 formed between the downstream edge Ln2 and the gravity direction of the fin 1aa of the upper front heat exchanger 3ab and the downstream edge Ln6 of the fin 1b of the rear heat exchanger 3b and the gravity direction. The formed inclination angles θ2 are substantially the same, for example, arranged so that θ1 = θ2 = 28 °.

次に、上記のように構成したこの実施の形態に係る空気調和機の動作について以下に説明する。
最風下列伝熱管2cのうちで、送風機5近傍の伝熱管2cを送風機5の外周に沿って湾曲させたことで、最風下列伝熱管2cと送風機5の距離は略一定に保持される。このため、熱交換器3a内を流れる空気流が送風機5に流入する際の風速及び温度効率(=(空気出口温度−空気入口温度)/(冷媒温度−空気入口温度))は熱交換器3の風下側の、特に送風機5に近い辺りでほぼ一定となり、熱交換器能力は向上する。送風機5に流入する風速が伝熱管2の段方向に一定でない場合、送風機5内での各翼での仕事量が不均一となって、送風機5入力の増加や送風量が不安定になるが、この実施の形態によれば、送風機5近傍の伝熱管2cと送風機外周との距離は略一定となるため、送風機5の送風量を安定化し、送風機入力を減少することができる。さらに、送風機5の各翼での仕事量を均一にすることで、送風機5の回転音を低減できる。
ここでは図4に示す様に列間距離をLp1=Lp2>Lp3>Lp4とし、下部前面熱交換器3abにおいて最風下列伝熱管2cばかりではなく、中間列熱交換器2b及び最風上列熱交換器2aも送風機5の外周に沿って概ね円弧状に配置する。このため、下部前面熱交換器3abの奥行きを短くでき、室内機の小型化を図ることができると共に、熱交換器3a内を流れる空気流の風速及び温度効率の均一化をさらに図ることができる。
Next, the operation of the air conditioner according to this embodiment configured as described above will be described below.
By curving the heat transfer tube 2c in the vicinity of the blower 5 along the outer periphery of the blower 5 among the most windward heat transfer tubes 2c, the distance between the coolest row heat transfer tube 2c and the blower 5 is kept substantially constant. For this reason, the wind speed and temperature efficiency (= (air outlet temperature−air inlet temperature) / (refrigerant temperature−air inlet temperature)) when the air flow flowing in the heat exchanger 3a flows into the blower 5 are the heat exchanger 3. It becomes almost constant especially on the leeward side, near the blower 5, and the heat exchanger capacity is improved. If the wind speed flowing into the blower 5 is not constant in the step direction of the heat transfer tube 2, the work amount at each blade in the blower 5 becomes uneven, and the increase in the blower 5 input and the blown amount become unstable. According to this embodiment, since the distance between the heat transfer tube 2c in the vicinity of the blower 5 and the outer periphery of the blower is substantially constant, the amount of blown air from the blower 5 can be stabilized and the blower input can be reduced. Furthermore, the rotation noise of the blower 5 can be reduced by making the work amount of each blade of the blower 5 uniform.
Here, as shown in FIG. 4, the inter-column distance is Lp1 = Lp2>Lp3> Lp4, and not only the most downwind heat transfer tube 2c but also the intermediate heat exchanger 2b and the most upwind heat exchange in the lower front heat exchanger 3ab. The device 2 a is also arranged in a generally arc shape along the outer periphery of the blower 5. For this reason, the depth of the lower front heat exchanger 3ab can be shortened, the indoor unit can be downsized, and the air velocity and temperature efficiency of the airflow flowing in the heat exchanger 3a can be further uniformed. .

室内機内の気流を考慮すると、熱交換器3を通過する風速は、前面熱交換器3aの方が背面熱交換器3bよりも速く、下部前面熱交換器3abの方が上部前面熱交換器3aaよりも速くなる。熱交換器3において、送風機5に近い部分で且つ風速が速くなる部分のフィン1及び伝熱管2の構成が熱交換性能及び送風機回転音に大きな影響を及ぼす。そこで、下部前面熱交換器3abの送風機5近傍に位置する最風下列伝熱管2cの配置を湾曲させて伝熱管2cと送風機5の距離を一定とすることで、熱交換性能向上及び送風機回転音低減を図ることができ、大きな効果を得ることができる。一方、この実施の形態では、送風機5にそれほど近くない部分の伝熱管2c、即ち上部前面熱交換器3aaの上端側の最風下列伝熱管2cは直線状に配置する。送風機5から比較的距離のあるこの部分では、送風機5との距離にはそれほど関係無く、少なくとも伝熱管2をフィン1に均等に配列すれば、熱交換器3a内を流れる空気流の風速及び温度効率のばらつきにほとんど影響しない。このため、上部前面熱交換器3aaの上端側の最風下列伝熱管2cを直線状に配置し、フィン1aaの下流縁部Ln2も直線状に構成することで、筐体内に収まり易く、且つ伝熱面積を大きくできる。この実施の形態において、背面熱交換器3bにおいても最風下列伝熱管2cを直線状に配置し、フィン1bの下流縁部Ln6を直線状に構成することで、筐体内に収まり易く、且つ伝熱面積を大きくできる効果が得られる。   Considering the air flow in the indoor unit, the wind speed passing through the heat exchanger 3 is higher in the front heat exchanger 3a than in the rear heat exchanger 3b, and the lower front heat exchanger 3ab is higher in the upper front heat exchanger 3aa. Will be faster. In the heat exchanger 3, the configuration of the fins 1 and the heat transfer tubes 2 that are close to the blower 5 and where the wind speed is high greatly affects the heat exchange performance and the blower rotation sound. Therefore, the heat exchange performance is improved and the fan rotating noise is reduced by curving the arrangement of the coolest downstream heat transfer tubes 2c located in the vicinity of the blower 5 of the lower front heat exchanger 3ab so that the distance between the heat transfer tubes 2c and the blower 5 is constant. And a great effect can be obtained. On the other hand, in this embodiment, the portion of the heat transfer tube 2c that is not so close to the blower 5, that is, the most downstream side heat transfer tube 2c on the upper end side of the upper front heat exchanger 3aa is arranged linearly. In this part, which is relatively far from the blower 5, regardless of the distance from the blower 5, if at least the heat transfer tubes 2 are evenly arranged on the fins 1, the wind speed and temperature of the airflow flowing in the heat exchanger 3 a Little effect on efficiency variation. For this reason, by arranging the coolest downstream heat transfer tube 2c on the upper end side of the upper front heat exchanger 3aa in a straight line and also configuring the downstream edge Ln2 of the fin 1aa in a straight line, the heat transfer is easy to fit in the housing. The area can be increased. In this embodiment, the rearmost heat transfer tube 2c is arranged linearly in the rear heat exchanger 3b, and the downstream edge Ln6 of the fin 1b is configured linearly, so that it can be easily accommodated in the casing and heat transfer. The effect that the area can be increased is obtained.

また、前述のように下部前面熱交換器3abのフィン1abの下流縁部Ln4を直線状としており、この部分に湾曲して配置された伝熱管2cと下流縁部Ln4の間にスペースができる。従来装置では、前面熱交換器3aのフィン1を円弧状とし、フィン1の下流縁部に沿って最風下列伝熱管2cが配置されている。この場合、最風下列伝熱管2cとその後流側のフィン1の端部との距離は小さい。ところがこの実施の形態ではフィン1abの下流縁部Ln4と伝熱管2cとの距離を大きくとることができ、伝熱管2の背後に形成される死水域が小さくなってから送風機5に流入する。このため、死水域によって発生する異常音を低減することができる。   Further, as described above, the downstream edge Ln4 of the fin 1ab of the lower front heat exchanger 3ab is linear, and a space is formed between the heat transfer tube 2c and the downstream edge Ln4 that are curvedly arranged in this portion. In the conventional apparatus, the fins 1 of the front heat exchanger 3a have an arc shape, and the leeward row heat transfer tubes 2c are disposed along the downstream edge of the fins 1. In this case, the distance between the windward downstream heat transfer tube 2c and the end portion of the fin 1 on the downstream side is small. However, in this embodiment, the distance between the downstream edge Ln4 of the fin 1ab and the heat transfer tube 2c can be increased, and the dead water area formed behind the heat transfer tube 2 becomes smaller before flowing into the blower 5. For this reason, the abnormal sound generated by the dead water area can be reduced.

図5は伝熱管2背後の下流側に形成される死水域15を示す説明図であり、図5(a)は伝熱管2cとフィンの下流縁部Ln4との距離が小さい場合を示し、図5(b)は伝熱管2cとフィンの下流縁部Ln4との間にある程度距離が存在する場合を示している。伝熱管2cと送風機5との間の距離は、図5(a)と図5(b)とでほぼ同じとする。図5(a)では伝熱管2cの後流側のフィンが短く、伝熱管2cの背後に形成される死水域15はほとんどそのままの大きさで送風機5に流入する。これに対し、図5(b)では、伝熱管2cの後流側のフィンによって伝熱管2cの背後に形成される死水域15が小さくなった状態で送風機5に流入する。伝熱管2cの後方では、死水域15の内側では空気速度が遅く、外側では速い。ところが伝熱管2c後方にフィンがあることで、圧力損失がなにもない空間の場合よりも大きくなり速度分布が均一化される。このため、伝熱管2c背後の下流側にある程度の長さのフィンがあることで、送風機5に吸い込まれる空気速度のばらつきが緩和され、送風機5で発生する異常音を低減することができる。また、伝熱管2cの後方にフィンのスペースがあることで、フィン全体の圧力損失が大きくなって、フィン後方の空気速度が遅くなる。その結果発生する死水域15が小さくなり、異常音をさらに低減できる。
また、フィン1abの下流端部Ln4と伝熱管2cの距離を大きくとることができ、熱交換器3を蒸発器として用いた場合に生じる凝縮水をより速く排水するための流路を確保できるため、凝縮水が飛散し送風機に流入することを避けることができる。
FIG. 5 is an explanatory view showing a dead water region 15 formed on the downstream side behind the heat transfer tube 2. FIG. 5 (a) shows a case where the distance between the heat transfer tube 2c and the downstream edge Ln4 of the fin is small. 5 (b) shows a case where a certain distance exists between the heat transfer tube 2c and the downstream edge Ln4 of the fin. The distance between the heat transfer tube 2c and the blower 5 is substantially the same in FIG. 5 (a) and FIG. 5 (b). In FIG. 5A, the fin on the downstream side of the heat transfer tube 2c is short, and the dead water area 15 formed behind the heat transfer tube 2c flows into the blower 5 with almost the same size. On the other hand, in FIG.5 (b), it flows in into the air blower 5 in the state which the dead water area 15 formed behind the heat exchanger tube 2c became small with the fin of the back flow side of the heat exchanger tube 2c. Behind the heat transfer tube 2c, the air velocity is slow inside the dead water area 15 and fast outside. However, since the fins are behind the heat transfer tube 2c, the fins are larger than the space without any pressure loss, and the velocity distribution is made uniform. For this reason, since there is a fin having a certain length on the downstream side behind the heat transfer tube 2c, variation in the air speed sucked into the blower 5 is alleviated, and abnormal noise generated in the blower 5 can be reduced. In addition, since there is a fin space behind the heat transfer tube 2c, the pressure loss of the entire fin increases, and the air velocity behind the fin decreases. As a result, the dead water area 15 generated becomes small, and abnormal noise can be further reduced.
Further, the distance between the downstream end Ln4 of the fin 1ab and the heat transfer tube 2c can be increased, and a flow path for draining condensed water generated when the heat exchanger 3 is used as an evaporator can be secured. The condensed water can be prevented from scattering and flowing into the blower.

このように、前面熱交換器3aの最風下側の伝熱管列のうちの少なくとも送風機5近傍の伝熱管を送風機5の外周に沿って湾曲するように配設すると共に、前面熱交換器3aの最風下側の伝熱管列の上端側の伝熱管を直線状に配設し、前記湾曲させた部分における伝熱管とその気流方向後方の風下側フィン端部の距離が直線状に配設した伝熱管とその気流方向後方の風下側フィン端部の距離よりも大きくなるように構成したことにより、熱交換性能を向上でき、騒音値を低減でき、さらに送風機入力を小さくできる熱交換器を用いた空気調和機を得ることができる。
また、伝熱管2の列間距離がLp1=Lp2>Lp3>Lp4となるように、前面熱交換器3aの上部よりも下部の方が小さくなるように伝熱管2を配置したことにより、さらに熱交換性能を向上できる。
As described above, at least the heat transfer tubes in the vicinity of the blower 5 in the heat transfer tube array on the leeward side of the front heat exchanger 3a are arranged so as to bend along the outer periphery of the blower 5, and the front heat exchanger 3a The heat transfer tubes on the upper end side of the heat transfer tube row on the leeward side are arranged in a straight line, and the distance between the heat transfer tube in the curved portion and the leeward fin end at the rear of the air flow direction is arranged in a straight line. By using a heat exchanger that can improve the heat exchange performance, reduce the noise level, and further reduce the fan input by configuring the heat pipe to be larger than the distance between the end of the fin on the leeward side in the airflow direction. An air conditioner can be obtained.
Further, since the heat transfer tubes 2 are arranged so that the lower portion is smaller than the upper portion of the front heat exchanger 3a so that the distance between the rows of the heat transfer tubes 2 is Lp1 = Lp2>Lp3> Lp4, the heat transfer tubes 2 are further heated. Exchange performance can be improved.

また、従来のフィン全体を円弧形状とした場合にはフィンの下流縁部Ln2、Ln6で重力方向との成す角度が大きくなってしまっていた。熱交換器3を蒸発器として動作させた場合には、通常は生じた凝縮水をドレンパン(図示せず)にスムーズに流して溜め、室外に排出している。ところが、凝縮水の生じた場所で重力方向に角度が大きいと、凝縮水が重力方向に落下し易くなり、送風機5から吹出す空気流に混ざって室内に吹出されてしまったりする。この実施の形態では、上部前面熱交換器3aaのフィン1aaにおける下流縁部Ln2を直線とした。このため、凝縮水が直線状の下流縁部Ln2で重力方向に落下しにくく、フィン面に沿ってスムーズにドレンパンに導かれる。このため、凝縮水が室内に飛散される露飛びと呼ばれる現象を防止できる。
このように、前面熱交換器の風下側フィン端部を前面熱交換器上部と下部の2本の直線形状とし、「く」の字状に構成したことにより、熱交換器を蒸発器として運転した場合に、熱交換器で生じる凝縮水が飛散するのをある程度防止でき、小型で室内機の筐体内に格納しやすい構成となる。
Further, when the entire conventional fin has an arc shape, the angle formed by the gravity direction at the downstream edge portions Ln2 and Ln6 of the fin is large. When the heat exchanger 3 is operated as an evaporator, normally the condensed water generated is smoothly flowed and collected in a drain pan (not shown) and discharged outside the room. However, if the angle is large in the direction of gravity at the place where the condensed water is generated, the condensed water is likely to fall in the direction of gravity and may be blown into the room mixed with the air flow blown out from the blower 5. In this embodiment, the downstream edge Ln2 of the fin 1aa of the upper front heat exchanger 3aa is a straight line. For this reason, the condensed water does not easily fall in the direction of gravity at the linear downstream edge Ln2, and is smoothly guided to the drain pan along the fin surface. For this reason, it is possible to prevent a phenomenon called dew splashing in which condensed water is scattered indoors.
In this way, the leeward fin end of the front heat exchanger has two straight shapes at the top and bottom of the front heat exchanger, and is formed in the shape of "<", so that the heat exchanger operates as an evaporator. In such a case, it is possible to prevent the condensed water generated in the heat exchanger from being scattered to some extent, and the configuration is small and easy to store in the housing of the indoor unit.

