JPH11273735A - Lithium-ion polymer secondary battery - Google Patents

Lithium-ion polymer secondary battery

Info

Publication number
JPH11273735A
JPH11273735A JP10069907A JP6990798A JPH11273735A JP H11273735 A JPH11273735 A JP H11273735A JP 10069907 A JP10069907 A JP 10069907A JP 6990798 A JP6990798 A JP 6990798A JP H11273735 A JPH11273735 A JP H11273735A
Authority
JP
Japan
Prior art keywords
electrolyte
polymer
lithium
negative electrode
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10069907A
Other languages
Japanese (ja)
Inventor
Tokuo Inamasu
徳雄 稲益
Tadashi Shioda
匡史 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP10069907A priority Critical patent/JPH11273735A/en
Publication of JPH11273735A publication Critical patent/JPH11273735A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery, excellent in a high-rate discharge characteritic, of low profile and light weight, free from liquid leak. and excellent in safety, by disposing polymer electrolyte in voids of a positive electrode and/or a negative electrode having a void ratio in a specific range. SOLUTION: A void ratio is 27 to 60 vol.%. As a polymer electrolyte, a gel-like gel electrolyte with an electrolytic solution held by a polymer is preferable and a high-polymer matrix material, etc., containing a nonaqueous electrolyte are suitable. A positive electrode 3 is made by mixing lithium cobaltate as an active material, a conductive material, a binder, and a diluent together to make a coating liquid, applying it to aluminum foil of a current collector 1, and then drying it. A negative electrode 4 is made by mixing artificial graphite as an active material, a binder, and a diluent together to make a coating liquid, applying it to electrolytic copper foil of the current collector 1, and then drying it. The gel-electrolyte is made by mixing what is obtained by changing an ethylene oxide-added body of bis-phenol A into an acrylate with the electrolytic solution and cross-linking it. A gel-electrolytic film 5 is made by mixing a 3-functional acrylic ester and the electrolytic solution together, impregnating it into a polyethylene nonwoven fabric, and cross-linking it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオンポ
リマー2次電池における高率放電特性の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of high rate discharge characteristics in a lithium ion polymer secondary battery.

【0002】[0002]

【従来の技術】現在、実用化されているリチウムイオン
電池は円筒形、角形であるが、携帯機器としては、ポケ
ットやバッグに収納しやすいように薄型化の要求があ
る。薄型電池の場合、電解質にポリマーを含有するリチ
ウムイオンポリマー電池がその要求を満足する電池とし
て有望である。一方、電池を使用する機器側としては、
ノートパソコンのように多機能化が進み、高率放電特性
への要求も強い。 リチウムイオンポリマー2次電
池は、非水電解液を用いたリチウムイオン2次電池と同
じく正極にコバルト酸リチウム等のリチウム含有遷移金
属酸化物を、負極にリチウムを吸蔵放出可能な炭素材料
を用い、セパレータと電解質の代わりにポリマー電解質
を用いたことで、薄型、軽量でかつ液漏れのない安全性
に優れた電池である。即ち、ポリマーを含有したポリマ
ー電解質は固体であるため、電解液のみを使用した電池
系に比べて電解質の流動性がなく、また引火も起こりに
くいことから漏液のない安全な電池の製造が可能とな
る。このリチウムイオンポリマー2次電池において電極
にポリマー電解質を配置する方法として、空孔を有する
電極にポリマー電解質の前駆体であるモノマーと、リチ
ウム塩を有機溶剤に溶解したモノマー溶液(以下、モノ
マー液という)を含浸後重合する方法や、ポリマーとリ
チウム塩を高温で有機溶剤(以下、ポリマー液という)
に溶解し、空孔を有する電極に含浸後冷却する方法等が
挙げられる。
2. Description of the Related Art At present, lithium-ion batteries put into practical use are cylindrical and prismatic, but there is a demand for a portable device to be thinner so that it can be easily stored in a pocket or a bag. In the case of a thin battery, a lithium ion polymer battery containing a polymer in the electrolyte is promising as a battery that satisfies the demand. On the other hand, on the device side that uses batteries,
As notebook PCs become more multifunctional, there is a strong demand for high-rate discharge characteristics. The lithium ion polymer secondary battery uses a lithium-containing transition metal oxide such as lithium cobalt oxide for the positive electrode and a carbon material capable of inserting and extracting lithium for the negative electrode, similarly to the lithium ion secondary battery using the non-aqueous electrolyte. By using a polymer electrolyte instead of the separator and the electrolyte, the battery is thin, lightweight, and excellent in safety without liquid leakage. In other words, since the polymer electrolyte containing the polymer is solid, there is no fluidity of the electrolyte compared to a battery system using only the electrolyte, and it is unlikely to ignite, making it possible to manufacture a safe battery without liquid leakage. Becomes In this lithium ion polymer secondary battery, a method of arranging a polymer electrolyte on an electrode includes a monomer which is a precursor of the polymer electrolyte and a monomer solution in which a lithium salt is dissolved in an organic solvent (hereinafter referred to as a monomer solution). ) And polymerizing after impregnation, or polymer and lithium salt at high temperature in organic solvent (hereinafter referred to as polymer liquid)
And cooling after impregnating the electrode having pores.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、空孔を
有する電極にポリマー電解質を配置する場合、その配置
する量が重要になってくる。従来、ポリマー電解質を配
置する目的で電極にモノマー液やポリマー液を含浸する
場合、電極への電解質の浸透性という点から一般の電解
液の場合とはその配置量が異なってくるという問題があ
った。即ち、ポリマーを含有しない電解液は、空孔の細
部まで浸透するのに対して、モノマー液やポリマー液は
その浸透が起こり難く、その結果電解質と正極及び負極
の活物質との界面におけるリチウムイオンの絶対量が少
なくなり、リチウムイオンの濃度分極を生じ、高率放電
特性が低下する問題があった。そのため、上記のような
問題を解決し、リチウムイオンポリマー電池の高率放電
特性を改善することが望まれている。
However, when a polymer electrolyte is arranged on an electrode having pores, the amount of the polymer electrolyte becomes important. Conventionally, when an electrode is impregnated with a monomer liquid or a polymer liquid for the purpose of arranging a polymer electrolyte, there is a problem that the amount of arrangement is different from that of a general electrolyte in terms of permeability of the electrolyte to the electrode. Was. That is, the electrolyte solution containing no polymer penetrates into the pores, whereas the monomer solution or the polymer solution hardly permeates. As a result, the lithium ion at the interface between the electrolyte and the active material of the positive electrode and the negative electrode is reduced. , The concentration of lithium ions is polarized, and the high-rate discharge characteristics are degraded. Therefore, it is desired to solve the above problems and improve the high-rate discharge characteristics of the lithium ion polymer battery.

