JP4193008B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP4193008B2
JP4193008B2 JP27405197A JP27405197A JP4193008B2 JP 4193008 B2 JP4193008 B2 JP 4193008B2 JP 27405197 A JP27405197 A JP 27405197A JP 27405197 A JP27405197 A JP 27405197A JP 4193008 B2 JP4193008 B2 JP 4193008B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
carbon
battery
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27405197A
Other languages
Japanese (ja)
Other versions
JPH11111342A (en
Inventor
毅 趙
徳雄 稲益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP27405197A priority Critical patent/JP4193008B2/en
Publication of JPH11111342A publication Critical patent/JPH11111342A/en
Application granted granted Critical
Publication of JP4193008B2 publication Critical patent/JP4193008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池に係り、特に放電容量、出力密度が大であってサイクル特性に優れたリチウム二次電池用負極に関する。
【0002】
【従来の技術】
リチウム二次電池の負極として、従来よりリチウム金属及びリチウム合金が用いられてきたが、これらの電池は、樹脂状リチウムの析出(デンドライト)による正負両極の短絡やサイクル寿命が短く、そのためその劣化分を補償すべく電池容量の3倍当量のリチウムが必要であり、エネルギー密度が低いという欠点があった。最近ではこれらの問題点を解決するため炭素粒子を負極に用いる研究が活発である。この種の負極、特に黒鉛化の進んだグラファイトを用いる場合、例えば正極にコバルト酸リチウムを用いると、電池電圧がフラットなものになり、単電池使用の携帯機器に用いる場合容量面で優位性がある。しかしながら、このグラファイトを用いてハイレート充電を行うと、充電時のドープ電圧が0V付近となり、リチウムの析出との競争反応となってしまう。そのため、例えば特開平5−299073号での構成は、芯を形成する高結晶炭素粒子の表面をVIII族の金属元素を含む膜で被覆し、さらにその上を炭素が被覆することよりなる炭素複合体を電極材料としており、これによって表面の乱層構造を有する炭素粒子がリチウムのインターカレーションを助けると同時に、電極の表面積が大きいために充放電容量および充放電速度が著しく向上したとしている。しかし、負極炭素粒子の炭素の不可逆容量が増加し、その結果エネルギー密度が未だ十分とはいえなかった。
【0003】
【発明が解決しようとする課題】
前述した如く、炭素粒子及び複合材を負極として用いた場合、炭素の不可逆容量の増加や電極製造の難しさという問題がある。本発明は、この問題点を解決するため、負極活物質における主構成物質に、カルシウム化合物を付着保持した炭素粒子を用いることにより、急速充放電時においても高容量、高エネルギー密度で、不可逆容量の少ない充放電サイクル特性の優れたリチウム二次電池を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、負極活物質の主構成物質に、カルシウムとフッ素の化合物を付着保持した炭素粒子を用いることを特徴とするリチウム二次電池である。また、本発明は、前記負極活物質である炭素粒子は、X線回折法による面間隔(d002)が3.354〜3.369Åで、C軸方向の結晶の大きさ(Lc)が200Å以上であることを特徴とするリチウム二次電池である。
負極活物質として炭素を考えた場合、炭素粒子へのリチウムの吸蔵、放出(インターカレーション、デインターカレーション)が主に起こる反応だが、その反応を支配する因子の一つとして、電解液と炭素表面の間に生じる被膜状態が関与していることがわかった。例えば、リチウム金属を負極活物質にした場合で代表されるように、緻密でイオン導伝性の高い被膜はその電池特性も優れており、逆に厚くイオン伝導性の低い被膜はレート特性や、サイクル特性が悪いことが知られている。その場合、前者は炭酸リチウムや酸化リチウム等の被膜であり、後者はフッ化リチウム等の被膜であることが報告されている。これと同じことが炭素表面に生じる被膜についても考えられる。つまり、炭素粒子のレート特性を阻害する要因の一つとして、炭素粒子の表面にフッ化リチウム等のイオン伝導度の低い被膜の形成があげられる。本発明者らは、この被膜についての問題点を解決するため種々検討した結果、負極表面にカルシウム化合物を付着保持させることにより電解液中に存在するフッ素アニオンが電解液と炭素粒子の界面へ来ることを抑制することを見い出した。
【0005】
炭素粒子に付着保持させるカルシウム化合物としては、カルシウムと化合するものとして、例えばハロゲン化物、酸化物、硫酸塩、硝酸塩等があげられ好ましくは、ハロゲン化物、酸化物等の無水物であり、さらに好ましくはハロゲン化物である。ハロゲン化物の中でも最も好ましくはフッ化物であり、CaF2 やCaF3 があげられる。カルシウム化合物の付着保持方法としては、カルシウム化合物を蒸着法、スパッタリング法、湿式還元法、電気化学的還元法、気相還元ガス処理法、レーザーアブレーション等により表面に付着保持させた後、化学的、電気化学的に処理する方法や、カルシウム化合物自身をメカノフュウジョン等により付着保持させること等が挙げられるが、これらに限定されるものではない。