また、前面熱交換器3aと重力方向の成す角度θ1と背面熱交換器3bと重力方向の成す角度θ2については、図4に示すようにθ1=θ2としている。
室内に設置される空気調和機は、小型化あるいは薄型化が求められている。このため、出来る限り小さな空間で必要な各機器を効率よく、かつ機能性よく配置する必要がある。そこで、前面熱交換器3aと背面熱交換器3bの配置であるが、吸込口9から吸い込まれる空気と効率よく熱交換するには空気流との接触面積を大きくすればよい。このため、図4に示すように送風機5を取り囲むように山形に折り曲げた状態で配置する。さらに上部前面熱交換器3abのフィン1aaにおける下流縁部Ln2と重力方向の成す傾斜角θ1と、背面熱交換器3bのフィン1bにおける下流縁部Ln6と重力方向の成す傾斜角θ2は略同一とし、θ1=θ2とするのが好ましい。
室内熱交換器を蒸発器として運転する場合、例えばθ1>θ2とすると、前面熱交換器3aにおいて凝縮水が滴下しやすくなり、θ1<θ2とすると、背面熱交換器3bにおいて凝縮水が滴下しやすくなる。送風機5側に滴下した凝縮水は、吹出口11から室内ユニットの外に排出されてしまう。そこで、この実施の形態では、前面熱交換器3aと重力方向の成す角度θ1と背面熱交換器3bと重力方向の成す角度θ2をほぼ同一としたため、前面熱交換器3a及び背面熱交換器3bにおいて凝縮水が滴下する条件は同等となる。結果として、θ1=θ2とすることで、熱交換器3a、3bのいずれからも凝縮水が滴下しにくい構成となる。
このように、前面熱交換器3aの送風機側のフィン端部Ln2の上部の重力方向に対する傾斜角度θ1と、背面熱交換器3bの送風機側のフィン端部Ln6の上部の重力方向に対する傾斜角度を同等としたことにより、凝縮水が送風機5に滴下されにくい構成の空気調和機が得られる。
ここで、θ1=θ2とするのが望ましいが、製造の都合上、多少角度が異なっていてもよい。例えば2度程度ずれていても同様の効果を奏する。
Further, the angle θ1 formed between the front heat exchanger 3a and the gravity direction and the angle θ2 formed between the rear heat exchanger 3b and the gravity direction are set to θ1 = θ2 as shown in FIG.
An air conditioner installed indoors is required to be downsized or thinned. For this reason, it is necessary to efficiently arrange each necessary device in a space as small as possible with good functionality. Therefore, although the front heat exchanger 3a and the rear heat exchanger 3b are arranged, the contact area between the air flow and the air sucked from the suction port 9 may be increased in order to efficiently exchange heat. For this reason, as shown in FIG. 4, it arrange | positions in the state bent in the mountain shape so that the air blower 5 might be surrounded. Further, the inclination angle θ1 formed in the gravity direction with the downstream edge Ln2 of the fin 1aa of the upper front heat exchanger 3ab is substantially the same as the inclination angle θ2 formed in the gravity direction with the downstream edge Ln6 of the fin 1b of the rear heat exchanger 3b. , Θ1 = θ2 is preferable.
When operating the indoor heat exchanger as an evaporator, for example, if θ1> θ2, the condensate easily drops in the front heat exchanger 3a, and if θ1 <θ2, the condensate drops in the back heat exchanger 3b. It becomes easy. The condensed water dripped at the blower 5 side is discharged from the blower outlet 11 to the outside of the indoor unit. In this embodiment, therefore, the angle θ1 formed between the front heat exchanger 3a and the gravity direction and the angle θ2 formed between the rear heat exchanger 3b and the gravity direction are substantially the same. Therefore, the front heat exchanger 3a and the rear heat exchanger 3b are formed. The conditions under which the condensed water drops are the same. As a result, by setting θ1 = θ2, it becomes a configuration in which the condensed water is difficult to drop from any of the heat exchangers 3a and 3b.
In this way, the inclination angle θ1 with respect to the gravity direction of the upper fin end Ln2 on the blower side of the front heat exchanger 3a and the inclination angle with respect to the gravity direction of the upper fin end Ln6 on the blower side of the rear heat exchanger 3b are set. By making it equivalent, the air conditioner of a structure with which condensed water is hard to be dripped at the air blower 5 is obtained.
Here, it is desirable that θ1 = θ2, but the angle may be slightly different for the convenience of manufacturing. For example, the same effect can be achieved even if the angle is shifted by about 2 degrees.

また、下部前面熱交換器3abのフィン1abにおける上流縁部Ln3も直線で配置した。この部分で同一スペース内に円弧形状フィンを配置すると、直線形状フィンで構成するよりも狭いフィン幅になってしまう。即ち、フィン1abにおける上流縁部Ln3及び下流縁部Ln4を直線で構成すると、円弧形状フィンの構成よりも伝熱面積を増加させることができ、熱交換器性能が向上する。   Further, the upstream edge portion Ln3 of the fin 1ab of the lower front heat exchanger 3ab is also arranged in a straight line. If arc-shaped fins are arranged in the same space at this portion, the fin width becomes narrower than that formed by linear fins. That is, when the upstream edge portion Ln3 and the downstream edge portion Ln4 of the fin 1ab are configured with straight lines, the heat transfer area can be increased as compared with the configuration of the arc-shaped fins, and the heat exchanger performance is improved.

また、従来の前面熱交換器3aを2つに分割して角度をつけて配置する構成では、分割部分が分離した構成になり、上部と下部との接続部分で空間ができフィンの欠損部が存在する。これに対し、前面熱交換器3aのフィン1を一体構造とすることで、フィンの欠損部が小さくなり、伝熱面積を大きくできる。また、前面熱交換器3aを分割した場合、分割部にできる空間によって通風抵抗が小さくなって風速がその他の箇所よりも大きくなり、送風機5において回転音が発生しやすくなるが、この実施の形態では、「く」の字状の全体に亘って同等の通風抵抗で構成されるので風速も同等になり、回転音を低減できる。
また、前面熱交換器3aのフィンを一体構造とすることで、分割した場合よりも製造時に組み立て易くできる。
このように、前面熱交換器3aのフィン1aを上部1aaと下部1abで連続して一体に構成したことにより、熱交換性能を大きくでき、騒音値を低減できる空気調和機が得られる。
Moreover, in the structure which divides | segments the conventional front surface heat exchanger 3a into two and arranges it at an angle, it becomes the structure which the division | segmentation part isolate | separated. Exists. On the other hand, by making the fins 1 of the front heat exchanger 3a into an integral structure, the missing portions of the fins can be reduced and the heat transfer area can be increased. Further, when the front heat exchanger 3a is divided, the ventilation resistance is reduced by the space that can be divided, and the wind speed is larger than the other parts, and rotation noise is easily generated in the blower 5. Then, since it is comprised by the same ventilation resistance over the whole "<" character shape, a wind speed is also equivalent and a rotation sound can be reduced.
Moreover, it can be easily assembled at the time of manufacture rather than the case where it divides | segments by making the fin of the front surface heat exchanger 3a into an integral structure.
As described above, the fin 1a of the front heat exchanger 3a is continuously and integrally formed by the upper part 1aa and the lower part 1ab, so that an air conditioner that can increase the heat exchange performance and reduce the noise value is obtained.

また、前面熱交換器3aを構成するフィン幅を、上下端部を除いてL1=L2として一定とすることで、前面熱交換器の3aにおける通風抵抗を均一化し、風速分布および温度効率の均一化が可能となり、熱交換能力を向上できる。ここで、前面熱交換器3aを構成するフィン1aの上下端部は構成上、空間が十分にないので、端部のファン幅を若干小さくしている。
また、製造時にフィンを型で抜き取った後、スタックと呼ばれるフィンを積層させる作業を実施する際、フィン幅が均等であればフィンが落下する際の空気抵抗が一様となり、ほぼ均等に積層される。
このように、前面熱交換器3aのフィン幅を上部1aa及び下部1abで同等としたことにより、熱交換性能を向上できる空気調和機が得られる。ここで、フィン幅を同等としたが、同一又は±1mm程度の差があっても同様の効果を奏する。
Further, by making the width of the fins constituting the front heat exchanger 3a constant at L1 = L2 except for the upper and lower ends, the airflow resistance in the front heat exchanger 3a is made uniform, and the wind speed distribution and temperature efficiency are made uniform. The heat exchange capacity can be improved. Here, the upper and lower ends of the fins 1a constituting the front heat exchanger 3a do not have sufficient space in the configuration, so the fan width at the end is slightly reduced.
In addition, when removing the fins with a mold at the time of manufacturing and performing the work of stacking the fins called stacks, if the fin width is uniform, the air resistance when the fins fall is uniform, and the layers are stacked almost evenly. The
Thus, the air conditioner which can improve heat exchange performance is obtained by making the fin width of front heat exchanger 3a equal in upper part 1aa and lower part 1ab. Here, although the fin width is made equal, even if there is a difference of about ± 1 mm, the same effect is obtained.

また、下部前面熱交換器3abの最下部で、フィン1abの幅をその他の部分の幅L2より小さくしている。このため、下部前面熱交換器3abの最下部付近の通風抵抗が低下して、この部分の送風機5の吸い込み風量が増加する。下部前面熱交換器3abの最下部は吸入口9から遠い位置で筐体に囲まれた部分でもあり、通風流路を考えても、空気が流れにくい部分となっている。この部分の通風抵抗を低下して吸い込み風量を増加することで、送風機5に吸込まれる風速は上部前面熱交換器3aaと下部前面熱交換器3abの段方向(段ピッチDpの示す方向)で概ね一定となる。このため、熱交換器3通過後の空気温度はほぼ一定となって熱交換器能力は向上する。   Moreover, the width of the fin 1ab is made smaller than the width L2 of the other part at the lowermost part of the lower front heat exchanger 3ab. For this reason, the ventilation resistance near the lowermost part of the lower front heat exchanger 3ab is reduced, and the amount of air sucked by the blower 5 in this part is increased. The lowermost part of the lower front heat exchanger 3ab is also a part surrounded by the casing at a position far from the suction port 9, and it is a part in which air hardly flows even in consideration of the ventilation channel. By reducing the ventilation resistance of this portion and increasing the amount of air sucked in, the air speed sucked into the blower 5 is the step direction of the upper front heat exchanger 3aa and the lower front heat exchanger 3ab (the direction indicated by the step pitch Dp). It is almost constant. For this reason, the air temperature after passing through the heat exchanger 3 becomes substantially constant, and the heat exchanger capacity is improved.

フィン1の幅と気流及び熱交換量との関係について説明する。同じ風速で同じ温度の気流をフィン幅の異なる熱交換器に流入させると、フィン幅が大きい熱交換器ではフィン幅が小さい熱交換器を通過するよりも風速は遅くなって流出する。これに伴い、フィン幅が大きい熱交換器ではフィン幅が小さい熱交換器を通過するよりも熱交換量が多くなり出口側と入口側の温度差が大きくなって温度効率は向上する。前面熱交換器3aと背面熱交換器3bに流入する気流の風速は、吸入口9や送風機5の構成や位置から、前面熱交換器3aで速く、背面熱交換器3bで遅い。そこで、前面熱交換器3aを構成するフィン1aの幅を背面熱交換器3bを構成するフィン1bの幅よりも大きくする。これによって、前面熱交換器3aと背面熱交換器3bを通過する気流の速度を均一化でき、温度効率も向上できる。
このように、前面熱交換器3aのフィン幅L1を背面熱交換器3bのフィン幅L3よりも大きくしたことにより、熱交換性能が大きく、送風機入力を小さくできる空気調和機が得られる。
The relationship between the width of the fin 1, the airflow, and the heat exchange amount will be described. When airflows having the same wind speed and the same temperature are allowed to flow into heat exchangers having different fin widths, the heat speed of the heat exchanger having a large fin width flows out slower than passing through the heat exchanger having a small fin width. Accordingly, in the heat exchanger having a large fin width, the amount of heat exchange is larger than in the case of passing through the heat exchanger having a small fin width, and the temperature difference between the outlet side and the inlet side is increased, thereby improving the temperature efficiency. The wind speed of the airflow flowing into the front heat exchanger 3a and the back heat exchanger 3b is fast in the front heat exchanger 3a and slow in the back heat exchanger 3b due to the configuration and position of the suction port 9 and the blower 5. Therefore, the width of the fin 1a constituting the front heat exchanger 3a is made larger than the width of the fin 1b constituting the back heat exchanger 3b. Thereby, the velocity of the airflow passing through the front heat exchanger 3a and the back heat exchanger 3b can be made uniform, and the temperature efficiency can be improved.
Thus, by making the fin width L1 of the front heat exchanger 3a larger than the fin width L3 of the rear heat exchanger 3b, an air conditioner that has a large heat exchange performance and can reduce the fan input can be obtained.

図6はこの実施の形態に係るフィン1に設けた伝熱管2間のパイプ間切り起し4の周辺部を示す部分拡大図である。通常は、ほとんど全ての伝熱管2間に図6に示したような切り起し4を設け、切り起した側端部4fで空気流との熱交換を促進する構成である。伝熱管2間の切り起し4の側端部4fが風向に対向するように位置しており、側端部4fにおいて気流の速度境界層及び温度境界層を更新する効果を期待でき、伝熱促進が行われ熱交換能力が増大すると同時に通風抵抗も増大する。この切り起し本数は大きいほど熱交換能力は増大するが、一方では通風抵抗も増大する。   FIG. 6 is a partially enlarged view showing a peripheral portion of the pipe cutting and raising 4 between the heat transfer tubes 2 provided on the fin 1 according to this embodiment. Normally, a cut-and-raised portion 4 as shown in FIG. 6 is provided between almost all the heat transfer tubes 2, and heat exchange with the air flow is promoted at the cut-and-raised side end portion 4 f. The side end 4f of the cut-and-raised part 4 between the heat transfer tubes 2 is positioned so as to face the wind direction, and an effect of renewing the velocity boundary layer and the temperature boundary layer of the airflow at the side end 4f can be expected. The air resistance is increased at the same time that the heat exchange capacity is increased by the promotion. The greater the number of cuts, the greater the heat exchange capacity, but on the other hand the ventilation resistance also increases.

パイプ間切り起し4は空気流れ方向に垂直に複数、ここでは3本設けており、3本の切り起しは互いにほぼ平行になっている。図7は、熱交換器3の全ての伝熱管2間で3本づつ切り起しを設けた場合の空気流れを示す説明図である。図中、吸入口9から吸込まれた空気が送風機5に流れる空気流を矢印で示し、ここで例えば前面熱交換器3aについて説明する。
この構成では、切り起し4を全ての個所で同じ本数としており、フィン1のどこにおいても通風抵抗はほぼ同等になり、送風機5に近い箇所での風速の増加を抑制できず、不均一な風速分布となる。このために、熱交換器3を通過した後の空気に温度むらが生じ、熱交換器性能の低下を生じるという問題点があった。特に吸込口9や筐体等の構成上、前面熱交換器3aの上部付近において、上部前面熱交換器3aaの後流側で領域E1に示すように静圧が周辺よりも高い部分が生じる。このため、気流が矢印y1のように図に向かって幾分背面熱交換器3b側に膨らんで送風機5に流入する。図8は図7における送風機5の上部を拡大して示す部分拡大図である。上部前面熱交換器3aaの上端部付近で背面熱交換器3b側に膨らんで流れると、空気流は送風機翼13に対し矢印y2で示すように、入射角θが大きい状態で流入する。このように入射角θが大きいと、送風機翼13内において負圧面側に剥離14が生じ、送風機入力が悪化したりサージングが生じやすくなる。
A plurality of pipe cuts 4 are provided perpendicularly to the air flow direction, here three, and the three cuts are substantially parallel to each other. FIG. 7 is an explanatory diagram showing the air flow when three cut-ups are provided between all the heat transfer tubes 2 of the heat exchanger 3. In the drawing, an air flow in which air sucked from the suction port 9 flows to the blower 5 is indicated by arrows, and for example, the front heat exchanger 3a will be described.
In this configuration, the number of the cut-and-raised parts 4 is the same in all the parts, the ventilation resistance is almost the same everywhere in the fin 1, the increase in the wind speed in the part close to the blower 5 cannot be suppressed, and is uneven. Wind speed distribution. For this reason, there has been a problem that the temperature after the heat exchanger 3 is uneven and the heat exchanger performance is deteriorated. Particularly, in the vicinity of the upper portion of the front heat exchanger 3a due to the configuration of the suction port 9 and the housing, a portion where the static pressure is higher than the surroundings is generated on the downstream side of the upper front heat exchanger 3aa as shown in the region E1. For this reason, the airflow slightly swells toward the rear heat exchanger 3b as shown by the arrow y1 and flows into the blower 5. FIG. 8 is a partially enlarged view showing the upper part of the blower 5 in FIG. 7 in an enlarged manner. When the airflow swells and flows near the upper end of the upper front heat exchanger 3aa toward the rear heat exchanger 3b, the airflow flows into the blower blade 13 with a large incident angle θ as indicated by an arrow y2. Thus, when the incident angle θ is large, the separation 14 occurs on the suction surface side in the blower blade 13, and the blower input is easily deteriorated or surging is likely to occur.