【0004】本発明は上記のような課題を解決するもの
で、その目的は高率放電特性が優れたリチウムイオンポ
リマー2次電池を提供することにある。
An object of the present invention is to solve the above problems, and an object of the present invention is to provide a lithium ion polymer secondary battery having excellent high rate discharge characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は前記問題点に鑑
みてなされたものであって、空孔率が27体積%以上、
60体積%以下の正極及び/または負極を有し、その正
極及び/または負極の空孔にポリマー電解質を配置した
ことを特徴とするリチウムイオンポリマー2次電池であ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a porosity of at least 27% by volume.
A lithium ion polymer secondary battery having a positive electrode and / or a negative electrode of 60% by volume or less, and a polymer electrolyte disposed in pores of the positive electrode and / or the negative electrode.

【0006】さらに、本発明に関わるポリマー電解質に
おいて、室温において良好な充放電特性を得るにはその
ポリマー電解質はゲル電解質であることが好ましい。ゲ
ル電解質とは、電解液をポリマーで保持したゲル状の電
解質のことであり、このゲル電解質を用いることにより
常温におけるイオン伝導度が向上し、その結果充放電特
性が向上すると考えられる。
Further, in the polymer electrolyte according to the present invention, in order to obtain good charge / discharge characteristics at room temperature, the polymer electrolyte is preferably a gel electrolyte. The gel electrolyte is a gel electrolyte in which an electrolyte is held by a polymer, and it is considered that the use of this gel electrolyte improves the ionic conductivity at room temperature, and as a result, improves the charge / discharge characteristics.

【0007】[0007]

【作用】本発明のリチウムイオンポリマー2次電池にお
いては、正極及び/または負極の空孔率を27体積%以
上、60体積%以下にすることでポリマー電解質の配置
量を増大することにより、高率放電特性が改善される。
その理由としては必ずしも明確ではないが、以下のよう
に考察される。即ち、空孔を有する電極に、ポリマー電
解質を配置するリチウムイオンポリマー2次電池の場
合、ポリマー電解質の前駆体であるモノマー液やポリマ
ー液の電極への配置量が重要であると考えられる。つま
り、溶剤のみの電解液に比べて、モノマー液やポリマー
液を用いる場合、電極細部への浸透が起こり難く、その
結果正極及び/または負極の活物質近傍のポリマー電解
質の絶対量が不十分となる。そのため高率放電を行う
と、負極から供給されるべきリチウムイオンは、そのイ
オン拡散が抑制され、正極の活物質近傍ではリチウムイ
オン不足を生じ、リチウムイオンの濃度分極を生じ、放
電できない状態に陥ることが考えられる。即ち、電極の
空孔を増やすことにより、モノマー液やポリマー液の浸
透を容易にし、電極中のポリマー電解質の量を増し、さ
らに活物質界面とポリマー電解質との接触を十分行うこ
とにより、リチウムイオンの移動能力を向上させ、濃度
分極を低減することが高率放電特性の改善に重要である
と考えられる。
In the lithium ion polymer secondary battery according to the present invention, the porosity of the positive electrode and / or the negative electrode is set to be not less than 27% by volume and not more than 60% by volume so that the amount of the polymer electrolyte disposed is increased. The rate discharge characteristics are improved.
Although the reason is not always clear, it is considered as follows. That is, in the case of a lithium ion polymer secondary battery in which a polymer electrolyte is disposed on an electrode having pores, it is considered that the amount of a monomer liquid or a polymer liquid, which is a precursor of the polymer electrolyte, disposed on the electrode is important. That is, when a monomer solution or a polymer solution is used as compared with an electrolyte solution containing only a solvent, penetration into electrode details is less likely to occur, and as a result, the absolute amount of the polymer electrolyte near the active material of the positive electrode and / or the negative electrode is insufficient. Become. Therefore, when high-rate discharge is performed, diffusion of lithium ions to be supplied from the negative electrode is suppressed, lithium ion shortage occurs near the active material of the positive electrode, concentration polarization of lithium ions occurs, and a state where discharge cannot be performed is caused. It is possible. That is, by increasing the number of pores in the electrode, the penetration of the monomer solution or the polymer solution is facilitated, the amount of the polymer electrolyte in the electrode is increased, and the contact between the active material interface and the polymer electrolyte is sufficiently performed so that the lithium ion It is considered that it is important to improve the high-rate discharge characteristics by improving the transfer capability of the metal and reducing the concentration polarization.

【0008】さらに、ポリマー電解質としてゲル電解質
を用いることが好ましい。ゲル電解質は、溶剤を全く含
まないポリマー電解質に比べてイオン伝導度が高く、そ
の結果高率放電等に伴う濃度分極が低減されるとが考え
られるからである。
Further, it is preferable to use a gel electrolyte as the polymer electrolyte. This is because a gel electrolyte has a higher ionic conductivity than a polymer electrolyte containing no solvent at all, and as a result, concentration polarization due to high-rate discharge or the like is considered to be reduced.

