JP7000566B2 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP7000566B2
JP7000566B2 JP2020518856A JP2020518856A JP7000566B2 JP 7000566 B2 JP7000566 B2 JP 7000566B2 JP 2020518856 A JP2020518856 A JP 2020518856A JP 2020518856 A JP2020518856 A JP 2020518856A JP 7000566 B2 JP7000566 B2 JP 7000566B2
Authority
JP
Japan
Prior art keywords
state
heat exchanger
heat transfer
pipe portion
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020518856A
Other languages
Japanese (ja)
Other versions
JPWO2019220541A1 (en
Inventor
宗希 石山
航祐 田中
訓弘 藤田
貴史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019220541A1 publication Critical patent/JPWO2019220541A1/en
Application granted granted Critical
Publication of JP7000566B2 publication Critical patent/JP7000566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0282Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry of conduit ends, e.g. by using inserts or attachments for modifying the pattern of flow at the conduit inlet or outlet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、第1熱交換器および第2熱交換器を備える冷凍サイクル装置に関し、特に第1熱交換器が凝縮器、第2熱交換器が蒸発器として作用する第1状態と、第2熱交換器が凝縮器、第1熱交換器が蒸発器として作用する第2状態とを切替可能に設けられている冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus including a first heat exchanger and a second heat exchanger, in particular, a first state in which the first heat exchanger acts as a condenser and a second heat exchanger act as an evaporator, and a second state. The present invention relates to a refrigeration cycle apparatus in which a heat exchanger is provided so as to be switchable between a condenser and a second state in which the first heat exchanger acts as an evaporator.

冷凍サイクル装置を循環する冷媒は、凝縮器の伝熱管の一端から他端へ流れる過程で、ガス単相状態から気液2相状態を経て液単相状態まで凝縮し、さらに蒸発器の伝熱管の一端から他端へ流れる過程で、気液2相状態からガス単相状態に蒸発する。 The refrigerant circulating in the refrigeration cycle device condenses from the gas single-phase state to the liquid-single-phase state via the gas-liquid two-phase state in the process of flowing from one end to the other end of the heat transfer tube of the evaporator, and further condenses to the liquid single-phase state. In the process of flowing from one end to the other end, it evaporates from the gas-liquid two-phase state to the gas single-phase state.

凝縮器の伝熱管の構成がその一端と他端との間で均一とされる場合、伝熱管の内部を流れる冷媒と伝熱管の外部を流れる空気等の熱媒体との間の伝熱性能(以下、管内伝熱性能という)は、伝熱管の延在方向の位置に応じて変化する。凝縮器の伝熱管の上記他端を含む下流側に位置する第1部分での管内伝熱性能は、当該第1部分よりも上流側に位置しかつ上記一端よりも下流側に位置する第2部分での管内伝熱性能と比べて低くなる。これは、凝縮器の上記第1部分を流れる液単相状態の冷媒の流速が、凝縮器の上記第2部分を流れる気液2相状態の冷媒の流速よりも低下するためである。 If the configuration of the heat transfer tube of the condenser is uniform between one end and the other end, the heat transfer performance between the refrigerant flowing inside the heat transfer tube and the heat medium such as air flowing outside the heat transfer tube ( Hereinafter, the heat transfer performance in the tube) changes according to the position of the heat transfer tube in the extending direction. The heat transfer performance in the tube in the first portion located on the downstream side including the other end of the heat transfer tube of the condenser is located on the upstream side of the first portion and on the downstream side of the one end. It is lower than the heat transfer performance in the pipe at the part. This is because the flow velocity of the liquid-single-phase refrigerant flowing through the first portion of the condenser is lower than the flow velocity of the gas-liquid two-phase refrigerant flowing through the second portion of the condenser.

特開2000‐55509号公報(特許文献1)には、凝縮器の伝熱管の下流側に位置する部分での管内伝熱性能を向上させて凝縮器として作用する運転状態での熱交換器性能を向上させるために、凝縮器となる場合の冷媒出口側の伝熱管内に内挿体が設けられた熱交換器が開示されている。 Japanese Patent Application Laid-Open No. 2000-55509 (Patent Document 1) describes the heat exchanger performance in an operating state in which the heat transfer performance in the tube is improved in the portion located on the downstream side of the heat transfer tube of the condenser and acts as a condenser. A heat exchanger in which an insert is provided in a heat transfer tube on the refrigerant outlet side in the case of becoming a condenser is disclosed.

特開2000‐55509号公報Japanese Unexamined Patent Publication No. 2000-55509

しかしながら、上記熱交換器が蒸発器として作用する場合には、気液2相状態またはガス単相状態の冷媒が内挿体が挿入された伝熱管内を流れることになる。そのため、上記熱交換器が蒸発器として作用する場合、伝熱管において内挿体が挿入された部分を流れる冷媒の圧力損失は、伝熱管において内挿体が挿入されていない部分を流れる冷媒の圧力損失と比べて顕著に大きくなる。そのため、上記熱交換器が蒸発器として作用する場合の熱交換器性能は、上記内挿体が設けられていない熱交換器が蒸発器として作用する場合の熱交換器性能と比べて顕著に低い。その結果、上記熱交換器が凝縮器として作用する運転状態と上記熱交換器が蒸発器として作用する運転状態とを切替可能に設けられた冷凍サイクル装置では、期間効率を向上することが困難であった。 However, when the heat exchanger acts as an evaporator, the refrigerant in the gas-liquid two-phase state or the gas single-phase state flows in the heat transfer tube into which the insert is inserted. Therefore, when the heat exchanger acts as an evaporator, the pressure loss of the refrigerant flowing through the portion of the heat transfer tube in which the insert is inserted is the pressure of the refrigerant flowing through the portion of the heat transfer tube in which the insert is not inserted. It is significantly larger than the loss. Therefore, the heat exchanger performance when the heat exchanger acts as an evaporator is significantly lower than the heat exchanger performance when the heat exchanger without the insert is acting as an evaporator. .. As a result, it is difficult to improve the period efficiency in the refrigeration cycle device provided so as to be able to switch between the operating state in which the heat exchanger acts as a condenser and the operating state in which the heat exchanger acts as an evaporator. there were.

本発明の主たる目的は、上記のような冷凍サイクル装置と比べて、期間効率が向上された冷凍サイクル装置を提供することにある。 A main object of the present invention is to provide a refrigeration cycle apparatus having improved period efficiency as compared with the refrigeration cycle apparatus as described above.

本発明に係る冷凍サイクル装置は、圧縮機、流路切替弁、第1熱交換器、第2熱交換器、および減圧部を含み、冷媒が循環する冷媒回路を備える。冷媒回路は、第1熱交換器が凝縮器、第2熱交換器が蒸発器として作用する第1状態と、第2熱交換器が凝縮器、第1熱交換器が蒸発器として作用する第2状態とを切替可能に設けられている。第1熱交換器および第2熱交換器は、内部に冷媒が流れる伝熱管を含む。伝熱管は、第1熱交換器が凝縮器として作用するときの冷媒の流通方向において第1伝熱管の中間位置よりも下流側に位置する第1管部を有している。第1熱交換器は、第1管部の内部に配置された第1内容部材をさらに含む。第1管部の内径D1と、第1管部の流路断面積A1および第1管部の濡れ縁長さS1を用いて以下の関係式(1)から算出される等価直径M1とが、第1状態および第2状態において以下の関係式(2)を満たす。
1=4×A1/S1・・・(1)
1/2.5<M1<D1/1.5・・・(2)
The refrigerating cycle apparatus according to the present invention includes a compressor, a flow path switching valve, a first heat exchanger, a second heat exchanger, and a pressure reducing unit, and includes a refrigerant circuit in which a refrigerant circulates. In the refrigerant circuit, the first state in which the first heat exchanger acts as a condenser and the second heat exchanger acts as an evaporator, and the first state in which the second heat exchanger acts as a condenser and the first heat exchanger acts as an evaporator. It is provided so that it can be switched between two states. The first heat exchanger and the second heat exchanger include a heat transfer tube through which a refrigerant flows. The heat transfer tube has a first tube portion located downstream of the intermediate position of the first heat transfer tube in the flow direction of the refrigerant when the first heat exchanger acts as a condenser. The first heat exchanger further includes a first content member disposed inside the first tube portion. Equivalent diameter M 1 calculated from the following relational expression (1) using the inner diameter D 1 of the first pipe portion, the flow path cross-sectional area A 1 of the first pipe portion, and the wet edge length S 1 of the first pipe portion. Satisfies the following relational expression (2) in the first state and the second state.
M 1 = 4 × A 1 / S 1 ... (1)
D 1 / 2.5 <M 1 <D 1 / 1.5 ... (2)

本発明の冷凍サイクル装置の第1熱交換器は、等価直径Mが上記関係式(2)を満たす第1管部を含むため、凝縮器として作用するときに高い熱交換性能を示す。さらに、第1熱交換器は、等価直径Mが上記関係式(2)を満たす第1管部を含むため、等価直径が上記関係式(2)を満たさない伝熱管を含む従来の熱交換器と比べて、蒸発器として作用するときに高い熱交換性能を示す。その結果、本発明によれば、等価直径Mが上記関係式(2)を満たさない伝熱管を含む従来の熱交換器を備える冷凍サイクル装置と比べて、期間効率が向上された冷凍サイクル装置を提供することができる。 Since the first heat exchanger of the refrigeration cycle apparatus of the present invention includes the first tube portion whose equivalent diameter M satisfies the above relational expression (2), it exhibits high heat exchange performance when acting as a condenser. Further, since the first heat exchanger includes a first tube portion in which the equivalent diameter M satisfies the above relational expression (2), a conventional heat exchanger including a heat transfer tube whose equivalent diameter does not satisfy the above relational expression (2). Compared to, it shows high heat exchange performance when acting as an evaporator. As a result, according to the present invention, a refrigeration cycle device having improved period efficiency as compared with a refrigeration cycle device provided with a conventional heat exchanger including a heat transfer tube whose equivalent diameter M does not satisfy the above relational expression (2). Can be provided.

実施の形態1に係る冷凍サイクル装置の概略構成図である。It is a schematic block diagram of the refrigerating cycle apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when the refrigeration cycle apparatus according to the first embodiment is in the first state. 図2中の矢印III-IIIから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow III-III in FIG. 図2中の矢印IV-IVから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow IV-IV in FIG. 実施の形態1に係る冷凍サイクル装置の第1熱交換器の期間効率と第1熱交換器の第1管部の等価直径との関係を示すグラフである。It is a graph which shows the relationship between the period efficiency of the 1st heat exchanger of the refrigerating cycle apparatus which concerns on Embodiment 1 and the equivalent diameter of the 1st pipe part of the 1st heat exchanger. 実施の形態1に係る冷凍サイクル装置の冷媒の循環量と第1熱交換器の第1管部の等価直径との関係を示すグラフである。It is a graph which shows the relationship between the circulation amount of the refrigerant of the refrigerating cycle apparatus which concerns on Embodiment 1 and the equivalent diameter of the 1st pipe part of the 1st heat exchanger. 実施の形態3に係る冷凍サイクル装置が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。It is the schematic sectional drawing of the heat transfer tube of the 1st heat exchanger when the refrigerating cycle apparatus which concerns on Embodiment 3 is in a 1st state. 図7中の矢印VIII-VIIIから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow VIII-VIII in FIG. 7. 実施の形態3に係る冷凍サイクル装置が第2状態にあるときの第1熱交換器の伝熱管の概略断面図である。It is the schematic sectional drawing of the heat transfer tube of the 1st heat exchanger when the refrigerating cycle apparatus which concerns on Embodiment 3 is in a 2nd state. 図9中の矢印X-Xから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow XX in FIG. 実施の形態4に係る冷凍サイクル装置が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when the refrigeration cycle apparatus according to the fourth embodiment is in the first state. 図11中の矢印XII-XIIから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow XII-XII in FIG. 実施の形態4に係る冷凍サイクル装置が第2状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when the refrigeration cycle apparatus according to the fourth embodiment is in the second state. 図13中の矢印XIV-XIVから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow XIV-XIV in FIG. 実施の形態5に係る冷凍サイクル装置が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when the refrigeration cycle apparatus according to the fifth embodiment is in the first state. 図15中の矢印XVI-XVIから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow XVI-XVI in FIG. 実施の形態5に係る冷凍サイクル装置が断続運転されるときのフローチャートである。It is a flowchart when the refrigerating cycle apparatus which concerns on Embodiment 5 is intermittently operated. (a)は、実施の形態5に係る冷凍サイクル装置が断続運転されるときの運転時間と圧縮機周波数との関係を示すグラフである。(b)は、実施の形態5に係る冷凍サイクル装置が断続運転されるときの運転時間と室内温度との関係を示すグラフである。(A) is a graph showing the relationship between the operation time and the compressor frequency when the refrigeration cycle apparatus according to the fifth embodiment is intermittently operated. (B) is a graph showing the relationship between the operating time and the room temperature when the refrigerating cycle apparatus according to the fifth embodiment is operated intermittently. 実施の形態6に係る冷凍サイクル装置が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when the refrigeration cycle apparatus according to the sixth embodiment is in the first state. 図19中の矢印XX-XXから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow XX-XX in FIG. 実施の形態7に係る冷凍サイクル装置が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when the refrigeration cycle apparatus according to the seventh embodiment is in the first state. 図21中の矢印XXII-XXIIから視た概略断面図である。FIG. 2 is a schematic cross-sectional view seen from the arrow XXII-XXII in FIG. 21. 実施の形態1に係る冷凍サイクル装置の変形例が第1状態にあるときの第1熱交換器の伝熱管の概略断面図である。FIG. 5 is a schematic cross-sectional view of a heat transfer tube of a first heat exchanger when a modified example of the refrigeration cycle apparatus according to the first embodiment is in the first state. 図23中の矢印XXIV-XXIVから視た概略断面図である。It is a schematic cross-sectional view seen from the arrow XXIV-XXIV in FIG. 23.

以下、図面を参照して、本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts will be given the same reference number and the explanation will not be repeated.

実施の形態1.
<冷凍サイクル装置の構成>
図1に示されるように、実施の形態1に係る冷凍サイクル装置100は、圧縮機1、流路切替弁としての四方弁2、第1熱交換器3、第2熱交換器4および減圧部5を含み、冷媒が循環する冷機回路を備える。冷凍サイクル装置100は、四方弁2によって、第1熱交換器3が凝縮器として作用し、かつ第2熱交換器4が蒸発器として作用する第1状態と、第1熱交換器3が蒸発器として作用し、かつ第2熱交換器4が凝縮器として作用する第2状態とを切替可能に設けられている。上記第1状態において、冷媒は、方向F1に沿って、圧縮機1、第1熱交換器3、減圧部5、第2熱交換器4を順に流れる。上記第2状態において、冷媒は、方向F2に沿って、圧縮機1、第2熱交換器4、減圧部5、第1熱交換器3を順に流れる。第1熱交換器3は、例えば室内に配置された室内熱交換器である。第2熱交換器4は、例えば室外に配置された室外熱交換器である。この場合、上記第1状態は暖房運転時に実現され、上記第2状態は冷房運転時に実現される。
Embodiment 1.
<Configuration of refrigeration cycle equipment>
As shown in FIG. 1, the refrigeration cycle apparatus 100 according to the first embodiment includes a compressor 1, a four-way valve 2 as a flow path switching valve, a first heat exchanger 3, a second heat exchanger 4, and a pressure reducing unit. 5 is included, and a refrigerant machine circuit through which the refrigerant circulates is provided. In the refrigeration cycle device 100, the first state in which the first heat exchanger 3 acts as a condenser and the second heat exchanger 4 acts as an evaporator by the four-way valve 2 and the first heat exchanger 3 evaporate. It is provided so as to be switchable from the second state in which the second heat exchanger 4 acts as a vessel and acts as a condenser. In the first state, the refrigerant flows in the compressor 1, the first heat exchanger 3, the decompression unit 5, and the second heat exchanger 4 in order along the direction F1. In the second state, the refrigerant flows in the compressor 1, the second heat exchanger 4, the decompression unit 5, and the first heat exchanger 3 in order along the direction F2. The first heat exchanger 3 is, for example, an indoor heat exchanger arranged indoors. The second heat exchanger 4 is, for example, an outdoor heat exchanger arranged outdoors. In this case, the first state is realized during the heating operation, and the second state is realized during the cooling operation.

図1に示されるように、第1熱交換器3は、内部に冷媒が流れる複数の第1伝熱管6を有し、第1伝熱管6の内部を流れる冷媒と第1伝熱管6の外部を流れる例えば空気等の熱媒体とを熱交換させるためのものである。第1熱交換器3は、複数の第1伝熱管6と図示しないフィンとを含む熱交換部30と、分配器31と、分配器32とを含む。第1熱交換器3の複数の第1伝熱管6の各々は、例えば互いに同等の構成を有している。 As shown in FIG. 1, the first heat exchanger 3 has a plurality of first heat transfer tubes 6 through which the refrigerant flows, the refrigerant flowing inside the first heat transfer tube 6 and the outside of the first heat transfer tube 6. It is for exchanging heat with a heat medium such as air flowing through the water. The first heat exchanger 3 includes a heat exchanger 30 including a plurality of first heat transfer tubes 6 and fins (not shown), a distributor 31, and a distributor 32. Each of the plurality of first heat transfer tubes 6 of the first heat exchanger 3 has, for example, the same configuration as each other.

図1および図2に示されるように、第1熱交換器3の複数の第1伝熱管6の各々は、冷媒の流出入口が設けられている第1端部6Aと第2端部6Bとを有している。複数の第1伝熱管6の各第1端部6Aは、分配器31と接続されている。複数の第1伝熱管6の各第2端部6Bは、分配器32と接続されている。さらに、複数の第1伝熱管6の各々は、内周面6Cおよび外周面6Dを有している。冷媒は、第1熱交換器3において、各第1伝熱管6の内周面6Cに囲まれた領域を流通する。上記第1状態において、冷媒は、複数の第1伝熱管6の各々の第2端部6Bから第1端部6Aへと流れる過程で、ガス単相状態から気液2相状態を経て液単相状態まで凝縮する。上記第2状態において、冷媒は、複数の第1伝熱管6の各々の第1端部6Aから第2端部6Bへと流れる過程で、気液2相状態からガス単相状態に蒸発する。 As shown in FIGS. 1 and 2, each of the plurality of first heat transfer tubes 6 of the first heat exchanger 3 includes a first end portion 6A and a second end portion 6B provided with an outflow port for the refrigerant. have. Each first end portion 6A of the plurality of first heat transfer tubes 6 is connected to the distributor 31. Each second end portion 6B of the plurality of first heat transfer tubes 6 is connected to the distributor 32. Further, each of the plurality of first heat transfer tubes 6 has an inner peripheral surface 6C and an outer peripheral surface 6D. The refrigerant circulates in the first heat exchanger 3 in a region surrounded by the inner peripheral surface 6C of each first heat transfer tube 6. In the first state, the refrigerant flows from the second end 6B of each of the plurality of first heat transfer tubes 6 to the first end 6A, from the gas single-phase state to the gas-liquid two-phase state, and then to the liquid unit. Condenses to phase state. In the second state, the refrigerant evaporates from the gas-liquid two-phase state to the gas single-phase state in the process of flowing from the first end 6A to the second end 6B of each of the plurality of first heat transfer tubes 6.

図2に示されるように、第1熱交換器3の複数の第1伝熱管6の各々は、上記第1状態での冷媒の流通方向F1において第1伝熱管6の中間位置よりも上流側に位置する第3管部63、中間位置を含みかつ方向F1において第3管部63よりも下流側に位置する第4管部62、および方向F1において第4管部62よりも下流側に位置する第1管部61に区分することができる。第1管部61は、方向F1において第1伝熱管6の中間位置よりも下流側に位置する。第1伝熱管6内の冷媒の流通方向F1は、第1伝熱管6の軸線方向に沿っている。第1伝熱管6の軸線方向は、直線状に延びていてもよいし、蛇行していてもよい。第1伝熱管6を構成する材料は、例えば銅(Cu)を含む。 As shown in FIG. 2, each of the plurality of first heat transfer tubes 6 of the first heat exchanger 3 is on the upstream side of the intermediate position of the first heat transfer tube 6 in the refrigerant flow direction F1 in the first state. The third pipe portion 63 located in, the fourth pipe portion 62 including the intermediate position and located on the downstream side of the third pipe portion 63 in the direction F1, and the position on the downstream side of the fourth pipe portion 62 in the direction F1. It can be divided into the first pipe portion 61. The first tube portion 61 is located downstream of the intermediate position of the first heat transfer tube 6 in the direction F1. The flow direction F1 of the refrigerant in the first heat transfer tube 6 is along the axial direction of the first heat transfer tube 6. The axial direction of the first heat transfer tube 6 may extend linearly or may meander. The material constituting the first heat transfer tube 6 contains, for example, copper (Cu).

第1熱交換器3は、例えば複数の第1内容部材7を含む。各第1内容部材7は各第1管部61の内部に配置されている。各第1内容部材7は、例えば互いに同等の構成を有している。 The first heat exchanger 3 includes, for example, a plurality of first content members 7. Each first content member 7 is arranged inside each first pipe portion 61. Each first content member 7 has, for example, the same configuration as each other.

図2に示されるように、第1内容部材7は、第3端部7Aおよび第4端部7Bとを有している。第1内容部材7の第3端部7Aは、第4端部7Bよりも第1伝熱管6の第1端部6Aに近い位置に配置されている。第1管部61において第4管部62側に位置する端部は、第1内容部材7の第4端部7Bと、第1伝熱管6の軸線方向に垂直な同一断面上に配置される部分である。 As shown in FIG. 2, the first content member 7 has a third end portion 7A and a fourth end portion 7B. The third end portion 7A of the first content member 7 is arranged at a position closer to the first end portion 6A of the first heat transfer tube 6 than the fourth end portion 7B. The end portion of the first pipe portion 61 located on the side of the fourth pipe portion 62 is arranged on the same cross section perpendicular to the axial direction of the first heat transfer tube 6 as the fourth end portion 7B of the first content member 7. It is a part.

図2に示されるように、第1内容部材7は、外周面7Dを有している。外周面7Dの少なくとも一部は、第1管部61の内周面6Cと間隔を隔てて対向するように配置されている。第1管部61を流れる冷媒は、第1管部61の内周面6Cと第1内容部材7の外周面7Dとの間に挟まれた領域を流通する。第1管部61内には、例えば1つの冷媒流路のみが配置されている。上記軸線方向に垂直な断面上において、第1内容部材7の外周面7Dが成す形状は、例えば第1伝熱管6の内周面6Cが成す形状と相似である。第1内容部材7の外周面7Dが成す形状、および第1伝熱管6の内周面6Cが成す形状は、例えば円形である。 As shown in FIG. 2, the first content member 7 has an outer peripheral surface 7D. At least a part of the outer peripheral surface 7D is arranged so as to face the inner peripheral surface 6C of the first pipe portion 61 at a distance. The refrigerant flowing through the first pipe portion 61 flows through a region sandwiched between the inner peripheral surface 6C of the first pipe portion 61 and the outer peripheral surface 7D of the first content member 7. For example, only one refrigerant flow path is arranged in the first pipe portion 61. On the cross section perpendicular to the axial direction, the shape formed by the outer peripheral surface 7D of the first content member 7 is similar to the shape formed by, for example, the inner peripheral surface 6C of the first heat transfer tube 6. The shape formed by the outer peripheral surface 7D of the first content member 7 and the shape formed by the inner peripheral surface 6C of the first heat transfer tube 6 are, for example, circular.

上記軸線方向に垂直な断面上において、第1内容部材7の外周面の長さをE1、第1伝熱管6の内周面の長さをE2、および第1管部61の濡れ縁長さをSとしたときに、以下の関係式(5)が成立する。上記軸線方向に垂直な断面上において、第1管部61の内径をD1、第1管部61の流路断面積をA1、および第1管部61の等価直径をM1としたときに、上記関係式(1)が成立する。
1=E1+E2・・・(5)
図3に示されるように、第1管部61の等価直径M1は、上記第1状態および上記第2状態において以下の関係式(6)を満たす。好ましくは、第1管部61の等価直径M1は、上記第1状態および上記第2状態において上記関係式(2)を満たす。
1/2.5<M1・・・(6)
図2に示されるように、第1管部61は、冷凍サイクル装置100が上記第1状態にあるときに、液相冷媒が流通する部分を含む。第1管部61は、冷凍サイクル装置100が上記第2状態にあるときには、例えば気液2相冷媒が流通する部分を含む。第4管部62は、冷凍サイクル装置100が上記第1状態にあるときに、気液2相冷媒が流通する部分を含む。第3管部63は、冷凍サイクル装置100が上記第1状態にあるときに、気相冷媒が流通する部分を含む。なお、図2において、冷媒はその状態の変化を説明するために模式的に示されており、例えば第4管部62内の冷媒は単に気液2相状態であることが示されており、気液2相状態の冷媒の液相部と気相部との混合状態および流通状態を示すものではない。
On the cross section perpendicular to the axis direction, the length of the outer peripheral surface of the first content member 7 is E 1 , the length of the inner peripheral surface of the first heat transfer tube 6 is E 2 , and the length of the wet edge of the first tube portion 61. When S is S, the following relational expression (5) is established. When the inner diameter of the first pipe portion 61 is D 1 , the flow path cross-sectional area of the first pipe portion 61 is A 1 , and the equivalent diameter of the first pipe portion 61 is M 1 on the cross section perpendicular to the axial direction. The above relational expression (1) is established.
S 1 = E 1 + E 2 ... (5)
As shown in FIG. 3, the equivalent diameter M 1 of the first pipe portion 61 satisfies the following relational expression (6) in the first state and the second state. Preferably, the equivalent diameter M 1 of the first pipe portion 61 satisfies the relational expression (2) in the first state and the second state.
D 1 / 2.5 <M 1 ... (6)
As shown in FIG. 2, the first pipe portion 61 includes a portion through which the liquid phase refrigerant flows when the refrigeration cycle device 100 is in the first state. The first pipe portion 61 includes, for example, a portion through which a gas-liquid two-phase refrigerant flows when the refrigeration cycle device 100 is in the second state. The fourth pipe portion 62 includes a portion through which the gas-liquid two-phase refrigerant flows when the refrigeration cycle device 100 is in the first state. The third pipe portion 63 includes a portion through which the gas phase refrigerant flows when the refrigeration cycle device 100 is in the first state. In addition, in FIG. 2, the refrigerant is schematically shown for explaining the change in the state, for example, it is shown that the refrigerant in the fourth pipe portion 62 is simply in the gas-liquid two-phase state. It does not indicate the mixed state and the flow state of the liquid phase portion and the gas phase portion of the refrigerant in the gas-liquid two-phase state.

第1管部の軸線方向における第1内容部材7の長さL1は、第1伝熱管6の長さL2の半分以下である。第1伝熱管6の長さL2とは、第1伝熱管6の第1端部6Aと第2端部6Bとの間の上記軸線方向に沿った長さである。The length L 1 of the first content member 7 in the axial direction of the first tube portion is not more than half of the length L 2 of the first heat transfer tube 6. The length L 2 of the first heat transfer tube 6 is the length along the axial direction between the first end portion 6A and the second end portion 6B of the first heat transfer tube 6.

第1内容部材7は、第1伝熱管6の第1管部61に対し、任意の構成により上記軸線方向における位置のズレが制限されている。例えば、第1伝熱管6の軸線方向が蛇行しており、第1伝熱管6が図示しない屈曲部を有している場合、第1管部61は該屈曲部よりも上記流通方向F1の下流側に配置されている。例えば、第1伝熱管6の第1管部61と第4管部62との境界部は該屈曲部に連なるように設けられている。このようにすれば、第1内容部材7は、上記軸線方向において該屈曲部と第1端部6Aとの間に位置決めされる。 The position deviation of the first content member 7 in the axial direction is restricted by an arbitrary configuration with respect to the first pipe portion 61 of the first heat transfer tube 6. For example, when the axial direction of the first heat transfer tube 6 is meandering and the first heat transfer tube 6 has a bent portion (not shown), the first tube portion 61 is downstream of the bent portion in the distribution direction F1. It is placed on the side. For example, the boundary portion between the first tube portion 61 and the fourth tube portion 62 of the first heat transfer tube 6 is provided so as to be connected to the bent portion. In this way, the first content member 7 is positioned between the bent portion and the first end portion 6A in the axial direction.

第1内容部材7を構成する材料は、任意の材料であればよいが、例えば冷媒に対して第1伝熱管6を構成する材料と同等の耐食性を有する材料であり、例えば銅(Cu)、ゴム、およびプラスチックからなる群から選択される少なくとも1つを含む。 The material constituting the first content member 7 may be any material, but is, for example, a material having the same corrosion resistance as the material constituting the first heat transfer tube 6 with respect to the refrigerant, for example, copper (Cu). Includes at least one selected from the group consisting of rubber and plastic.

<作用効果>
冷凍サイクル装置100は、圧縮機1、四方弁2、第1熱交換器3、第2熱交換器4、および減圧部5を含み、冷媒が循環する冷媒回路を備える。冷媒回路は、第1熱交換器3が凝縮器、第2熱交換器4が蒸発器として作用する第1状態と、第2熱交換器4が凝縮器、第1熱交換器3が蒸発器として作用する第2状態とを切替可能に設けられている。第1熱交換器3は、内部に冷媒が流れる第1伝熱管6を含む。第1伝熱管6は、第1熱交換器3が凝縮器として作用するときの冷媒の流通方向において第1伝熱管6の中間位置よりも下流側に位置する第1管部61を有している。第1熱交換器3は、第1管部61の内部に配置された第1内容部材7をさらに含む。第1管部61の内径D1と、第1管部61の流路断面積A1および第1管部61の濡れ縁長さS1を用いて以下の関係式(1)から算出される等価直径M1とが、第1状態および第2状態において以下の関係式(2)を満たす。
1=4×A1/S1・・・(1)
1/2.5<M1<D1/1.5・・・(2)
上述のように、冷凍サイクル装置100が上記第1状態にあるときに、冷媒は、第1熱交換器3の第1伝熱管6の第3管部63、第4管部62、および第1管部61を順に流れる過程で凝縮し、ガス単相状態から気液2相状態を経て液単相状態となる。一方、冷凍サイクル装置100が上記第2状態にあるときに、冷媒は、第1熱交換器3の第1伝熱管6の第1管部61、第4管部62、および第3管部63を順に流れる過程で蒸発し、気液2相状態からガス単相状態となる。つまり、第1管部61を流れる冷媒は、上記第1状態では主に液単相状態にあり、上記第2状態では主に気液2相状態にある。また、上記第1状態および上記第2状態において、液単相状態の冷媒は、第1伝熱管6の第1管部61のみを流れ、第4管部62および第3管部63をほとんど流れない。
<Action effect>
The refrigerating cycle device 100 includes a compressor 1, a four-way valve 2, a first heat exchanger 3, a second heat exchanger 4, and a decompression unit 5, and includes a refrigerant circuit in which a refrigerant circulates. In the refrigerant circuit, the first state where the first heat exchanger 3 acts as a condenser and the second heat exchanger 4 acts as an evaporator, the second heat exchanger 4 is a condenser, and the first heat exchanger 3 is an evaporator. It is provided so as to be switchable from the second state that acts as. The first heat exchanger 3 includes a first heat transfer tube 6 through which a refrigerant flows. The first heat transfer tube 6 has a first tube portion 61 located on the downstream side of the intermediate position of the first heat transfer tube 6 in the flow direction of the refrigerant when the first heat exchanger 3 acts as a condenser. There is. The first heat exchanger 3 further includes a first content member 7 arranged inside the first pipe portion 61. Equivalence calculated from the following relational expression (1) using the inner diameter D 1 of the first pipe portion 61, the flow path cross-sectional area A 1 of the first pipe portion 61, and the wet edge length S 1 of the first pipe portion 61. The diameter M 1 satisfies the following relational expression (2) in the first state and the second state.
M 1 = 4 × A 1 / S 1 ... (1)
D 1 / 2.5 <M 1 <D 1 / 1.5 ... (2)
As described above, when the refrigeration cycle device 100 is in the first state, the refrigerant is the third tube portion 63, the fourth tube portion 62, and the first of the first heat transfer tube 6 of the first heat exchanger 3. It condenses in the process of flowing through the pipe portion 61 in order, and changes from a gas single-phase state to a liquid-liquid two-phase state to a liquid single-phase state. On the other hand, when the refrigeration cycle device 100 is in the second state, the refrigerant is the first pipe portion 61, the fourth pipe portion 62, and the third pipe portion 63 of the first heat transfer tube 6 of the first heat exchanger 3. Evaporates in the process of flowing in order, and changes from a gas-liquid two-phase state to a gas single-phase state. That is, the refrigerant flowing through the first pipe portion 61 is mainly in the liquid single-phase state in the first state, and is mainly in the gas-liquid two-phase state in the second state. Further, in the first state and the second state, the refrigerant in the liquid single-phase state flows only through the first pipe portion 61 of the first heat transfer tube 6, and almost flows through the fourth pipe portion 62 and the third pipe portion 63. do not have.

第1伝熱管6の第1管部61の流路断面積Aは、内部に第1内容部材7が配置されているため、内部に第1内容部材7が配置されていない第1伝熱管6の第4管部62および第3管部63の流路断面積と比べて小さい。そのため、液単相状態の冷媒が第1管部61を流れるときの当該冷媒の流速は、液単相状態の冷媒が第1内容部材7が配置されていない従来の伝熱管を流れるときの当該冷媒の流速と比べて、速い。その結果、上記第1状態における第1管部61の管内伝熱性能は、第1内容部材7が配置されていない従来の伝熱管の管内伝熱性能と比べて、高い。 In the flow path cross-sectional area A of the first pipe portion 61 of the first heat transfer tube 6, since the first content member 7 is arranged inside, the first heat transfer tube 6 in which the first content member 7 is not arranged inside. It is smaller than the flow path cross-sectional area of the 4th pipe portion 62 and the 3rd pipe portion 63. Therefore, the flow velocity of the refrigerant when the liquid single-phase state refrigerant flows through the first pipe portion 61 is the flow rate when the liquid single-phase state refrigerant flows through the conventional heat transfer tube in which the first content member 7 is not arranged. It is faster than the flow velocity of the refrigerant. As a result, the in-tube heat transfer performance of the first tube portion 61 in the first state is higher than the in-tube heat transfer performance of the conventional heat transfer tube in which the first content member 7 is not arranged.

また、上記特許文献1に記載の内挿体が設けられた熱交換器は、上記関係式(2)を満たさない。具体的には上記特許文献1の図9に示されているように、内挿体が挿入されている部分の等価直径Mrおよびその内径Drは、関係式Mr<Dr/2.5を満たす。Further, the heat exchanger provided with the interpolator described in Patent Document 1 does not satisfy the above relational expression (2). Specifically, as shown in FIG. 9 of Patent Document 1, the equivalent diameter M r of the portion where the interpolator is inserted and its inner diameter D r are the relational expression M r <D r / 2. Satisfy 5.

これに対し、第1管部61の等価直径Mが上記関係式(2)を満たすため、冷凍サイクル装置100の第1熱交換器3の期間効率は、上記関係式(2)を満たさない特許文献1の熱交換器と比べて、向上されている。図5は、第1管部61の等価直径Mと、上記第1状態での第1熱交換器3の熱交換性能(図5中の線分A)、上記第2状態での第1熱交換器3の熱交換性能(図5中の線分B)、および第1熱交換器3の期間効率(図5中の線分C)との関係を示すグラフである。図5の横軸は第1管部61の等価直径Mを示し、図5の縦軸は第1熱交換器3の熱交換性能および期間効率を示す。 On the other hand, since the equivalent diameter M of the first pipe portion 61 satisfies the above relational expression (2), the period efficiency of the first heat exchanger 3 of the refrigeration cycle apparatus 100 does not satisfy the above relational expression (2). It is improved as compared with the heat exchanger of Document 1. FIG. 5 shows the equivalent diameter M of the first pipe portion 61, the heat exchange performance of the first heat exchanger 3 in the first state (line segment A in FIG. 5), and the first heat in the second state. It is a graph which shows the relationship between the heat exchange performance of the exchanger 3 (line segment B in FIG. 5) and the period efficiency of the first heat exchanger 3 (line segment C in FIG. 5). The horizontal axis of FIG. 5 shows the equivalent diameter M of the first pipe portion 61, and the vertical axis of FIG. 5 shows the heat exchange performance and the period efficiency of the first heat exchanger 3.

図5に示されるように、第1管部61の等価直径M1がD1/2.5以下とされている場合、第1管部61の等価直径M1がD1/2.5超えとされている場合と比べて、第1熱交換器3の期間効率が大きく低下する。As shown in FIG. 5, when the equivalent diameter M 1 of the first pipe portion 61 is D 1 / 2.5 or less, the equivalent diameter M 1 of the first pipe portion 61 exceeds D 1 / 2.5. Compared with the case where it is said, the period efficiency of the first heat exchanger 3 is greatly reduced.

図5中の線分Bを参照して、第1管部61の等価直径M1がD1/2.5以下とされている場合、第1管部61の等価直径M1がD1/2.5超えとされている場合と比べて、上記第2状態において第1管部61を流れる気液2相状態の冷媒の圧力損失が顕著に増大し、上記第2状態での第1熱交換器3の熱交換性能が大きく低下する。一方で、図5中の線分Aを参照して、第1管部61の等価直径M1がD1/2.5以下とされている場合、第1管部61の等価直径M1がD1/2.5超えとされている場合と比べて、上記第1状態において第1管部61を流れる液単相状態の冷媒の速度は顕著に増加しないため、上記第1状態での第1熱交換器3の熱交換性能は大きく向上しない。以上の理由により、第1管部61の等価直径M1がD1/2.5超えとされている第1熱交換器3の期間効率は、内径Drの伝熱管における等価直径MrがDr/2.5未満である上記特許文献1の熱交換器の期間効率と比べて、大きく向上されている。With reference to the line B in FIG. 5, when the equivalent diameter M 1 of the first pipe portion 61 is D 1 / 2.5 or less, the equivalent diameter M 1 of the first pipe portion 61 is D 1 /. Compared with the case where it exceeds 2.5, the pressure loss of the refrigerant in the gas-liquid two-phase state flowing through the first pipe portion 61 in the second state is remarkably increased, and the first heat in the second state is increased. The heat exchange performance of the exchanger 3 is greatly reduced. On the other hand, referring to the line segment A in FIG. 5, when the equivalent diameter M 1 of the first pipe portion 61 is D 1 / 2.5 or less, the equivalent diameter M 1 of the first pipe portion 61 is Compared with the case where D 1 / 2.5 is exceeded, the speed of the liquid-single-phase refrigerant flowing through the first pipe portion 61 does not increase significantly in the first state, so that the first state in the first state is not significantly increased. 1 The heat exchange performance of the heat exchanger 3 is not significantly improved. For the above reasons, the period efficiency of the first heat exchanger 3 in which the equivalent diameter M 1 of the first tube portion 61 exceeds D 1 / 2.5 is such that the equivalent diameter M r in the heat transfer tube having the inner diameter Dr is D. Compared with the period efficiency of the heat exchanger of Patent Document 1 which is less than r / 2.5, it is greatly improved.