また、図7に示した下部前面熱交換器3abの下端部において、静圧の高い領域E2が生じる。構成上、送風機5の回転によって送風機5内のスタビライザ付近に渦ができるのであるが、領域E2の静圧が高いと、送風機5内に生じる渦12の位置は送風機5の真下になる。このように、渦12が吸入口9から吹出口11に向かう通風流路の中央付近にあると、吹出口11からの逆流が起きやすくなり、風量が低下してサージングが生じやすくなる。   In addition, a region E2 having a high static pressure is generated at the lower end of the lower front heat exchanger 3ab shown in FIG. In the configuration, a vortex is generated near the stabilizer in the blower 5 by the rotation of the blower 5, but when the static pressure in the region E <b> 2 is high, the position of the vortex 12 generated in the blower 5 is directly below the blower 5. As described above, when the vortex 12 is in the vicinity of the center of the ventilation passage from the suction port 9 toward the blowout port 11, the backflow from the blowout port 11 is likely to occur, and the air flow is reduced and surging is likely to occur.

図7、図8で示した課題に対し、この実施の形態では上部前面熱交換器3aaの上端部、及び下部前面熱交換器3abの下端部において、パイプ間切り起し4の本数を前面熱交換器3aの中間部より少なくした。
上部前面熱交換器3aaを構成するフィン1abの上端部において、領域4bでフィンに設けた切り起しを2本とし、他の部分の領域4aにおける3本よりも少なくしている。図9に示した具体例では、最風上列伝熱管2a間では上端部から5箇所、中間列伝熱管2b間では上端部の1箇所、最風下列伝熱管2cでは上端部から2箇所で、パイプ間切り起しを2本とした。図に示すように、切り起しの本数の少ない部分を通って流れる空気流は、通風抵抗が小さくなるので、風速が速くなって領域E1の静圧が図7の場合に比べて低くなる。このため、空気流y3は背面熱交換器3b側に膨らむことなく図に向かって右下方向に流れ、図10に拡大して示すように送風機翼13に対し、入射角θが非常に小さい状態で流入する。従って、送風機翼13の領域E3付近において、図8に示したような負圧面側に剥離14が生じるのを防止できるため、送風機入力は少なく、サージングの発生を防止できる。
In contrast to the problems shown in FIGS. 7 and 8, in this embodiment, the number of pipe-cuts 4 is increased at the upper end of the upper front heat exchanger 3aa and the lower end of the lower front heat exchanger 3ab. Less than the middle part of the exchanger 3a.
In the upper end portion of the fin 1ab constituting the upper front heat exchanger 3aa, two fins are provided on the fin in the region 4b, and the number is less than three in the other region 4a. In the specific example shown in FIG. 9, there are five locations from the upper end between the windward upstream heat transfer tubes 2 a, one location at the upper end between the intermediate row heat transfer tubes 2 b, and two locations from the upper end at the windward downstream heat transfer tube 2 c. Two cuts were made. As shown in the figure, the air flow flowing through the portion where the number of cut-ups is small has a low ventilation resistance, so that the wind speed increases and the static pressure in the region E1 becomes lower than in the case of FIG. For this reason, the air flow y3 does not swell toward the back heat exchanger 3b, and flows in the lower right direction as viewed in the figure. As shown in an enlarged view in FIG. Flows in. Therefore, in the vicinity of the region E3 of the blower blade 13, it is possible to prevent the separation 14 from occurring on the suction surface side as shown in FIG. 8, so that the blower input is small and the occurrence of surging can be prevented.

また、下部前面熱交換器3abを構成するフィン1abの下端部において、領域4bでフィンに設けた切り起しを2本とし、他の部分の領域4aにおける3本よりも少なくしている。図9に示した具体例では、最風上列伝熱管2a間では下端部の1箇所、中間列伝熱管2b間では下端部の1箇所、最風下列伝熱管2cでは下端部の1箇所で、切り起しを2本とした。前述と同様、図9に示すように、切り起しの本数の少ない部分を通って流れる空気流は、通風抵抗が小さくなるので、この部分での風速が大きくなり、領域E2の静圧が低くなって渦12が引き寄せられ送風機5内のスタビライザの周辺に渦12が生じる。即ち渦12は送風機5の真下よりも前面に生じるので、送風機5を通って吹出口11に向かう空気流を妨げることなく、サージングが生じにくくなる。
また、風速の比較的小さい下部前面熱交換器3abの下端部の領域4bで切り起し本数を前面熱交換器中間部の切り起し4aより小さくすることで、風速の遅かった部分で速くでき、風速分布を均一化できる。これによって、送風機5に流入する風量が均一化し送風機入力は向上する。また、熱交換器の温度効率を均一化し、熱交換能力を向上できる。
Further, at the lower end portion of the fin 1ab constituting the lower front heat exchanger 3ab, two fins are provided in the fin in the region 4b, and fewer than three in the other region 4a. In the specific example shown in FIG. 9, it is cut at one position at the lower end between the windward upstream heat transfer tubes 2a, at one position at the lower end between the intermediate heat transfer tubes 2b, and at one position at the lower end in the windward most heat transfer tubes 2c. Two chopsticks were used. As described above, as shown in FIG. 9, the air flow flowing through the portion where the number of raised parts is small has low ventilation resistance, so the wind speed in this portion increases, and the static pressure in the region E2 decreases. Thus, the vortex 12 is drawn and the vortex 12 is generated around the stabilizer in the blower 5. That is, since the vortex 12 is generated in front of the blower 5, surging is less likely to occur without obstructing the air flow toward the outlet 11 through the blower 5.
Further, by cutting and raising in the lower end region 4b of the lower front heat exchanger 3ab having a relatively low wind speed and making the number smaller than the cut and raised 4a in the middle part of the front heat exchanger, it is possible to increase the speed at the part where the wind speed is slow. The wind speed distribution can be made uniform. As a result, the amount of air flowing into the blower 5 is made uniform, and the blower input is improved. Further, the temperature efficiency of the heat exchanger can be made uniform, and the heat exchange capacity can be improved.

このように、前面熱交換器3aの列に並んでいる伝熱管2間のフィンに複数のパイプ間切り起し4を設けると共に、前面熱交換器3aの上端部及び下端部の少なくともいずれか一方側に位置するパイプ間切り起し4bの数を、前面熱交換器3aの中間部に位置するパイプ間切り起し4aの数よりも少なくしたことにより、通風分布を均一化でき、サージングを防止できる空気調和機が得られる。   As described above, a plurality of pipe cuts 4 are provided on the fins between the heat transfer tubes 2 arranged in a row of the front heat exchanger 3a, and at least one of the upper end and the lower end of the front heat exchanger 3a. By reducing the number of pipe-cuts 4b located on the side to be less than the number of pipe-cuts 4a located in the middle part of the front heat exchanger 3a, the ventilation distribution can be made uniform and surging can be prevented. A possible air conditioner is obtained.

図9では上部前面熱交換器3aaの上端部の切り起しの本数を少なくするため、8箇所の切り起し4bの部分で本数を少なくしているが、この構成は一例であり、これに限るものではない。上部前面熱交換器3aaの上端部付近の切り起し4の本数を少なくすればよい。切り起し4を少なくして通風抵抗を下げて領域E1付近の風速をある程度上げることで、送風機翼13への入射角θを小さくできる。また、領域E2についても同様であり、図9では下部前面熱交換器3abの下端部で切り起しの本数を少なくするため、3箇所の切り起し4bの部分で本数を少なくしているが、この構成は一例であり、これに限るものではない。下部前面熱交換器3aaの下端部付近の切り起し4の本数を少なくすればよい。切り起し4を少なくして通風抵抗を下げて領域E2付近の風速をある程度上げることで、送風機5内のスタビライザの付近に渦12を移動することができる。
また、前面熱交換器3aの上端部及び下端部の両方の切り起しの本数を少なくすることに限るものではない。少なく共どちらか一方の構成を満足することで、その効果を奏する。
また、前面熱交換器3aの場所に応じてパイプ間切り起し4の本数を変化させた構成について記載したが、背面熱交換器3bに関しても場所に応じてパイプ間切り起し4の本数を変化させてもよい。同様に背面熱交換器3bの上端部のパイプ間切り起し4の本数を少なくすることで、風速を均一にできる効果を奏する。
In FIG. 9, in order to reduce the number of cuts at the upper end of the upper front heat exchanger 3aa, the number of cuts at the eight cuts 4b is reduced, but this configuration is an example, It is not limited. What is necessary is just to reduce the number of the cut-and-raised parts 4 near the upper end part of the upper front heat exchanger 3aa. Incidence angle θ to the fan blades 13 can be reduced by reducing the cutting and raising 4 and lowering the ventilation resistance to increase the wind speed in the vicinity of the region E1 to some extent. The same applies to the region E2. In FIG. 9, the number of cuts at the lower end of the lower front heat exchanger 3ab is reduced, so that the number of cuts at the three raised portions 4b is reduced. This configuration is an example, and the present invention is not limited to this. What is necessary is just to reduce the number of the cut-and-raised parts 4 near the lower end part of the lower front heat exchanger 3aa. The vortex 12 can be moved in the vicinity of the stabilizer in the blower 5 by reducing the cutting and raising 4 and lowering the ventilation resistance to increase the wind speed in the vicinity of the region E2 to some extent.
Moreover, it is not restricted to reducing the number of cutting up of both the upper end part and lower end part of the front surface heat exchanger 3a. The effect is achieved by satisfying at least one of the configurations.
Moreover, although the structure which changed the number of pipe raising and raising 4 according to the place of the front heat exchanger 3a was described, the number of the pipe raising and raising 4 depending on the place also about the back heat exchanger 3b was described. It may be changed. Similarly, there is an effect that the wind speed can be made uniform by reducing the number of the pipes 4 raised at the upper end of the rear heat exchanger 3b.

送風機5への空気の流速分布による異常音を低減するため、空気流の最下流に設けられた伝熱管2cのうち送風機5に近い伝熱管2cの死水域を低減することが望ましい。そこで、死水域低減に効果的な構成について以下に説明する。
図5(b)に示したように、送風機5近傍の伝熱管2cの風下に死水域15が発生する。この死水域15が図5(a)に示すようにほとんどそのままの状態で送風機5に流入すると、送風機翼によって異常音が発生するのであるが、図5(b)ではLn4を直線状に構成し且つ伝熱管2cを湾曲させて配置することで、下部前面フィン1abの伝熱管2cの後流側のフィン1abにスペースを設けて、死水域15を小さくしている。
In order to reduce abnormal noise due to the flow velocity distribution of air to the blower 5, it is desirable to reduce the dead water area of the heat transfer tube 2 c close to the blower 5 among the heat transfer tubes 2 c provided on the most downstream side of the air flow. Therefore, an effective configuration for reducing the dead water area will be described below.
As shown in FIG. 5B, a dead water area 15 is generated in the lee of the heat transfer tube 2 c in the vicinity of the blower 5. When this dead water area 15 flows into the blower 5 almost as it is as shown in FIG. 5 (a), abnormal noise is generated by the blower blades. In FIG. 5 (b), Ln4 is configured in a straight line. In addition, by arranging the heat transfer tube 2c to be curved, a space is provided in the fin 1ab on the downstream side of the heat transfer tube 2c of the lower front fin 1ab to make the dead water area 15 small.

ここでは、さらに死水域15を小さくするために、伝熱管2cの後流側に位置するフィンに切り起しを設けた。図11は前面熱交換器3aと送風機5との最も接近している部分周辺を拡大して示す説明図である。また、図12は下部前面熱交換器3abのフィン1abに設けられた切り起し4cの形状を示す斜視図であり、図13は上部前面熱交換器3aaのフィン1aaに設けられた切り起し4eの形状を示す斜視図である。
どちらの切り起し4c、4eも空気流入方向に対し風上側を開口し、風下側を閉口しているため、風上側の切り起し側端部において空気流の速度境界層及び温度境界層を更新する効果が期待でき、伝熱が促進され、熱交換器能力が増大する。さらに、最風下列伝熱管2cとフィンの下流縁部Ln4の間の切り起し4cによって、図11に示すように最風下列伝熱管2cの気流方向後方に発生する死水域15が小さくなって送風機5に流入することになる。
Here, in order to further reduce the dead water area 15, the fins located on the downstream side of the heat transfer tube 2c are cut and raised. FIG. 11 is an explanatory view showing, in an enlarged manner, the vicinity of the portion of the front heat exchanger 3a and the blower 5 that are closest to each other. 12 is a perspective view showing the shape of the cut and raised 4c provided on the fin 1ab of the lower front heat exchanger 3ab, and FIG. 13 is the cut and raised provided on the fin 1aa of the upper front heat exchanger 3aa. It is a perspective view which shows the shape of 4e.
Since both of the cuts 4c and 4e open on the windward side with respect to the air inflow direction and close the leeward side, the velocity boundary layer and the temperature boundary layer of the air flow are formed at the end of the windward cut and raised side. A renewal effect can be expected, heat transfer is promoted, and heat exchanger capacity is increased. Further, due to the cut-and-raised portion 4c between the coolest downstream heat transfer tube 2c and the downstream edge Ln4 of the fin, as shown in FIG. Will flow into.

下部前面熱交換器3abのフィン1abの送風機5に近い部分は、下流縁部Ln4を直線状とし、伝熱管2cを送風機5の外周に沿うように湾曲させているので、伝熱管2cの後方のフィンにスペースが設けられる。そこで図12に示す切り起し4cのような比較的大きな切り起しを形成できる。これは切り起し4cの側端部を構成する部分のフィン1abを切り欠き、一方の切断部を台形状に引き伸ばして起して開口を形成している。台形状に起した後方側は自然に傾斜させてフィン1abの基準面に接続するように後方側で閉口させている。このような前方側を開口し後方側で閉口させた形状とすることで、フィン表面の前方から流れてきた空気が開口を通ってフィンの裏面へとスムーズに流れる。切り起し4cによって通風抵抗をある程度大きくして流速を低下することで、死水域15を小さくできる。図11に示すように死水域15は切り起し4cにより縮小された状態で送風機5に流入するため、速度分布のばらつきを低減でき回転音は大幅に低減できる。   The portion of the fin 1ab of the lower front heat exchanger 3ab close to the blower 5 has a downstream edge Ln4 that is straight, and the heat transfer tube 2c is curved along the outer periphery of the blower 5. Space is provided in the fin. Therefore, a relatively large cut-out such as the cut-up 4c shown in FIG. 12 can be formed. This cuts and raises a portion of the fin 1ab constituting the side end portion of the cut 4c and raises one cut portion into a trapezoidal shape to form an opening. The rear side raised in the trapezoidal shape is naturally inclined and closed on the rear side so as to be connected to the reference surface of the fin 1ab. By adopting such a shape in which the front side is opened and closed on the rear side, the air flowing from the front of the fin surface flows smoothly through the opening to the back surface of the fin. The dead water area 15 can be reduced by increasing the draft resistance to some extent by the cutting and raising 4c to reduce the flow velocity. As shown in FIG. 11, since the dead water area 15 is cut and raised and flows into the blower 5 in a state of being reduced by 4c, the variation in speed distribution can be reduced and the rotational noise can be greatly reduced.