【0009】[0009]

【発明の実施の形態】本発明のポリマー電解質としては
例えば、ポリエチレンオキサイド誘導体や少なくとも該
誘導体を含むポリマー、ポリプロピレンオキサイド誘導
体や少なくとも該誘導体を含むポリマー、ポリフォスフ
ァゼンや該誘導体、イオン解離基を含むポリマー、リン
酸エステルポリマー誘導体、さらにポリビニルピリジン
誘導体、ビスフェノールA誘導体、ポリアクリロニトリ
ル、ポリビニリデンフルオライド、フッ素ゴム等に非水
電解液を含有させた高分子マトリックス材料(ゲル電解
質)等が有効である。
BEST MODE FOR CARRYING OUT THE INVENTION The polymer electrolyte of the present invention includes, for example, a polyethylene oxide derivative, a polymer containing at least the derivative, a polypropylene oxide derivative, a polymer containing at least the derivative, polyphosphazene, the derivative, and an ion-dissociating group. Polymer matrix materials (gel electrolytes) containing a non-aqueous electrolyte in a polymer, a phosphate ester polymer derivative, a polyvinyl pyridine derivative, a bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, fluororubber, etc. are effective. .

【0010】この非水電解液の有機溶媒として、プロピ
レンカーボネート、エチレンカーボネート、ブチレンカ
ーボネート、ジエチルカーボネート、ジメチルカーボネ
ート、メチルエチルカーボネート、γ−ブチロラクトン
等のエステル類や、テトラヒドロフラン、2−メチルテ
トラヒドロフラン等の置換テトラヒドロフラン、ジオキ
ソラン、ジエチルエーテル、ジメトキシエタン、ジエト
キシエタン、メトキシエトキシエタン等のエーテル類、
ジメチルスルホキシド、スルホラン、メチルスルホラ
ン、アセトニトリル、ギ酸メチル、酢酸メチル、N−メ
チルピロリドン、ジメチルフォルムアミド等が挙げら
れ、これらを単独又は混合溶媒として用いることができ
る。
As the organic solvent of the non-aqueous electrolyte, esters such as propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, and γ-butyrolactone, and substitution with tetrahydrofuran, 2-methyltetrahydrofuran, etc. Ethers such as tetrahydrofuran, dioxolan, diethyl ether, dimethoxyethane, diethoxyethane, methoxyethoxyethane,
Dimethyl sulfoxide, sulfolane, methyl sulfolane, acetonitrile, methyl formate, methyl acetate, N-methylpyrrolidone, dimethylformamide and the like can be used, and these can be used alone or as a mixed solvent.

【0011】上記のようなポリマー電解質に用いる支持
電解質塩としては、LiClO4 、LiPF6 、 LiB
4 、 LiAsF6 、 LiCF3 SO3 、 LiN(CF
3 SO2 ) 2 、LiN(C2 5 SO2 ) 2 、LiN
(CF3 SO2 ) (C4 9 SO2 ) 等が挙げられる。
The supporting electrolyte salt used for the polymer electrolyte as described above includes LiClO 4 , LiPF 6 , LiB
F 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF
3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN
(CF 3 SO 2 ) and (C 4 F 9 SO 2 ).

【0012】ポリマー電解質と併用してセパレータを用
いることができる。セパレータとしては、イオンの透過
度が優れ、機械的強度のある絶縁性薄膜を用いることが
できる。耐有機溶剤性と疎水性からポリプロピレンやポ
リエチレンといったオレフィン系のポリマー、ポリイミ
ド、ポリフェニレンスルファイトといったエンジニアリ
ングプラスチック系のポリマー、ポリエチレンテレフタ
レート、ポリブチレンテレフタレート、ポリエチレンナ
フタレートといったポリエステル系のポリマー、ポリフ
ッ化ビニリデン、ポリテトラフルオロエチレンといった
フッ素系のポリマー、ナイロン系のポリマー、シリコン
系のポリマー、ガラス等の繊維からつくられたシート、
不織布、布等または微孔膜が用いられる。セパレータの
孔径は、0.01μm〜10μm、その開孔率は30%
〜70%、さらにその厚さは5〜300μmが好まし
い。
A separator can be used in combination with the polymer electrolyte. As the separator, an insulating thin film having excellent ion permeability and mechanical strength can be used. Olefin polymers such as polypropylene and polyethylene, engineering plastic polymers such as polyimide and polyphenylene sulfite, polyester polymers such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, polyvinylidene fluoride, and polyolefin Sheets made from fibers such as fluorine-based polymers such as tetrafluoroethylene, nylon-based polymers, silicon-based polymers, and glass,
A nonwoven fabric, cloth, or a microporous membrane is used. The pore size of the separator is 0.01 μm to 10 μm, and the porosity is 30%.
7070%, more preferably the thickness is 5300300 μm.

【0013】本発明の正極活物質としては、MnO2 ,
MoO3 , V2 5 , Lix CoO2 , Lix Ni
2 , Lix Mn2 4 等の金属酸化物や、TiS2 ,
MoS2, NbSe3 等の金属カルコゲン化物、Fe2
(SO4 3 、LiFePO4 等の遷移金属硫酸化合物
やリン酸化合物、ポリアセン、ポリパラフェニレン、ポ
リピロール、ポリアニリン等のグラファイト層間化合
物、及び導電性高分子等のアルカリ金属イオンや、アニ
オンを吸放出可能な各種の物質を利用することができ
る。
The cathode active material of the present invention includes MnO 2 ,
MoO 3 , V 2 O 5 , Li x CoO 2 , Li x Ni
Metal oxides such as O 2 , Li x Mn 2 O 4 , TiS 2 ,
Metal chalcogenides such as MoS 2 and NbSe 3 , Fe 2
(SO 4 ) 3 , LiFePO 4 and other transition metal sulfate and phosphate compounds, graphite intercalation compounds such as polyacene, polyparaphenylene, polypyrrole, and polyaniline, and alkali metal ions and anions such as conductive polymers Various possible substances can be used.