【0006】
付着保持させるカルシウム化合物の量については、30wt%以下、好ましくは10wt%以下である。さらに、付着保持されたカルシウム化合物の粒径は1μm以下が望ましい。
【0007】
カルシウム化合物を付着保持させる炭素粒子は、リチウムを吸蔵、放出可能な炭素粒子であればよく、特にX線回折法による面間隔(d002)が3. 354〜3. 369Åで、C軸方向の結晶の大きさ(Lc)が200Å以上である炭素粒子は、高容量が得られるため好ましい。
【0008】
【発明の実施の形態】
本発明に用いる炭素粒子は、平均粒子サイズ100μm以下であることが望ましい。所定の形状を得る上で、粉体を得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが乾式、湿式ともに必要に応じて用いられる。
【0009】
本発明に併せて用いることができる負極材料としては、リチウム金属、リチウム合金などや、カルコゲン化合物、メチルリチウム等のリチウムを含有する有機化合物等が挙げられる。また、リチウム金属やリチウム合金、リチウムを含有する有機化合物を併用することによって、本発明に用いる炭素粒子にあらかじめリチウムを挿入することも可能である。
【0010】
本発明のカルシウム化合物を付着保持した炭素粒子を用いる場合、電極合剤として導電剤や結着剤やフィラー等を添加することができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金など)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。これらの中で、アセチレンブラックとケッチェンブラックの併用が望ましい。その添加量は1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0011】
本発明のカルシウム化合物を付着保持した炭素粒子を用いる場合、その粉体の少なくとも表面層部分をカルシウム化合物以外の物で修飾することも可能である。例えば、金、銀、カーボン、ニッケル、銅等の電子伝導性のよい物質や、炭酸リチウム、ホウ素ガラス、固体電解質等のイオン伝導性のよい物質をメッキ、焼結、メカノフュージョン、蒸着等の技術を応用してコートすることが挙げられる。
【0012】
結着剤としては、通常、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボキシメチルセルロース等といった熱可塑性樹枝、ゴム弾性を有するポリマー、多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能機を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望ましい。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0013】
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は0〜30重量%が好ましい。
【0014】
電極活物質の集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極用集電体としては、銅、ステンレス鋼、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発砲体、繊維群の形成体等が用いられる。厚みは特に限定はないが、1〜500μmのものが用いられる。
【0015】
この様にしてカルシウム化合物を付着保持した炭素粒子を負極活物質における主構成物質にした負極を得ることが出来る。一方、正極活物質としては、MnO2 ,MoO3 ,V2 5 ,Lix CoO2 ,Lix NiO2 ,Lix Mn2 4 等の金属酸化物や、TiS2 ,MoS2 ,NbSe3 等の金属カルコゲン化物、ポリアセン、ポリパラフェニレン、ポリピロール、ポリアニリン等のグラファイト層間化合物、及び導電性高分子等のアルカリ金属イオンや、アニオンを吸放出可能な各種の物質を利用することができる。
【0016】
特に本発明のカルシウム化合物を付着保持した炭素粒子を負極活物質として用いる場合、高エネルギー密度という観点からV2 5 ,MnO2 ,Lix CoO2 ,Lix NiO2 ,Lix Mn2 4 等の3〜4Vの電極電位を有するものが望ましい。特にLix CoO2 ,Lix NiO2 ,Lix Mn2 4 等のリチウム含有遷移金属酸化物が好ましい。
【0017】
また、電解質としては、例えば有機電解液、高分子固体電解質、無機固体電解質、溶融塩等をもちいることができ、この中でも有機電解液を用いることが好ましい。この有機電解液の有機溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン等のエステル類や、テトラヒドロフラン、2−メチルテトラヒドロフラン等の置換テトラヒドロフラン、ジオキソラン、ジエチルエーテル、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン等のエーテル類、ジメチルスルホキシド、スルホラン、メチルスルホラン、アセトニトリル、ギ酸メチル、酢酸メチル、N−メチルピロリドン、ジメチルフォルムアミド等が挙げられ、これらを単独又は混合溶媒として用いることができる。また、支持電解質塩としては、LiClO4 、LiPF6 、LiBF4 、LiAsF6 、LiCF3 SO3 、LiN(CF3 SO2 2 等が挙げられる。一方、高分子固体電解質としては、上記のような支持電解質塩をポリエチレンオキシドやその架橋体、ポリフォスファゼンやその架橋体等といったポリマーの中に溶かし込んだ物を用いることができる。さらに、Li3 N,LiI等の無機固体電解質も使用可能である。つまり、リチウムイオン導伝性の非水電解質であればよい。