このように、湾曲して配置した伝熱管2cの気流方向後方のフィン1abに、例えば切り起し4cのような通風抵抗を増加する抵抗手段を設けたことにより、死水域15を縮小でき、熱交換性能が大きく騒音値を低減できる空気調和機が得られる。
さらに、切り起し4cは、フィンの気流方向の前側を切り欠いて開口し、後側を閉口するように設けたことにより、死水域15を効果的に減少できるので、熱交換性能が大きく且つ騒音値を低減できる空気調和機が得られる。
なお、ここでは通風抵抗を増加する抵抗手段として切り起し4cを設けたが、これに限るものではない。切り起し4cを設ける代わりに、または切り起し4cを設けると共に、例えば他の抵抗手段をフィンに固着して通風抵抗を増加してもよい。
Thus, the dead water region 15 can be reduced by providing resistance means for increasing the ventilation resistance such as the cut and raised 4c in the fin 1ab on the rear side in the airflow direction of the heat transfer tube 2c arranged in a curved manner. An air conditioner with high exchange performance and reduced noise level can be obtained.
Further, the cut and raised 4c is formed by notching the front side in the airflow direction of the fin and opening it, and closing the rear side, so that the dead water area 15 can be effectively reduced. An air conditioner that can reduce the noise level is obtained.
Here, the cut-and-raised 4c is provided as the resistance means for increasing the ventilation resistance, but the present invention is not limited to this. Instead of providing the cut-and-raised 4c or providing the cut-and-raised 4c, for example, another resistance means may be fixed to the fin to increase the ventilation resistance.

また、図11に示すように、切り起し4c1、4c2、4c3のフィン縁部Ln4に伸びる方向の長さをそれぞれ幅w1、w2、w3とした場合、伝熱管径dに対するそれぞれの幅w1、w2、w3の関係について以下に示す。図14は横軸にw/d、縦軸に回転音レベルSPL(dB)を示すグラフであり、図11の構成で、切り起し4c1、4c2、4c3の幅w1、w2、w3を変化させたときの送風機5の回転音を測定した測定結果である。所定の空間に室内熱交換器を設置し、送風機5から1m程度離れた付近で回転音を測定した。縦軸は、フィン1abに切り起し4c1、4c2、4c3を設けていない構成における回転音レベルとの相対値を示しており、切り起し4c1、4c2、4c3を設けることで回転音レベルはマイナスになり、回転音を低減できる効果があることを示している。   As shown in FIG. 11, when the lengths of the cut-and-raised parts 4c1, 4c2, and 4c3 in the direction extending to the fin edge Ln4 are the widths w1, w2, and w3, respectively, the width w1 with respect to the heat transfer tube diameter d. , W2, and w3 are shown below. FIG. 14 is a graph showing w / d on the horizontal axis and the rotational sound level SPL (dB) on the vertical axis. In the configuration shown in FIG. 11, the widths w1, w2, and w3 of the raised parts 4c1, 4c2, and 4c3 are changed. It is the measurement result which measured the rotation sound of the air blower 5 at the time. An indoor heat exchanger was installed in a predetermined space, and rotational noise was measured in the vicinity of about 1 m away from the blower 5. The vertical axis indicates the relative value to the rotational sound level in the configuration in which the fin 1ab is not raised and provided with 4c1, 4c2, and 4c3, and the rotational sound level is negative by providing the raised and raised parts 4c1, 4c2, and 4c3. This indicates that there is an effect of reducing the rotational noise.

さらに、図14の測定結果に示されるように、切り起し4c1、4c2、4c3の幅w1、w2、w3を0.2d〜0.5d程度にすると、回転音を効果的に低減できる。切り起し4cの幅wを0.5d以上に大きくすると、切り起し自体から死水域15が発生し送風機5に流入するため、回転音が大きくなると考えられる。また、切り起しの4cの幅wを0.2以下とすると、伝熱管2cから発生する死水域15を低減する効果が得られず、回転音を効果的に低減できない。これらのことから、切り起し4c1、4c2、4c3の幅w1、w2、w3を0.2<W/d<0.5の関係が成り立つように設けると大幅に回転音を低減することができる効果がある。また、切り起し4c1、4c2、4c3を設ける位置は、伝熱管2の後方で、伝熱管2の投影面にかかるような位置に設けると、効果的に死水域を低減することができる。
このように、通風抵抗を増加する抵抗手段として切り起し4cを設け、この切り起し4cの幅Wを、伝熱管径dに対し、0.2<w/d<0.5の関係が成り立つ範囲としたことにより、送風機回転音を効果的に低減できる。
なお、この切り起し4cは開口側から見て台形状に切り起したが、その形状はこれに限るものではない。例えば半円や三角形や他の多角形状にしてもよい。
Furthermore, as shown in the measurement results of FIG. 14, when the widths w1, w2, and w3 of the cut-and-raised parts 4c1, 4c2, and 4c3 are set to about 0.2d to 0.5d, the rotating sound can be effectively reduced. If the width w of the cut and raised 4c is increased to 0.5d or more, the dead water area 15 is generated from the cut and raised itself and flows into the blower 5, so that it is considered that the rotational noise increases. Moreover, if the width w of the cut and raised 4c is 0.2 or less, the effect of reducing the dead water area 15 generated from the heat transfer tube 2c cannot be obtained, and the rotating sound cannot be reduced effectively. For these reasons, if the widths w1, w2, and w3 of the cut-and-raised parts 4c1, 4c2, and 4c3 are provided so that the relationship of 0.2 <W / d <0.5 is satisfied, the rotational noise can be greatly reduced. effective. Further, if the cut and raised positions 4c1, 4c2, and 4c3 are provided behind the heat transfer tube 2 and on the projection surface of the heat transfer tube 2, the dead water area can be effectively reduced.
Thus, the cut and raised 4c is provided as a resistance means for increasing the ventilation resistance, and the width W of the cut and raised 4c is related to the heat transfer tube diameter d by 0.2 <w / d <0.5. By setting it as the range where is satisfied, the fan rotation noise can be effectively reduced.
The cut and raised 4c is cut and raised in a trapezoidal shape when viewed from the opening side, but the shape is not limited to this. For example, a semicircle, a triangle, or other polygonal shape may be used.

上部前面熱交換器3aaを構成するフィン1aaの最風下流列伝熱管2cの下流にはフィンのスペースが小さく、図12に示したような大きな切り起し4cを設けることができない。そこで、伝熱管2cの後方で、伝熱管2c間にできる若干のスペースに図13に示すような3角形の切り起し4eを設ける。ここでは、三角形の切り起し4eをフィン1aaの面に対し概ね垂直に起こして構成した。この場合においても、伝熱管2cの後流に発生する死水域15を低減する効果が得られ、送風機5で発生する異常音を大幅に低減できる。
また、図15に示すように、この部分の伝熱管2c間のパイプ間切り起し4dの本数を例えば3本から2本に減らし、伝熱管2cとフィン1aaの下流縁部Ln2の間にスペースを空け、切り起し4eを設けてもよい。ただし、スペースがある場合には、この限りではない。切り起し4eを設ける位置は、伝熱管2の後方で、伝熱管2の投影面にかかるような位置に設けると、効果的に死水域を低減することができる。
また、切り起し4eは三角形に限らず、四角形など他の形状でもよい。また、伝熱管2cの後方にフィンのスペースがある場合には、図12に示したような切り起し形状にしてもよい。
The fin space is small downstream of the most wind downstream heat transfer tube 2c of the fin 1aa constituting the upper front heat exchanger 3aa, and the large cut-up 4c as shown in FIG. 12 cannot be provided. Therefore, a triangular cut and raised portion 4e as shown in FIG. 13 is provided in a slight space between the heat transfer tubes 2c behind the heat transfer tubes 2c. Here, the triangular cut-out 4e is formed substantially vertically with respect to the surface of the fin 1aa. Even in this case, the effect of reducing the dead water region 15 generated in the wake of the heat transfer tube 2c is obtained, and abnormal noise generated in the blower 5 can be greatly reduced.
In addition, as shown in FIG. 15, the number of 4d between the heat transfer tubes 2c between the heat transfer tubes 2c is reduced from, for example, three to two, and a space is formed between the heat transfer tubes 2c and the downstream edge Ln2 of the fin 1aa. And 4e may be provided. However, this does not apply if there is a space. If the cut and raised 4e is provided at a position behind the heat transfer tube 2 and on the projection surface of the heat transfer tube 2, the dead water area can be effectively reduced.
Further, the cut and raised 4e is not limited to a triangle, but may be another shape such as a quadrangle. Further, when there is a fin space behind the heat transfer tube 2c, it may be cut and raised as shown in FIG.

図15は送風機5周辺の前面熱交換器3aの構成を示す拡大構成図である。図に示す前面熱交換器3aは3列の伝熱管2a、2b、2cで構成され、最風上列伝熱管2a、中間列伝熱管2b、最風下列伝熱管2cを有する。各列の伝熱管において、伝熱性能の向上のために隣り合う伝熱管との間のフィンにパイプ間切り起しが設けられている。ここでは最風下列伝熱管2c間に設けたパイプ間切り起し4の形状を、その上流側の列、例えば中間列伝熱管2b間に設けたパイプ間切り起し4の形状と異なるものとした。図16(a)は中間列の切り起し4を最風上列伝熱管2aと共に示す断面図であり、図15における線Aでの断面図である。また、図16(b)は最風下列の切り起し4を中間列伝熱管2bと共に示す断面図であり、図15における線Bでの断面図である。   FIG. 15 is an enlarged configuration diagram showing the configuration of the front heat exchanger 3 a around the blower 5. The front heat exchanger 3a shown in the figure is composed of three rows of heat transfer tubes 2a, 2b, and 2c, and has an upwind most heat transfer tube 2a, an intermediate row heat transfer tube 2b, and a most downwind heat transfer tube 2c. In the heat transfer tubes in each row, an inter-pipe cut is provided in a fin between adjacent heat transfer tubes in order to improve heat transfer performance. Here, the shape of the pipe cut-and-raised 4 provided between the coolest row heat transfer tubes 2c is different from the shape of the pipe cut-and-raised 4 provided between the upstream rows, for example, the intermediate row heat transfer tubes 2b. FIG. 16A is a cross-sectional view showing the cut-and-raised part 4 of the intermediate row together with the windward-upward heat transfer tube 2a, and is a cross-sectional view taken along line A in FIG. FIG. 16B is a cross-sectional view showing the cut-and-raised part 4 in the coolest row together with the intermediate-row heat transfer tube 2b, and is a cross-sectional view taken along line B in FIG.

図16(a)に示す切り起し4では、切り起し4の上流側端部及び下流側端部のフィンを切り欠いて、切り欠いた間のフィンを、フィンの基準面にほぼ平行になるように立ち上げて構成している。この形状の切り起し4を図15に示すように空気流に対して垂直に3本設けた。
このような形状にすると、図16(a)の矢印で示すように空気流がスムーズに流れると共に、上流側に立ちあがっている切り起し4の側端部で空気流との熱交換が促進され、熱交換性能を向上できる。
In the cut-and-raised part 4 shown in FIG. 16 (a), the fins at the upstream end and the downstream end of the cut-out part 4 are cut out, and the fins between the cuts are made substantially parallel to the reference plane of the fins. It is configured to start up. As shown in FIG. 15, three cut-ups 4 having this shape were provided perpendicular to the air flow.
With such a shape, the air flow smoothly flows as shown by the arrow in FIG. 16A, and heat exchange with the air flow is promoted at the side end portion of the cut-and-raised 4 standing on the upstream side. , Heat exchange performance can be improved.

図16(b)に示す切り起し4では、3本設けた切り起し4k、4l、4mのうちの上流側の切り起し4kは、上流側を開口とし下流側を閉口とする。即ち、この切り起し4kは上流側端部を切り欠き、切り欠いた下流側の縁を伸ばして立ち上げる。中央部の切り起し4lは図16(a)と同様、上流側端部及び下流側端部に開口を有する構成とする。下流側の切り起し4mは上流側の切り起し4kと逆の構成とし、上流側端部を閉口、下流側端部を開口する。
このように送風機5近傍の切り起し4を傾斜させることで、通風抵抗が大きくなり、図16(b)の矢印で示すように空気流が流れる。送風機5に近い部分の通風抵抗を大きくしたため、送風機5に流入する風速を低減でき、最風下列伝熱管2cより発生する死水域15の大きさを小さくできる効果がある。
In the cut-and-raised portion 4 shown in FIG. 16B, the upstream-side cut-and-raised portion 4k of the three cut-and-raised portions 4k, 4l, and 4m has an opening on the upstream side and a closing on the downstream side. That is, the cut and raised 4k is cut off at the upstream end, and the cut-out downstream edge is extended to rise. Similarly to FIG. 16A, the central cut and raised portion 4l has an opening at the upstream end and the downstream end. The downstream cut 4m is opposite to the upstream cut 4k, with the upstream end closed and the downstream end open.
By inclining the cut-and-raised part 4 in the vicinity of the blower 5 in this way, the ventilation resistance increases, and an air flow flows as shown by an arrow in FIG. Since the ventilation resistance in the portion close to the blower 5 is increased, the wind speed flowing into the blower 5 can be reduced, and the size of the dead water area 15 generated from the coolest downstream heat transfer tube 2c can be reduced.

このように、前面熱交換器3aの気流に対して最風下列の伝熱管2c間に設けたパイプ間切り起し4であって、送風機5近傍の伝熱管2c間に設けるパイプ間切り起し3は、気流の前側または後側で開口し、気流の方向に対して傾斜する面を有することにより、死水域15を小さくして、騒音値を低減でき、熱交換性能を向上できる空気調和機が得られる。   In this way, the pipe cut-off 4 provided between the heat transfer tubes 2c in the most downstream row with respect to the air flow of the front heat exchanger 3a, and the pipe cut-off provided between the heat transfer tubes 2c in the vicinity of the blower 5 is provided. 3 is an air conditioner that opens at the front side or the rear side of the airflow and has a surface that is inclined with respect to the direction of the airflow, thereby reducing the dead water area 15, reducing the noise value, and improving the heat exchange performance. Is obtained.

なお、ここでは最風下列の伝熱管2c間に設ける切り起し4の形状を中間列に設ける切り起し4の形状と異なるものとする構成の一例を述べたが、この構成に限るものではない。最下流列の切り起し4を流れる空気の通風抵抗が、他の列の切り起し4を流れる空気の通風抵抗よりも大きくなるように構成すればよい。この部分の通風抵抗を大きくすることで、死水域15を小さくでき、送風機5の回転音を低減できる。   In addition, although the example of the structure which makes the shape of the cut and raised 4 provided between the heat-transfer tubes 2c of the coolest row different from the shape of the cut and raised 4 provided in the middle row was described here, it is not limited to this configuration. Absent. What is necessary is just to comprise so that the ventilation resistance of the air which flows through the cut-and-raised part 4 of the most downstream row | line may become larger than the ventilation resistance of the air which flows through the cut-and-raised part 4 of another row | line | column. By increasing the ventilation resistance of this part, the dead water area 15 can be made small and the rotation sound of the air blower 5 can be reduced.

図17は室内空気調和機の筐体を取り除いた側面を示す構成図である。熱交換器3の一方の側端面が示されている。通常、熱交換器3の側端面において隣り合う伝熱管2を接続するために図18に示すようなU字伝熱管16を用いる。U字伝熱管16は直線状の伝熱管をU字状に折り曲げて成形され、直線部間の距離をDp(段ピッチ)と一致させる。このU字伝熱管16を積層されたフィン1の一方の側端面から挿入した後、拡管と呼ばれる伝熱管2とフィン1を密着させる工程を経て、図17に示す熱交換器3を成形する。その後熱交換器3の他方の側端面でUベンドと呼ばれる銅管によって各U字伝熱管16で接続されている伝熱管2とは異なる伝熱管2と接続するように、UベンドをU字伝熱管16の反対側の開口部にロウ付けすることで作動流体が流通するパスが形成される。   FIG. 17 is a configuration diagram illustrating a side surface of the indoor air conditioner with the housing removed. One side end face of the heat exchanger 3 is shown. Normally, a U-shaped heat transfer tube 16 as shown in FIG. 18 is used to connect adjacent heat transfer tubes 2 on the side end face of the heat exchanger 3. The U-shaped heat transfer tube 16 is formed by bending a straight heat transfer tube into a U shape, and the distance between the straight portions is made to coincide with Dp (step pitch). After this U-shaped heat transfer tube 16 is inserted from one side end face of the laminated fins 1, the heat exchanger 3 shown in FIG. 17 is formed through a process of bringing the heat transfer tubes 2 and fins 1 into close contact with each other. Thereafter, the U-bend is transferred to the U-bend so that it is connected to the heat transfer tube 2 different from the heat transfer tube 2 connected to each U-shaped heat transfer tube 16 by a copper tube called U-bend on the other side end face of the heat exchanger 3. By brazing the opening on the opposite side of the heat pipe 16, a path through which the working fluid flows is formed.