【0014】特に本発明のリチウムイオンポリマー2次
電池の場合、高エネルギー密度という観点からV
2 5 , MnO2 , Lix CoO2 , Lix NiO2 ,
Lix Mn2 4 等の3〜4Vの電極電位を有するもの
が望ましい。特にLix CoO2 ,Lix NiO2 , L
x Coy Ni1-y 2 , Lix Aly Coz Ni
1-y-z 2 , Lix Mn2 4 等のリチウム含有遷移金
属酸化物が好ましい。なかでも、LiX AlY Coz
1-y-z 2 ( x≧0、y≧0、z≧0、0≦y+z≦
1)は、高容量であり、サイクル特性及び安全性に優れ
ることから、リチウムイオンポリマー2次電池の正極活
物質の主成分であることが望ましい。
In particular, in the case of the lithium ion polymer secondary battery of the present invention, V
2 O 5 , MnO 2 , Li x CoO 2 , Li x NiO 2 ,
Those having an electrode potential of 3 to 4 V, such as Li x Mn 2 O 4, are desirable. In particular, Li x CoO 2 , Li x NiO 2 , L
i x Co y Ni 1-y O 2, Li x Al y Co z Ni
Lithium-containing transition metal oxides such as 1-yz O 2 and Li x Mn 2 O 4 are preferred. Among them, Li X Al Y Co z N
i 1 -yz O 2 (x ≧ 0, y ≧ 0, z ≧ 0, 0 ≦ y + z ≦
1) is preferably a main component of the positive electrode active material of the lithium ion polymer secondary battery because it has high capacity and excellent cycle characteristics and safety.

【0015】一方、本発明の負極活物質としては、リチ
ウム金属、リチウム合金、シリコンやゲルマニウムに不
純物をドープした外来半導体、スズ酸化物、スピネル酸
化物等の金属酸化物や金属カルコゲン化物、グラファイ
ト層間化合物や難黒鉛化材料等の炭素材料等があげられ
る。特に本発明のリチウムイオンポリマー2次電池の場
合、高エネルギー密度という観点からリチウム金属、リ
チウム合金等の0〜1Vの電極電位を有するものが望ま
しい。また、スピネル酸化物には、Li4 Ti5 12
ように、充放電に伴う結晶系の変化が見られないものも
あり、このような特性はリチウムイオンポリマー2次電
池の場合に好ましい。
On the other hand, the negative electrode active material of the present invention includes a lithium metal, a lithium alloy, a foreign semiconductor in which silicon or germanium is doped with an impurity, a metal oxide such as tin oxide and spinel oxide, a metal chalcogenide, and a graphite interlayer. Examples include compounds and carbon materials such as non-graphitizable materials. In particular, in the case of the lithium ion polymer secondary battery of the present invention, a lithium metal, lithium alloy or the like having an electrode potential of 0 to 1 V is desirable from the viewpoint of high energy density. Some spinel oxides, such as Li 4 Ti 5 O 12 , do not show any change in the crystal system during charge and discharge, and such characteristics are preferable in the case of a lithium ion polymer secondary battery.

【0016】本発明に併せて用いることができる負極材
料としては、リチウム金属、リチウム合金などや、リチ
ウムイオンまたはリチウム金属を吸蔵放出できる合金、
焼成炭素質化合物やカルコゲン化合物、メチルリチウム
等のリチウムを含有する有機化合物等が挙げられる。ま
た、リチウム金属やリチウム合金、リチウムを含有する
有機化合物を併用することによって、本発明に用いる負
極活物質をあらかじめ低い電位(放電末)にすること
や、初期効率の改善が可能である。
Examples of the negative electrode material that can be used in conjunction with the present invention include lithium metal, lithium alloy, and the like, alloys capable of inserting and extracting lithium ions or lithium metal,
Examples include calcined carbonaceous compounds, chalcogen compounds, and organic compounds containing lithium such as methyllithium. In addition, by using a lithium metal, a lithium alloy, and an organic compound containing lithium together, it is possible to lower the potential (discharge end) of the negative electrode active material used in the present invention and to improve the initial efficiency.

【0017】本発明に用いる正、負極活物質は、平均粒
子サイズ0.1〜100μmである粉体が望ましい。所
定の形状を得る上で、粉体を得るためには粉砕機や分級
機や造粒機が用いられる。例えば、乳鉢、ボールミル、
サンドミル、振動ボールミル、遊星ボールミル、ジェッ
トミル、カウンタージェットミル、旋回気流型ジェット
ミルや篩等が用いられる。粉砕時には水、あるいはヘキ
サン等の有機溶剤を共存させた湿式粉砕を用いることも
できる。分級方法としては、特に限定はなく、篩や風力
分級機などが乾式、湿式ともに必要に応じて用いられ
る。
The positive and negative electrode active materials used in the present invention are preferably powders having an average particle size of 0.1 to 100 μm. In obtaining a predetermined shape, a pulverizer, a classifier, or a granulator is used to obtain a powder. For example, mortar, ball mill,
A sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.

【0018】本発明の共有結合結晶を粉体として用いる
場合、その粉体の少なくとも表面層部分を修飾すること
も可能である。例えば、金、銀、カーボン、ニッケル、
銅等の電子伝導性のよい物質や、炭酸リチウム、ホウ素
ガラス、固体電解質等のイオン伝導性のよい物質をメッ
キ、焼結、メカノフュージョン、蒸着等の技術を応用し
てコートすることが挙げられる。
When the covalent crystal of the present invention is used as a powder, at least the surface layer of the powder can be modified. For example, gold, silver, carbon, nickel,
Coating a material with good electron conductivity such as copper, or a material with good ion conductivity such as lithium carbonate, boron glass, and solid electrolyte by applying techniques such as plating, sintering, mechanofusion, and vapor deposition. .

【0019】本発明リチウムイオンポリマー2次電池に
おいて、上記のような正極及び負極活物質を用いて電極
を作製する場合、導電剤や結着剤やフィラー等を添加す
ることができる。導電剤としては、電池性能に悪影響を
及ぼさない電子伝導性材料であれば何でもよい。通常、
天然黒鉛(鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カ
ーボンブラック、アセチレンブラック、ケッチェンブラ
ック、カーボンウイスカー、炭素繊維や金属(銅、ニッ
ケル、鉄、銀、金など)粉、金属繊維、金属の蒸着、導
電性セラミックス材料等の導電性材料を1種またはそれ
らの混合物として含ませることができる。その添加量は
1〜50重量%が好ましく、特に2〜30重量%が好ま
しい。
In the lithium ion polymer secondary battery of the present invention, when an electrode is manufactured using the above-described positive electrode and negative electrode active materials, a conductive agent, a binder, a filler, and the like can be added. The conductive agent may be any electronic conductive material that does not adversely affect battery performance. Normal,
Natural graphite (flaky graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fiber and metal (copper, nickel, iron, silver, gold, etc.) powder, metal fiber, A conductive material such as metal deposition or a conductive ceramic material can be included as one type or a mixture thereof. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.