【0018】
セパレーターとしては、イオンの透過度が優れ、機械的強度のある絶縁性薄膜を用いることができる。耐有機溶剤性と疎水性からポリプロピレンやポリエチレンといったオレフィン系のポリマー、ガラス繊維、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等からつくられたシート、微孔膜、不織布が用いられる。セパレーターの孔径は、一般に電池に用いられる範囲のものであり、例えば0.01〜10μmである。また、その厚みについても同様で、一般に電池に用いられる範囲のものであり、例えば5〜300μmである。
【0019】
充放電特性、特にレート特性が向上する理由として、必ずしも明確ではないが以下のように考察される。一般的に、電池内部において、電池の充放電に関与しない種々の不純物を含んでいることが多い。例えばLiPF6 を電解質に用いる場合、塩そのものが不純物を持ち込んだり、電池内部や溶媒中に含まれる極微量の水と反応することでHF(フッ酸)を生じることが考えられる。リチウム吸蔵の際に炭素粒子表面では、電解液と炭素粒子の間に炭酸リチウムのようなイオン伝導性の高い被膜を形成するが、この被膜形成時あるいは形成後にフッ酸の様な酸が存在すると、イオン伝導性の低いハロゲン化リチウムを生じる。炭素粒子と電解液の界面に生じたハロゲン化リチウムは、リチウムの吸蔵放出を妨げ、その結果負極のレート特性を低減する原因の一つと考えられる。そこで、炭素粒子と電解液の界面にフッ酸を寄せ付けなくすることで、この問題が解決できるのではないかと考え、炭素粒子にカルシウム化合物を付着保持させることを試みた。その結果、ハロゲンアニオン、特にフッ素アニオンを自ら吸蔵し、あるいはそのカルシウムフッ素化合物がそのイオン効果により、炭素粒子と電解液界面にフッ酸を寄せ付けなくすることを期待したところ、負極のレート特性向上が確認されたため、本発明に至った。
【0020】
【実施例】
以下、本発明を実施例に基づき説明する。
【0021】
(実施例1)
人造黒鉛(粒径6μm)を炭酸カルシウムをフッ化水素酸に溶解させた水溶液に浸し、これを濃縮した後に110℃で乾燥し、さらに200℃で16時間真空乾燥をした。得られた粉末Aのカルシウム化合物の付着保持量は、化学分析によれば、仕込み量組成の10.0重量%に対して、8.5重量%の付着保持量であった。また、蛍光X線回折によりカルシウム化合物の存在状態を調べたところ、カルシウム由来のピークパターンが検出された。次にエネルギー分散型電子プローブマイクロアナリシス(EPMA)によりカルシウム化合物の分散状態を観察したところ、カルシウム化合物は人造黒鉛の全面に分布しており、人造粒子の端面部に若干濃縮していた。さらに透過型電子顕微鏡でカルシウム化合物粒子の大きさを観察したところ、数100Åの粒子がほぼ均一に分散していた。
【0022】
(実施例2)
上記実施例1で得られた粉末Aを負極活物質として用い、次のようにして図1に示すコイン型非水電解質電池を試作した。負極活物質とポリテトラフルオロエチレン粉末とを重量比95:5で混合し、トルエンを加えて十分混練した。これをローラープレスにより厚み0.1mmのシート状に成形した。次にこれを直径16mmの円形に打ち抜き、減圧下200℃で15時間乾燥して負極2を得た。負極2は負極集電体7の付いた負極缶5に圧着して用いた。
【0023】
正極1は、正極活物質としてLiCoO2 とアセチレンブラック及びポリテトラフルオロエチレン粉末とを重量比85:10:5で混合し、トルエンを加えて十分混練した。これをローラープレスにより厚み0.8mmのシート状に成形した。次にこれを直径16mmの円形に打ち抜き、減圧下200℃で15時間乾燥し正極1を得た。正極1は正極集電体6の付いた正極缶4に圧着して用いた。 エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶剤にLiPF6 を1mol/l溶解した電解液を用い、セパレータ3にはポリプロピレン製微多孔膜を用いた。上記正極、負極、電解液及びセパレータを用いて直径20mm、厚さ1.6mmのコイン型リチウム電池を作製した。この粉末Aを用いた電池を電池(A)とする。
【0024】
(比較例)
負極活物質として粉末Aの代わりに、人造黒鉛(粒径6μm)である粉末Bをを用い、それ以外は実施例2と同様にして電池を作製した。得られた電池を比較電池(B)とする。
【0025】
これらの電池(A)、(B)を用いて充放電試験を行なった。充放電速度は炭素1g当たり100mAと200mA、充放電の上下限電位は、それぞれ1.0Vと0.01Vとした。得られた5サイクル目の放電容量の結果を金属を表1に示した。
【0026】
【表1】

Figure 0004193008
【0027】
粉末Aと粉末Bを用いた電池(A)と比較電池(B)を比較してみると、充放電速度が炭素1g当たり100mAの場合、その放電容量に差が見られないものの、充放電速度が炭素1g当たり200mAの場合、粉末Aを用いた本発明電池(A)の方が比較電池(B)に比べ放電容量が大きいことがわかる。これらの現象についてその理由は定かではないものの、負極活物質における主構成物質にカルシウム化合物を付着保持した炭素粒子を用いる場合において、電解液、特にその溶質と材料表面の間で起こる界面の状態が関与していると考えられる。即ち、従来用いられてきたカルシウム化合物を付着保持していない炭素粒子である粉末Bの場合、リチウムの吸蔵放出等で生じるカーボン表面の被膜が、電池内部に微量に存在するハロゲン化水素と反応することでハロゲン化リチウムを生じ、イオン電導度の低下により急速充放電特性が低下したと考えられる。一方、負極活物質における主構成物質にカルシウム化合物を付着保持した炭素粒子である粉末Aの場合、電池内部に微量に存在するハロゲン化水素を炭素粒子と電解液の界面に到着する前に捕捉したり、ハロゲン化物のイオン効果により、ハロゲン化水素から炭素粒子の被膜を保護するような働きがあることが考えられる。