この実施の形態においては、U字伝熱管16の段方向のピッチDpを全て一定とした。U字伝熱管16の段方向のピッチDpを全て同じとすることで、製造時において、積層されたフィンにU字伝熱管16を挿入する際、場所を間違えることが少なくなり、U字に曲げられた伝熱管の管理も容易となる。
また、U字伝熱管16を繋ぎ冷媒パス構成を行うために用いられるUベンドのピッチの種類も減り管理が更に容易となることは言うまでもない。
In this embodiment, the pitch Dp in the step direction of the U-shaped heat transfer tube 16 is all constant. By making all the pitches Dp in the step direction of the U-shaped heat transfer tubes 16 the same, when inserting the U-shaped heat transfer tubes 16 into the laminated fins during manufacturing, the location is less likely to be bent and bent into a U-shape. It is also easy to manage the heat transfer tubes.
It goes without saying that the type of U-bend pitch used for connecting the U-shaped heat transfer tubes 16 to form the refrigerant path is reduced, and management becomes easier.

図19は図17に示した熱交換器の側端面の反対側の側端面を示す構成図である。こちら側の側端面では、図に示されるようなUベンド17a、17bによってU字伝熱管16の端部同志を接続する。この際、熱交換器3内での冷媒の流れを考慮しながらU字伝熱管16の端部同志をUベンドで接続すため、同じ列の伝熱管を接続するUベンド17aと、異なる列間で斜め方向に接続するUベンド17bが必要となる。また、冷媒の流れを並列に流通させたりする場合には、分岐部18も必要となる。   FIG. 19 is a configuration diagram illustrating a side end surface opposite to the side end surface of the heat exchanger illustrated in FIG. 17. On the side end face on this side, the ends of the U-shaped heat transfer tube 16 are connected by U-bends 17a and 17b as shown in the figure. At this time, the ends of the U-shaped heat transfer tubes 16 are connected by a U-bend while considering the flow of the refrigerant in the heat exchanger 3, and therefore, the U-bend 17a connecting the heat transfer tubes in the same row and the different rows Therefore, a U-bend 17b connected in an oblique direction is required. Further, when the refrigerant flows are circulated in parallel, the branching portion 18 is also required.

この実施の形態に係る前面熱交換器3aは、2つの直線部、即ち上部前面熱交換器3aaと下部前面熱交換器3abで構成し、この2つの直線部を「く」の字状とすると共に2つの直線部を一体に構成する。さらに伝熱管を3列以上で構成すると、「く」の字状の内側、実際には空気流の最風下列の長さと、「く」の字状の外側、実際には空気流の最風上列の長さは同じではない。このため、列によって冷媒流路の数や伝熱管間の長さが異なってくる。一列のうちの冷媒流路の数は、熱交換器3全体として冷媒流路をなるべく多く設けることで熱交換面積を大きくすることができるので好ましい。即ち、熱交換器3の側面において図17に示すように、最風上列伝熱管2aの数を最風下列伝熱管2cの数よりも多く設ける。この状況でU字伝熱管16の段ピッチDpを一定にした場合には、列間の長さの差を吸収するために、熱交換器3には必ず段ピッチの大きい箇所19ができてしまう。これはユニットサイズを大きくしない場合には、フィン幅L1およびL2を大きくできないという制限があり、斜めUベンド17bのピッチを製造限界まで小さくしても、2列以上の列数の伝熱管を有する熱交換器3には「く」の字の長手方向に必ず段ピッチの大きい箇所19が発生する。ここでは中央列の中央付近に設けたが、構成の都合によって、この部分にできるとは限らない。このように段ピッチの大きい箇所19ができると、この部分を空気流が通るときの通風抵抗は小さくなり、風量が増加する。風量が増加して下流側へ流れると、最下流列より発生する死水域が増幅する可能性がある。   The front heat exchanger 3a according to this embodiment is composed of two straight portions, that is, an upper front heat exchanger 3aa and a lower front heat exchanger 3ab, and the two straight portions are formed in a "<" shape. In addition, the two straight portions are integrally formed. Furthermore, if the heat transfer tubes are composed of three or more rows, the length of the inside of the “ku” shape, actually the length of the leemost row of the air flow, and the outside of the “ku” shape, actually the windest of the air flow. The length of the upper row is not the same. For this reason, the number of refrigerant flow paths and the length between heat transfer tubes differ depending on the row. The number of refrigerant flow paths in one row is preferable because the heat exchange area can be increased by providing as many refrigerant flow paths as possible for the entire heat exchanger 3. That is, on the side surface of the heat exchanger 3, as shown in FIG. 17, the number of the windward upstream heat transfer tubes 2a is larger than the number of the windward downstream heat transfer tubes 2c. In this situation, when the step pitch Dp of the U-shaped heat transfer tube 16 is made constant, the heat exchanger 3 always has a portion 19 having a large step pitch in order to absorb the difference in length between the rows. . If the unit size is not increased, there is a restriction that the fin widths L1 and L2 cannot be increased. Even if the pitch of the oblique U bend 17b is reduced to the manufacturing limit, the heat transfer tubes having two or more rows are provided. In the heat exchanger 3, a portion 19 having a large step pitch is always generated in the longitudinal direction of the "<". Here, it is provided in the vicinity of the center of the center row, but this portion is not always possible due to the configuration. When the portion 19 having a large step pitch is formed in this way, the ventilation resistance when the air flow passes through this portion becomes small, and the air volume increases. If the air volume increases and flows downstream, the dead water area generated from the most downstream row may be amplified.

そこで、特に段ピッチの大きな箇所19において、空気流が通るときの通風抵抗を大きくする。具体的には段ピッチの大きな箇所19に設けられた切り起し4gを段方向に分割する。そして、例えばその他の箇所のフィン面上の切り起しは分割しない。このように構成すると、特に段ピッチの大きな箇所19の通風抵抗を他の部分よりも大きくでき、送風機5に流入する風速を低減でき、最下流列の伝熱管2cより発生する死水域15を低減できる。
このように、列を構成する複数の伝熱管2における伝熱管ピッチDpが他の複数の伝熱管ピッチよりも大きい伝熱管間のフィンに、列が伸びる方向に複数に分割したパイプ間切り起し4gを設け、伝熱管ピッチの小さい伝熱管間におけるパイプ間切り起し4aよりも多く分割することにより、風速分布を均一化し死水域を低減して、熱交換性能が良好で送風機5の回転音を低減できる空気調和機が得られる。
Therefore, the ventilation resistance when the airflow passes is increased particularly at the portion 19 where the step pitch is large. Specifically, the cut and raised 4g provided in the portion 19 having a large step pitch is divided in the step direction. And for example, the cut-and-raised portions on the fin surface at other locations are not divided. If comprised in this way, especially the ventilation resistance of the location 19 with a large step pitch can be made larger than another part, the wind speed which flows in into the air blower 5 can be reduced, and the dead water area 15 generated from the heat exchanger tube 2c of the most downstream row is reduced. it can.
As described above, the pipes divided into a plurality of pieces in the direction in which the row extends are formed in the fins between the heat transfer tubes in which the heat transfer tube pitch Dp in the plurality of heat transfer tubes 2 constituting the row is larger than the other heat transfer tube pitches. 4g is provided and is cut between pipes between the heat transfer tubes with a small heat transfer tube pitch and divided more than 4a, thereby making the wind speed distribution uniform and reducing the dead water area. An air conditioner capable of reducing the above is obtained.

また、この実施の形態においては、前面熱交換器3aの空気流れ方向の上流に空気の通過できないパネルを配置しているが、前面熱交換器3aの空気流れ方向の上流に空気を透過できるグリル等を用いた場合より前面熱交換器3aの最下流からの流速が小さくなり、前面熱交換器3a最下部の切り起しを少なくしたことによる効果はより大きくなる。   Further, in this embodiment, a panel through which air cannot pass is arranged upstream of the front heat exchanger 3a in the air flow direction, but the grill that can transmit air upstream of the front heat exchanger 3a in the air flow direction. The flow rate from the most downstream side of the front heat exchanger 3a is smaller than the case where the front heat exchanger 3a is used.

実施の形態2.
図20は、この発明の実施の形態2に係る熱交換器3を凝縮器として使用して暖房運転を行なう際の冷媒パスを示す説明図である。図において、伝熱管2を接続する実線は手前側の側面で伝熱管同士が接続されており、点線は他方の側面で伝熱管同士の接続を示している。同一列で隣合う伝熱管を流れる冷媒の方向は逆になる。例えば実線で示す配管を通って図に向かって手前から向こう側へ流れるとすると、他方の側面部では点線で示す配管を通った後、図に向かって向こう側から手前側に流れることになる。熱交換器3に流入する直前で分岐された冷媒は2つの冷媒入口から流れ込み、前面熱交換器3aの主に下部側を流れて合流し、再び分岐部18で分岐して背面熱交換器3bと前面熱交換器3aの主に上部側を流れる。その途中で合流した後、背面熱交換器3bの最風上列伝熱管2aから前面熱交換器3aの最風上列伝熱管2aへと流れて冷媒出口から流出する。熱交換器3の伝熱管内を流れる冷媒が過冷却となるのは、熱交換器3の冷媒出口の直前付近であり、ここでは例えば2つの熱交換器部分20a、20bである。過冷却にならない他の部分、即ち冷媒が2相域または過熱部となる部分をメイン熱交換器部分21で示す。ただし、ここで示す冷媒パスは一例であり、他の構成でもよい。
Embodiment 2. FIG.
FIG. 20 is an explanatory diagram showing a refrigerant path when heating operation is performed using the heat exchanger 3 according to the second embodiment of the present invention as a condenser. In the figure, the solid line connecting the heat transfer tubes 2 is connected to the heat transfer tubes on the front side, and the dotted line shows the connection between the heat transfer tubes on the other side. The direction of the refrigerant flowing through the adjacent heat transfer tubes in the same row is reversed. For example, if it flows from the near side toward the other side through the pipe indicated by the solid line, the other side surface portion flows from the far side toward the near side toward the figure after passing through the pipe indicated by the dotted line. The refrigerant branched just before flowing into the heat exchanger 3 flows in from the two refrigerant inlets, flows mainly at the lower side of the front heat exchanger 3a and merges, and then branches again at the branching portion 18 to be back heat exchanger 3b. And flows mainly on the upper side of the front heat exchanger 3a. After joining in the middle, it flows from the windward upstream heat transfer tube 2a of the rear heat exchanger 3b to the windward upstream heat transfer tube 2a of the front heat exchanger 3a and flows out from the refrigerant outlet. The refrigerant flowing in the heat transfer tube of the heat exchanger 3 is supercooled in the vicinity immediately before the refrigerant outlet of the heat exchanger 3, and here, for example, are the two heat exchanger portions 20a and 20b. The other part that is not supercooled, that is, the part where the refrigerant becomes a two-phase region or a superheated part is indicated by the main heat exchanger part 21. However, the refrigerant path shown here is an example, and other configurations may be used.

図21はこの実施の形態に係る熱交換器を示す断面構成図であるが、熱交換器3を凝縮器として使用する際の冷媒出口寄りの伝熱管2dの直径を、熱交換器3の他の箇所であるメイン熱交換部分21の伝熱管径よりも小さくしている。実際には例えば、図21では色を濃くした熱交換器部分20a、20bの伝熱管、具体的には上部前面熱交換器3aaの最風上列の図に向かって上から6つ分と背面熱交換器3bの最風上列の4つ分の伝熱管2dの直径を0.00635mとし、他のメイン熱交換器部分21の伝熱管の直径を0.007mとした。
さらにこの実施の形態では、蒸発器として使用する際の出口寄りの伝熱管径2eを、他のメイン熱交換器部分21の伝熱管径よりも大きくしている。この熱交換器3の場合には凝縮器として動作させる場合と蒸発器として動作させる場合は、冷媒の流れが逆になって流れる。そこで実際には、例えば下部前面熱交換器3abの最風下列2cの送風機5に近い部分の4つの伝熱管2eの直径を0.00794mをとし、熱交換器3の他の箇所の伝熱管径(0.007m)よりも大きくしている。
FIG. 21 is a cross-sectional configuration diagram showing the heat exchanger according to this embodiment. The diameter of the heat transfer tube 2d near the refrigerant outlet when the heat exchanger 3 is used as a condenser is different from that of the heat exchanger 3. It is made smaller than the heat transfer tube diameter of the main heat exchanging portion 21 which is the location of. Actually, for example, in FIG. 21, the heat transfer tubes of the heat exchanger portions 20a and 20b with darker colors, specifically, the back of the upper front heat exchanger 3aa for six winds from the top toward the windward diagram. The diameter of the four heat transfer tubes 2d in the uppermost wind-up row of the heat exchanger 3b was 0.00635 m, and the diameter of the heat transfer tubes of the other main heat exchanger portions 21 was 0.007 m.
Furthermore, in this embodiment, the heat transfer tube diameter 2e near the outlet when used as an evaporator is made larger than the heat transfer tube diameter of the other main heat exchanger portion 21. In the case of this heat exchanger 3, when operating as a condenser and when operating as an evaporator, the flow of refrigerant flows in the opposite direction. Therefore, in practice, for example, the diameter of the four heat transfer tubes 2e in the portion of the lower front heat exchanger 3ab close to the blower 5 in the most downstream row 2c is 0.00794 m, and the heat transfer tubes in other portions of the heat exchanger 3 are set to 0.00794 m. It is larger than the diameter (0.007 m).

凝縮器の出口付近においては、乾き度は小さく、圧力損失は小さい。ここで、乾き度とは(蒸気冷媒の質量流量)/全流量である。このため、伝熱管2dの管径を小さくして管内の断面積を小さくし管内の流速を増加させた場合、熱伝達率は向上し、管内の圧力損失の増加が小さく、熱交換能力は向上する。図20では暖房運転のときに熱交換器部分20a、20bには乾き度の小さい冷媒が流れるので、この部分の伝熱管径を小さくしているが、冷媒の熱交換器3内での流し方によってその場所は異なる。少なくとも冷媒の乾き度が小さくなる部分の伝熱管の径を他の部分よりも小さくすれば、熱交換能力は向上する。   Near the outlet of the condenser, the dryness is small and the pressure loss is small. Here, the dryness is (mass flow rate of vapor refrigerant) / total flow rate. For this reason, when the tube diameter of the heat transfer tube 2d is reduced to reduce the cross-sectional area in the tube and increase the flow velocity in the tube, the heat transfer rate is improved, the increase in pressure loss in the tube is small, and the heat exchange capacity is improved. To do. In FIG. 20, since the refrigerant having a low dryness flows through the heat exchanger portions 20 a and 20 b during the heating operation, the heat transfer tube diameter of this portion is reduced, but the flow of the refrigerant in the heat exchanger 3 is performed. The location varies depending on the direction. If the diameter of the heat transfer tube at least in the portion where the dryness of the refrigerant is reduced is made smaller than that in the other portions, the heat exchange capability is improved.

なお、図20のように熱交換器3を凝縮器として動作させた場合の出口を熱交換器3における空気流の上流側の列になるように冷媒を流し、熱交換器3の最風上列伝熱管2aの部分で管径を小さくすることで、更なる利点がある。即ち、空気流の上流において伝熱管径を小さくした分だけ、他の部分よりも空気流の通風抵抗が小さくなり、上流から下流への空気流が強くなるため、送風機5の入力を低減することができる。
ただし、送風機5に近い部分では死水域を小さくするのが好ましいため、風速を速くする必要はなく、図20に示したように送風機5から離れた部分、かつ空気流の上流側で乾き度が小さくなるように冷媒を循環させ、この乾き度が小さくなる部分の伝熱管径を小さく構成するのが望ましい。
In addition, a refrigerant | coolant is poured so that the exit at the time of making the heat exchanger 3 operate | move as a condenser like FIG. 20 may become the row | line | column of the upstream of the air flow in the heat exchanger 3, There is a further advantage by reducing the tube diameter at the row heat transfer tube 2a. That is, as the heat transfer tube diameter is reduced upstream of the air flow, the air flow resistance of the air flow becomes smaller than the other parts, and the air flow from the upstream to the downstream becomes stronger, so the input of the blower 5 is reduced. be able to.
However, since it is preferable to make the dead water area small in the portion close to the blower 5, it is not necessary to increase the wind speed, and the dryness is at a portion away from the blower 5 and upstream of the air flow as shown in FIG. It is desirable to circulate the refrigerant so as to be small, and to configure the heat transfer tube diameter in a portion where the dryness is small.