【0020】結着剤としては、通常、テトラフルオロエ
チレン、ポリフッ化ビニリデン、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンジエンターポリマー
(EPDM)、スルホン化EPDM、スチレンブタジエ
ンゴム(SBR)、フッ素ゴム、カルボキシメチルセル
ロース等といった熱可塑性樹脂、ゴム弾性を有するポリ
マー、多糖類等を1種または2種以上の混合物として用
いることができる。また、多糖類の様にリチウムと反応
する官能基を有する結着剤は、例えばメチル化するなど
してその官能基を失活させておくことが望ましい。その
添加量としては、1〜50重量%が好ましく、特に2〜
30重量%が好ましい。これらの結着剤は希釈剤を用い
て溶解あるいは分散させて使用することが好まれる。希
釈剤としては、水やNメチルピロリドン(以下NMPと
する)、トルエン等の有機溶剤が好ましい。
As the binder, usually, tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluoro rubber, carboxymethyl cellulose, etc. Such as a thermoplastic resin, a polymer having rubber elasticity, a polysaccharide and the like can be used alone or as a mixture of two or more. Further, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly 2 to 50% by weight.
30% by weight is preferred. It is preferable that these binders are dissolved or dispersed using a diluent and used. As the diluent, water, an organic solvent such as N-methylpyrrolidone (hereinafter referred to as NMP), toluene and the like are preferable.

【0021】フィラーとしては、電池性能に悪影響を及
ぼさない材料であれば何でも良い。通常、ポリプロピレ
ン、ポリエチレン等のオレフィン系ポリマー、アエロジ
ル、アルミナ、炭素等が用いられる。フィラーの添加量
は0〜30重量%が好ましい。
As the filler, any material may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, alumina, carbon and the like are used. The addition amount of the filler is preferably 0 to 30% by weight.

【0022】電極活物質の集電体としては、構成された
電池において悪影響を及ぼさない電子伝導体であれば何
でもよい。例えば、正極材料としては、アルミニウム、
チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高
分子、導電性ガラス等の他に、接着性、導電性、耐酸化
性向上の目的で、アルミニウムや銅等の表面をカーボ
ン、ニッケル、チタンや銀等で処理したものを用いるこ
とができる。負極材料としては、銅、ステンレス鋼、ニ
ッケル、アルミニウム、チタン、焼成炭素、導電性高分
子、導電性ガラス、Al−Cd合金等の他に、接着性、
導電性、耐酸化性向上の目的で、銅等の表面をカーボ
ン、ニッケル、チタンや銀等で処理したものを用いるこ
とができる。これらの材料については表面を酸化処理す
ることも可能である。これらの形状については、フォイ
ル状の他、フィルム状、シート状、ネット状、パンチ、
エキスパンドされたもの、ラス体、多孔質体、発泡体、
繊維群の成形体等が用いられる。厚みは特に限定はない
が、1〜500μmのものが用いられる。
The current collector of the electrode active material may be any electronic conductor that does not adversely affect the battery. For example, as the positive electrode material, aluminum,
In addition to titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., for the purpose of improving adhesiveness, conductivity, and oxidation resistance, the surface of aluminum, copper, etc. is coated with carbon, nickel, titanium, or the like. Those treated with silver or the like can be used. As the negative electrode material, copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc.
For the purpose of improving conductivity and oxidation resistance, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver, or the like can be used. These materials can be oxidized on the surface. For these shapes, besides foil, film, sheet, net, punch,
Expanded, lath, porous, foam,
A molded article of a fiber group is used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used.

【0023】本発明の空孔を有する電極を作製する場
合、上記に示したような正極及び負極活物質、導電剤、
結着剤、希釈剤、フィラー、集電体等を用いることがで
きる。例えば正極は、上記正極活物質と導電剤、結着剤
を希釈剤を用いてスラリー状にし、そのスラリーを集電
体上に塗布した後、圧延ローラーを用いて圧延すること
により作製される。一方、負極は上記負極活物質と導電
剤、結着剤を希釈剤を用いてスラリー状にし、そのスラ
リーを集電体上に塗布した後、圧延ローラーを用いて圧
延することにより作製される。この正極及び負極の圧延
の際、線圧を変化させることにより、目的の空孔率を有
する電極に仕上げることができる。この線圧を最適化
し、空孔率を27体積%以上にすることが、電池内部で
のリチウムイオンの濃度分極を抑制し、高率放電特性が
向上するため好ましい。また、エネルギー密度の観点か
ら、空孔率は60体積%以下が好ましく、さらに好まし
くは50体積%以下であり、最も好ましくは40体積%
以下である。
When producing the electrode having pores of the present invention, the positive and negative electrode active materials, the conductive agent,
A binder, a diluent, a filler, a current collector, or the like can be used. For example, a positive electrode is manufactured by forming a slurry of the positive electrode active material, the conductive agent, and the binder using a diluent, applying the slurry on a current collector, and then rolling using a rolling roller. On the other hand, the negative electrode is manufactured by forming a slurry of the negative electrode active material, the conductive agent, and the binder using a diluent, applying the slurry on a current collector, and then rolling using a rolling roller. By changing the linear pressure during the rolling of the positive electrode and the negative electrode, an electrode having a target porosity can be finished. It is preferable to optimize this linear pressure and make the porosity 27 vol% or more, since the concentration polarization of lithium ions inside the battery is suppressed and the high-rate discharge characteristics are improved. Further, from the viewpoint of energy density, the porosity is preferably 60% by volume or less, more preferably 50% by volume or less, and most preferably 40% by volume or less.
It is as follows.

【0024】[0024]

【実施例】本発明の実施例について以下に説明する。Embodiments of the present invention will be described below.