【0028】
さらに、電池(A)、比較電池(B)の初期充放電効率を比較してみると、ほとんど差が見られなかったことから、炭素粒子と電解液の界面で起こる反応を増やすことなく、イオン伝導度の低下のみを抑制することができたと考えられる。
上記実施例においては、負極活物質における主構成物質にフッ化カルシウムを付着保持した炭素粒子について挙げたが、同様の効果が他のカルシウム化合物についても確認された。更に、リチウム二次電池の内部にカルシウム化合物を添加した場合にも、同様の効果が見られた。なお、本発明は上記実施例に記載された活物質の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。
【0029】
【発明の効果】
本発明は上述の如く構成されているので、負極活物質界面でのイオン伝導度の低下が少なく、その結果急速充放電特性が向上し、サイクル特性も向上する。また、その処理が簡単で安価であることから、負極材料の優れた改質の方法であり、その結果得られる電池は、急速充放電においても高容量、高エネルギー密度で、不可逆容量の少ない優れた充放電サイクル特性を示す。
【図面の簡単な説明】
【図1】本発明の実施例に係るコイン型非水電解質電池の断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 正極缶
5 負極缶
6 正極集電体
7 負極集電体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery, and more particularly to a negative electrode for a lithium secondary battery having a large discharge capacity and output density and excellent cycle characteristics.
[0002]
[Prior art]
Conventionally, lithium metal and lithium alloys have been used as negative electrodes for lithium secondary batteries. However, these batteries have short positive and negative electrodes due to the deposition of resinous lithium (dendrites) and short cycle life. In order to compensate for this, lithium equivalent to three times the battery capacity is required, and the energy density is low. Recently, in order to solve these problems, research using carbon particles for the negative electrode has been active. When using this type of negative electrode, especially graphite with advanced graphitization, for example, if lithium cobaltate is used for the positive electrode, the battery voltage becomes flat, and when used for portable devices using single cells, there is an advantage in terms of capacity. is there. However, when high-rate charging is performed using this graphite, the doping voltage at the time of charging becomes around 0 V, which causes a competitive reaction with lithium deposition. Therefore, for example, the configuration disclosed in JP-A-5-299073 is a carbon composite in which the surface of highly crystalline carbon particles forming the core is coated with a film containing a Group VIII metal element, and further coated with carbon. The body is made of an electrode material, so that carbon particles having a surface turbulent structure assist lithium intercalation, and at the same time, the surface area of the electrode is large, so that the charge / discharge capacity and charge / discharge speed are remarkably improved. However, the irreversible capacity of carbon of the negative electrode carbon particles increased, and as a result, the energy density was not yet sufficient.