一方の蒸発器出口付近の伝熱管径を逆に大きくしている。蒸発器においては、蒸発器出口の乾き度は大きく、圧力損失は大きい。このため、伝熱管2e内の断面積を大きくして伝熱管2e内の流速を低下させた場合、伝熱管2e内の圧力損失が小さくなり、冷媒を循環させる圧縮機の駆動ポンプの動力を低下できるので、圧縮機入力を低減できる。また、この伝熱管2eは暖房運転時には冷媒入口となり、高温高圧のガス冷媒が流入する部分となるが、送風機5に最も近いこの部分では風速も速く熱交換され易いので、冷媒の温度を急速に下げることができる。このため、送風機5に流入する気流の温度分布を均一化できる。   On the other hand, the diameter of the heat transfer tube near the outlet of one evaporator is increased. In the evaporator, the dryness of the evaporator outlet is large and the pressure loss is large. For this reason, when the cross-sectional area in the heat transfer tube 2e is increased to reduce the flow velocity in the heat transfer tube 2e, the pressure loss in the heat transfer tube 2e is reduced, and the power of the drive pump of the compressor for circulating the refrigerant is decreased. As a result, the compressor input can be reduced. In addition, the heat transfer pipe 2e serves as a refrigerant inlet during heating operation and serves as a portion into which high-temperature and high-pressure gas refrigerant flows. However, in this portion closest to the blower 5, the air speed is high and heat is easily exchanged. Can be lowered. For this reason, the temperature distribution of the airflow flowing into the blower 5 can be made uniform.

図22は熱交換器3の過冷却部20a、20bと熱交換器3の2相域及び過熱部21の回路構成を示す回路図であり、3つの逆止弁22a、22b、22cにより冷房運転時と暖房運転時で熱交換器の過冷却部20a、20bのパス数を変更可能とした構成である。ここでパス数とは冷媒を流す際、並列に流す流路の数である。
室内空気調和機を冷房運転する時、この実施の形態に係る熱交換器3は蒸発器として使用される。図23の向かって右から熱交換器3に流入した冷媒は、逆止弁22aによって2つの熱交換器部20a、20bを2パスとして同時に流れた後、合流して逆止弁22bを通ってメイン熱交換器21に流入する。蒸発器では圧力損失が比較的大きくなるため、熱交換器のパス数を多くすることで、各パスの伝熱管内を流れる冷媒量を減らして伝熱管内の圧力損失を低下させることができ、冷凍サイクルに組み込んだ際の圧縮機への負担を軽減できる。
FIG. 22 is a circuit diagram showing a circuit configuration of the supercooling portions 20a and 20b of the heat exchanger 3 and the two-phase region of the heat exchanger 3 and the superheating portion 21, and cooling operation is performed by three check valves 22a, 22b, and 22c. The number of passes of the subcoolers 20a and 20b of the heat exchanger can be changed between the time and the heating operation. Here, the number of passes is the number of flow paths flowing in parallel when flowing the refrigerant.
When the indoor air conditioner is in a cooling operation, the heat exchanger 3 according to this embodiment is used as an evaporator. The refrigerant that has flowed into the heat exchanger 3 from the right in FIG. 23 flows through the two heat exchanger portions 20a and 20b as two passes simultaneously by the check valve 22a, and then merges and passes through the check valve 22b. It flows into the main heat exchanger 21. In the evaporator, the pressure loss is relatively large, so by increasing the number of passes in the heat exchanger, the amount of refrigerant flowing in the heat transfer tubes of each pass can be reduced, reducing the pressure loss in the heat transfer tubes, The burden on the compressor when incorporated in the refrigeration cycle can be reduced.

また、一方、室内空気調和機を暖房運転する時、この実施の形態に係る熱交換器3は凝縮器として使用される。図24の向かって左から熱交換器3に流入した冷媒は、メイン熱交換器21を通った後、逆止弁22a、22b、22cによって2つの熱交換器部20b、20aを1パスとして順番に流れる。凝縮器では圧力損失が比較的小さくてそれほど問題にならないので、熱交換器のパス数を少なくすることで、複数のパスにするよりも過冷却部20a、20bの流速を上げて、伝熱管2内の熱伝達率を向上させることができる。   On the other hand, when heating the indoor air conditioner, the heat exchanger 3 according to this embodiment is used as a condenser. The refrigerant that has flowed into the heat exchanger 3 from the left in FIG. 24 passes through the main heat exchanger 21, and then sequentially turns the two heat exchanger portions 20b and 20a through the check valves 22a, 22b, and 22c. Flowing into. In the condenser, the pressure loss is relatively small and does not cause a problem. Therefore, by reducing the number of passes of the heat exchanger, the flow rates of the supercooling portions 20a and 20b are increased rather than using a plurality of passes, and the heat transfer tube 2 The heat transfer coefficient can be improved.

このように、熱交換器を凝縮器として使用する際に過冷却冷媒が流れる部分の伝熱管20a、20bの流路におけるパス数を可変とし、熱交換器を蒸発器として使用する場合よりも凝縮器として使用する場合の方がパス数が少なくなるように冷媒流路を構成することで、凝縮器として運転した場合、冷媒出口寄りの伝熱管2の直径を小さくするのと同様、熱伝達率を向上でき、熱交換能力を向上する効果が得られる。これと共に、蒸発器として運転した場合、管内の流速を低下して圧力損失を小さくし圧縮機の動力を低下でき、圧縮機入力を低減できる効果が得られる。
もちろん、パス数を変化させることと伝熱管の径を変えることの、両方を兼ね備えていれば、さらに効果的である。
As described above, when the heat exchanger is used as a condenser, the number of paths in the flow path of the heat transfer tubes 20a and 20b through which the supercooled refrigerant flows is variable, so that the heat exchanger is condensed more than when the heat exchanger is used as an evaporator. When operating as a condenser by configuring the refrigerant flow path so that the number of passes is smaller when used as a heat exchanger, the heat transfer coefficient is similar to reducing the diameter of the heat transfer tube 2 near the refrigerant outlet. And the effect of improving the heat exchange capacity can be obtained. At the same time, when operated as an evaporator, the flow velocity in the pipe is reduced to reduce the pressure loss, the power of the compressor can be reduced, and the compressor input can be reduced.
Of course, it is more effective if both the change of the number of passes and the change of the diameter of the heat transfer tube are combined.

この冷媒回路構成は一例であり、他の構成でもよい。凝縮器として機能する場合の過冷却になる部分で、パス数を変化できるように構成し、凝縮器として運転する場合の過冷却部でのパス数を蒸発器として運転する場合のパス数よりも少なくなるように構成すればよい。   This refrigerant circuit configuration is an example, and other configurations may be used. In the part that becomes supercooling when functioning as a condenser, it is configured so that the number of passes can be changed, and the number of passes in the supercooling part when operating as a condenser is more than the number of passes when operating as an evaporator What is necessary is just to comprise so that it may decrease.

図25はこの実施の形態に係る熱交換器の伝熱管2内に挿入する板状のスペーサ23を示す正面図(図25(a))及びC−C線断面図(図25(b))である。例えば内径0.0065mの伝熱管2の場合、スペーサ23は管軸方向に伸びる形状で、高さHを0.5〜2mm程度の2枚の細長板23aとそれを繋ぐ長方形の板23bとで形成され、これらの板の内側には長方形状の空洞が構成される。スペーサ23の材質は特に限定するものではなく冷媒に対して耐腐食性があればよい。例えばアルミニウムやセラミックス等でもよい。   25 is a front view showing a plate-like spacer 23 inserted into the heat transfer tube 2 of the heat exchanger according to this embodiment (FIG. 25 (a)) and a sectional view taken along the line CC (FIG. 25 (b)). It is. For example, in the case of the heat transfer tube 2 having an inner diameter of 0.0065 m, the spacer 23 has a shape extending in the tube axis direction, and includes two elongated plates 23 a having a height H of about 0.5 to 2 mm and a rectangular plate 23 b connecting the elongated plates 23 a. The rectangular cavities are formed inside these plates. The material of the spacer 23 is not particularly limited as long as it has corrosion resistance to the refrigerant. For example, aluminum or ceramics may be used.

図26はスペーサ23を伝熱管2に挿入する工程を示す説明図である。例えば、熱交換器の製造工程では、伝熱管2とフィンの密着を行う拡管工程後に、スペーサ23を矢印で示した伝熱管軸方向に挿入して、伝熱管2内に配設する。伝熱管2とフィンの密着を行う拡管工程によって伝熱管2の内径が若干変化することがあるが、拡管工程後には伝熱管2の内径が変化することはない。このため、拡管工程後にスペーサ23を挿入することで、スペーサ23を伝熱管2内に確実に固定できる。図27(a)はスペーサ23挿入後の伝熱管を示す正面図、図27(b)は図27(a)のD−D線断面図である。図27(b)に示すように、伝熱管2の内壁には伝熱面積を大きくするために、通常は螺旋状に溝25を有する。スペーサ23を伝熱管2内に挿入することによって、スペーサ23は伝熱管2内の溝25の突出部で概ね密着固定される。   FIG. 26 is an explanatory diagram showing a process of inserting the spacer 23 into the heat transfer tube 2. For example, in the heat exchanger manufacturing process, the spacer 23 is inserted in the axial direction of the heat transfer tube indicated by the arrow and disposed in the heat transfer tube 2 after the tube expansion process for closely attaching the heat transfer tube 2 and the fins. The inner diameter of the heat transfer tube 2 may slightly change due to the tube expansion process in which the heat transfer tube 2 and the fins are brought into close contact with each other, but the inner diameter of the heat transfer tube 2 does not change after the tube expansion process. For this reason, the spacer 23 can be reliably fixed in the heat transfer tube 2 by inserting the spacer 23 after the tube expansion step. Fig.27 (a) is a front view which shows the heat exchanger tube after spacer 23 insertion, FIG.27 (b) is the DD sectional view taken on the line of Fig.27 (a). As shown in FIG. 27 (b), the inner wall of the heat transfer tube 2 has a groove 25 in a spiral shape in order to increase the heat transfer area. By inserting the spacer 23 into the heat transfer tube 2, the spacer 23 is generally closely fixed at the protruding portion of the groove 25 in the heat transfer tube 2.

図28(a)はスペーサ23挿入後の伝熱管2の展開図、図28(b)はスペーサ23挿入後の伝熱管2の断面図である。図28(a)の矢印に示すように、伝熱管2内を流れる液冷媒は、概ね溝25に沿って流れる。スペーサ23の細長板23aによって、伝熱管2内壁の対向する2箇所に壁面から0.5〜2mmの壁が突出している。このため、図28(b)に示すように液冷媒25は細長板23aの手前で堰き止められ、細長板23aの液冷媒流れ方向の背後には液冷媒の少ない部分ができることになる。この液冷媒の少ない部分は熱伝達率が非常に大きくなる。従って、伝熱管2内の熱伝達率が大きくなり熱交換能力の大きい熱交換器が得られる。   FIG. 28A is a development view of the heat transfer tube 2 after the spacer 23 is inserted, and FIG. 28B is a cross-sectional view of the heat transfer tube 2 after the spacer 23 is inserted. As shown by the arrow in FIG. 28A, the liquid refrigerant flowing in the heat transfer tube 2 flows along the groove 25 in general. Due to the elongated plate 23 a of the spacer 23, a wall of 0.5 to 2 mm protrudes from the wall surface at two opposing positions on the inner wall of the heat transfer tube 2. For this reason, as shown in FIG. 28 (b), the liquid refrigerant 25 is dammed in front of the elongated plate 23a, and a portion with little liquid refrigerant is formed behind the elongated plate 23a in the liquid refrigerant flow direction. The portion with a small amount of the liquid refrigerant has a very high heat transfer coefficient. Therefore, the heat transfer coefficient in the heat transfer tube 2 is increased, and a heat exchanger having a large heat exchange capability is obtained.

スペーサ23は、熱交換器3を構成する伝熱管2の全てに設けなくてもよい。少なくとも熱交換器3の一部に設けばよい。この場合、凝縮器として使用する際の冷媒出口寄りの伝熱管2内の内部にスペーサ23を挿入すれば、熱交換性能を向上できる。凝縮器の出口付近では冷媒は高圧液冷媒であり圧力損失が小さいので、この部分で多少圧力損失は大きくなるが、熱伝達率の増大によって、大きな熱交換能力の向上効果が得られる。   The spacers 23 may not be provided in all the heat transfer tubes 2 constituting the heat exchanger 3. What is necessary is just to provide in a part of heat exchanger 3 at least. In this case, if the spacer 23 is inserted into the heat transfer tube 2 near the refrigerant outlet when used as a condenser, the heat exchange performance can be improved. In the vicinity of the outlet of the condenser, the refrigerant is a high-pressure liquid refrigerant, and the pressure loss is small. Therefore, the pressure loss slightly increases in this portion, but a large heat exchange capacity improvement effect can be obtained by increasing the heat transfer coefficient.

このように、前面熱交換器3a及び背面熱交換器3bの伝熱管2のうち、少なくとも前面熱交換器及び背面熱交換器を凝縮器として使用する際の出口付近の伝熱管2に、内壁に沿って周方向に流れる冷媒の一部を堰き止める障害物となるスペーサ23を設けたことにより、熱交換性能の大きな空気調和機を得ることができる。   Thus, among the heat transfer tubes 2 of the front heat exchanger 3a and the back heat exchanger 3b, at least the heat transfer tube 2 near the outlet when the front heat exchanger and the back heat exchanger are used as a condenser, By providing the spacer 23 as an obstacle for blocking a part of the refrigerant flowing in the circumferential direction along the circumferential direction, an air conditioner having high heat exchange performance can be obtained.

図25に示したスペーサ23は伝熱管2内を2分割するような構成であるが、他の形状のスペーサを用いてもよい。伝熱管2内の軸方向の液冷媒流れを妨げることなく、円周方向において、液冷媒の流れに分布をつけることができれば、どのような構成でもよい。例えば2つのスペーサ23を組み合わせて伝熱管2内を4分割するような構成でもよい。
また、長方形の空間を有する構成としたが、これに限るものではない。伝熱管壁に沿って周方向に流れる冷媒の一部を堰き止める障害物となる構成であれば、どのような形状でもよい。
The spacer 23 shown in FIG. 25 is configured to divide the inside of the heat transfer tube 2 into two, but spacers of other shapes may be used. Any configuration may be used as long as the flow of the liquid refrigerant can be distributed in the circumferential direction without hindering the flow of the liquid refrigerant in the axial direction in the heat transfer tube 2. For example, the structure which divides the inside of the heat exchanger tube 2 into four by combining the two spacers 23 may be used.
Moreover, although it was set as the structure which has a rectangular space, it is not restricted to this. Any shape may be used as long as it is an obstacle that blocks a part of the refrigerant flowing in the circumferential direction along the heat transfer tube wall.