【0025】正極活物質としてコバルト酸リチウムを、
負極活物質として人造黒鉛を用い、空孔を有するシート
状の正極及び負極を作製した。また、ポリマー電解質と
しては、有機溶剤を含んだゲル電解質を用いた。
Lithium cobaltate is used as a positive electrode active material,
Using artificial graphite as the negative electrode active material, a sheet-shaped positive electrode and a negative electrode having holes were produced. As the polymer electrolyte, a gel electrolyte containing an organic solvent was used.

【0026】まず、正極の作製にあたっては、正極活物
質であるコバルト酸リチウムを92重量部、導電剤とし
てアセチレンブラックを5重量部、結着剤としてポリフ
ッ化ビニリデンを3重量部の割合で準備し、それらを希
釈剤であるNMPでスラリー状に混練し、粘度を調製し
た塗液を作製した。
First, in preparing the positive electrode, 92 parts by weight of lithium cobalt oxide as a positive electrode active material, 5 parts by weight of acetylene black as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were prepared. These were kneaded in a slurry state with NMP as a diluent to prepare a coating liquid having adjusted viscosity.

【0027】上記の塗液を集電体である厚さ15μmの
アルミニウム箔にアプリケータロールをを用い塗布し乾
燥した。この電極を線圧が130kg/cmの圧延ロー
ラーにより圧延し、その後カードサイズ(30cm2
に打ち抜きシート状の正極を作製した。この正極の空孔
率は32%であった。
The above coating solution was applied to an aluminum foil having a thickness of 15 μm as a current collector using an applicator roll and dried. This electrode is rolled by a rolling roller having a linear pressure of 130 kg / cm, and then has a card size (30 cm 2 ).
Then, a sheet-shaped positive electrode was prepared. The porosity of this positive electrode was 32%.

【0028】次に、負極の作製にあたっては、負極活物
質である人造黒鉛を94重量部、結着剤としてポリフッ
化ビニリデンを6重量部の割合で準備し、それらを希釈
剤であるNMPでスラリー状に混練し、粘度を調製した
塗液を作製した。
Next, in preparing the negative electrode, 94 parts by weight of artificial graphite as a negative electrode active material and 6 parts by weight of polyvinylidene fluoride as a binder were prepared, and these were slurried with NMP as a diluent. To obtain a coating liquid whose viscosity was adjusted.

【0029】上記の塗液を集電体である厚さ12μmの
電解銅箔にアプリケータロールを用い塗布し乾燥した。
この電極を線圧が130kg/cmの圧延ローラーによ
り圧延し、その後カードサイズ(30cm2 )に打ち抜
きシート状の負極を作製した。この負極の空孔率は35
%であった。
The above coating solution was applied to a 12 μm thick electrolytic copper foil as a current collector using an applicator roll and dried.
This electrode was rolled with a rolling roller having a linear pressure of 130 kg / cm, and then punched into a card size (30 cm 2 ) to produce a sheet-shaped negative electrode. The porosity of this negative electrode is 35
%Met.

【0030】ゲル電解質として、ビスフェノールAのエ
チレンオキサイド付加体をアクリレート化したもの(モ
ノマー)と電解液とを混合し、架橋したものを用いた。
この架橋前の溶液をモノマー液Aとする。ここで電解液
は、γ−ブチロラクトンとエチレンカーボネートを体積
比で1:1に混合した溶媒にLiBF4 を1mol/l
となるように溶解したものを用いた。
As the gel electrolyte, one obtained by mixing an acrylated bisphenol A ethylene oxide adduct (monomer) with an electrolytic solution and cross-linking the mixture was used.
This solution before crosslinking is referred to as a monomer solution A. Here, the electrolytic solution is a solvent in which γ-butyrolactone and ethylene carbonate are mixed at a volume ratio of 1: 1 with 1 mol / l of LiBF 4.
What was melt | dissolved so that it might become was used.

【0031】電極の空孔にゲル電解質を配置する方法と
して、前記モノマー液を正極及び負極に含浸し、電子線
を照射してモノマー液を架橋する方法を行った。真空乾
燥した正極及び負極をそれぞれモノマー液Aに浸し、さ
らに真空にすることで電極の細部までモノマー液を行き
渡らせた。その後、モノマー液より取り出し、電子線を
照射することにより架橋を行い電極の空孔中にゲル電解
質を形成した。
As a method of arranging the gel electrolyte in the pores of the electrode, a method of impregnating the above-mentioned monomer solution into the positive electrode and the negative electrode and irradiating an electron beam to crosslink the monomer solution was performed. The vacuum-dried positive electrode and negative electrode were each immersed in the monomer solution A, and further evacuated to spread the monomer solution to the details of the electrode. Thereafter, the resultant was taken out of the monomer solution and irradiated with an electron beam to perform crosslinking, thereby forming a gel electrolyte in the pores of the electrode.

【0032】次に、ポリエチレンオキサイドとポリプロ
ピレンオキサイドの共重合体で3官能のアクリル酸エス
テルと前述の電解液を3:7で混合したもの(モノマー
液Bとする)を厚さ25μmのポリエチレン製不織布に
含浸し、電子線を照射して架橋した。得られたゲル電解
質膜を、ゲル電解質を配置した正極と負極の間に挟み込
み張り合わせた。この電極からそれぞれ端子を取りだ
し、アルミラミネートフィルムを用いて電極の周囲をヒ
ートシールし、最終シールのみ真空下で行った。以上の
ようにリチウムイオンポリマー2次電池を作製した。こ
のリチウムイオンポリマー2次電池の設計容量は65m
Ahである。
Next, a copolymer of polyethylene oxide and polypropylene oxide, which is a mixture of a trifunctional acrylate ester and the above-mentioned electrolytic solution at a ratio of 3: 7 (hereinafter referred to as “monomer solution B”), is a polyethylene nonwoven fabric having a thickness of 25 μm. And cross-linked by irradiation with electron beams. The obtained gel electrolyte membrane was sandwiched between a positive electrode and a negative electrode on which the gel electrolyte was arranged, and bonded. Terminals were taken out from the electrodes, and the periphery of the electrodes was heat-sealed using an aluminum laminated film, and only the final sealing was performed under vacuum. As described above, a lithium ion polymer secondary battery was manufactured. The design capacity of this lithium-ion polymer secondary battery is 65 m
Ah.