[0003]
[Problems to be solved by the invention]
As described above, when carbon particles and a composite material are used as a negative electrode, there are problems such as an increase in irreversible capacity of carbon and difficulty in manufacturing an electrode. In order to solve this problem, the present invention uses irreversible capacity with high capacity and high energy density even during rapid charge and discharge by using carbon particles with a calcium compound attached and retained as the main constituent material in the negative electrode active material. An object of the present invention is to provide a lithium secondary battery excellent in charge / discharge cycle characteristics with less charge.
[0004]
[Means for Solving the Problems]
The present invention is a lithium secondary battery using carbon particles in which a compound of calcium and fluorine is attached and held as a main constituent material of a negative electrode active material. Further, according to the present invention, the carbon particles as the negative electrode active material have an interplanar spacing (d002) by X-ray diffraction of 3.354 to 3.369 mm and a crystal size in the C-axis direction (Lc) of 200 mm or more. It is a lithium secondary battery characterized by the above-mentioned.
When carbon is considered as the negative electrode active material, the lithium occlusion and release (intercalation, deintercalation) mainly occurs in the carbon particles, but one of the factors governing the reaction is the electrolyte and It was found that the film state generated between the carbon surfaces was involved. For example, as represented by the case where lithium metal is used as the negative electrode active material, a dense and highly ion-conductive film has excellent battery characteristics, and conversely, a thick and low ion-conductive film has rate characteristics and It is known that the cycle characteristics are poor. In that case, it is reported that the former is a film of lithium carbonate, lithium oxide or the like, and the latter is a film of lithium fluoride or the like. The same can be considered for a film formed on the carbon surface. That is, one of the factors that hinder the rate characteristics of carbon particles is the formation of a film having a low ion conductivity such as lithium fluoride on the surface of the carbon particles. As a result of various studies to solve the problems with the coating film, the present inventors have found that the fluorine anion present in the electrolytic solution comes to the interface between the electrolytic solution and the carbon particles by adhering and holding the calcium compound on the negative electrode surface. I found out to suppress it.
[0005]
Calcium compound adhered held in the carbon particles, as being compounds with calcium, such as halides, oxides, sulfates, nitrates and the like, preferably halides, anhydrides such as oxides, further A halide is preferred. Of the halides, fluoride is most preferable, and examples thereof include CaF 2 and CaF 3 . As a calcium compound adhesion retention method, the calcium compound is adhered and retained on the surface by vapor deposition, sputtering, wet reduction method, electrochemical reduction method, gas phase reducing gas treatment method, laser ablation, etc. Examples include, but are not limited to, a method of electrochemical treatment and a method in which the calcium compound itself is adhered and held by mechano-fusion or the like.
[0006]
The amount of calcium compound to be adhered and retained is 30 wt% or less, preferably 10 wt% or less. Furthermore, the particle size of the calcium compound adhered and retained is desirably 1 μm or less.
[0007]
The carbon particles for adhering and holding the calcium compound may be carbon particles that can occlude and release lithium. In particular, the surface distance (d002) by X-ray diffraction method is 3.354-3. Carbon particles having a size (Lc) of 200 L or more are preferable because a high capacity can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The carbon particles used in the present invention desirably have an average particle size of 100 μm or less. In obtaining a predetermined shape, a pulverizer or a classifier is used to obtain powder. For example, a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air flow type jet mill or a sieve is used. At the time of pulverization, wet pulverization in the presence of water or an organic solvent such as hexane may be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as necessary for both dry and wet methods.
[0009]
Examples of the negative electrode material that can be used in conjunction with the present invention include lithium metal, lithium alloy, and the like, chalcogen compounds, and organic compounds containing lithium such as methyl lithium. Moreover, it is also possible to insert lithium in advance into the carbon particles used in the present invention by using a lithium metal, a lithium alloy, or an organic compound containing lithium together.
[0010]
When using the carbon particles to which the calcium compound of the present invention is adhered and held, a conductive agent, a binder, a filler, or the like can be added as an electrode mixture. As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, aluminum, silver, gold, etc.) Conductive materials such as powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. Of these, a combination of acetylene black and ketjen black is desirable. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0011]
When using the carbon particles to which the calcium compound of the present invention is adhered and held, it is possible to modify at least the surface layer portion of the powder with something other than the calcium compound. For example, technologies such as plating, sintering, mechanofusion, and vapor deposition of materials with good electron conductivity such as gold, silver, carbon, nickel, copper, and materials with good ion conductivity such as lithium carbonate, boron glass, and solid electrolytes It is possible to apply the coating.