また、伝熱管2の内壁から突出する部分、図25に示した細長板23aの部分を弾性体で形成することもできる。弾性体で作成する際、冷媒流れによって突形状を維持できずに内壁に沿うこともあるが、熱交換器を凝縮器として動作させる場合には突形状を維持し、蒸発器として動作させる場合には内壁に沿うように設ければよい。細長板23aの部分を弾性体で構成したスペーサ23を、例えば凝縮器として動作させる場合の熱交換器の出口寄りに設けた場合には圧力損失が小さいので、円周方向の流れを若干堰き止め、熱交換量の増大を図ることができる。一方、蒸発器として動作させる場合には圧力損失が大きいので、円周方向の流れを堰き止めることがないようにスペーサ23を設けることで、流量の維持を図ることができる。   Moreover, the part which protrudes from the inner wall of the heat exchanger tube 2, and the part of the elongate board 23a shown in FIG. 25 can also be formed with an elastic body. When creating with an elastic body, the protruding shape may not be maintained due to the refrigerant flow, but it may be along the inner wall, but when operating the heat exchanger as a condenser, maintaining the protruding shape and operating as an evaporator May be provided along the inner wall. When the spacer 23 having the elongated plate 23a made of an elastic body is provided near the outlet of the heat exchanger, for example, when operating as a condenser, the pressure loss is small so that the circumferential flow is slightly blocked. The amount of heat exchange can be increased. On the other hand, since the pressure loss is large when operating as an evaporator, the flow rate can be maintained by providing the spacer 23 so as not to block the circumferential flow.

実施の形態1、2に示した室内機に用いた熱交換器は、すべて前面熱交換器3aと背面熱交換器3bを有するものとしたが、これに限定するものではない。例えば、図3において、背面熱交換器3bがない構成とし、吸入口から流入する空気を全て前面熱交換器3aに流入させるように構成してもよい。もちろん他の背面熱交換器を有するとして説明したものにおいても同様であり、背面熱交換器3bを有しない構成としても同様の効果を奏する。   Although all the heat exchangers used for the indoor units shown in Embodiments 1 and 2 have the front heat exchanger 3a and the back heat exchanger 3b, the heat exchanger is not limited to this. For example, in FIG. 3, the rear heat exchanger 3b may be omitted, and all the air flowing from the suction port may flow into the front heat exchanger 3a. Of course, the same applies to those described as having other back surface heat exchangers, and the same effect can be obtained even when the back surface heat exchanger 3b is not provided.

また、上述の実施の形態1及び実施の形態2における熱交換器、及びそれを用いた空気調和機については、冷媒として、例えばHCFC冷媒、HFC冷媒、HC冷媒、自然冷媒、またこれら冷媒の数種の混合冷媒など、どんな種類の冷媒を用いても、その効果を達成することができる。HCFC冷媒としては例えばR22、HFC冷媒としては例えばR116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41,RC318などや、これら冷媒の数種の混合冷媒、R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなどがある。また、HC冷媒としては、例えばブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種混合冷媒があり、自然冷媒としては、例えば空気、炭酸ガス、アンモニアなどや、これら冷媒の数種の混合冷媒がある。
また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。
In addition, for the heat exchangers in Embodiments 1 and 2 described above and the air conditioner using the heat exchanger, for example, HCFC refrigerant, HFC refrigerant, HC refrigerant, natural refrigerant, and the number of these refrigerants The effect can be achieved by using any kind of refrigerant such as mixed refrigerant. As the HCFC refrigerant, for example, R22, as the HFC refrigerant, for example, R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc. There are mixed refrigerants, R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, R508B, and the like. Examples of the HC refrigerant include butane, isobutane, ethane, propane, propylene, and some mixed refrigerants of these refrigerants. Examples of the natural refrigerant include air, carbon dioxide, ammonia, and some of these refrigerants. There are mixed refrigerants.
Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.

また、伝熱管とフィンの材質は特に限定するものではなく、異なった材料を用いてもよい。なお、伝熱管とフィンに銅、伝熱管とフィンにアルミなど、同じ材料を用いることで、フィンと伝熱管のロウ付けが可能となり、フィン部と伝熱管の接触熱伝達率が飛躍的に向上し、熱交換能力が大幅に向上する。また、リサイクル性も向上させることができる。   Moreover, the material of a heat exchanger tube and a fin is not specifically limited, You may use a different material. By using the same material such as copper for the heat transfer tubes and fins and aluminum for the heat transfer tubes and fins, it is possible to braze the fins and the heat transfer tubes, and the contact heat transfer coefficient between the fins and the heat transfer tubes is dramatically improved. In addition, the heat exchange capacity is greatly improved. Moreover, recyclability can also be improved.

また、通常は伝熱管とフィンを密着する前に親水材をフィンに塗布しているが、炉中ロウ付けで伝熱管とフィンを密着する場合には、伝熱管とフィンを密着した後に親水材をフィンに塗布するのが望ましい。炉中ロウ付け後に親水材をフィンに塗布することで、ロウ付け中の親水材の焼け落ちを防ぐことができる。   Normally, a hydrophilic material is applied to the fin before the heat transfer tube and the fin are brought into close contact. However, when the heat transfer tube and the fin are brought into close contact by brazing in the furnace, the hydrophilic material is attached after the heat transfer tube and the fin are brought into close contact with each other. Is preferably applied to the fins. By applying the hydrophilic material to the fins after brazing in the furnace, the burning of the hydrophilic material during brazing can be prevented.

また、板状フィン上に輻射による伝熱を促進する放熱塗料を塗布することにより、伝熱性能を向上させることができる。また、光触媒を塗布することによって、フィン上の親水性を向上でき、熱交換器を蒸発器として用いた場合、凝縮水の送風機への滴下を防ぐことができる。   Moreover, the heat transfer performance can be improved by applying a heat radiation coating that promotes heat transfer by radiation on the plate-like fins. Moreover, the hydrophilicity on a fin can be improved by apply | coating a photocatalyst, and when a heat exchanger is used as an evaporator, dripping to the air blower of condensed water can be prevented.

なお、上述の実施の形態1、2で述べた熱交換器およびそれを用いた空気調和機については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。   For the heat exchangers described in the first and second embodiments and the air conditioner using the same, refrigerant and oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil are used. The effect can be achieved with any refrigeration oil, whether or not it melts.

以上に説明したように、実施の形態1、2による空気調和機は以下に示すような効果を奏する。   As described above, the air conditioner according to Embodiments 1 and 2 has the following effects.

吸込口と吹出口とが設けられた筐体と、この筐体に収納された貫流送風機とを備えた空気調和機における、吸込口から貫流送風機までの風回路の途中、または貫流送風機から吹出口までの風回路の途中に配設されたフィン付きの熱交換器であって、単数または複数の熱交換器から構成され、各熱交換器は、所定の間隔で平行に並べられ、その間を気体が流動する多数のフィンと、前記フィンに略直角に挿入され、内部を流体が流動する多数の伝熱管とを有し、フィン付き熱交換器が筐体内の前面側に配設されている前面側熱交換器と筐体内の背面側に配設されている背面側熱交換器により構成され、前面側熱交換器は風上側フィン端部と風下側フィン端部が前面熱交換器上部と下部の2本の直線で構成され、且つ伝熱管の列間距離が前面熱交換器上部よりも下部の方が小さくなるように前記伝熱管を配置したため、熱交換性能が大きく、騒音値及び送風機入力の小さい空気調和機を得ることができる。   In an air conditioner equipped with a casing provided with an inlet and an outlet and a once-through fan housed in the casing, in the middle of the wind circuit from the inlet to the once-through fan, or from the outlet of the once-through fan Is a finned heat exchanger disposed in the middle of the wind circuit, and is composed of one or a plurality of heat exchangers, and each heat exchanger is arranged in parallel at a predetermined interval, and a gas is interposed between them. A front surface on which a finned heat exchanger is disposed on the front side in the housing, and a plurality of heat transfer tubes inserted into the fins at substantially right angles and through which fluid flows. It is composed of a side heat exchanger and a back side heat exchanger arranged on the back side in the housing. The front side heat exchanger has the windward fin end and the leeward fin end at the top and bottom of the front heat exchanger. The distance between the rows of heat transfer tubes is the front heat exchange. Since than vessels top was placed the heat transfer tube as towards the bottom is reduced, increase heat exchange performance can be obtained a small air conditioner of noise level and the blower input.

前面熱交換器下部、最下流列の伝熱管中心線配置を概ね送風機に対して円弧状とし、伝熱管と風下フィン端部との距離を前面熱交換器上部より大きくしたため、熱交換性能が大きく、騒音値及び送風機入力の小さい空気調和機を得ることができる。   The heat exchanger tube centerline layout in the lower part of the front heat exchanger and the most downstream line is generally circular with respect to the blower, and the distance between the heat transfer pipe and the leeward fin end is larger than the upper part of the front heat exchanger, so the heat exchange performance is large. In addition, an air conditioner having a small noise level and fan input can be obtained.

前面熱交換器のフィンを一体成形とし、フィン幅を一定としたため、熱交換性能が大きく、騒音値及び送風機入力の小さい空気調和機を得ることができる。   Since the fins of the front heat exchanger are integrally formed and the fin width is constant, an air conditioner having a large heat exchange performance and a small noise value and a small fan input can be obtained.

前面熱交換器と背面熱交換器の傾斜角度を同一としたため、蒸発器として用いた場合、凝縮水が送風機に滴下されにくくすることができる。   Since the front heat exchanger and the rear heat exchanger have the same inclination angle, when used as an evaporator, it is possible to make it difficult for condensed water to be dripped onto the blower.

伝熱管の空気流れ方向後端部のフィン上に切り起しを配したため、熱交換性能が大きく、騒音値の小さい空気調和機を得ることができる。   Since the cut and raised portions are arranged on the fins at the rear end of the heat transfer tube in the air flow direction, an air conditioner having a high heat exchange performance and a low noise value can be obtained.

前記小さな切り起しの幅wは伝熱管径dに対し、0.2<w/d<0.5の関係が成り立つようにしたため、騒音値の小さい空気調和機を得ることができる。   Since the relationship of 0.2 <w / d <0.5 with respect to the heat transfer tube diameter d is established for the small cut-and-raised width w, an air conditioner with a low noise value can be obtained.

前記切り起しは、空気流れ方向前側を開口し、後ろ側は閉口するようにしたため、騒音値の小さい空気調和機を得ることができる。   Since the cutting and raising is such that the front side in the air flow direction is opened and the rear side is closed, an air conditioner with a low noise value can be obtained.

前面熱交換器の上部及び最下部のフィン面上のパイプ間切り起し本数をその熱交換器中間部の前記切り起し本数より少なくしたため、熱交換性能が大きく、送風機入力の小さい空気調和機を得ることができる。   An air conditioner with high heat exchange performance and small fan input because the number of pipes raised and lowered on the upper and lower fin surfaces of the front heat exchanger is less than the number of raised parts in the middle of the heat exchanger. Can be obtained.

前面熱交換器のフィン幅を背面熱交換器よりも大きくしたため、熱交換性能が大きく、送風機入力の小さい空気調和機を得ることができる。   Since the fin width of the front heat exchanger is made larger than that of the rear heat exchanger, an air conditioner having a large heat exchange performance and a small blower input can be obtained.

段方向の伝熱管ピッチがその他のいずれよりも大きい箇所のフィン面上のパイプ間切り起しを段方向に分割し、その他の箇所の切り起しを分割しないようにしたため、熱交換性能が大きく、騒音値および送風機入力の小さい空気調和機を得ることができる。   The heat transfer performance is large because the cuts between pipes on the fin surface where the heat transfer tube pitch in the step direction is larger than any other are divided in the step direction and the cuts in other portions are not divided. It is possible to obtain an air conditioner having a small noise level and blower input.

前面熱交換器の送風機最近傍部において、最下流列のフィン面上のパイプ間切り起し形状を空気流れ方向に対し傾斜させ、片側のみ開口としたため、熱交換性能が大きく、騒音値の小さい空気調和機を得ることができる。   In the most adjacent part of the blower of the front heat exchanger, the cut-and-raised shape between the pipes on the fin surface in the most downstream row is inclined with respect to the air flow direction, and only one side is opened, so the heat exchange performance is large and the noise value is small An air conditioner can be obtained.

凝縮器として使用する際、過冷却冷媒となる部分の伝熱管内において、蒸発器として使用する場合よりも、凝縮器として使用する場合の方がパス数が小さくなるようにしたため、熱交換性能が大きい空気調和機を得ることができる。   When used as a condenser, the number of passes when using it as a condenser is smaller than when using it as an evaporator in the part of the heat transfer tube that becomes the supercooled refrigerant. A large air conditioner can be obtained.

少なくとも一部の熱交換器の、凝縮器として使用する際の冷媒出口寄りの伝熱管内に内部に長方形の空間を持つ長方形状のスペーサを挿入したため、熱交換性能が大きい空気調和機を得ることができる。   At least some of the heat exchangers have a rectangular spacer with a rectangular space inside the heat transfer tube near the refrigerant outlet when used as a condenser. Can do.

この発明の実施の形態1に係る熱交換器の内部構成を示す説明図である。It is explanatory drawing which shows the internal structure of the heat exchanger which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機の冷媒回路の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the refrigerant circuit of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1による空気調和機の室内機を示す断面構成図である。It is a section lineblock diagram showing the indoor unit of the air harmony machine by Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機の室内機の断面構成を示す説明図である。It is explanatory drawing which shows the cross-sectional structure of the indoor unit of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る死水域を示す説明図である。It is explanatory drawing which shows the dead water area which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るフィンに設けた伝熱管間のパイプ間切り起しの周辺部を示す部分拡大図である。It is the elements on larger scale which show the peripheral part of the raising between pipes between the heat exchanger tubes provided in the fin which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る空気調和機の送風機付近の流れを示す説明図である。It is explanatory drawing which shows the flow of the air blower vicinity of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係り、図7における送風機の上部を拡大して示す部分拡大図である。FIG. 8 is a partial enlarged view showing the upper part of the blower in FIG. 7 in an enlarged manner according to the first embodiment of the present invention. この発明の実施の形態1に係る空気調和機の送風機付近の流れを示す説明図である。It is explanatory drawing which shows the flow of the air blower vicinity of the air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係り、図9における送風機の上部を拡大して示す部分拡大図である。FIG. 10 is a partial enlarged view illustrating the upper part of the blower in FIG. 9 according to Embodiment 1 of the present invention. この発明の実施の形態1に係り、前面熱交換器と送風機との最も接近している部分周辺を拡大して示す説明図である。It is explanatory drawing which expands and shows the part periphery which concerns on Embodiment 1 of this invention, and the front heat exchanger and the air blower most closely approach. この発明の実施の形態1に係り、下部前面熱交換器のフィンに設けられた切り起しの形状を示す斜視図である。It is a perspective view which shows the shape of the cut-and-raised provided in the fin of the lower front heat exchanger in Embodiment 1 of this invention. この発明の実施の形態1に係り、上部前面熱交換器のフィンに設けられた切り起しの形状を示す斜視図である。It is a perspective view which shows the shape of the cut-and-raised provided in the fin of the upper front heat exchanger in Embodiment 1 of this invention. この発明の実施の形態1に係り、横軸にw/d、縦軸に回転音レベルSPL(dB)を示すグラフである。4 is a graph showing w / d on the horizontal axis and the rotational sound level SPL (dB) on the vertical axis according to the first embodiment of the present invention. この発明の実施の形態1に係り、送風機付近の前面熱交換器の構成を示す拡大構成図である。1 is an enlarged configuration diagram illustrating a configuration of a front heat exchanger in the vicinity of a blower according to Embodiment 1 of the present invention. この発明の実施の形態1に係り、前面熱交換器の部分断面図である。1 is a partial cross-sectional view of a front heat exchanger according to Embodiment 1 of the present invention. この発明の実施の形態1に係る室内空気調和機の筐体を取り除いた側面を示す構成図である。It is a block diagram which shows the side surface which removed the housing | casing of the indoor air conditioner which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るU字伝熱管を示す正面図である。It is a front view which shows the U-shaped heat exchanger tube which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係り、図17に示した側面の反対側の側面を示す構成図である。FIG. 18 is a configuration diagram illustrating a side surface opposite to the side surface illustrated in FIG. 17 according to the first embodiment of the present invention. この発明の実施の形態2に係る熱交換器の冷媒パスを示す説明図である。It is explanatory drawing which shows the refrigerant path of the heat exchanger which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る熱交換器を示す断面構成図である。It is a cross-sectional block diagram which shows the heat exchanger which concerns on Embodiment 2 of this invention. この発明の実施の形態2に係る熱交換器の過冷却部と熱交換器の2相域及び過熱部の回路構成を示す回路図である。It is a circuit diagram which shows the circuit structure of the supercooling part of the heat exchanger which concerns on Embodiment 2 of this invention, the two-phase area | region of a heat exchanger, and a superheating part. この発明の実施の形態2に係り、蒸発器として運転した場合のパス形態を示す説明図である。It is explanatory drawing which shows the path | pass form at the time of drive | operating as an evaporator regarding Embodiment 2 of this invention. この発明の実施の形態2に係り、凝縮器として運転した場合のパス形態を示す説明図である。It is explanatory drawing which shows the path | pass form at the time of operating as a condenser in connection with Embodiment 2 of this invention. この発明の実施の形態2に係る熱交換器の伝熱管内に挿入するスペーサを示す正面図(図25(a))及びC−C線断面図(図25(b))でる。It is the front view (Drawing 25 (a)) and CC sectional view (Drawing 25 (b)) showing the spacer inserted in the heat exchanger tube of the heat exchanger concerning Embodiment 2 of this invention. この発明の実施の形態2に係り、スペーサを伝熱管に挿入する工程を示す説明図である。It is explanatory drawing which concerns on Embodiment 2 of this invention and shows the process of inserting a spacer in a heat exchanger tube. この発明の実施の形態2に係り、スペーサ挿入後の伝熱管を示す正面図(図27(a))、図27(a)のD−D線断面図(図27(b))である。It is a front view (Drawing 27 (a)) showing a heat exchanger tube after spacer insertion concerning Embodiment 2 of this invention, and a DD line sectional view (Drawing 27 (b)) of Drawing 27 (a). この発明の実施の形態2に係り、スペーサ挿入後の伝熱管の展開図(図28(a))、スペーサ23挿入後の伝熱管2の断面図(図28(b))である。FIG. 28 is a development view of the heat transfer tube after insertion of the spacer (FIG. 28A) and a cross-sectional view of the heat transfer tube 2 after insertion of the spacer 23 (FIG. 28B) according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1 フィン
1aa 上部前面フィン
1ab 下部前面フィン
2、2a、2b 伝熱管
3 熱交換器
3a 前面熱交換器
3b 背面熱交換器
3aa 上部前面熱交換器
3ab 下部前面熱交換器
4 切り起し
5 送風機
6 スタビライザ
7 フィルター
8 前面固定パネル
9 吸込口
10 電気集塵器
11 吹出口
12 渦
13 翼
14 翼間渦
15 死水域
16 U字伝熱管
18 分岐部
19 伝熱管間の段ピッチの大きい箇所
20、20a、20b 凝縮器の場合過冷却域として使用される熱交換器部分
21 凝縮器の場合過熱部および2相域として使用される熱交換器部分
22a、22b、22c 逆止弁
23 スペーサ
23a スペーサ堰部
23b スペーサ接合部
24 液冷媒
25 伝熱管内溝
31 圧縮機
32 室内熱交換器
33 絞り装置
34 室外熱交換器
35 送風機
36 送風機用モータ
37 流路切換弁
DESCRIPTION OF SYMBOLS 1 Fin 1aa Upper front fin 1ab Lower front fin 2, 2a, 2b Heat transfer tube 3 Heat exchanger 3a Front heat exchanger 3b Rear heat exchanger 3aa Upper front heat exchanger 3ab Lower front heat exchanger 4 Cut and raise 5 Blower 6 Stabilizer 7 Filter 8 Front fixed panel 9 Suction port 10 Electric dust collector 11 Air outlet 12 Vortex 13 Wing 14 Vortex between blades 15 Dead water area 16 U-shaped heat transfer tube 18 Branching part 19 Location with large step pitch between heat transfer tubes 20, 20 a 20b Heat exchanger part used as a supercooling zone in the case of a condenser 21 Heat exchanger part used as a superheating part and a two-phase zone in the case of a condenser 22a, 22b, 22c Check valve 23 Spacer 23a Spacer weir part 23b Spacer junction 24 Liquid refrigerant 25 Heat transfer tube inner groove 31 Compressor 32 Indoor heat exchanger 33 Throttle device 34 Outdoor heat exchange Vessel 35 blower 36 blower motor 37 channel switching valve

Claims (13)

吸込口から流入する気体を吹出口に導く送風機と、
前記送風機の前記吸込口側に設けられ前記吸込口から流入する気体と冷媒とで熱交換する前面熱交換器と、
前記前面熱交換器に設けられ、前記送風機の回転軸方向に所定の間隔で並設される複数のフィンに略直角に挿入され前記フィンの長手方向に列をなし気流方向に複数列設けた伝熱管と、を備え、
前記前面熱交換器は、上部前面熱交換器と下部前面熱交換器とから構成され、前記上部および下部前面熱交換器の空気流の上流縁部及び下流縁部は直線で構成されるとともに、前記前面熱交換器の上下端部を除きフィン幅が一定であり、
前記前面熱交換器のフィンは、前記上部前面熱交換器と前記下部前面熱交換器で連続して一体に構成された「く」の字状であり、
前記前面熱交換器の最風下側の伝熱管列のうち、前記上部前面熱交換器では前記伝熱管中心を結ぶ線はフィン外形に沿うように直線とし、前記下部前面熱交換器では、送風機近傍に位置するフィン最風下列を送風機の羽根車の外周から一定距離を保つように円弧状に湾曲させて配置すると共に、
前記湾曲させた部分における前記伝熱管とその気流方向後方の風下側フィン端部の距離が前記直線状に配設した前記伝熱管とその気流方向後方の風下側フィン端部の距離よりも大きくなるように構成したことを特徴とする空気調和機。
A blower that guides the gas flowing in from the suction port to the blowout port;
A front heat exchanger that is provided on the suction port side of the blower and exchanges heat between the gas flowing from the suction port and the refrigerant;
A transmission provided in the front heat exchanger and inserted substantially perpendicular to a plurality of fins arranged in parallel at a predetermined interval in the rotation axis direction of the blower, forming a row in the longitudinal direction of the fins and providing a plurality of rows in the airflow direction. A heat pipe, and
The front heat exchanger is composed of an upper front heat exchanger and a lower front heat exchanger, and the upstream and downstream edges of the air flow of the upper and lower front heat exchangers are configured with straight lines, The fin width is constant except for the upper and lower ends of the front heat exchanger,
The fins of the front heat exchanger are in the shape of a “<” that is configured integrally and continuously with the upper front heat exchanger and the lower front heat exchanger,
Of the heat transfer tube rows on the leeward side of the front heat exchanger, the line connecting the heat transfer tube centers in the upper front heat exchanger is a straight line along the fin outline, and in the lower front heat exchanger, in the vicinity of the blower And arrange the fin most downwind row located in the arc curved so as to maintain a certain distance from the outer periphery of the impeller of the blower,
The distance between the heat transfer tube and the leeward fin end behind the airflow direction in the curved portion is larger than the distance between the linearly arranged heat transfer tube and the leeward fin end behind the airflow direction. An air conditioner configured as described above.
湾曲して配置した前記伝熱管の気流方向後方のフィンに通風抵抗を増加する抵抗手段を設けたことを特徴とする請求項1記載の空気調和機。 The air conditioner according to claim 1, wherein a resistance means for increasing ventilation resistance is provided in a fin behind the heat transfer tube arranged in a curved direction in the airflow direction. 前記抵抗手段は前記フィンの一部を切り起して構成し、その切り起しの幅Wを、伝熱管径dに対し、0.2<w/d<0.5の関係が成り立つ範囲としたことを特徴とする請求項2記載の空気調和機。 The resistance means is configured by cutting and raising a part of the fin, and the width W of the cutting and raising is a range in which a relationship of 0.2 <w / d <0.5 is established with respect to the heat transfer tube diameter d. The air conditioner according to claim 2, wherein 前記抵抗手段は、前記フィンの気流方向の前側を切り欠いて開口し、後側を閉口するように設けたことを特徴とする請求項2又は請求項3記載の空気調和機。 4. The air conditioner according to claim 2, wherein the resistance unit is provided so as to open by cutting out a front side of the fin in an air flow direction and to close a rear side. 5. 列を構成する複数の伝熱管における伝熱管ピッチが他の複数の伝熱管ピッチよりも大きい伝熱管間のフィンに、前記列が伸びる方向に複数に分割したパイプ間切り起しを設け、伝熱管ピッチの小さい伝熱管間におけるパイプ間切り起しよりも多く分割することを特徴とする請求項1乃至請求項4のいずれか1項に記載の空気調和機。 The fins between the heat transfer tubes in which the heat transfer tube pitch in the plurality of heat transfer tubes constituting the row is larger than the other heat transfer tube pitches are provided with pipe cuts and raised in the direction in which the row extends, The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is divided more than between pipes between heat transfer tubes having a small pitch. 前記伝熱管の列間距離が前記前面熱交換器の上部よりも下部の方が小さくなるように前記伝熱管を配置したことを特徴とする請求項1乃至請求項5のいずれか1項に記載の空気調和機。 6. The heat transfer tube according to claim 1, wherein the heat transfer tubes are arranged so that a distance between rows of the heat transfer tubes is smaller in the lower part than in the upper part of the front heat exchanger. Air conditioner. 前記前面熱交換器の風下側フィン端部を前記前面熱交換器上部と下部の2本の直線形状とし、「く」の字状に構成したことを特徴とする請求項1乃至請求項6のいずれか1項に記載の空気調和機。 The leeward fin end portion of the front heat exchanger has two straight shapes of an upper portion and a lower portion of the front heat exchanger, and is formed in a "<" shape. The air conditioner of any one of Claims. 前記前面熱交換器のフィン幅を上部及び下部で同等としたことを特徴とする請求項1乃至請求項7のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 7, wherein the fin width of the front heat exchanger is the same between the upper part and the lower part. 前記前面熱交換器のフィンを上部と下部で連続して一体に構成したことを特徴とする請求項1乃至請求項8のいずれか1項に記載の空気調和機。 The air conditioner according to any one of claims 1 to 8, wherein fins of the front heat exchanger are integrally formed continuously at an upper part and a lower part. 前記前面熱交換器に伴って前記送風機を取り囲むように設けられる背面熱交換器を備え、前記前面熱交換器の前記送風機側フィン端の上部の重力方向に対する傾斜角度と前記背面熱交換器の前記送風機側フィン端の上部の重力方向に対する傾斜角度を同等としたことを特徴とする請求項1乃至請求項9のいずれか1項に記載の空気調和機。 A rear heat exchanger provided so as to surround the blower along with the front heat exchanger, and an inclination angle of the upper end of the blower side fin end of the front heat exchanger with respect to a gravitational direction and the back heat exchanger The air conditioner according to any one of claims 1 to 9, wherein an inclination angle with respect to a gravitational direction at an upper portion of a blower side fin end is made equal. 前記前面熱交換器に伴って前記送風機を取り囲むように設けられる背面熱交換器を備え、前記前面熱交換器のフィン幅を前記背面熱交換器のフィン幅よりも大きくした熱交換器を用いることを特徴とする請求項1乃至請求項10のいずれか1項に記載の空気調和機。 A back heat exchanger provided so as to surround the blower along with the front heat exchanger is provided, and a heat exchanger in which the fin width of the front heat exchanger is larger than the fin width of the back heat exchanger is used. The air conditioner according to any one of claims 1 to 10, wherein: 前記前面熱交換器、又は前記前面熱交換器及び前記背面熱交換器で構成される熱交換器の伝熱管であって、前記熱交換器を凝縮器として使用する際に過冷却冷媒が流れる部分の伝熱管の流路におけるパス数を可変とし、前記熱交換器を蒸発器として使用する場合よりも凝縮器として使用する場合の方が前記パス数が少なくなるように冷媒流路を構成したことを特徴とする請求項1乃至請求項11のいずれか1項に記載の空気調和機。 A heat transfer tube of the heat exchanger constituted by the front heat exchanger or the front heat exchanger and the rear heat exchanger, and a portion through which a supercooled refrigerant flows when the heat exchanger is used as a condenser The number of passes in the heat transfer tube flow path is variable, and the refrigerant flow path is configured so that the number of passes is smaller when the heat exchanger is used as a condenser than when the heat exchanger is used as an evaporator. The air conditioner according to any one of claims 1 to 11, wherein the air conditioner is characterized by. 前記前面熱交換器、又は前記前面熱交換器及び前記背面熱交換器で構成される熱交換器の伝熱管のうち、少なくとも前記熱交換器を凝縮器として使用する際の出口付近の伝熱管に、内壁に沿って周方向に流れる冷媒の一部を堰き止める障害物となるスペーサを設けたことを特徴とする請求項1乃至請求項12のいずれか1項に記載の空気調和機。 Among the heat transfer tubes of the heat exchanger composed of the front heat exchanger or the front heat exchanger and the back heat exchanger, at least the heat transfer tube near the outlet when using the heat exchanger as a condenser The air conditioner according to any one of claims 1 to 12, further comprising a spacer serving as an obstacle for blocking a part of the refrigerant flowing in the circumferential direction along the inner wall.
JP2005208682A 2005-07-19 2005-07-19 Air conditioner Active JP4196974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005208682A JP4196974B2 (en) 2005-07-19 2005-07-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005208682A JP4196974B2 (en) 2005-07-19 2005-07-19 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007024419A JP2007024419A (en) 2007-02-01
JP4196974B2 true JP4196974B2 (en) 2008-12-17

Family

ID=37785416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005208682A Active JP4196974B2 (en) 2005-07-19 2005-07-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP4196974B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595060B (en) 2007-02-02 2011-12-21 旭硝子株式会社 Method for producing solid solution fine particle
CN102016482B (en) * 2008-04-24 2012-11-14 三菱电机株式会社 Heat exchanger and air conditioner using the same
JP4775429B2 (en) * 2008-05-26 2011-09-21 パナソニック株式会社 Finned tube heat exchanger
WO2011033767A1 (en) * 2009-09-16 2011-03-24 パナソニック株式会社 Fin tube heat exchanger
JP2011106770A (en) * 2009-11-19 2011-06-02 Panasonic Corp Heat exchanger and refrigerating cycle device
JP6230852B2 (en) * 2013-09-03 2017-11-15 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner and heat exchanger for air conditioner
CN107076430B (en) * 2014-10-30 2019-06-18 三菱电机株式会社 Air conditioner
JP2017096588A (en) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 Air conditioner
JP6531282B2 (en) * 2016-02-01 2019-06-19 パナソニックIpマネジメント株式会社 Air conditioner
US11781812B2 (en) 2016-08-31 2023-10-10 Brazeway, Inc. Fin enhancements for low Reynolds number airflow
US10578374B2 (en) * 2016-08-31 2020-03-03 Brazeway, Inc. Fin enhancements for low Reynolds number airflow
JP7000566B2 (en) * 2018-05-15 2022-01-19 三菱電機株式会社 Refrigeration cycle device
JP7396589B2 (en) * 2019-12-24 2023-12-12 オリオン機械株式会社 air conditioner
US11808530B2 (en) * 2021-10-20 2023-11-07 Rheem Manufacturing Company Louvered fin

Also Published As

Publication number Publication date
JP2007024419A (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4196974B2 (en) Air conditioner
JP6615316B2 (en) Finless type heat exchanger, outdoor unit of air conditioner equipped with the finless type heat exchanger, and indoor unit of air conditioner equipped with the finless type heat exchanger
JP4506609B2 (en) Air conditioner and method of manufacturing air conditioner
JP4715971B2 (en) Heat exchanger and indoor unit equipped with the same
JP5196043B2 (en) Heat exchanger and air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
KR101451056B1 (en) Heat exchanger and air conditioner
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
JP2008261517A (en) Fin tube-type heat exchanger and air conditioner using the same
JP6223596B2 (en) Air conditioner indoor unit
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
WO2022014515A1 (en) Heat exchanger
WO2017208493A1 (en) Air conditioner
JPH08178366A (en) Heat exchanger
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JPH11337104A (en) Air conditioner
JP6678413B2 (en) Air conditioner
JP5569409B2 (en) Heat exchanger and air conditioner
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP6141514B2 (en) Refrigeration cycle equipment
JP5664272B2 (en) Heat exchanger and air conditioner
JP6548824B2 (en) Heat exchanger and refrigeration cycle device
CN219914070U (en) Microchannel heat exchanger and air conditioner
CN220083746U (en) Microchannel heat exchanger and air conditioner
CN219977160U (en) Microchannel heat exchanger and air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4196974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250