【0033】図1に本発明リチウムイオンポリマー2次
電池の断面を示す。図1において、1は集電体、2はア
ルミラミネートフィルム、3は正極、4は負極、5はゲ
ル電解質膜である。
FIG. 1 shows a cross section of the lithium ion polymer secondary battery of the present invention. In FIG. 1, 1 is a current collector, 2 is an aluminum laminated film, 3 is a positive electrode, 4 is a negative electrode, and 5 is a gel electrolyte membrane.

【0034】(比較例1)正極活物質であるコバルト酸
リチウムを92重量部、導電剤としてアセチレンブラッ
クを5重量部、結着剤としてポリフッ化ビニリデンを3
重量部の割合で準備し、それらを希釈剤であるNMPで
スラリー状に混練し、粘度を調製した塗液を作製した。
この塗液を集電体である厚さ15μmのアルミニウム箔
にアプリケータロールをを用い塗布し乾燥した。この電
極を線圧が300kg/cmの圧延ローラーにより圧延
し、その後カードサイズ(30cm2 )に打ち抜きシー
ト状の正極を作製した。この正極の空孔率は26%であ
った。この空孔を有する正極を用いること以外は上記実
施例と同様にリチウムイオンポリマー2次電池を試作し
た。
Comparative Example 1 92 parts by weight of lithium cobalt oxide as a positive electrode active material, 5 parts by weight of acetylene black as a conductive agent, and 3 parts of polyvinylidene fluoride as a binder were used.
They were prepared in parts by weight, and they were kneaded in a slurry with NMP as a diluent to prepare a coating liquid having adjusted viscosity.
This coating solution was applied to a 15 μm-thick aluminum foil as a current collector using an applicator roll, and dried. This electrode was rolled with a rolling roller having a linear pressure of 300 kg / cm, and then punched into a card size (30 cm 2 ) to produce a sheet-shaped positive electrode. The porosity of this positive electrode was 26%. A lithium ion polymer secondary battery was prototyped in the same manner as in the above example except that the positive electrode having the holes was used.

【0035】(比較例2)負極活物質である人造黒鉛を
94重量部、結着剤としてポリフッ化ビニリデンを6重
量部の割合で準備し、それらを希釈剤であるNMPでス
ラリー状に混練し、粘度を調製した塗液を作製した。こ
の塗液を集電体である厚さ12μmの電解銅箔にアプリ
ケータロールをを用い塗布し乾燥した。この電極を線圧
が300kg/cmの圧延ローラーにより圧延し、その
後カードサイズ(30cm2 )に打ち抜きシート状の負
極を作製した。この負極の空孔率は24%であった。
(Comparative Example 2) 94 parts by weight of artificial graphite as a negative electrode active material and 6 parts by weight of polyvinylidene fluoride as a binder were prepared, and they were kneaded in a slurry with NMP as a diluent. A coating solution having a controlled viscosity was prepared. The coating liquid was applied to a 12 μm-thick electrolytic copper foil as a current collector using an applicator roll, and dried. This electrode was rolled with a rolling roller having a linear pressure of 300 kg / cm, and then punched into a card size (30 cm 2 ) to produce a sheet-shaped negative electrode. The porosity of this negative electrode was 24%.

【0036】これらのセルを用いて充放電試験を行っ
た。充放電試験は20℃で実施した。充電は5時間率で
行い、充電終始電圧を4.1Vとした。放電は5時間率
放電と1時間率を行い、放電終始電圧を2.7Vとし
た。
A charge / discharge test was performed using these cells. The charge / discharge test was performed at 20 ° C. The charging was performed at a rate of 5 hours, and the voltage at the end of charging was set to 4.1V. The discharge was performed at a rate of 5 hours and a rate of 1 hour, and the voltage at the end of the discharge was set to 2.7V.

【0037】[0037]

【表1】 [Table 1]

【0038】表1に各電池についての5時間率と1時間
率の放電容量を示す。実施例の電池と同じ容量で設計し
た比較例1及び2の電池において、5時間率では設計し
たとおりの放電容量が得られたが、1時間率放電(高率
放電)においては設計の約50%の容量しか得られなか
った。これに比べて、本発明の実施例の電池は1時間率
放電においても約80%の放電容量が得られ、高率放電
特性が改善されたことが分かる。この理由は定かではな
いが、リチウムイオンポリマー2次電池の場合、高率放
電時に電極内のポリマー電解質が少ないとリチウムイオ
ンの拡散が電極反応に追いつかなくなるため、正極にお
いて濃度分極が起きやすく放電ができなくなると考えら
れる。即ち、電極内のポリマー電解質を多くすること
で、電極内のリチウムイオンの絶対量を増加させてリチ
ウムイオンが動き易くなり、濃度分極が起こり難かった
と考察される。
Table 1 shows the discharge capacity at a 5-hour rate and a 1-hour rate for each battery. In the batteries of Comparative Examples 1 and 2 which were designed with the same capacity as the battery of the example, the discharge capacity as designed was obtained at the 5-hour rate, but about 1 hour at the discharge rate of 1 hour (high-rate discharge). % Of the volume was obtained. In contrast, the batteries of the examples of the present invention exhibited a discharge capacity of about 80% even at 1 hour rate discharge, indicating that the high rate discharge characteristics were improved. The reason for this is not clear, but in the case of lithium-ion polymer secondary batteries, when the polymer electrolyte in the electrode is low during high-rate discharge, the diffusion of lithium ions cannot catch up with the electrode reaction, so that concentration polarization occurs easily in the positive electrode and discharge occurs. It will not be possible. That is, it is considered that by increasing the amount of the polymer electrolyte in the electrode, the absolute amount of the lithium ion in the electrode was increased, the lithium ion was easily moved, and the concentration polarization was hard to occur.

【0039】なお、本発明は上記実施例に記載された活
物質の出発原料、製造方法、正極、負極、電解質、セパ
レータ及び電池形状などに限定されるものではない。
The present invention is not limited to the starting materials, production methods, positive electrodes, negative electrodes, electrolytes, separators, battery shapes, and the like of the active materials described in the above embodiments.

【0040】[0040]

【発明の効果】本発明は上述の如く構成されているの
で、高率放電特性が優れた、薄型、軽量でかつ液漏れの
ない安全性の優れたリチウムイオンポリマー2次電池を
提供できる。
Since the present invention is configured as described above, it is possible to provide a lithium ion polymer secondary battery which is excellent in high-rate discharge characteristics, thin, lightweight, and excellent in safety without liquid leakage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を説明するためのリチウムイオンポリマ
ー2次電池の断面図である。
FIG. 1 is a cross-sectional view of a lithium ion polymer secondary battery for explaining the present invention.

【符号の説明】[Explanation of symbols]

1 集電体 2 アルミラミネートフィルム 3 正極 4 負極 5 ゲル電解質膜 DESCRIPTION OF SYMBOLS 1 Current collector 2 Aluminum laminated film 3 Positive electrode 4 Negative electrode 5 Gel electrolyte membrane

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 空孔率が27体積%以上、60体積%以
下の正極及び/または負極を有し、その正極及び/また
は負極の空孔にポリマー電解質を配置したことを特徴と
するリチウムイオンポリマー2次電池。
1. A lithium ion having a positive electrode and / or a negative electrode having a porosity of 27% by volume or more and 60% by volume or less, and a polymer electrolyte disposed in pores of the positive electrode and / or the negative electrode. Polymer secondary battery.
【請求項2】 前記ポリマー電解質が、ゲル電解質であ
ることを特徴とする請求項1記載のリチウムイオンポリ
マー2次電池。
2. The lithium ion polymer secondary battery according to claim 1, wherein the polymer electrolyte is a gel electrolyte.
JP10069907A 1998-03-19 1998-03-19 Lithium-ion polymer secondary battery Withdrawn JPH11273735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10069907A JPH11273735A (en) 1998-03-19 1998-03-19 Lithium-ion polymer secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10069907A JPH11273735A (en) 1998-03-19 1998-03-19 Lithium-ion polymer secondary battery

Publications (1)

Publication Number Publication Date
JPH11273735A true JPH11273735A (en) 1999-10-08

Family

ID=13416249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10069907A Withdrawn JPH11273735A (en) 1998-03-19 1998-03-19 Lithium-ion polymer secondary battery

Country Status (1)

Country Link
JP (1) JPH11273735A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109413A (en) * 1999-10-12 2001-04-20 Sony Corp Light emitting type display device
KR20010103648A (en) * 2000-05-08 2001-11-23 모리시타 요이찌 Lithium polymer secondary battery
JP2002015735A (en) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
KR100354228B1 (en) * 2000-09-01 2002-09-27 삼성에스디아이 주식회사 A Lithium Sulfur Secondary batteries using multi-layer separator
EP2280438A3 (en) * 2000-10-05 2011-03-09 Sony Corporation Solid electrolyte cell
JP2014078510A (en) * 2004-02-06 2014-05-01 A123 Systems Inc Lithium secondary battery having high speed charge-discharge performance
WO2015132845A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 All-solid-state battery
US9608292B2 (en) 2004-02-06 2017-03-28 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001109413A (en) * 1999-10-12 2001-04-20 Sony Corp Light emitting type display device
KR20010103648A (en) * 2000-05-08 2001-11-23 모리시타 요이찌 Lithium polymer secondary battery
JP2002015735A (en) * 2000-06-29 2002-01-18 Toyota Central Res & Dev Lab Inc Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
KR100354228B1 (en) * 2000-09-01 2002-09-27 삼성에스디아이 주식회사 A Lithium Sulfur Secondary batteries using multi-layer separator
EP2280438A3 (en) * 2000-10-05 2011-03-09 Sony Corporation Solid electrolyte cell
JP2014078510A (en) * 2004-02-06 2014-05-01 A123 Systems Inc Lithium secondary battery having high speed charge-discharge performance
US9608292B2 (en) 2004-02-06 2017-03-28 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
WO2015132845A1 (en) * 2014-03-03 2015-09-11 株式会社日立製作所 All-solid-state battery

Similar Documents

Publication Publication Date Title
TWI539648B (en) Lithium electrode and lithium secondary battery comprising the same
EP3429014B1 (en) Lithium secondary battery having lithium metal formed on cathode and manufacturing method therefor
KR20150016897A (en) Flexible current collector, manufacturing method thereof and secondary battery using the same
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
CN111244394B (en) Metal lithium composite electrode and preparation method thereof
JP3906944B2 (en) Non-aqueous solid electrolyte battery
CN111213260A (en) Anode, anode preparation method and lithium ion battery
KR20130106687A (en) Negative active material and lithium battery containing the material
JP6808948B2 (en) Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
CN112216875B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
KR102088858B1 (en) Electrode for lithium secondary battery comprising hygroscopic materials and lithium secondary battery comprising the same
EP2930766B1 (en) Secondary battery and separator used therein
JPH11204145A (en) Lithium secondary battery
JPH11273735A (en) Lithium-ion polymer secondary battery
CN112216876B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
JP4193008B2 (en) Lithium secondary battery
KR20200108939A (en) Composite cathode composition for lithium secondary battery, manufacturing method of lithium secondary battery composite cathode and high voltage lithium secondary battery using the composition
JP2001052742A (en) Sheet secondary battery
KR20130101375A (en) Preparation method of electrode for litium rechargeable battery
JP4235285B2 (en) Organic electrolyte battery
KR20200053403A (en) Positive electrode active material for lithium secondary battery, method for preparing the same and lithium secondary battery including the positive electrode active material
KR20200009202A (en) Electrochemical pretreatment method of vanadium positive electrode for lithium secondary battery and vanadium positive electrode for lithium secondary battery pretreated by the same
CN112216877B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
CN112216879B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile
CN112216812B (en) Lithium ion battery repeating unit, lithium ion battery, using method of lithium ion battery, battery module and automobile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070328