[0012]
As the binder, thermoplastics such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose and the like are usually used. Dendrites, polymers having rubber elasticity, polysaccharides and the like can be used as one or a mixture of two or more. Moreover, it is desirable to deactivate the functional group of a binder having a functional machine that reacts with lithium, such as a polysaccharide, for example, by methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0013]
As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of filler added is preferably 0 to 30% by weight.
[0014]
The current collector for the electrode active material may be any electronic conductor as long as it does not adversely affect the constructed battery. For example, as a positive electrode current collector, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., in addition to aluminum for the purpose of improving adhesiveness, conductivity, and oxidation resistance. A material obtained by treating the surface of copper or copper with carbon, nickel, titanium, silver or the like can be used. In addition to copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc. as negative electrode current collectors, improved adhesion, conductivity and oxidation resistance For this purpose, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized. As for these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.
[0015]
In this way, it is possible to obtain a negative electrode in which carbon particles having a calcium compound adhered thereto are used as a main constituent material in the negative electrode active material. On the other hand, examples of the positive electrode active material include metal oxides such as MnO 2 , MoO 3 , V 2 O 5 , Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 , TiS 2 , MoS 2 , and NbSe 3. Metal chalcogenides such as polyacene, graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole and polyaniline, and alkali metal ions such as conductive polymers, and various substances capable of absorbing and releasing anions can be used.
[0016]
In particular, when the carbon particles to which the calcium compound of the present invention is adhered and held are used as the negative electrode active material, V 2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 from the viewpoint of high energy density. Those having an electrode potential of 3 to 4 V such as the above are desirable. In particular, lithium-containing transition metal oxides such as Li x CoO 2 , Li x NiO 2 , and Li x Mn 2 O 4 are preferable.
[0017]
As the electrolyte, for example, an organic electrolyte, a polymer solid electrolyte, an inorganic solid electrolyte, a molten salt, or the like can be used, and among these, an organic electrolyte is preferably used. Examples of the organic solvent for the organic electrolyte include esters such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, substituted tetrahydrofuran such as tetrahydrofuran and 2-methyltetrahydrofuran, dioxolane, Examples include ethers such as diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane, dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide, etc. Alternatively, it can be used as a mixed solvent. Examples of the supporting electrolyte salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and the like. On the other hand, as the polymer solid electrolyte, a material obtained by dissolving the above supporting electrolyte salt in a polymer such as polyethylene oxide or a crosslinked product thereof, polyphosphazene or a crosslinked product thereof can be used. Furthermore, inorganic solid electrolytes such as Li 3 N and LiI can also be used. That is, any lithium ion conductive non-aqueous electrolyte may be used.
[0018]
As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Sheets, microporous membranes, and nonwoven fabrics made from olefin polymers such as polypropylene and polyethylene, glass fibers, polyvinylidene fluoride, polytetrafluoroethylene, etc. are used because of their organic solvent resistance and hydrophobicity. The pore diameter of the separator is in a range generally used for batteries, and is, for example, 0.01 to 10 μm. Moreover, it is the same also about the thickness, and is a thing of the range generally used for a battery, for example, is 5-300 micrometers.
[0019]
The reason why charge / discharge characteristics, particularly rate characteristics are improved, is not necessarily clear, but is considered as follows. In general, the battery often contains various impurities that are not involved in charge / discharge of the battery. For example, when LiPF 6 is used as an electrolyte, it is conceivable that the salt itself brings in impurities or reacts with a very small amount of water contained in the battery or in the solvent to generate HF (hydrofluoric acid). When lithium is occluded, a film with high ion conductivity such as lithium carbonate is formed between the electrolyte solution and the carbon particles on the surface of the carbon particles. If an acid such as hydrofluoric acid is present during or after the formation of the film, This produces lithium halide with low ion conductivity. The lithium halide generated at the interface between the carbon particles and the electrolytic solution is considered to be one of the causes that hinder the occlusion / release of lithium and consequently reduce the rate characteristics of the negative electrode. Therefore, it was thought that this problem could be solved by keeping the hydrofluoric acid away from the interface between the carbon particles and the electrolytic solution, and an attempt was made to attach and hold a calcium compound on the carbon particles. As a result, it was expected that the halogen anion, especially the fluorine anion, occluded itself, or that the calcium fluorine compound would keep the hydrofluoric acid from getting close to the carbon particle / electrolyte interface due to its ionic effect. As a result, the present invention was reached.
[0020]
【Example】
Hereinafter, the present invention will be described based on examples.