また、図5に示されるように、第1管部61の等価直径M1がD1/1.5以上とされている場合、第1管部61の等価直径M1がD1/1.5未満とされている場合と比べて、第1熱交換器3の期間効率が十分に向上されない。第1管部61の等価直径M1がD1/1.5以上とされている場合、第1管部61の等価直径M1がD1/1.5未満とされている場合と比べて、上記第2状態において第1管部61を流れる気液2相状態の冷媒の圧力損失は抑制される。しかし、第1管部61の等価直径M1がD1/1.5以上とされている場合、第1管部61の等価直径M1がD1/1.5未満とされている場合と比べて、上記第1状態で第1管部61を流れる液単相状態の冷媒の速度が十分に高速化されず、上記第1状態での第1熱交換器3の熱交換性能が十分に大きく向上されない。以上の理由により、第1管部61の等価直径M1がD1/1.5未満とされている第1熱交換器3の期間効率は、第1管部61の等価直径M1がD1/1.5以上とされる場合と比べて、大きく向上されている。Further, as shown in FIG. 5, when the equivalent diameter M 1 of the first pipe portion 61 is D 1 / 1.5 or more, the equivalent diameter M 1 of the first pipe portion 61 is D 1/1 . Compared with the case where it is less than 5, the period efficiency of the first heat exchanger 3 is not sufficiently improved. When the equivalent diameter M 1 of the first pipe portion 61 is D 1 / 1.5 or more, compared with the case where the equivalent diameter M 1 of the first pipe portion 61 is less than D 1 / 1.5. In the second state, the pressure loss of the refrigerant in the gas-liquid two-phase state flowing through the first pipe portion 61 is suppressed. However, when the equivalent diameter M 1 of the first pipe portion 61 is D 1 / 1.5 or more, and when the equivalent diameter M 1 of the first pipe portion 61 is less than D 1 / 1.5. In comparison, the speed of the liquid single-phase refrigerant flowing through the first pipe portion 61 in the first state is not sufficiently increased, and the heat exchange performance of the first heat exchanger 3 in the first state is sufficiently high. Not greatly improved. For the above reasons, the period efficiency of the first heat exchanger 3 in which the equivalent diameter M 1 of the first pipe portion 61 is less than D 1 / 1.5 is such that the equivalent diameter M 1 of the first pipe portion 61 is D. It is greatly improved compared to the case where it is 1 / 1.5 or more.

また、図6に示されるように、冷凍サイクル装置100は、第1管部61の等価直径M1がD1/2.5超えとされているため、第1管部61の等価直径M1がD1/2.5以下とされている場合と比べて、冷媒回路に封入された冷媒量を削減することができる。第1管部61の等価直径M1がD1/2.5超えとされているときの第1内容部材7の外周面の表面積は、第1管部61の等価直径M1がD1/2.5以下とされている場合の第1内容部材7の外周面の表面積と比べて、小さくなる。そのため、等価直径M1がD1/2.5超えとされている第1管部61の内部に滞留する冷媒量は、等価直径M1がD1/2.5以下とされている第1管部61の内部に滞留する冷媒量と比べて、少なくなる。その結果、冷凍サイクル装置100の上記冷媒回路に封入された冷媒量は、内径Drの伝熱管における等価直径MrがDr/2.5以下とされている上記特許文献1のそれと比べて、削減されることができる。なお、冷凍サイクル装置100の上記冷媒回路内を冷媒および油が循環する場合には、冷媒と同等の理由により、上記冷媒回路に封入された油の量も上記特許文献1のそれと比べて削減され得る。Further, as shown in FIG. 6, in the refrigeration cycle apparatus 100, since the equivalent diameter M 1 of the first pipe portion 61 exceeds D 1 / 2.5, the equivalent diameter M 1 of the first pipe portion 61 is set. The amount of the refrigerant enclosed in the refrigerant circuit can be reduced as compared with the case where the value is D 1 / 2.5 or less. When the equivalent diameter M 1 of the first pipe portion 61 exceeds D 1 / 2.5, the surface area of the outer peripheral surface of the first content member 7 is such that the equivalent diameter M 1 of the first pipe portion 61 is D 1 /. It is smaller than the surface area of the outer peripheral surface of the first content member 7 when the value is 2.5 or less. Therefore, the amount of refrigerant staying inside the first pipe portion 61 having an equivalent diameter M 1 exceeding D 1 / 2.5 is the first amount having an equivalent diameter M 1 of D 1 / 2.5 or less. The amount is smaller than the amount of the refrigerant staying inside the pipe portion 61. As a result, the amount of the refrigerant enclosed in the refrigerant circuit of the refrigeration cycle apparatus 100 is reduced as compared with that of Patent Document 1 in which the equivalent diameter Mr of the heat transfer tube having the inner diameter Dr is Dr / 2.5 or less. Can be done. When the refrigerant and the oil circulate in the refrigerant circuit of the refrigerating cycle device 100, the amount of oil sealed in the refrigerant circuit is also reduced as compared with that of Patent Document 1 for the same reason as the refrigerant. obtain.

また、冷凍サイクル装置100では、第1管部61内に1つの冷媒流路のみが配置されている。第1管部61内に複数の冷媒流路が配置されている場合、冷媒は複数の冷媒流路に分配される。この場合、複数の冷媒流路間での分配比率によっては、上記第2状態での第1伝熱管6の管内伝熱性能が悪化する。そのため、複数の冷媒流路間での分配比率は、気液2相状態の冷媒が第1管部61を流れる上記第2状態での第1伝熱管6の管内伝熱性能が悪化しないように、設定される必要がある。これに対し、冷凍サイクル装置100では、上記分配比率に起因して管内伝熱性能が悪化するという問題が生じない。 Further, in the refrigerating cycle device 100, only one refrigerant flow path is arranged in the first pipe portion 61. When a plurality of refrigerant flow paths are arranged in the first pipe portion 61, the refrigerant is distributed to the plurality of refrigerant flow paths. In this case, the in-tube heat transfer performance of the first heat transfer tube 6 in the second state deteriorates depending on the distribution ratio between the plurality of refrigerant flow paths. Therefore, the distribution ratio between the plurality of refrigerant flow paths is such that the heat transfer performance in the pipe of the first heat transfer tube 6 in the second state in which the refrigerant in the gas-liquid two-phase state flows through the first pipe portion 61 does not deteriorate. , Needs to be set. On the other hand, in the refrigeration cycle apparatus 100, there is no problem that the heat transfer performance in the pipe is deteriorated due to the distribution ratio.

なお、上記特許文献1の熱交換器には複数の突起部によって区分された複数の冷媒流路が配置されており、該熱交換器が蒸発器として作用する場合には内挿体の周囲には気液2相状態の冷媒が流れる。しかし、上記特許文献1の熱交換器では、気液2相状態の冷媒の分配比率が考慮されていない。そのため、第1熱交換器3が蒸発器として作用する場合の熱交換性能は、上記特許文献1の熱交換器のそれと比べて、向上されている。 The heat exchanger of Patent Document 1 is provided with a plurality of refrigerant flow paths separated by a plurality of protrusions, and when the heat exchanger acts as an evaporator, it is located around the insert. The refrigerant in the gas-liquid two-phase state flows. However, in the heat exchanger of Patent Document 1, the distribution ratio of the refrigerant in the gas-liquid two-phase state is not taken into consideration. Therefore, the heat exchange performance when the first heat exchanger 3 acts as an evaporator is improved as compared with that of the heat exchanger of Patent Document 1.

実施の形態2.
実施の形態2に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、第1管部61の軸線方向における第1内容部材7の長さL1(図6参照)が第1伝熱管6の長さL2(図6参照)の3分の1未満であることが特定されている点で異なる。
Embodiment 2.
The refrigerating cycle apparatus according to the second embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the length L of the first content member 7 in the axial direction of the first pipe portion 61. It differs in that 1 (see FIG. 6) is specified to be less than one-third of the length L 2 (see FIG. 6) of the first heat transfer tube 6.

第1内容部材7の長さL1が第1伝熱管6の長さL2の3分の1以上である場合、第1伝熱管6において液単相状態の冷媒が流れる部分を第1管部61内に制限することができる。一方で、この場合、上記第1状態において気液2相状態の冷媒が第1管部61の上流側を流れて、圧力損失が増大する可能性がある。When the length L 1 of the first content member 7 is one-third or more of the length L 2 of the first heat transfer tube 6, the portion of the first heat transfer tube 6 through which the liquid single-phase state refrigerant flows is the first tube. It can be limited to the inside of the unit 61. On the other hand, in this case, in the first state, the refrigerant in the gas-liquid two-phase state may flow on the upstream side of the first pipe portion 61, and the pressure loss may increase.

実施の形態2に係る冷凍サイクル装置は、第1内容部材7の長さL1が第1伝熱管6の長さL2の3分の1未満であるため、上記第1状態において気液2相状態の冷媒が第1管部61を流れることに伴う圧力損失の増大が抑制されている。In the refrigeration cycle apparatus according to the second embodiment, since the length L 1 of the first content member 7 is less than one-third of the length L 2 of the first heat transfer tube 6, the gas-liquid 2 in the first state is described above. The increase in pressure loss due to the flow of the refrigerant in the phase state through the first pipe portion 61 is suppressed.

また、実施の形態2に係る冷凍サイクル装置は、上記構成を除けば、実施の形態1に係る冷凍サイクル装置100と同様の構成を備えているため、冷凍サイクル装置100と同様の効果を奏することができる。 Further, since the refrigerating cycle apparatus according to the second embodiment has the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment except for the above configuration, it has the same effect as the refrigerating cycle apparatus 100. Can be done.

実施の形態3.
図7~図10に示されるように、実施の形態3に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、第1内容部材7に替えて第1内容部材71を備えている点で異なる。第1内容部材71は、第1内容部材71を構成する材料の熱膨張率が第1伝熱管6を構成する材料の熱膨張率よりも大きくされている点で、第1内容部材7と異なる。
Embodiment 3.
As shown in FIGS. 7 to 10, the refrigerating cycle apparatus according to the third embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but is replaced with the first content member 7. The first content member 71 is provided. The first content member 71 is different from the first content member 7 in that the thermal expansion rate of the material constituting the first content member 71 is larger than the thermal expansion rate of the material constituting the first heat transfer tube 6. ..

上記第1状態において、第1内容部材71は第1伝熱管6と比べて熱膨張する。さらに、上記第1状態において第1管部61を流れる液単相冷媒の温度(以下、第1温度)は、上記第2状態において第1管部61を流れる気液2相冷媒の温度(以下、第2温度)よりも高い。そのため、上記第1状態での第1内容部材71は、上記第2状態での第1内容部材71と比べて、熱膨張する。その結果、実施の形態3に係る冷凍サイクル装置では、上記第1状態での第1伝熱管6の第1管部61の流路断面積Aが、上記第2状態での第1伝熱管6の第1管部61の流路断面積Aと比べて、小さい。 In the first state, the first content member 71 thermally expands as compared with the first heat transfer tube 6. Further, the temperature of the liquid single-phase refrigerant flowing through the first pipe portion 61 in the first state (hereinafter referred to as the first temperature) is the temperature of the gas-liquid two-phase refrigerant flowing through the first pipe portion 61 in the second state (hereinafter referred to as the first temperature). , Second temperature). Therefore, the first content member 71 in the first state is thermally expanded as compared with the first content member 71 in the second state. As a result, in the refrigeration cycle apparatus according to the third embodiment, the flow path cross-sectional area A of the first pipe portion 61 of the first heat transfer tube 6 in the first state is the first heat transfer tube 6 in the second state. It is smaller than the flow path cross-sectional area A of the first pipe portion 61 of the above.

つまり、上記第1状態での第1伝熱管6の第1管部61の等価直径M3および上記第2状態での第1伝熱管6の第1管部61の等価直径M4はいずれも等価直径M1と同様に上記関係式(2)を満たすが、等価直径M3は等価直径M4と比べて小さくなる。つまり、実施の形態3に係る冷凍サイクル装置は、以下の関係式(7)を満たす。
1/2.5<M3<M4<D1/1.5・・・(7)
以上のように、実施の形態3に係る冷凍サイクル装置では、第1熱交換器3が凝縮器として作用するときの第1伝熱管6の第1管部61の等価直径M3が、第1熱交換器3が蒸発器として作用するときの第1伝熱管6の第1管部61の等価直径M4よりも小さい。そのため、実施の形態3に係る冷凍サイクル装置の期間効率は、実施の形態1に係る冷凍サイクル装置100の期間効率と比べて、向上されている。
That is, the equivalent diameter M 3 of the first tube portion 61 of the first heat transfer tube 6 in the first state and the equivalent diameter M 4 of the first tube portion 61 of the first heat transfer tube 6 in the second state are both. Similar to the equivalent diameter M 1 , the above relational expression (2) is satisfied, but the equivalent diameter M 3 is smaller than the equivalent diameter M 4 . That is, the refrigeration cycle apparatus according to the third embodiment satisfies the following relational expression (7).
D 1 / 2.5 <M 3 <M 4 <D 1 / 1.5 ... (7)
As described above, in the refrigeration cycle apparatus according to the third embodiment, the equivalent diameter M 3 of the first tube portion 61 of the first heat transfer tube 6 when the first heat exchanger 3 acts as a condenser is the first. It is smaller than the equivalent diameter M 4 of the first tube portion 61 of the first heat transfer tube 6 when the heat exchanger 3 acts as an evaporator. Therefore, the period efficiency of the refrigeration cycle apparatus according to the third embodiment is improved as compared with the period efficiency of the refrigeration cycle apparatus 100 according to the first embodiment.

例えば、上記第1状態における上記等価直径M 3 が冷凍サイクル装置100のそれと同等となるように第1内容部材71が設計されている場合、上記第2状態における上記等価直径M 4 は冷凍サイクル装置100のそれと比べて小さくなる。このような第1内容部材71を備える第1熱交換器3は、上記第1内容部材7を備える第1熱交換器3と比べて、上記第2状態において第1管部61での圧力損失が低減されているため熱交換性能が向上されている。 For example, when the first content member 71 is designed so that the equivalent diameter M 3 in the first state is equivalent to that of the refrigeration cycle device 100, the equivalent diameter M 4 in the second state is the refrigeration cycle device. It is smaller than that of 100. The first heat exchanger 3 including the first content member 71 has a pressure loss in the first pipe portion 61 in the second state as compared with the first heat exchanger 3 including the first content member 7. The heat exchange performance is improved because the heat exchange performance is reduced.

また、上記第2状態における上記等価直径M4が冷凍サイクル装置100のそれと同等となるように第1内容部材71が設計されている場合、上記第1状態における上記等価直径M 3 は冷凍サイクル装置100のそれと比べて大きくなる。このような第1内容部材71を備える第1熱交換器3は、上記第1内容部材7を備える第1熱交換器3と比べて、上記第1状態での液単相状態の冷媒の速度が速められている熱交換性能が向上されている。 Further, when the first content member 71 is designed so that the equivalent diameter M 4 in the second state is equivalent to that of the refrigeration cycle device 100, the equivalent diameter M 3 in the first state is the refrigeration cycle device. It will be larger than that of 100. The first heat exchanger 3 including the first content member 71 has a speed of the refrigerant in the liquid single-phase state in the first state as compared with the first heat exchanger 3 including the first content member 7. The heat exchange performance has been improved.

また、実施の形態3に係る冷凍サイクル装置は、上記構成を除けば、実施の形態1に係る冷凍サイクル装置100と同様の構成を備えているため、冷凍サイクル装置100と同様の効果を奏することができる。なお、実施の形態3に係る冷凍サイクル装置は、上記構成を除いて、実施の形態2に係る冷凍サイクル装置と同様の構成を備えていてもよい。 Further, since the refrigerating cycle apparatus according to the third embodiment has the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment except for the above configuration, it has the same effect as the refrigerating cycle apparatus 100. Can be done. The refrigerating cycle device according to the third embodiment may have the same configuration as the refrigerating cycle device according to the second embodiment, except for the above configuration.

実施の形態4.
図11~図14に示されるように、実施の形態4に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置100と基本的に同様の構成を備えるが、第1内容部材7に替えて第1内容部材72を備えている点で異なる。第1内容部材72は、第1内容部材72を構成する材料が形状記憶合金を含む点で、第1内容部材7と異なる。
Embodiment 4.
As shown in FIGS. 11 to 14, the refrigerating cycle apparatus according to the fourth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but is replaced with the first content member 7. The first content member 72 is provided. The first content member 72 is different from the first content member 7 in that the material constituting the first content member 72 contains a shape memory alloy.

第1内容部材72は、上記第1状態と上記第2状態との間で変形するように設けられている。第1内容部材72は、上記第1状態での第1伝熱管6の第1管部61の流路断面積Aが上記第2状態での第1伝熱管6の第1管部61の流路断面積Aと比べて小さくなるように、変形する。つまり、上記第1状態での第1伝熱管6の第1管部61の等価直径M3および上記第2状態での第1伝熱管6の第1管部61の等価直径M4はいずれも等価直径M1と同様に上記関係式(2)を満たすが、等価直径M3は等価直径M4と比べて小さくなる。The first content member 72 is provided so as to be deformed between the first state and the second state. In the first content member 72, the flow path cross-sectional area A of the first pipe portion 61 of the first heat transfer tube 6 in the first state is the flow of the first pipe portion 61 of the first heat transfer tube 6 in the second state. It is deformed so as to be smaller than the road cross-sectional area A. That is, the equivalent diameter M 3 of the first tube portion 61 of the first heat transfer tube 6 in the first state and the equivalent diameter M 4 of the first tube portion 61 of the first heat transfer tube 6 in the second state are both. Similar to the equivalent diameter M 1 , the above relational expression (2) is satisfied, but the equivalent diameter M 3 is smaller than the equivalent diameter M 4 .

上記第1状態において第1管部61を流れる液単相冷媒の温度(以下、第1温度)は、上記第2状態において第1管部61を流れる気液2相冷媒の温度(以下、第2温度)よりも高い。 The temperature of the liquid single-phase refrigerant flowing through the first pipe portion 61 in the first state (hereinafter referred to as the first temperature) is the temperature of the gas-liquid two-phase refrigerant flowing through the first pipe portion 61 in the second state (hereinafter referred to as the first temperature). 2 temperature) higher than.

第1内容部材72を構成する形状記憶合金の転移温度は、上記第1温度以下であって上記第2温度超えとされている。第1内容部材72の温度が上記転移温度未満であるときに、第1内容部材72は、例えば上記第2状態における気液2相状態の冷媒の圧力を受けて変形する。第1内容部材72の温度が上記転移温度以上であるときに、第1内容部材72は上記変形状態から復元される。 The transition temperature of the shape memory alloy constituting the first content member 72 is equal to or lower than the first temperature and exceeds the second temperature. When the temperature of the first content member 72 is lower than the transition temperature, the first content member 72 is deformed, for example, by receiving the pressure of the refrigerant in the gas-liquid two-phase state in the second state. When the temperature of the first content member 72 is equal to or higher than the transition temperature, the first content member 72 is restored from the deformed state.

このような実施の形態4に係る冷凍サイクル装置は、実施の形態3に係る冷凍サイクル装置と同様に、以下の関係式(7)を満たす。
D1/2.5<M3<M4<D1/1.5・・・(7)
以上のように、実施の形態4に係る冷凍サイクル装置では、第1熱交換器3が凝縮器として作用するときの第1伝熱管6の第1管部61の等価直径M 3 が、第1熱交換器3が蒸発器として作用するときの第1伝熱管6の第1管部61の等価直径M 4 よりも小さい。そのため、実施の形態4に係る冷凍サイクル装置の期間効率は、実施の形態1に係る冷凍サイクル装置100の期間効率と比べて、向上されている。
The refrigerating cycle apparatus according to the fourth embodiment satisfies the following relational expression (7) in the same manner as the refrigerating cycle apparatus according to the third embodiment.
D1 / 2.5 <M 3 <M 4 <D 1 / 1.5 ... (7)
As described above, in the refrigeration cycle apparatus according to the fourth embodiment, the equivalent diameter M 3 of the first tube portion 61 of the first heat transfer tube 6 when the first heat exchanger 3 acts as a condenser is the first. It is smaller than the equivalent diameter M 4 of the first tube portion 61 of the first heat transfer tube 6 when the heat exchanger 3 acts as an evaporator. Therefore, the period efficiency of the refrigeration cycle apparatus according to the fourth embodiment is improved as compared with the period efficiency of the refrigeration cycle apparatus 100 according to the first embodiment.

例えば、上記第1状態における上記等価直径M 3 が冷凍サイクル装置100のそれと同等となるように第1内容部材72が設計されている場合、上記第2状態における上記等価直径M 4 は冷凍サイクル装置100のそれと比べて小さくなる。このような第1内容部材72を備える第1熱交換器3は、上記第1内容部材7を備える第1熱交換器3と比べて、上記第2状態において第1管部61での圧力損失が低減されているため熱交換性能が向上されている。 For example, when the first content member 72 is designed so that the equivalent diameter M 3 in the first state is equivalent to that of the refrigeration cycle device 100, the equivalent diameter M 4 in the second state is the refrigeration cycle device. It is smaller than that of 100. The first heat exchanger 3 including the first content member 72 has a pressure loss in the first pipe portion 61 in the second state as compared with the first heat exchanger 3 including the first content member 7. The heat exchange performance is improved because the heat exchange performance is reduced.

また、上記第2状態における上記等価直径M 4 が冷凍サイクル装置100のそれと同等となるように第1内容部材72が設計されている場合、上記第1状態における上記等価直径M 3 は冷凍サイクル装置100のそれと比べて大きくなる。このような第1内容部材72を備える第1熱交換器3は、上記第1内容部材7を備える第1熱交換器3と比べて、上記第1状態での液単相状態の冷媒の速度が速められている熱交換性能が向上されている。 Further, when the first content member 72 is designed so that the equivalent diameter M 4 in the second state is equivalent to that of the refrigeration cycle device 100, the equivalent diameter M 3 in the first state is the refrigeration cycle device. It will be larger than that of 100. The first heat exchanger 3 including the first content member 72 has a speed of the refrigerant in the liquid single-phase state in the first state as compared with the first heat exchanger 3 including the first content member 7. The heat exchange performance has been improved.

また、実施の形態4に係る冷凍サイクル装置は、上記構成を除けば、実施の形態1に係る冷凍サイクル装置100と同様の構成を備えているため、冷凍サイクル装置100と同様の効果を奏することができる。なお、実施の形態4に係る冷凍サイクル装置は、上記構成を除いて、実施の形態2に係る冷凍サイクル装置と同様の構成を備えていてもよい。 Further, since the refrigerating cycle apparatus according to the fourth embodiment has the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment except for the above configuration, it has the same effect as the refrigerating cycle apparatus 100. Can be done. The refrigerating cycle device according to the fourth embodiment may have the same configuration as the refrigerating cycle device according to the second embodiment, except for the above configuration.

実施の形態5.
図15および図16に示されるように、実施の形態5に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置100と基本的に同等の構成を備えるが、第1内容部材7に替えて第1内容部材73を備えている点で異なる。第1内容部材73は、第1内容部材73を構成する材料の比熱が第1伝熱管6を構成する材料の比熱よりも大きい点で、第1内容部材7と異なる。
Embodiment 5.
As shown in FIGS. 15 and 16, the refrigerating cycle apparatus according to the fifth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but is replaced with the first content member 7. The first content member 73 is provided. The first content member 73 differs from the first content member 7 in that the specific heat of the material constituting the first content member 73 is larger than the specific heat of the material constituting the first heat transfer tube 6.

第1内容部材73を構成する材料は、例えばアルミニウム(Al)を含む。第1内容部材73の熱容量は、例えば第1管部61の熱容量と比べて大きい。第1内部部材73は、単一の材料で構成されていてもよいし、複数の材料で構成されていてもよい。第1内部部材73を構成する材料は、第1伝熱管6を構成する材料と同等の比熱を有する材料と、当該材料よりも比熱が大きい材料とを含んでいてもよい。第1内容部材73を構成する材料は、例えば銅(Cu)と、Cuよりも比熱が大きい任意の材料とを含んでいてもよい。また、第1内容部材73は、外部と区画された内部空間が設けられた外郭部材と、該内部空間に充填された充填部材とによって構成されていてもよい。この場合、外郭部材を構成する材料はCuを含み、充填部材を構成する材料はCuよりも比熱が大きい任意の材料、例えば油および水の少なくともいずれかを含んでいてもよい。 The material constituting the first content member 73 includes, for example, aluminum (Al). The heat capacity of the first content member 73 is larger than, for example, the heat capacity of the first pipe portion 61. The first internal member 73 may be made of a single material or may be made of a plurality of materials. The material constituting the first internal member 73 may include a material having a specific heat equivalent to that of the material constituting the first heat transfer tube 6 and a material having a higher specific heat than the material. The material constituting the first content member 73 may include, for example, copper (Cu) and any material having a specific heat higher than that of Cu. Further, the first content member 73 may be composed of an outer shell member provided with an internal space partitioned from the outside, and a filling member filled in the internal space. In this case, the material constituting the outer member may contain Cu, and the material constituting the filling member may contain any material having a specific heat higher than that of Cu, for example, at least one of oil and water.

図17および図18(a),(b)に示されるように、実施の形態5に係る冷凍サイクル装置は、上記第1状態において断続運転可能に設けられている。断続運転とは、圧縮機1が駆動している状態と圧縮機1が停止している状態とが交互に切替えられる運転である。以下、冷凍サイクル装置が上記第1状態として暖房運転を行う場合を例に、上記第1状態での断続運転の制御フローの一例を説明する。 As shown in FIGS. 17 and 18 (a) and 18 (b), the refrigeration cycle apparatus according to the fifth embodiment is provided so as to be able to operate intermittently in the first state. The intermittent operation is an operation in which the state in which the compressor 1 is driven and the state in which the compressor 1 is stopped are alternately switched. Hereinafter, an example of the control flow of the intermittent operation in the first state will be described by taking the case where the refrigeration cycle device performs the heating operation as the first state.

実施の形態5に係る冷凍サイクル装置は、断続運転が開始されると、例えば室内の温度が目標設定温度以上となるまで圧縮機1が駆動し、上記第1状態が維持される。その後、室内の温度が目標設定温度以上となったことが確認されると、圧縮機1が停止され、冷媒回路内での冷媒の循環も停止する。このとき、第1熱交換器3において冷媒と熱交換される熱媒体が空気等である場合には、第1熱交換器3に空気を供給するためのファンは引き続き駆動される。また、上記熱媒体がブレイン等である場合には、第1熱交換器3にブレインを供給するためのポンプは引き続き駆動される。圧縮機1の停止時間はカウントされる。圧縮機1の停止時間が設定時間以上とされるまで、ファンまたはポンプは駆動される。その後、圧縮機1の停止時間が設定時間以上となったことが確認されると、ファンまたはポンプは停止される。その後、室内の温度が目標設定温度未満となったことが確認されると、圧縮機1、およびファンまたはポンプの駆動が再開される。 In the refrigeration cycle apparatus according to the fifth embodiment, when the intermittent operation is started, for example, the compressor 1 is driven until the temperature in the room becomes equal to or higher than the target set temperature, and the first state is maintained. After that, when it is confirmed that the temperature in the room becomes equal to or higher than the target set temperature, the compressor 1 is stopped, and the circulation of the refrigerant in the refrigerant circuit is also stopped. At this time, if the heat medium that exchanges heat with the refrigerant in the first heat exchanger 3 is air or the like, the fan for supplying air to the first heat exchanger 3 is continuously driven. Further, when the heat medium is a brain or the like, the pump for supplying the brain to the first heat exchanger 3 is continuously driven. The downtime of the compressor 1 is counted. The fan or pump is driven until the stop time of the compressor 1 is equal to or longer than the set time. After that, when it is confirmed that the stop time of the compressor 1 exceeds the set time, the fan or the pump is stopped. After that, when it is confirmed that the temperature in the room is lower than the target set temperature, the operation of the compressor 1 and the fan or the pump is restarted.

このような断続運転が行われる場合、圧縮機1の周波数は図18(a)に示されるように制御される。また、このような断続運転が行われた結果、室内の温度は図18(b)に示されるように変化する。図18(a)および(b)において、線分Dは実施の形態5に係る冷凍サイクル装置での断続運転状態を示し、線分Eは室内の温度が目標設定温度以上となったことが確認されたときに圧縮機およびファンまたはポンプが同時に駆動停止される従来の冷凍サイクル装置での断続運転状態を示す。 When such intermittent operation is performed, the frequency of the compressor 1 is controlled as shown in FIG. 18 (a). Further, as a result of such intermittent operation, the temperature in the room changes as shown in FIG. 18 (b). In FIGS. 18A and 18B, the line segment D shows the intermittent operation state in the refrigerating cycle apparatus according to the fifth embodiment, and it is confirmed that the indoor temperature of the line segment E is equal to or higher than the target set temperature. The intermittent operation state in the conventional refrigeration cycle apparatus in which the compressor and the fan or the pump are simultaneously deactivated when the compressor is operated is shown.

図18(a)および(b)に示されるように、実施の形態5に係る冷凍サイクル装置では、従来の冷凍サイクル装置と比べて、圧縮機1の運転回数を減らしながらも、室内の温度低下が抑制されている。従来の冷凍サイクル装置では、室内熱交換器の伝熱管の熱量、および圧縮機が駆動停止されて該伝熱管の内部に滞留することになった冷媒の熱量は、該伝熱管の外部に存在する熱媒体との熱交換により、比較的速やかに失われる。その結果、圧縮機の駆動停止後の室内の温度は、比較的速やかに目標設定温度未満に低下する。 As shown in FIGS. 18A and 18B, in the refrigerating cycle apparatus according to the fifth embodiment, the temperature in the room is lowered while reducing the number of operations of the compressor 1 as compared with the conventional refrigerating cycle apparatus. Is suppressed. In the conventional refrigeration cycle device, the heat amount of the heat transfer tube of the indoor heat exchanger and the heat amount of the refrigerant that has been stopped driving and staying inside the heat transfer tube exist outside the heat transfer tube. It is lost relatively quickly due to heat exchange with the heat medium. As a result, the temperature in the room after the drive of the compressor is stopped drops to less than the target set temperature relatively quickly.

これに対し、実施の形態5に係る冷凍サイクル装置では、圧縮機1が駆動されている間、第1管部61を流れる冷媒の熱量の一部が第1内容部材73に蓄積される。そのため、圧縮機1が駆動停止されたときにも、第1伝熱管6および第1伝熱管6の内部に滞留することになった冷媒は、第1内容部材73から熱量の供給を受けることができる。これにより、実施の形態5に係る冷凍サイクル装置では、上記従来の冷凍サイクル装置と比べて、断続運転時の室内の温度の低下が緩やかに進行するため、断続運転時の快適性が向上されている。 On the other hand, in the refrigerating cycle apparatus according to the fifth embodiment, a part of the heat amount of the refrigerant flowing through the first pipe portion 61 is accumulated in the first content member 73 while the compressor 1 is being driven. Therefore, even when the compressor 1 is stopped, the refrigerant that has accumulated inside the first heat transfer tube 6 and the first heat transfer tube 6 may be supplied with a heat amount from the first content member 73. can. As a result, in the refrigerating cycle apparatus according to the fifth embodiment, the temperature in the room during the intermittent operation gradually decreases as compared with the conventional refrigerating cycle apparatus, so that the comfort during the intermittent operation is improved. There is.

さらに、実施の形態5に係る冷凍サイクル装置では、上記従来の冷凍サイクル装置と比べて、圧縮機1の停止時間を長くすることができるため、所定時間内での圧縮機1の駆動回数を減らすことができる。その結果、実施の形態5に係る冷凍サイクル装置は、上記従来の冷凍サイクル装置と比べて、消費電力を削減することができ、さらに圧縮機1の負荷を軽減することができるため、高い信頼性を有している。 Further, in the refrigerating cycle apparatus according to the fifth embodiment, the down time of the compressor 1 can be lengthened as compared with the conventional refrigerating cycle apparatus, so that the number of times the compressor 1 is driven within a predetermined time is reduced. be able to. As a result, the refrigerating cycle apparatus according to the fifth embodiment can reduce power consumption and further reduce the load on the compressor 1 as compared with the conventional refrigerating cycle apparatus, and therefore has high reliability. have.

また、実施の形態5に係る冷凍サイクル装置は、上記構成を除けば、実施の形態1に係る冷凍サイクル装置100と同様の構成を備えているため、冷凍サイクル装置100と同様の効果を奏することができる。なお、実施の形態5に係る冷凍サイクル装置は、上記構成を除いて、実施の形態2~4に係る冷凍サイクル装置のいずれかと同様の構成を備えていてもよい。 Further, since the refrigerating cycle apparatus according to the fifth embodiment has the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment except for the above configuration, it has the same effect as the refrigerating cycle apparatus 100. Can be done. The refrigerating cycle device according to the fifth embodiment may have the same configuration as any of the refrigerating cycle devices according to the second to fourth embodiments, except for the above configuration.

実施の形態6.
図19および図20に示されるように、実施の形態6に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置100と基本的に同等の構成を備えるが、第1管部61が第1内容部材7の外周面7Dと対向する内周面6Cに対して突出している複数の凸部64を有している点で異なる。
Embodiment 6.
As shown in FIGS. 19 and 20, the refrigerating cycle apparatus according to the sixth embodiment has basically the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment, but the first pipe portion 61 is the first. 1 It differs in that it has a plurality of convex portions 64 protruding from the inner peripheral surface 6C facing the outer peripheral surface 7D of the content member 7.

複数の凸部64は、上記軸線方向に沿って延在している。複数の凸部64の各々は、上記軸線方向において第1端部6A側に位置する第5端部64Aと、第2端部6B側に位置する第6端部64Bとを有している。第6端部64Bおよび第1内容部材7の第4端部7Bは、上記軸線方向に垂直な同一断面上に配置されている。 The plurality of convex portions 64 extend along the axial direction. Each of the plurality of convex portions 64 has a fifth end portion 64A located on the first end portion 6A side and a sixth end portion 64B located on the second end portion 6B side in the axial direction. The sixth end portion 64B and the fourth end portion 7B of the first content member 7 are arranged on the same cross section perpendicular to the axial direction.

複数の凸部64は、上記軸線方向に対する周方向に互いに間隔を隔てて配置されている。上記周方向に互いに間隔を隔てて配置されている凸部64の数は、2以上の任意の数であればよいが、例えば5つである。複数の凸部64の各々は、例えば互いに同等の構成を有している。複数の凸部64は、第1管部61に固定されている。複数の凸部64を構成する材料は、任意の材料であればよいが、例えば冷媒に対して第1伝熱管6を構成する材料と同等の耐食性を有する材料であり、例えば銅(Cu)、ゴム、およびプラスチックからなる群から選択される少なくとも1つを含む。 The plurality of convex portions 64 are arranged so as to be spaced apart from each other in the circumferential direction with respect to the axial direction. The number of the convex portions 64 arranged at intervals from each other in the circumferential direction may be any number of 2 or more, but is, for example, 5. Each of the plurality of convex portions 64 has, for example, the same configuration as each other. The plurality of convex portions 64 are fixed to the first pipe portion 61. The material constituting the plurality of convex portions 64 may be any material, but is, for example, a material having the same corrosion resistance as the material constituting the first heat transfer tube 6 with respect to the refrigerant, for example, copper (Cu). Includes at least one selected from the group consisting of rubber and plastic.

複数の凸部64は、第1内容部材7の外周面7Dと接触している。複数の凸部64は、外周面7Dと第1管部61の内周面6Cとが間隔を隔てて配置された状態を保持するように、設けられている。複数の凸部64は、第1管部61と第1内容部材7とが同軸上に配置されるように設けられている。言い換えると、複数の凸部64は、第1管部61の軸線と第1内容部材7の軸線とが重なるように設けられている。第1内容部材7は、複数の凸部64によって、第1管部61に対する上記軸線方向に垂直な方向への位置ズレが抑制されている。第1内容部材7は、複数の凸部64によって、例えば第1管部61に対する上記軸線方向への位置ズレも抑制されている。 The plurality of convex portions 64 are in contact with the outer peripheral surface 7D of the first content member 7. The plurality of convex portions 64 are provided so as to maintain a state in which the outer peripheral surface 7D and the inner peripheral surface 6C of the first pipe portion 61 are arranged at intervals. The plurality of convex portions 64 are provided so that the first pipe portion 61 and the first content member 7 are arranged coaxially. In other words, the plurality of convex portions 64 are provided so that the axis of the first pipe portion 61 and the axis of the first content member 7 overlap each other. The first content member 7 is suppressed from being displaced in the direction perpendicular to the axial direction with respect to the first pipe portion 61 by the plurality of convex portions 64. The first content member 7 is also suppressed from being displaced in the axial direction with respect to, for example, the first pipe portion 61 by the plurality of convex portions 64.

上記第2状態において第1管部61を流れる気液2相状態の冷媒が複数の凸部64によって分配されることに伴う第1熱交換器3の熱交換性能の低下を抑制可能なように、複数の凸部64による気液2相状態の冷媒の分配比率が適切に設計される。 In the second state, the deterioration of the heat exchange performance of the first heat exchanger 3 due to the distribution of the refrigerant in the gas-liquid two-phase state flowing through the first pipe portion 61 by the plurality of convex portions 64 can be suppressed. , The distribution ratio of the refrigerant in the gas-liquid two-phase state by the plurality of protrusions 64 is appropriately designed.

複数の凸部64の上記軸線方向に垂直な断面積、すなわち各凸部64の上記軸線方向に垂直な断面積の合計値は、第1内容部材7の上記軸線方向に垂直な断面積未満である。 The total cross-sectional area of the plurality of convex portions 64 perpendicular to the axial direction, that is, the total cross-sectional area of each convex portion 64 perpendicular to the axial direction is less than the cross-sectional area perpendicular to the axial direction of the first content member 7. be.

このような実施の形態6に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置と同様に、上記関係式(2)を満たす。なお、内径D1が同等とされ、かつ第1内容部材7の構成が同等とされた実施の形態6に係る第1管部61と実施の形態1に係る第1管部61とを比較すると、実施の形態6に係る第1管部61の流路断面積Aが実施の形態1に係る第1管部61の流路断面積Aと比べて小さくなるため、実施の形態6に係る第1管部61の等価直径M1は実施の形態1に係る第1管部61の等価直径M1と比べて小さくなる。The refrigerating cycle apparatus according to the sixth embodiment satisfies the above relational expression (2) in the same manner as the refrigerating cycle apparatus according to the first embodiment. A comparison of the first pipe portion 61 according to the sixth embodiment and the first pipe portion 61 according to the first embodiment, in which the inner diameter D 1 is the same and the configuration of the first content member 7 is the same, is compared. The flow path cross-sectional area A of the first pipe portion 61 according to the sixth embodiment is smaller than the flow path cross-sectional area A of the first pipe portion 61 according to the first embodiment. The equivalent diameter M 1 of the one pipe portion 61 is smaller than the equivalent diameter M 1 of the first pipe portion 61 according to the first embodiment.

実施の形態6に係る冷凍サイクル装置では、複数の凸部64により外周面7Dと第1管部61の内周面6Cとが互いに間隔を隔てて配置された状態で保持されるため、冷媒の脈動による第1内容部材7の振動が抑制されている。その結果、実施の形態6に係る冷凍サイクル装置では、実施の形態1に係る冷凍サイクル装置100と比べて、第1内容部材7の振動に伴う騒音の発生が抑制されており、快適性が向上されている。 In the refrigerating cycle apparatus according to the sixth embodiment, the outer peripheral surface 7D and the inner peripheral surface 6C of the first pipe portion 61 are held in a state of being spaced apart from each other by the plurality of convex portions 64, so that the refrigerant can be used. The vibration of the first content member 7 due to the pulsation is suppressed. As a result, in the refrigerating cycle apparatus according to the sixth embodiment, the generation of noise due to the vibration of the first content member 7 is suppressed as compared with the refrigerating cycle apparatus 100 according to the first embodiment, and the comfort is improved. Has been done.

また、複数の凸部64により第1内容部材7の外周面7Dと第1管部61の内周面6Cとの接触が防止されているため、第1管部61の内周面6Cにおける伝熱面積の減少が抑制されている。 Further, since the plurality of convex portions 64 prevent the outer peripheral surface 7D of the first content member 7 from coming into contact with the inner peripheral surface 6C of the first pipe portion 61, the transmission on the inner peripheral surface 6C of the first pipe portion 61 is prevented. The decrease in heat area is suppressed.

また、実施の形態6に係る冷凍サイクル装置は、上記構成を除けば、実施の形態1に係る冷凍サイクル装置100と同様の構成を備えているため、冷凍サイクル装置100と同様の効果を奏することができる。なお、実施の形態6に係る冷凍サイクル装置は、上記構成を除いて、実施の形態2~5に係る冷凍サイクル装置のいずれかと同様の構成を備えていてもよい。 Further, since the refrigerating cycle apparatus according to the sixth embodiment has the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment except for the above configuration, it has the same effect as the refrigerating cycle apparatus 100. Can be done. The refrigerating cycle device according to the sixth embodiment may have the same configuration as any of the refrigerating cycle devices according to the second to fifth embodiments, except for the above configuration.

図19および図20に示されるように、第1管部61の内周面6Cには、複数の溝部が配置されていてもよい。複数の溝部は、上記周方向に互いに間隔を隔てて配置されている。上記周方向において隣り合う2つの溝部間には、溝部の底部に対して凸状に設けられた複数の微小凸部65または複数の凸部64が配置されている。つまり、各凸部64は、上記周方向において隣り合う2つの溝部間に配置されている。上記軸線方向に垂直な断面において、各微小凸部65の先端部は、例えば2つの曲面が鋭角を成して交わる交点を有している。内周面6Cに対する各凸部64の高さは、内周面6Cに対する各微小凸部65の高さよりも高い。上記周方向に互いに間隔を隔てて配置されている微小凸部65の数は、2以上の任意の数であればよいが、例えば複数の凸部64の数超えである。複数の微小凸部65の各々は、例えば互いに同等の構成を有している。 As shown in FIGS. 19 and 20, a plurality of grooves may be arranged on the inner peripheral surface 6C of the first pipe portion 61. The plurality of grooves are arranged so as to be spaced apart from each other in the circumferential direction. Between the two adjacent grooves in the circumferential direction, a plurality of micro-convex portions 65 or a plurality of convex portions 64 provided in a convex shape with respect to the bottom portion of the groove portions are arranged. That is, each convex portion 64 is arranged between two adjacent groove portions in the circumferential direction. In the cross section perpendicular to the axial direction, the tip of each minute convex portion 65 has, for example, an intersection where two curved surfaces intersect at an acute angle. The height of each convex portion 64 with respect to the inner peripheral surface 6C is higher than the height of each minute convex portion 65 with respect to the inner peripheral surface 6C. The number of the minute convex portions 65 arranged at intervals in the circumferential direction may be any number of two or more, but is, for example, more than the number of the plurality of convex portions 64. Each of the plurality of micro-convex portions 65 has, for example, the same configuration as each other.

第1管部61に上記のような複数の微小凸部65が設けられている場合、複数の微小凸部65が設けられていない場合と比べて、第1管部61の内周面6Cにおける伝熱面積が増大しているため、第1熱交換器3の熱交換性能が向上されている。 When the first pipe portion 61 is provided with the plurality of micro-convex portions 65 as described above, the inner peripheral surface 6C of the first pipe portion 61 is compared with the case where the plurality of micro-convex portions 65 are not provided. Since the heat transfer area is increased, the heat exchange performance of the first heat exchanger 3 is improved.

実施の形態7.
図21および図22に示されるように、実施の形態7に係る冷凍サイクル装置は、実施の形態6に係る冷凍サイクル装置と基本的に同等の構成を備えるが、複数の凸部64が上記軸線方向に互いに間隔を隔てて配置されている点で異なる。つまり、複数の凸部64は、上記軸線方向に対する周方向に互いに間隔を隔てて配置されているとともに、上記軸線方向においても互いに間隔を隔てて配置されている。
Embodiment 7.
As shown in FIGS. 21 and 22, the refrigerating cycle apparatus according to the seventh embodiment has basically the same configuration as the refrigerating cycle apparatus according to the sixth embodiment, but the plurality of convex portions 64 have the above-mentioned axis lines. It differs in that they are spaced apart from each other in the direction. That is, the plurality of convex portions 64 are arranged at intervals from each other in the circumferential direction with respect to the axial direction, and are also arranged at intervals from each other in the axial direction.

上記軸線方向に互いに間隔を隔てて配置されている凸部64の数は、2以上の任意の数であればよいが、例えば3つである。複数の凸部64の各々は、例えば互いに同等の構成を有している。 The number of the convex portions 64 arranged at intervals in the axial direction may be any number of 2 or more, but is, for example, 3. Each of the plurality of convex portions 64 has, for example, the same configuration as each other.

このような実施の形態7に係る冷凍サイクル装置は、実施の形態1に係る冷凍サイクル装置と同様に、上記関係式(2)を満たす。 The refrigerating cycle apparatus according to the seventh embodiment satisfies the above relational expression (2) in the same manner as the refrigerating cycle apparatus according to the first embodiment.

実施の形態7に係る冷凍サイクル装置では、複数の凸部64が上記軸線方向に互いに間隔を隔てて配置されているため、実施の形態6に係る冷凍サイクル装置と比べて、複数の凸部64に起因した圧力損失の発生が抑制されている。その結果、実施の形態7に係る冷凍サイクル装置では、実施の形態6に係る冷凍サイクル装置と比べて、上記第2状態での第1熱交換器3の熱交換性能が向上されており、期間効率が向上されている。 In the refrigerating cycle apparatus according to the seventh embodiment, since the plurality of convex portions 64 are arranged at intervals in the axial direction, the plurality of convex portions 64 are arranged as compared with the refrigerating cycle apparatus according to the sixth embodiment. The occurrence of pressure loss due to the above is suppressed. As a result, in the refrigerating cycle apparatus according to the seventh embodiment, the heat exchange performance of the first heat exchanger 3 in the second state is improved as compared with the refrigerating cycle apparatus according to the sixth embodiment. Efficiency has been improved.

また、実施の形態7に係る冷凍サイクル装置は、上記構成を除けば、実施の形態1に係る冷凍サイクル装置100と同様の構成を備えているため、冷凍サイクル装置100と同様の効果を奏することができる。なお、実施の形態7に係る冷凍サイクル装置は、上記構成を除いて、実施の形態2~5に係る冷凍サイクル装置のいずれかと同様の構成を備えていてもよい。 Further, since the refrigerating cycle apparatus according to the seventh embodiment has the same configuration as the refrigerating cycle apparatus 100 according to the first embodiment except for the above configuration, it has the same effect as the refrigerating cycle apparatus 100. Can be done. The refrigerating cycle device according to the seventh embodiment may have the same configuration as any of the refrigerating cycle devices according to the second to fifth embodiments, except for the above configuration.

<変形例>
実施の形態1~7に係る冷凍サイクル装置では、第1熱交換器3が第1内容部材7,71,72,73を含んでいるが、第2熱交換器4も第1内容部材7,71,72,73のいずれかと同様の構成を備える第2内容部材を含んでいてもよい。なお図23は、第2熱交換器4が第1内容部材7と同様の構成を備えている第2内容部材9を含んでいる構成を示している。
<Modification example>
In the refrigeration cycle apparatus according to the first to seventh embodiments, the first heat exchanger 3 includes the first content member 7, 71, 72, 73, but the second heat exchanger 4 also includes the first content member 7, A second content member having the same configuration as any of 71, 72, and 73 may be included. Note that FIG. 23 shows a configuration in which the second heat exchanger 4 includes a second content member 9 having the same configuration as the first content member 7.

図23および図24に示されるように、第2熱交換器4は、第1熱交換器3の第1伝熱管6と同様の構成を備えた複数の第2伝熱管8を有している。第2伝熱管8の各々は、上記第2状態での冷媒の流通方向F2において第2伝熱管8の中間位置よりも上流側に位置する第5管部83、第2伝熱管8の中間位置を含みかつ方向F2において第5管部83よりも下流側に位置する第6管部82、および方向F2において第6管部82よりも下流側に位置する第2管部81に区分することができる。第2伝熱管の第2管部81は、第2熱交換器4が凝縮器として作用するときの冷媒の流通方向F2において第2伝熱管8の中間位置よりも下流側に位置する部分である。第2伝熱管の第2管部81は第1伝熱管6の第1管部61に対応し、第2伝熱管8の第6管部82は第1伝熱管6の第4管部62に対応し、第2伝熱管8の第5管部83は第1伝熱管6の第3管部63に対応する。第2伝熱管8の第2管部81は、上記冷凍サイクル装置が上記第2状態にあるときに、液相冷媒が流通する部分を含む。第2伝熱管8の第2管部81は、冷凍サイクル装置が上記第1状態にあるときには、例えば気液2相冷媒が流通する部分を含む。 As shown in FIGS. 23 and 24, the second heat exchanger 4 has a plurality of second heat transfer tubes 8 having the same configuration as the first heat transfer tube 6 of the first heat exchanger 3. .. Each of the second heat transfer tubes 8 is located at an intermediate position between the fifth tube portion 83 and the second heat transfer tube 8 located upstream of the intermediate position of the second heat transfer tube 8 in the refrigerant flow direction F2 in the second state. And can be divided into a sixth pipe portion 82 located downstream of the fifth pipe portion 83 in the direction F2 and a second pipe portion 81 located downstream of the sixth pipe portion 82 in the direction F2. can. The second pipe portion 81 of the second heat transfer tube is a portion located on the downstream side of the intermediate position of the second heat transfer tube 8 in the refrigerant flow direction F2 when the second heat exchanger 4 acts as a condenser. .. The second tube portion 81 of the second heat transfer tube corresponds to the first tube portion 61 of the first heat transfer tube 6, and the sixth tube portion 82 of the second heat transfer tube 8 is connected to the fourth tube portion 62 of the first heat transfer tube 6. Correspondingly, the fifth tube portion 83 of the second heat transfer tube 8 corresponds to the third tube portion 63 of the first heat transfer tube 6. The second pipe portion 81 of the second heat transfer tube 8 includes a portion through which the liquid phase refrigerant flows when the refrigeration cycle device is in the second state. The second pipe portion 81 of the second heat transfer tube 8 includes, for example, a portion through which a gas-liquid two-phase refrigerant flows when the refrigeration cycle device is in the first state.

第2熱交換器4が複数の第2内容部材9を含んでいる場合、各第2内容部材9は各第2伝熱管8の第2管部81の内部に配置されている。この場合、第2伝熱管8の第2管部81の等価直径M2は、第1伝熱管6の第1管部61の等価直径M1と同様に、第2管部81の流路断面積Aおよび第2管部81の濡れ縁長さSを用いて以下の関係式(3)から算出される。
=4×A/S・・・(3)
さらに、等価直径M2と第2管部81の内径Dとは、上記第1状態および上記第2状態において以下の関係式(4)を満たす。
/2.5<M<D/1.5・・・(4)
また、このような第2熱交換器4の上記第2状態での熱交換性能は図5中の線分A、上記第1状態での熱交換性能は図5中の線分B、期間効率は図5中の線分Cに示される。
When the second heat exchanger 4 includes a plurality of second content members 9, each second content member 9 is arranged inside the second tube portion 81 of each second heat transfer tube 8. In this case, the equivalent diameter M 2 of the second tube portion 81 of the second heat transfer tube 8 is the same as the equivalent diameter M 1 of the first tube portion 61 of the first heat transfer tube 6, and the flow path of the second tube portion 81 is cut off. It is calculated from the following relational expression (3) using the area A 2 and the wet edge length S 2 of the second pipe portion 81.
M 2 = 4 × A 2 / S 2 ... (3)
Further, the equivalent diameter M 2 and the inner diameter D 2 of the second pipe portion 81 satisfy the following relational expression (4) in the first state and the second state.
D 2 / 2.5 <M 2 <D 2 / 1.5 ... (4)
Further, the heat exchange performance of the second heat exchanger 4 in the second state is the line segment A in FIG. 5, the heat exchange performance in the first state is the line segment B in FIG. 5, and the period efficiency. Is shown by the line segment C in FIG.

そのため、上記第2状態における第2伝熱管8の第2管部81の管内伝熱性能は、第2内容部材9が配置されていない場合と比べて、高い。また、上記のような第2熱交換器4の期間効率は、上記関係式(4)を満たさない内挿体が設けられた熱交換器の期間効率と比べて、高い。また、第2内容部材は、第1内容部材71,72,73と同様の構成を備えていてもよい。 Therefore, the in-pipe heat transfer performance of the second tube portion 81 of the second heat transfer tube 8 in the second state is higher than that in the case where the second content member 9 is not arranged. Further, the period efficiency of the second heat exchanger 4 as described above is higher than the period efficiency of the heat exchanger provided with the interpolator that does not satisfy the above relational expression (4). Further, the second content member may have the same configuration as the first content member 71, 72, 73.

また、第1内容部材7,71,72,73は、第1熱交換器3の複数の第1伝熱管6のうち、少なくとも1つの第1管部61の内部に配置されていてもよい。第2内容部材9は、第2熱交換器4の複数の第2伝熱管8のうち、少なくとも1つの第2管部81の内部に配置されていてもよい。 Further, the first content members 7, 71, 72, 73 may be arranged inside at least one first tube portion 61 among the plurality of first heat transfer tubes 6 of the first heat exchanger 3. The second content member 9 may be arranged inside at least one second heat transfer tube 8 among the plurality of second heat transfer tubes 8 of the second heat exchanger 4.

以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。 Although the embodiment of the present invention has been described above, it is possible to modify the above-described embodiment in various ways. Further, the scope of the present invention is not limited to the above-described embodiment. The scope of the present invention is indicated by the scope of claims and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.

1 圧縮機、2 四方弁、3 第1熱交換器、4 第2熱交換器、5 減圧部、6 第1伝熱管、6A 第1端部、6B 第2端部、6C 内周面、6D,7D 外周面、7,71,72,73 第1内容部材、7A 第3端部、7B 第4端部、8 第2伝熱管、9 第2内容部材、30 熱交換部、31,32 分配器、61 第1管部、62 第4管部、63 第3管部、64 凸部、64A 第5端部、64B 第6端部、65 微小凸部、81 第2管部、82 第6管部、83 第5管部、100 冷凍サイクル装置。 1 Compressor, 2 4-way valve, 3 1st heat exchanger, 4 2nd heat exchanger, 5 decompression part, 6 1st heat transfer tube, 6A 1st end, 6B 2nd end, 6C inner peripheral surface, 6D , 7D outer peripheral surface, 7,71,72,73 1st content member, 7A 3rd end, 7B 4th end, 8 2nd heat transfer tube, 9 2nd content member, 30 heat exchange part, 31, 32 distribution Vessel, 61 1st pipe, 62 4th pipe, 63 3rd pipe, 64 convex, 64A 5th end, 64B 6th end, 65 micro-convex, 81 2nd pipe, 82 6th Pipe, 83 Fifth pipe, 100 Refrigeration cycle device.

Claims (8)

圧縮機、流路切替弁、第1熱交換器、第2熱交換器、および減圧部を含み、冷媒が循環する冷媒回路を備え、
前記冷媒回路は、前記第1熱交換器が凝縮器、前記第2熱交換器が蒸発器として作用する第1状態と、前記第2熱交換器が凝縮器、前記第1熱交換器が蒸発器として作用する第2状態とを切替可能に設けられており、
前記第1熱交換器は、内部に冷媒が流れる第1伝熱管を含み、
前記第1伝熱管は、前記第1状態の冷媒の流通方向において前記第1伝熱管の中間位置よりも下流側に位置する第1管部を有し、
前記第1熱交換器は、前記第1管部の内部に配置された第1内容部材をさらに含み、
前記第1管部の流路断面積A1および前記第1管部の濡れ縁長さS1を用いて以下の関係式(1)から算出される等価直径M1ならびに前記第1管部の内径D1は、前記第1状態および前記第2状態において以下の関係式(2)を満たし、
前記第1状態の前記等価直径M1が前記第2状態の前記等価直径M1よりも小さく、
前記第1内容部材は、前記第1状態での前記第1管部の前記流路断面積A 1 が前記第2状態での前記第1管部の前記流路断面積A 1 と比べて小さくなるように設けられている、冷凍サイクル装置。
1=4×A1/S1・・・(1)
1/2.5<M1<D1/1.5・・・(2)
It includes a compressor, a flow path switching valve, a first heat exchanger, a second heat exchanger, and a decompression unit, and includes a refrigerant circuit through which a refrigerant circulates.
In the refrigerant circuit, the first state in which the first heat exchanger acts as a condenser and the second heat exchanger act as an evaporator, the second heat exchanger acts as a condenser, and the first heat exchanger evaporates. It is provided so that it can be switched between the second state, which acts as a vessel, and
The first heat exchanger includes a first heat transfer tube through which a refrigerant flows.
The first heat transfer tube has a first tube portion located downstream of the intermediate position of the first heat transfer tube in the flow direction of the refrigerant in the first state.
The first heat exchanger further includes a first content member arranged inside the first tube portion.
The equivalent diameter M 1 calculated from the following relational expression (1) using the flow path cross-sectional area A 1 of the first pipe portion and the wet edge length S 1 of the first pipe portion, and the inner diameter of the first pipe portion. D 1 satisfies the following relational expression (2) in the first state and the second state.
The equivalent diameter M 1 in the first state is smaller than the equivalent diameter M 1 in the second state.
In the first content member, the flow path cross-sectional area A 1 of the first pipe portion in the first state is smaller than the flow path cross-sectional area A 1 of the first pipe portion in the second state. Refrigeration cycle device provided so as to be .
M 1 = 4 × A 1 / S 1 ... (1)
D 1 / 2.5 <M 1 <D 1 / 1.5 ... (2)
前記第1管部の軸線方向における前記第1内容部材の長さは、前記第1伝熱管の長さの3分の1未満である、請求項1に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 1, wherein the length of the first content member in the axial direction of the first tube portion is less than one-third of the length of the first heat transfer tube. 前記第1内容部材を構成する材料の熱膨張率は、前記第1伝熱管を構成する材料の熱膨張率よりも大きい、請求項1または2に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1 or 2, wherein the thermal expansion rate of the material constituting the first content member is larger than the thermal expansion rate of the material constituting the first heat transfer tube. 圧縮機、流路切替弁、第1熱交換器、第2熱交換器、および減圧部を含み、冷媒が循環する冷媒回路を備え、
前記冷媒回路は、前記第1熱交換器が凝縮器、前記第2熱交換器が蒸発器として作用する第1状態と、前記第2熱交換器が凝縮器、前記第1熱交換器が蒸発器として作用する第2状態とを切替可能に設けられており、
前記第1熱交換器は、内部に冷媒が流れる第1伝熱管を含み、
前記第1伝熱管は、前記第1状態の冷媒の流通方向において前記第1伝熱管の中間位置よりも下流側に位置する第1管部を有し、
前記第1熱交換器は、前記第1管部の内部に配置された第1内容部材をさらに含み、
前記第1管部の流路断面積A 1 および前記第1管部の濡れ縁長さS 1 を用いて以下の関係式(1)から算出される等価直径M 1 ならびに前記第1管部の内径D 1 は、前記第1状態および前記第2状態において以下の関係式(2)を満たし、
前記第1状態の前記等価直径M 1 が前記第2状態の前記等価直径M 1 よりも小さく、
前記第1内容部材を構成する材料は形状記憶合金を含む冷凍サイクル装置。
1 =4×A 1 /S 1 ・・・(1)
1 /2.5<M 1 <D 1 /1.5・・・(2)
It includes a compressor, a flow path switching valve, a first heat exchanger, a second heat exchanger, and a decompression unit, and includes a refrigerant circuit through which a refrigerant circulates.
In the refrigerant circuit, the first state in which the first heat exchanger acts as a condenser and the second heat exchanger act as an evaporator, the second heat exchanger acts as a condenser, and the first heat exchanger evaporates. It is provided so that it can be switched between the second state, which acts as a vessel, and
The first heat exchanger includes a first heat transfer tube through which a refrigerant flows.
The first heat transfer tube has a first tube portion located downstream of the intermediate position of the first heat transfer tube in the flow direction of the refrigerant in the first state.
The first heat exchanger further includes a first content member arranged inside the first tube portion.
The equivalent diameter M 1 calculated from the following relational expression (1) using the flow path cross-sectional area A 1 of the first pipe portion and the wet edge length S 1 of the first pipe portion, and the inner diameter of the first pipe portion. D 1 satisfies the following relational expression (2) in the first state and the second state.
The equivalent diameter M 1 in the first state is smaller than the equivalent diameter M 1 in the second state .
A refrigeration cycle device containing a shape memory alloy as a material constituting the first content member.
M 1 = 4 × A 1 / S 1 ... (1)
D 1 / 2.5 < M 1 <D 1 / 1.5 ... (2)
前記第1内容部材を構成する材料の比熱は、前記第1伝熱管を構成する材料の比熱よりも大きい、請求項1~4のいずれか1項に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to any one of claims 1 to 4, wherein the specific heat of the material constituting the first content member is larger than the specific heat of the material constituting the first heat transfer tube. 前記第1管部は、前記第1内容部材の外周面と対向する内周面に対して突出している複数の凸部を有し、
前記複数の凸部は前記外周面と接触している、請求項1~5のいずれか1項に記載の冷凍サイクル装置。
The first pipe portion has a plurality of convex portions protruding from the inner peripheral surface facing the outer peripheral surface of the first content member.
The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the plurality of convex portions are in contact with the outer peripheral surface.
前記複数の凸部は前記第1管部の軸線に対する周方向に互いに間隔を隔てて配置されている、請求項6に記載の冷凍サイクル装置。 The refrigerating cycle apparatus according to claim 6, wherein the plurality of convex portions are arranged so as to be spaced apart from each other in the circumferential direction with respect to the axis of the first pipe portion. 前記第2熱交換器は、内部に冷媒が流れる第2伝熱管を含み、
前記第2伝熱管は、前記第2状態の冷媒の流通方向において前記第2伝熱管の中間位置よりも下流側に位置する第2管部を有し、
前記第2熱交換器は、前記第2伝熱管の前記第2管部の内部に配置された第2内容部材をさらに含み、
前記第2管部の内径Dと、前記第2管部の流路断面積Aおよび前記第2管部の濡れ縁長さSを用いて以下の関係式(3)から算出される等価直径Mとが、前記第1状態および前記第2状態において以下の関係式(4)を満たす、請求項1~7のいずれか1項に記載の冷凍サイクル装置。
=4×A/S・・・(3)
/2.5<M<D/1.5・・・(4)
The second heat exchanger includes a second heat transfer tube through which a refrigerant flows.
The second heat transfer tube has a second tube portion located downstream of the intermediate position of the second heat transfer tube in the flow direction of the refrigerant in the second state.
The second heat exchanger further includes a second content member arranged inside the second tube portion of the second heat transfer tube.
Equivalence calculated from the following relational expression (3) using the inner diameter D 2 of the second pipe portion, the flow path cross-sectional area A 2 of the second pipe portion, and the wet edge length S 2 of the second pipe portion. The refrigerating cycle apparatus according to any one of claims 1 to 7, wherein the diameter M 2 satisfies the following relational expression (4) in the first state and the second state.
M 2 = 4 × A 2 / S 2 ... (3)
D 2 / 2.5 <M 2 <D 2 / 1.5 ... (4)
JP2020518856A 2018-05-15 2018-05-15 Refrigeration cycle device Active JP7000566B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/018766 WO2019220541A1 (en) 2018-05-15 2018-05-15 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2019220541A1 JPWO2019220541A1 (en) 2021-03-11
JP7000566B2 true JP7000566B2 (en) 2022-01-19

Family

ID=68539671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518856A Active JP7000566B2 (en) 2018-05-15 2018-05-15 Refrigeration cycle device

Country Status (4)

Country Link
EP (1) EP3795928A4 (en)
JP (1) JP7000566B2 (en)
CN (1) CN112119271B (en)
WO (1) WO2019220541A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039283A (en) 1998-05-18 2000-02-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2000055509A (en) 1998-08-04 2000-02-25 Toshiba Corp Heat exchanger for air conditioner
JP2004279025A (en) 2003-02-28 2004-10-07 Sumitomo Light Metal Ind Ltd Cross fin tube type heat exchanger
JP2006052864A (en) 2004-08-09 2006-02-23 Toshiba Kyaria Kk Heat exchanger
JP2007024419A (en) 2005-07-19 2007-02-01 Mitsubishi Electric Corp Air conditioner
JP2011106770A (en) 2009-11-19 2011-06-02 Panasonic Corp Heat exchanger and refrigerating cycle device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127361U (en) * 1974-08-20 1976-02-27
US4313313A (en) * 1980-01-17 1982-02-02 Carrier Corporation Apparatus and method for defrosting a heat exchanger of a refrigeration circuit
JPS59113681U (en) * 1983-01-20 1984-08-01 三菱重工業株式会社 Heat exchanger
JPS5977273A (en) * 1983-09-28 1984-05-02 株式会社日立製作所 Heat exchanger for air conditioner
JPS6181573U (en) * 1984-10-31 1986-05-30
JPS6198955U (en) * 1984-12-05 1986-06-25
JPS63104878U (en) * 1986-12-17 1988-07-07
JPH09264626A (en) * 1996-03-29 1997-10-07 Matsushita Electric Ind Co Ltd Air conditioner
JPH11257800A (en) * 1998-03-09 1999-09-24 Sanyo Electric Co Ltd Heat exchanger and air conditioner with exchanger
US8234881B2 (en) * 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
JP2015158303A (en) * 2014-02-24 2015-09-03 三菱電機株式会社 heat exchanger and refrigeration cycle device
JP6215856B2 (en) * 2015-02-04 2017-10-18 トヨタ自動車株式会社 Heat exchanger
US10533805B2 (en) * 2015-06-30 2020-01-14 Hanon Systems Outdoor heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039283A (en) 1998-05-18 2000-02-08 Matsushita Electric Ind Co Ltd Heat exchanger
JP2000055509A (en) 1998-08-04 2000-02-25 Toshiba Corp Heat exchanger for air conditioner
JP2004279025A (en) 2003-02-28 2004-10-07 Sumitomo Light Metal Ind Ltd Cross fin tube type heat exchanger
JP2006052864A (en) 2004-08-09 2006-02-23 Toshiba Kyaria Kk Heat exchanger
JP2007024419A (en) 2005-07-19 2007-02-01 Mitsubishi Electric Corp Air conditioner
JP2011106770A (en) 2009-11-19 2011-06-02 Panasonic Corp Heat exchanger and refrigerating cycle device

Also Published As

Publication number Publication date
EP3795928A4 (en) 2021-04-07
EP3795928A1 (en) 2021-03-24
JPWO2019220541A1 (en) 2021-03-11
CN112119271B (en) 2022-08-30
WO2019220541A1 (en) 2019-11-21
CN112119271A (en) 2020-12-22

Similar Documents

Publication Publication Date Title
KR100905995B1 (en) Air conditioner
JP2006242529A (en) Heat transfer pipe
JP2010249439A (en) Liquid heat exchange device and heat exchange system
EP3021064A1 (en) Heat exchanger, and heat pump device
JPWO2017183180A1 (en) Heat exchanger
JP4659779B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP6214670B2 (en) Heat exchanger and refrigeration cycle apparatus using the heat exchanger
JP5951475B2 (en) Air conditioner and outdoor heat exchanger used therefor
JP6425829B2 (en) Heat exchanger and refrigeration cycle device
JP2008309361A (en) Refrigerating cycle device
JP7000566B2 (en) Refrigeration cycle device
JP6053693B2 (en) Air conditioner
JP5627635B2 (en) Air conditioner
JP2013155961A (en) Heat exchanger, and air conditioner including the same
JP5646257B2 (en) Refrigeration cycle equipment
JP2019015432A (en) Heat exchanger and heat exchange unit
JP2019215161A (en) Outdoor machine of air conditioner, and air conditioner
JP2007278541A (en) Cooling system
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2001059688A (en) Plate type heat exchanger
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
WO2015132968A1 (en) Refrigeration cycle device
JP2005009827A (en) Fin tube type heat exchanger and heat pump device
WO2021048943A1 (en) Heat exchanger and air conditioner
JP6026871B2 (en) HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211105

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211124

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7000566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150