[0021]
(Example 1)
Artificial graphite (particle size 6 μm) was immersed in an aqueous solution in which calcium carbonate was dissolved in hydrofluoric acid, concentrated, dried at 110 ° C., and further vacuum dried at 200 ° C. for 16 hours. According to chemical analysis, the powder A had an adhesion retention amount of 8.5% by weight with respect to 10.0% by weight of the charged amount composition. Further, when the presence state of the calcium compound was examined by fluorescent X-ray diffraction, a peak pattern derived from calcium was detected. Next, when the dispersion state of the calcium compound was observed by energy dispersive electron probe microanalysis (EPMA), the calcium compound was distributed over the entire surface of the artificial graphite and was slightly concentrated on the end face of the artificial particle. Furthermore, when the size of the calcium compound particles was observed with a transmission electron microscope, several hundreds of particles were dispersed almost uniformly.
[0022]
(Example 2)
Using the powder A obtained in Example 1 as a negative electrode active material, a coin-type nonaqueous electrolyte battery shown in FIG. 1 was prototyped as follows. The negative electrode active material and polytetrafluoroethylene powder were mixed at a weight ratio of 95: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.1 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried at 200 ° C. under reduced pressure for 15 hours to obtain a negative electrode 2. The negative electrode 2 was used by being pressure-bonded to the negative electrode can 5 with the negative electrode current collector 7 attached thereto.
[0023]
In the positive electrode 1, LiCoO 2 , acetylene black, and polytetrafluoroethylene powder as a positive electrode active material were mixed at a weight ratio of 85: 10: 5, and toluene was added and kneaded sufficiently. This was formed into a sheet having a thickness of 0.8 mm by a roller press. Next, this was punched out into a circle having a diameter of 16 mm and dried at 200 ° C. under reduced pressure for 15 hours to obtain a positive electrode 1. The positive electrode 1 was used by being crimped to a positive electrode can 4 with a positive electrode current collector 6 attached thereto. An electrolytic solution in which 1 mol / l of LiPF 6 was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used, and a polypropylene microporous film was used for the separator 3. A coin-type lithium battery having a diameter of 20 mm and a thickness of 1.6 mm was manufactured using the positive electrode, the negative electrode, the electrolytic solution, and the separator. A battery using this powder A is referred to as a battery (A).
[0024]
(Comparative example)
A battery was fabricated in the same manner as in Example 2 except that powder B, which was artificial graphite (particle size 6 μm), was used instead of powder A as the negative electrode active material. The obtained battery is referred to as a comparative battery (B).
[0025]
A charge / discharge test was conducted using these batteries (A) and (B). The charge / discharge rate was 100 mA and 200 mA per gram of carbon, and the upper and lower limit potentials of charge / discharge were 1.0 V and 0.01 V, respectively. The results of the discharge capacity obtained at the fifth cycle are shown in Table 1.
[0026]
[Table 1]
Figure 0004193008
[0027]
When the battery (A) using the powder A and the powder B is compared with the comparative battery (B), when the charge / discharge rate is 100 mA / g of carbon, there is no difference in the discharge capacity, but the charge / discharge rate Is 200 mA per g of carbon, it can be seen that the battery (A) of the present invention using the powder A has a larger discharge capacity than the comparative battery (B). Although the reason for these phenomena is not clear, when using carbon particles in which a calcium compound is adhered and held as the main constituent material in the negative electrode active material, the state of the interface that occurs between the electrolyte, particularly the solute and the material surface, is It seems that they are involved. That is, in the case of powder B, which is a carbon particle that does not adhere to and retain a calcium compound that has been conventionally used, the coating on the surface of the carbon generated by the insertion and release of lithium reacts with a small amount of hydrogen halide present inside the battery. Thus, it is considered that lithium halide was generated, and rapid charge / discharge characteristics were lowered due to a decrease in ionic conductivity. On the other hand, in the case of powder A, which is a carbon particle in which a calcium compound is adhered and held on the main constituent material in the negative electrode active material, a small amount of hydrogen halide present inside the battery is captured before reaching the interface between the carbon particle and the electrolytic solution. In other words, it may be possible to protect the coating of the carbon particles from hydrogen halide by the ionic effect of the halide.
[0028]
Furthermore, when comparing the initial charge and discharge efficiencies of the battery (A) and the comparative battery (B), there was almost no difference, so that the reaction occurring at the interface between the carbon particles and the electrolyte solution was increased without increasing the ion. It is thought that only the decrease in conductivity could be suppressed.
In the above examples, the carbon particles in which calcium fluoride was adhered and held on the main constituent material in the negative electrode active material were mentioned, but the same effect was confirmed for other calcium compounds. Further, when the calcium compound was added inside the lithium secondary battery, the same effect was observed. In addition, this invention is not limited to the starting material of the active material described in the said Example, the manufacturing method, a positive electrode, a negative electrode, an electrolyte, a separator, a battery shape, etc.
[0029]
【The invention's effect】
Since this invention is comprised as mentioned above, there is little fall of the ionic conductivity in a negative electrode active material interface, As a result, quick charge / discharge characteristic improves and cycling characteristics also improve. In addition, the process is simple and inexpensive, so it is an excellent method for reforming the negative electrode material, and the resulting battery has a high capacity, high energy density, and low irreversible capacity even during rapid charge / discharge. The charge / discharge cycle characteristics are shown.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a coin-type non-aqueous electrolyte battery according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Positive electrode collector 7 Negative electrode collector

Claims (2)

負極活物質の主構成物質に、カルシウムとフッ素の化合物を付着保持した炭素粒子を用いることを特徴とするリチウム二次電池。A lithium secondary battery using carbon particles in which a compound of calcium and fluorine is attached and held as a main constituent material of a negative electrode active material. 前記負極活物質である炭素粒子は、X線回折法による面間隔(d002)が3.354〜3.369Åで、C軸方向の結晶の大きさ(Lc)が200Å以上であることを特徴とする請求項1記載のリチウム二次電池。 The carbon particles as the negative electrode active material have an interplanar spacing (d002) by X-ray diffraction of 3.354 to 3.369 mm and a crystal size (Lc) in the C-axis direction of 200 mm or more. The lithium secondary battery according to claim 1.
JP27405197A 1997-10-07 1997-10-07 Lithium secondary battery Expired - Fee Related JP4193008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27405197A JP4193008B2 (en) 1997-10-07 1997-10-07 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27405197A JP4193008B2 (en) 1997-10-07 1997-10-07 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH11111342A JPH11111342A (en) 1999-04-23
JP4193008B2 true JP4193008B2 (en) 2008-12-10

Family

ID=17536292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27405197A Expired - Fee Related JP4193008B2 (en) 1997-10-07 1997-10-07 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4193008B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4453122B2 (en) * 1999-06-23 2010-04-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2002313339A (en) * 2001-04-16 2002-10-25 Matsushita Battery Industrial Co Ltd Nonaqueous electrolyte secondary battery
CA2409524A1 (en) * 2002-10-23 2004-04-23 Hydro-Quebec Particles consisting of graphite-based cores and covered by at least one continuous or discontinuous layer, production processes and uses for such particles
JP2006310265A (en) * 2005-03-31 2006-11-09 Mitsubishi Chemicals Corp Negative electrode material for non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid secondary battery using it
KR100853327B1 (en) * 2007-02-16 2008-08-21 엘에스엠트론 주식회사 Anode active material for rechargeable lithium ion battery and method for preparing thereof and lithium ion battery manufactured using the same
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
JP2017220311A (en) * 2016-06-03 2017-12-14 株式会社リコー Nonaqueous electrolyte power storage element
JP7140480B2 (en) * 2017-09-14 2022-09-21 トヨタ自動車株式会社 Lithium ion secondary battery, graphite material for negative electrode of the battery, and method for producing the same

Also Published As

Publication number Publication date
JPH11111342A (en) 1999-04-23

Similar Documents

Publication Publication Date Title
JP6258641B2 (en) Non-aqueous electrolyte secondary battery
JP3596578B2 (en) Non-aqueous electrolyte secondary battery
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
JP4296580B2 (en) Nonaqueous electrolyte lithium secondary battery
JP3906944B2 (en) Non-aqueous solid electrolyte battery
JP6998335B2 (en) Negative electrode active material and power storage device
JP3985143B2 (en) Electrode material and lithium battery using the same
JP2019175657A (en) Lithium ion secondary battery
JPH11204145A (en) Lithium secondary battery
JP4193008B2 (en) Lithium secondary battery
JP4029224B2 (en) Non-aqueous electrolyte battery
JP2005025991A (en) Nonaqueous electrolyte secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP3994497B2 (en) Non-aqueous electrolyte battery
JP2017134923A (en) Negative electrode for lithium secondary battery, lithium secondary battery and manufacturing methods thereof
JP4355862B2 (en) Non-aqueous electrolyte battery
JP4320526B2 (en) Nonaqueous electrolyte secondary battery
JPH11273735A (en) Lithium-ion polymer secondary battery
JP3975481B2 (en) Electrode material and lithium battery using the same
JP3972454B2 (en) Lithium secondary battery
JPH11345614A (en) Nonaqueous electrolyte battery
JP3821180B2 (en) Lithium secondary battery
JP4624500B2 (en) Non-aqueous electrolyte battery
JP2001015168A (en) Lithium secondary battery
JPH11307122A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees