JP4170701B2 - 太陽電池及びその製造方法 - Google Patents

太陽電池及びその製造方法 Download PDF

Info

Publication number
JP4170701B2
JP4170701B2 JP2002224119A JP2002224119A JP4170701B2 JP 4170701 B2 JP4170701 B2 JP 4170701B2 JP 2002224119 A JP2002224119 A JP 2002224119A JP 2002224119 A JP2002224119 A JP 2002224119A JP 4170701 B2 JP4170701 B2 JP 4170701B2
Authority
JP
Japan
Prior art keywords
solar cell
semiconductor substrate
layer
removal
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002224119A
Other languages
English (en)
Other versions
JP2004064028A (ja
Inventor
寛之 大塚
正俊 高橋
武紀 渡部
聡之 生島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002224119A priority Critical patent/JP4170701B2/ja
Publication of JP2004064028A publication Critical patent/JP2004064028A/ja
Application granted granted Critical
Publication of JP4170701B2 publication Critical patent/JP4170701B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光電変換効率が比較的高く、しかも、低コストで作製できる太陽電池及びその製造方法に関する。
【0002】
【従来の技術】
太陽電池は、光エネルギーを電力に変換する半導体素子であり、p−n接合型、pin型、ショットキー型などがあるが、p−n接合型が最も広く用いられている。太陽電池をその基板材料をもとに分類すると、シリコン結晶系太陽電池、アモルファス(非晶質)シリコン系太陽電池、化合物半導体系太陽電池の3種類に大きく分けられる。シリコン結晶系太陽電池は、さらに、単結晶系太陽電池と多結晶系太陽電池に分類される。これらのうち最もエネルギー変換効率が高いものは、化合物半導体系太陽電池である。しかし,化合物半導体系太陽電池は、その材料となる化合物半導体を作ることが非常に難しく、太陽電池基板の製造コスト面で一般に普及するには問題があり、その用途は限られたものとなっている。他方、化合物半導体系太陽電池の次に変換効率の高い太陽電池としては、シリコン単結晶系太陽電池が続く。太陽電池用シリコン単結晶基板は比較的容易に製造できることから、シリコン単結晶系太陽電池が最も普及している。
【0003】
太陽電池の出力特性は、一般に、ソーラーシミュレータを用いて出力電流電圧曲線を測定することにより評価される。この曲線上で、出力電流Ipと出力電圧Vpとの積Ip・Vpが最大となる点Pmを最大出力Pmと呼び、該Pmを太陽電池に入射する総光エネルギー(S×I:Sは素子面積、Iは照射する光の強度)にて除した値:
η≡{Pm/(S×I)}×100 (%) ‥‥(1)
が太陽電池の変換効率ηとして定義される。変換効率ηを高めるには、短絡電流Isc(電流電圧曲線上にてV=0のときの出力電流値)あるいは開放電圧Voc(同じくI=0のときの出力電圧値)を大きくすること、及び、出力電流電圧曲線をなるべく角型に近い形状のものとすることが重要である。なお、出力電流電圧曲線の角型の度合いは、一般に、
FF≡Ipm×Vpm/(Isc×Voc) ‥‥(2)
にて定義されるフィルファクタ(曲線因子)により評価でき、該FFの値が1に近いほど出力電流電圧曲線が理想的な角型に近づき、変換効率ηも高められることを意味する。
【0004】
例えば、シリコン結晶系太陽電池においては、変換効率を向上させるには,いかに表面再結合を実効的に低減させるかが重要な課題となっている。
【0005】
そのためには,高品質な絶縁膜でなるべくシリコン基板を覆い,該絶縁膜の一部に小さなコンタクトホールを設け、ここに金属電極を形成することで、再結合場所として振る舞う金属電極とシリコン層との直接接触部を微小領域に制限し、光電流収集率を向上させることが行なわれている。この場合、いかにして絶縁保護膜にコンタクトホールを形成するかが問題となる。例えば、特開平6−61515号公報には、以下のような工程よりなる太陽電池の製造方法が開示されている。
(1) 半導体基板上にテクスチャ、V溝もしくはU溝といった***部を形成する。
(2) パッシベーション膜で***部を含め、半導体基板を覆う。
(3) ***部の頂上部を機械的若しくは化学的に削り、***部の頂部に微小なプラトー領域を形成して、半導体を露出させる。
(4) 前記プラトー領域に金属を堆積し、フィンガー電極とする。
この方法によると、高価なフォトリソグラフィー技術を利用することなく、各***部の頂部に微小コンタクトを形成でき、低コストかつ高効率に太陽電池を製造できる。
【0006】
【発明が解決しようとする課題】
ところが、上記公報の技術では、***部の頂上にプラトー領域を均等な間隔で形成することが、現実的には非常に困難である。すなわち、太陽電池製造に用いられる半導体基板は、インゴットをワイヤーソーで切断したアズスライス基板が多く使用され、面内に±10μmから±30μmの厚さ分布を含む。このため、テクスチャ等の***部の頂上部に、ラッピング等によりプラトー領域を作製しようとすると、***部がたとえ同じ高さでも、基板厚さ分布の影響により***部頂部の除去代にバラツキが生ずる。その結果、先端の研削が不足してプラトー領域の形成が不完全になった***部や、逆に削りすぎてプラトー領域が広がりすぎた***部が数多く発生することになる。例えば、ラッピングによりプラトー領域を形成する場合は、プラトー領域の不完全な***部が数ミリ程度の範囲で密集して発生すると、太陽電池の内部抵抗が高まり、出力特性が低下する問題を生ずる。また、ラッピングに代えて、平行な粒子ビーム等を浅い角度で斜めから当ててプラトー領域を形成する方法もあるが、プラトー領域の形成が不完全になった***部や、逆に削りすぎてプラトー領域が広がりすぎた***部が同様に発生し、太陽電池の特性が大きくばらつく不具合を生じやすい。また、フィンガー電極を形成する際には、金属ペーストによる電極パターンを、スクリーン印刷を用いてプラトー領域に位置合わせした形で形成しなければならないが、パターンずれ等の影響によりコンタクト形成の確実性が損なわれやすい問題がある。
【0007】
本発明の課題は、変換効率が高く均一な出力特性が得られ、かつ低コストにて製造可能な太陽電池と、その製造方法とを提供することにある。
【0008】
【課題を解決するための手段及び作用・効果】
上記の課題を解決するために、本発明の太陽電池は、
第一導電型の半導体基板の主表面を絶縁保護膜にて覆い、また、半導体基板の主表面に、絶縁保護膜を貫く形で半導体表層部を除去した除去部を複数形成し、当該除去部の内面表層領域を第二導電型層とすることにより、第一導電型の基板内部との間にp−n接合が形成され、さらに、それら複数の除去部の内面領域をなす第二導電型層を、半導体基板の主表面を覆う透明導電層により電気的に接続したことを特徴とする。
【0009】
また、本発明の太陽電池の製造方法は、
第一導電型を有する半導体基板の主表面を絶縁保護膜で覆う絶縁保護膜形成工程と、
半導体基板の主表面に、絶縁保護膜を貫く形で半導体表層部を除去した除去部を複数形成する除去部形成工程と、
除去部の内面を覆うように第二導電型層を形成する第二導電型層形成工程と、半導体基板の主表面に、除去部の各内面に形成された第二導電型層を電気的に接続する透明導電層を形成する透明導電層形成工程と、
を有することを特徴とする。
【0010】
本発明においては、基板主表面に形成された除去部を、出力取出用電極と半導体層とのコンタクトホールとして機能させるべき半導体層露出領域として利用する。なお、本明細書において半導体基板の主表面とは、半導体基板の厚さ方向における両面(表面、裏面)の少なくともいずれかを意味している。従って、除去部は、基板の一方の主表面のみに形成されていてもよいし、両面に形成されていてもいずれでもよい。また、除去部の内面には、絶縁膜が全く形成されないようにしてもよいし、トンネル電流が流れる程度の厚さ(3nm以下程度)の絶縁膜が残存していてもよい。
【0011】
特開平6−61515号公報に開示されているような、***部の頂部にプラトー領域を形成してコンタクトホールとする構成では、前述のように、ラッピング等の機械加工によるプラトー領域の形成精度が、基板厚さ分布等の影響によりバラツキ易く、これが太陽電池の特性バラツキに直結していた。しかし、本発明の太陽電池では、基板主表面に除去部を形成してコンタクトホールとして利用する。このような除去部は、レーザービーム照射等を用いれば、基板厚さ分布等の影響に左右されずに深さの揃ったものを確実に形成できるので、コンタクトホールの形成精度が高く、太陽電池の特性バラツキを生じにくい。また、第一導電型を有する半導体基板に形成された除去部内面に第二導電型層を作りこむことで、太陽電池の要部であるp−n接合が各除去部に形成される。本発明では、半導体基板の主表面を覆うように透明導電層を形成して、除去部毎に形成された第二導電型層を電気的に接続するので、スクリーン印刷等を用いたフィンガー電極形成のように、電極パターンをコンタクトホールに位置合わせする必要がなく、また、コンタクト形成の精度も高くできる。すなわち、本発明によれば、面内に厚さ分布を有する半導体基板(例えばワイヤーソーによるアズスライス基板)を用いた場合においても、pn接合やコンタクトホールを設計通りに造ることが可能となり、均質な太陽電池特性が得られる利点がある。なお、除去部は、半導体基板の主表面上において、予め定められた方向に等間隔に配列形成されていることが、均質な太陽電池特性を得る上で有利である。
【0012】
半導体基板の主表面に除去部を形成する方法としては、レーザースクライビングを用いることができる。すなわち、レーザービームを基板表面にフォーカシングして、基板材料の一部を蒸発させることにより除去部とする。レーザービームは、基板表面位置に変動があっても周知のフォーカシングサーボ制御により正確かつ高能率に基板表面にフォーカシングでき、かつ、半導体基板の主表面上にてレーザービームを走査することにより、複数の除去部を効率的に形成することができる。
【0013】
他方、除去部形成工程は、半導体基板の主表面を絶縁保護膜にて覆った後、該絶縁保護膜の除去部形成予定領域をエッチングにより除去してパターニングするパターニング工程と、該パターニング後の絶縁保護膜をマスクとして、半導体基板をエッチングすることにより除去部を形成する除去部形成エッチング工程を有するものとして実施することもできる。絶縁保護膜のパターニングは、マスクを用いたエッチング技術により簡単に実施でき、その後は、絶縁保護膜に形成された除去部パターンにて下地の半導体基板領域をエッチングすれば、除去部を簡単に形成することができる。
【0014】
透明導電層は、半導体基板の、除去部の互いに隣接するもの同士を隔てる除去部間主表面領域とともに、各除去部の内面を一体的に覆うものとして形成することができる。このような透明導電層は、各除去部の第二導電型層同士を確実に導通させることができる上、形成が容易であり、製造コストを削減することができる。該透明導電層は、除去部内側に空間を残す形態で、該除去部の内面全面に倣うように形成することができる。このようにすると、除去部の内側空間の全てを透明導電材料で充填する必要がなく、透明導電層の成膜時間もしくは成膜回数を少なく済ませることが可能なため、能率的である。
【0015】
また、半導体基板の、除去部の互いに隣接するもの同士を隔てる除去部間主表面領域には、該除去部の深さよりも小さい最大高さを有する面粗し部を形成することができる。このような面粗し部形によりは、太陽電池の反射損失を軽減することができる。この場合、半導体基板の全面に面粗し部を形成した後で絶縁保護膜を形成し、さらにその絶縁保護膜を貫通するように除去部を形成する。面粗し部は、外面が(111)面の多数のピラミッド状突起からなるランダムテクスチャ構造とすることができる。このようなテクスチャ構造は、シリコン単結晶の(100)面を、ヒドラジン水溶液や水酸化ナトリウムなどのエッチング液を用いて異方性エッチングすることにより形成することができる。
【0016】
除去部は、具体的には凹部とすることができる。凹部は、例えば、有底孔又は溝として形成することができる。本明細書において「凹部」とは、開口周縁高さ位置よりも高くなる部分が内側に存在しないような除去部のことをいう。例えば、面粗し部を形成した基板の主表面に除去部を形成する場合等においては、除去部の内側に、開口周縁高さ位置よりも高くなる部分が存在する場合があるが、このような除去部は凹部とは称さない。
【0017】
また、半導体基板は、p型のものとn型のものとのいずれを用いてもよいが、n型のものを使用したとき(つまり第一導電型をn型とする)、除去部内面にのみ選択的に第二導電型層であるp型層を形成した場合でも、変換効率を良好に維持しやすい利点がある。これはn型半導体基板と絶縁保護膜界面の表面再結合速度がp型半導体基板と絶縁保護膜界面のものと比較して2桁以上低いことによる。特にシリコン酸化膜においてはこの効果は顕著である。この場合、第二導電型層は除去部の内面領域にのみ形成され、各除去部に対応する第二導電型層は第一導電型領域によって個々に隔離される。
【0018】
通常のp型半導体基板を用いた太陽電池では、受光面となる基板主表面の全面に渡って連続な第二導電型層(n型エミッタ層)を形成する必要があるとされてきた。通常、太陽電池、特に高効率型太陽電池では反射率を低減させるために、前述のように受光面に面粗し部を形成する。多くの場合、アルカリ溶液によるテクスチャ形成を行なうため、(111)面が露出する。周知のように(111)面の界面準位密度が高いため、第二導電型層で覆う箇所が減少して大部分が絶縁保護膜で覆われた形になった場合、p型半導体基板が使用されていると、非常に低い短絡電流しか得られず、変換効率の低下につながる。これは、電子の衝突捕獲断面積が正孔の衝突捕獲断面積に比べ2桁〜3桁高いことに起因しており、実効的な表面再結合速度が高くなるためである。しかし、上記のようにn型半導体基板を用いると表面再結合速度が大幅に抑制できるので、たとえ基板主表面に(111)面が露出していても、コンタクトホール、つまり除去部の近辺にのみ第二導電型層(p型エミッタ層)が断続的に形成されていれば十分となる。
【0019】
従って、n型半導体基板利用では、p型半導体基板利用に比べ、第二導電型層(エミッタ領域)面積を制限できるため、短波長感度増大による短絡電流密度の向上、実効的な表面再結合速度の低減による開放電圧の向上がみられ、その結果、光電変換効率が上昇する。また、こうした構造は、絶縁保護層に除去部を形成した後に、第二導電型層形成のためのドーパント拡散を行なうことで極めて簡単に形成できる。
【0020】
本発明にp型半導体基板を適用する場合は、上述の通り短絡電流向上のために、基板主表面の全面に渡って連続な第二導電型層を形成することが望ましい。この場合、絶縁保護膜の形成前に、基板主表面の全面にドーパント拡散を行なって第二導電型層を形成し、引き続き、絶縁保護膜形成後、これを貫通する除去部を形成し、さらに除去部内面を覆う第二導電型層を形成する。よって、合計二度ドーパント拡散工程を行なう必要がある。しかし、n型半導体基板を使用する場合は、最初のドーパント拡散が不要となり、拡散工程を1回に減らすことができるので、製造コスト低減を図ることができる。
【0021】
また、n型半導体基板を用いる場合は、隣接する除去部の形成間隔が、半導体基板の厚さの2倍以下となっていると、高い短絡電流が得られるので、太陽電池の特性向上の観点においてより望ましい。ただし、隣接する除去部の形成間隔が小さくなりすぎると、第二導電型(エミッタ層)の面積率が増加しすぎ、表面再結合の影響により開放電圧が低下することにつながるので、該形成間隔は、少なくとも半導体基板の厚さの0.1倍以上に設定することことが望ましい。
【0022】
一方、p型半導体基板利用の場合は、結果的に、次のような利点を備えているともいえる。つまり、2段階にドーパント拡散を行なって第二導電型層を形成するので、1回目のドーパント拡散領域と、2回目のドーパント拡散領域とが重なる除去部の開口周縁領域は、図12に示すような高濃度ドーピング領域(n++層)となり、除去部内面の残余の領域(n層)との間で、結果的にロー・ハイ接合が形成される。その結果、第二導電型層(エミッタ層)内の少数キャリアの追い返し効果を高めることができ、開放電圧が向上して光電変換効率が上昇する効果が達成される。
【0023】
また、半導体基板の主表面の総面積をS0とし、該主表面に形成された除去部の開口面積の合計をSとして、SがS0の2%以下に調整されてなることが望ましい。除去部は、第二導電型層の形成により、表面再結合速度が非常に高いコンタクト領域をなすから、その開口面積の合計が基板主表面の総面積の2%以下となっていることで、コンタクト領域の面積の影響が軽減され、開放電圧が増加して太陽電池特性が向上する。特に、n型半導体基板使用により、第二導電型層の形成を除去部内面にとどめた構成では、特にその効果が顕著である。しかし、開口面積の合計は、最低でも基板主表面の総面積の0.001%程度以上は確保されていないと、コンタクト近傍の電流集中により抵抗が増加して十分な変換効率の向上が見込めなくなる。
【0024】
本発明の太陽電池においては、除去部の内面を金属層にて覆い、該金属層がさらに透明電極にて覆う構成にすると、透明導電層と除去部内面の第二導電型層とのコンタクト抵抗が低減し、太陽電池特性、特にフィルファクタが向上する。特に、第二導電型層を形成後、電解もしくは無電解メッキ法を用いれば、メッキ浴に製造過程の太陽電池を浸すだけで選択的に除去部内面に金属層を形成することが可能である。これにより、作製工程に負荷をかけることなく安定的にコンタクトを得ることができる。
【0025】
【発明の実施の形態】
以下、本発明に係るいくつかの実施の形態を、図面を用いて説明する。なお、実施の形態を説明するための全図面において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。図1は、本発明の太陽電池の一実施例を模式的に示す断面図である。該太陽電池100は、第一導電型のシリコン単結晶基板1(以下、単に基板1と記載する:本実施形態ではn型とする)の第一主表面側に第二導電型層5(本実施形態ではp型とする)が形成され、第一導電型の基板内部1aとの間にp−n接合部をなしている。シリコン単結晶基板1の第一主表面には、絶縁保護膜(パッシベーション膜)3及び透明導電層6がこの順序にて形成されている。
【0026】
絶縁保護膜3は酸化物系あるいは窒化物系のものを使用できる。ここでは、基板1がシリコン単結晶基板であり、絶縁保護膜3は、所定の雰囲気下での熱処理にて形成されたシリコンの酸化膜あるいは窒化膜(例えばCVD法により形成できる)として構成されている。これにより、絶縁保護膜3は表面再結合速度の小さなパッシベーション膜として機能する。
【0027】
次に、透明導電層6は、例えば、酸化スズ(SnO)あるいは酸化インジウム(In)などの導電性酸化物被膜として構成することができる。具体的には、アンチモン(Sb)をドープした酸化スズ膜(いわゆるネサ膜)あるいはスズ(Sn)をドープした酸化インジウム膜(いわゆるITO膜)が高導電率であり、本発明に好適に使用できる。このうちネサ膜は導電率が高く、太陽電池の直列抵抗の減少に特に貢献する。他方、ITO膜はネサ膜よりは導電率が多少劣るが安価である。なお、上記ネサ膜やITO膜以外にも、例えば、フッ素をドープしたSnO、AlをドープしたZnO、CdSnO、ZnSnO、ZnSn3、MgInO4、イットリウム(Y)をドープしたCdSb、SnをドープしたGaInOなどを透明導電層6の材質として使用することができる。
【0028】
太陽電池100の直列抵抗を減少させる観点において、透明導電層6は、電気比抵抗を5×10−5〜3×10−4Ω・cm程度に調整しておくことが望ましい。例えば、スパッタリングにより作製したITO膜は電気比抵抗の値を、例えば1×10−4〜2.8×10−4Ω・cmとすることができる。他方、ネサ膜はCVD法により、例えば1×10−4Ω・cm以下の低抵抗率の膜を得ることができる。
【0029】
なお、上記の透明導電層6は、基板1を構成するシリコン単結晶と屈折率の異なるものを採用することで、反射防止膜として機能させることもできる。反射防止膜として機能させる場合、透明導電層6の構成材料の屈折率は1.5〜2.5であるのがよい。例えば、ネサ膜の場合、屈折率は2.0程度であり、その厚みを50〜100nm程度とする場合に、顕著な反射防止効果を得ることができる。なお、透明導電層6とともに、あるいは透明導電層6に代えて、反射防止膜を別途形成するようにしてもよい。例えば透明導電層6上にMgF2膜など屈折率が透明導電層6より低い膜を形成すれば、反射率がさらに低減し、生成電流密度をさらに高くすることができる。
【0030】
絶縁保護膜3を貫く形で基板主表面には、除去部としての複数の凹部4が形成され、当該凹部4の内面表層領域が第二導電型層5とされている。第二導電型層5は凹部4の内面領域にのみ形成され、各凹部4に対応する第二導電型層4は、第一導電型領域によって個々に隔離されている。そして、それら複数の凹部4の内面領域をなす第二導電型層5は、透明導電層6により電気的に接続されている。凹部4は、図2に示すような有底孔として形成することができる。また、図3に示すように、溝4’として形成することもできる。
【0031】
透明導電層6は、基板1の、凹部4の互いに隣接するもの同士を隔てる凹部間主表面領域Hとともに、各凹部4の内面を一体的に覆うものとして形成される。また、透明導電層6は、凹部4の内側に空間を残す形態で、該凹部4の内面全面に倣うように形成されている。また、基板1の凹部間主表面領域Hには、図4あるいは図5に示すごとく、面粗し部2が、既に説明した異方性エッチングによるランダムテクスチャ構造として形成されている。図5においては、凹部4の深さdを面粗し部2の最大高さRmaxよりも大きくしてある。なお、隣接する凹部4の形成間隔(基板主表面を平面視したとき、隣接する凹部の距離を、両凹部の開口縁間の最短距離として定義する)は、基板1の厚さの0.1倍以上2倍以下とされている。さらに、基板1の主表面の総面積をS0とし、該主表面に形成された凹部4の開口面積の合計をSとして、SがS0に対し0.001%以上2%以下に調整されている。
【0032】
図6に示すように、透明導電層6の上には、さらに出力取出用電極13,14が形成される。これら出力取出用電極13,14は、銀粉末などの金属粉末を含有したペーストを用いて、スクリーン印刷等の公知の厚膜印刷法により所望の電極パターンを透明導電層6上に印刷して焼成することにより形成することができる。また、熱硬化型ペーストを使用することにより、より低温で出力取出電極を形成することも可能である。基板1の第一主表面側は太陽電池の受光面となるので、出力取出用電極13,14は、p−n接合部への光の入射効率を高めるために、例えば内部抵抗低減のため適当な間隔で形成された太いバスバー電極14と、そのバスバー電極14から所定間隔で櫛型に分岐するフィンガー電極13とを有するものとして構成できる。ただし、透明導電層6の導電率が十分に高い場合には、フィンガー電極を省略したり、あるいは形成する場合でもその形成間隔を広く設定したりすることが可能である。
【0033】
図1に戻り、基板1の第二主表面には、[O1]凹凸部が形成され、絶縁保護膜3がそれら凹凸部を覆う形で形成されている。該第二主表面側は受光面とはならないため、その全面がAlあるいはAgよりなる出力取出用電極8により覆われている。また、絶縁保護膜3を所定の間隔で貫通する形で凹部が形成され、これを充填する形でコンタクト部9が形成されている。なお、太陽電池セルの軽量化のため基板1の厚さを薄くする場合は、第二主表面側の電極8での少数キャリアの再結合・消滅を防止するために、図12に示すように、該第二主表面側に基板1と同一導電型であってより高濃度の高濃度拡散層(いわゆるBSF(back surface field)層)を形成することができる。
【0034】
以下、図1の太陽電池の、製造方法の一例について説明する。図7は、その工程の概略を示すフローチャートである。シリコン単結晶基板は、チョクラルスキー(CZ)法あるいはフローティングゾーンメルティング(FZ)法によって製造されたものが使用できる。また、多結晶シリコン基板を用いることも可能である。基板比抵抗は例えば0.1〜20Ω・cmが好ましく、特に0.5〜2.0Ω・cmであることが高い性能の太陽電池を作る上で好適である。
【0035】
例えば厚さ250μm、比抵抗2Ω・cm(ドーパント濃度2.4×1015cm−3)のリンドープn型単結晶シリコン基板1(ワイヤーソー等によるアズスライス)を用意し、ダメージ除去用エッチング液(例えば、40質量%水酸化ナトリウム水溶液)に浸して、基板表面のダメージ層をエッチング除去する。なお、ダメージ除去用エッチング液は、水酸化カリウム等強アルカリ水溶液を用いても構わない。また、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。
【0036】
次に、ダメージ除去を行った基板は、テクスチャ形成用エッチング液(例えば3重量パーセント水酸化ナトリウムにイソプロピルアルコールを加えた水溶液)に浸し、ウェットエッチングすることにより、両面に面粗し部としてのランダムテクスチャ構造を形成する。なお、ランダムテクスチャ構造以外にも、V溝、U溝等の面粗し部を形成することが可能である。これらは、研削機を利用して、形成可能である。また、ランダムな面粗し部の形成は、酸エッチングやリアクティブ・イオン・エッチングにより行なうこともできる。
【0037】
次に、基板洗浄後、熱酸化を行い、絶縁保護膜3を、厚さ例えば70nm程度の酸化膜として、基板の両面に形成する。高光電変換効率を達成するためには、表面再結合速度の小さな膜が好ましく、熱酸化膜はとりわけ安定的で優れているが、CVDによる酸化膜や窒化膜でも代用可能である。一方、CVD法による窒化膜では、特に、プラズマ損傷の少ない、リモートプラズマCVD法による膜が、表面再結合速度が小さく優れている。また、アモルファスシリコン膜をプラズマCVDで堆積することにより表面を保護することも可能である。
【0038】
次に、受光面側にレーザー装置(例えばYAGレーザー)を用い、絶縁保護膜3を貫通する複数の凹部4を等間隔にて形成する。ここでは例えば直径30μm、深さ3〜4μm程度の有底孔4を、縦横100μm間隔で形成している(レーザースクライビング)。また、ランダムテクスチャの最大高さは2〜3μmである。引き続き、適当なホウ素源(例えば三臭化ホウ素液体ソース)を用いて、ホウ素熱拡散を行なうことによりシート抵抗20Ω/□の第二導電型層(p型エミッタ層)5を形成する。第二導電型層5を形成する方法は、三臭化液体ソース若しくは窒化ホウ素固体ソースを利用した熱拡散や、三臭化ホウ素ソースを用いた塗布拡散、あるいはボロン原子を直接注入するイオン打ち込み法など、いずれの方法でも可能であるが、経済的な観点から上記の熱拡散法を採用することが好ましい。前述の通り、本実施形態ではn型基板を用いているので、通常のp型基板を用いた太陽電池と異なり、受光面全面に渡って連続な第二導電型層5を形成する必要がない。なお、ランダムテクスチャの形成高さが大きい場合は、図13に示すように、除去部4’の内側に、開口周縁高さ位置よりも高くなる部分が存在する場合がある(このような除去部4’は凹部とは称さない)。
【0039】
上記ホウ素の熱拡散処理を行なうと、基板表面にはボロンガラス層が形成されるので、これを希フッ酸等の、ボロンガラス層を選択エッチング可能なエッチング液を用いて除去する。そして、基板1を洗浄後、スパッタリング装置を用いてITO膜からなる透明導電層6を堆積する(表面TCOデポ)。透明導電層6の膜厚は、反射防止膜も兼ねさせるため70nm以上100nm以下に設定することが望ましい。また、低シート抵抗を得るためには、成膜時の基板温度を300℃以上500℃以下に昇温することが好ましい。これは、室温でスパッタリング成膜を行なうと、通常は非晶質の膜しか得られず、酸化インジウムに対するスズのドーピング効果が発現しないことによる。こうして得られるITO膜の比抵抗は、例えば1×10−4Ω・cm程度である。なお、他の透明導電膜として、ネサ膜、フッ素をドープした酸化スズ膜、アルミをドープした酸化亜鉛膜等があり、代替が可能である。また、形成法も上記以外にCVD法、コーティング法、真空蒸着法、イオンプレーティング法等があり、それらによっても構わないが、低シート抵抗を得る上では上記スパッタリング法が好適である。
【0040】
なお、透明導電層6の形成前に、例えば無電解メッキ法等により、図8に示すように、第二導電型層5の表面に金属膜7(例えばニッケルメッキ層)を形成して、その上を透明導電層6で覆うようにすると、コンタクト性能が向上し、太陽電池特性をさらに高める上で役立つ。このメッキ工程は、拡散層と透明導電膜間のコンタクト抵抗を低減する目的で行われるため、最大1μmもあれば充分であるが、3Å未満では効果が顕著でない。このメッキ工程は、選択的に拡散層表面に金属層を形成できるため、非常に容易である。もちろん、この工程で電解メッキ法を用いることは何ら問題がない。
【0041】
次に、例えば、Alのスパッタリングにより、第二主表面(裏面)に出力取出用電極8を形成する。そして、レーザー照射により、所定の間隔(例えば縦横250μm)で絶縁保護層3を破りつつ、直径30μm程度のコンタクト部9を形成する(レーザーファイアリング)。レーザー照射により、基板1には凹部が生じ、ここに溶融した出力取出用電極8の構成金属(例えばAlあるいはAg)が充填されてコンタクト部9となる。なお、出力取出用電極8は、真空蒸着法、印刷法等、スパッタリング以外の方法で形成してもよい。なお、レーザー照射等により絶縁保護層3に所定の間隔で有底孔を形成しておき、その後、スパッタリング等により出力取出用電極8を形成することにより、有底孔内に蒸着された金属をコンタクト部9としても、ほぼ同等の性能を得ることが可能である。また、裏面にダイシングソーで幅50〜100μm、深さ10〜20μm程度のコンタクト溝を開けておき、その後、出力取出用電極8を形成してもよい。
【0042】
次に、透明導電層6上に、導電性ペースト(例えばAg粉末を80質量%含んだもの)をスクリーン印刷することにより、フィンガー電極13およびバスバー電極14のパターンを形成する。そして、最後に加熱(例えば200℃程度)処理によりペーストの硬化を行なうことにより、太陽電池が得られる。
【0043】
以上のようにして10cm角の太陽電池を100枚作製して、それぞれ太陽電池ユニットに組み立て、ソーラーシミュレータ(光強度:1kW/m、スペクトル:AM1.5グローバル)を用いて、温度25℃での電流電圧特性を測定した。図9は、変換効率の測定結果分布を示す。また、表1は、代表的な太陽電池諸特性を示す。さらに、図10に該太陽電池の外部量子効率の波長依存性を示す。
【0044】
【表1】
Figure 0004170701
【0045】
本実施例では、コンタクトホール形成用の凹部と、透明導電層及びスクリーン印刷によるフィンガー電極を組み合わせたことにより、コンタクトホールに対してフィンガー電極等を正確に位置合わせする必要がなくなり、20%内外の極めて高い光電変換効率を得ながらも、製造コストを圧縮することができた。さらに、図9に示すように、作製した太陽電池の平均変換効率は19.3%であり、その標準偏差は0.54%であった。つまり、製造した約7割以上もの太陽電池が19.3%を中心にプラスマイナス0.54%の範囲に収まった。通常、太陽電池の製造ではこの変換効率分布の標準偏差は数%にわたるため、非常に均質な特性の太陽電池を得ることができたといえる。特に、本実施例において、開放電圧、短絡電流密度共に高い値が得られたのは、n型基板を利用し、通常は受光面全体を覆う第二導電型層(エミッタ層)領域を、コンタクトホールとなる凹部周辺に小さく制限し、他の箇所を絶縁保護膜で覆って、表面の実効的な表面再結合速度が低減したためであると考えられる。また、エミッタ層領域を小さく制限したことにより、図10に示すように短波長感度が増大し、短絡電流密度の増加に寄与したと考えられる(図中、p型基板を用いた従来の太陽電池の外部量子効率の測定結果を、破線にて書き入れてある)。
【0046】
なお、本実施例における太陽電池では、裏面全面に電極を形成しているが、裏面側にも表面同様、透明導電膜と櫛形電極を形成し、裏面側からも光が入射する構造にしても構わない。また、フィンガー電極を形成後、例えば二フッ化マグネシウム膜などの、屈折率が1以上2以下の膜を透明導電層上に形成して、反射率を低減することにより、生成電流密度をさらに高めることが可能である。
【0047】
図11は、図1の太陽電池の変形例を示す。以下、その製造方法とともに詳細に説明する。まず、ガリウムドープのCZ法によるp型結晶シリコン基板10(例えば厚さ250μm、比抵抗0.5Ω・cm)を用意し、図1の太陽電池と同様に、ダメージ層をエッチングした後、両面にランダムテクスチャ構造を形成した。シリコン単結晶基板はFZ法で作製されたものでもよく、添加するドーパントも、ホウ素やアルミニウム等の他のp型ドーパントを使用してもよい。また、多結晶シリコン基板を用いることも可能であり、HEM法、キャスト法、EFG法など周知の結晶製造技術によって作られたものを使用できる。p型基板を使用する際も、基板比抵抗は例えば0.1〜20Ω・cmが好ましく、特に0.5〜2.0Ω・cmであることが高い性能の太陽電池を作る上で好適である。
【0048】
テクスチャ形成後、塩化オキシリン液体ソースを用い、830℃でn型ドーパントであるリンの熱拡散を行い、表面にシート抵抗が約200Ω/□の、n型第二導電型層11を形成し、p型の基板内部10aとの間にp−n接合を形成した。n型第二導電型層11の形成方法は、固体ソースを利用した熱拡散、塩化オキシリンソースを用いた塗布拡散、リン原子を直接注入するイオン打ち込み法など、いずれの方法でも可能である。その後、パイロジェニック酸化(例えば800℃)により、シリコン酸化層からなる絶縁保護膜3を形成し、図1と同様の方法で凹部4を形成した。そして、該凹部4の内面に、再びn型ドーパントの拡散(例えば、塩化オキシリン液体ソースを用いて870℃で熱拡散する)を行い、シート抵抗が約20Ω/□のn型高濃度第二導電型層12を形成した。上記絶縁保護膜は、窒化膜、CVDによる酸化膜でもよいが、引き続いて行なうp型ドーパントの熱拡散に対しては、上記のような熱酸化膜が最も安定である。
【0049】
なお、図1と同様に、凹部4の形成は、レーザースクライビング法以外にマスクを用いたエッチング法でも形成可能である。例えば、溶媒の蒸発により硬化するソルダーレジストを利用し、スピン塗布を行なう。基本的には、この種のソルダーレジストは撥水性であるので、粘度を適当に調整すれば、テクスチャの凸部頂上部のみを露出させて残部をソルダーレジストで覆った構造を得ることができる。また、テクスチャ上のエッチング領域を容易に制御することが可能である。
【0050】
本実施形態では、ソルダーレジストの粘度調整により、基板主表面の全面積に対し、凹部の全開口面積が1.5%程度となるようにした。なお、ソルダーレジストに代えてフォトリソグラフィー用のフォトレジストを用いてもよいが、経済的な観点からすると、目的とする構造を作るには、上記のようなソルダーレジストで充分である。次のエッチング工程では、周知のドライエッチングあるいはウェットエッチングが利用可能である。シリコン酸化膜よりなる絶縁保護層をエッチングするガスとしては、例えば、四フッ化炭素、六フッ化硫黄、三フッ化窒素、トリフロロメタン等を使用可能であり、プラズマエッチング方式、反応性イオンエッチング方式あるいはスパッタエッチング方式いずれの方式でもエッチングが可能である。
【0051】
なお、これらのガスを使用した場合、シリコン単結晶基板がある程度エッチングされ、pn接合が侵されるが、凹部内面には再度n型ドーパントを拡散するので、pn接合を形成に対し、問題は生じない。一方、ウェットエッチングを利用する場合は、主にフッ酸が用いられる。しかし、水酸化ナトリウム水溶液や水酸化カリウム水溶液のような強アルカリ水溶液でもよい。もちろん、これら強アルカリ水溶液はシリコン基板を一部エッチングするが、n型ドーパントの再拡散を行なうので、同様に問題はない。ただし、第二主表面に対しては、形成されたテクスチャの頂上部までレジストで覆われるよう、第一主表面側より粘性の高い(例えば100cp程度)レジストを用いることが望ましい。なお、レジスト除去工程では、ドライ方式では周知のアッシング装置を用いればよい。また、ウェット方式を用いる場合は、硫酸−過酸化水素溶液等がレジスト除去に適している。
【0052】
凹部内面へのn型ドーパント拡散工程が終了すれば、以降の工程は図1の太陽電池と同様である。もちろん、図8で示したように、凹部内面に金属層を形成してから透明導電層を形成することも可能である。
【0053】
図11の太陽電池として、10cm角の太陽電池を100枚作製し、それぞれ太陽電池ユニットに組み立て、ソーラーシミュレータ(光強度:1kW/m、スペクトル:AM1.5グローバル)を用いて、温度25℃での電流電圧特性を測定した。表2は、代表的な太陽電池諸特性を示す。
【0054】
【表2】
Figure 0004170701
【0055】
従来の太陽電池においては、出力電流は、エミッタ層内を横方向に流れた後、電極から取り出されていたが、本発明のように透明導電層を用いることで、電流は各所にちらばった凹部から取り出され、高導電率の透明導電層内を横方向に流すことができる。透明導電膜の場合、反射防止膜として利用する厚みがあれば、そのシート抵抗は10Ω/□程度まで下げることも可能である。よって透明導電膜上に設けられるフィンガー電極ピッチは従来のものより大幅に拡大でき、例えば従来の2倍に相当する6mm以上にしても直列抵抗は高くならない。さらに、本発明では、第二導電型層(エミッタ層)内にて横方向に電流を流す必要がないため、エミッタシート抵抗は100Ω/□からはるかに高くしても問題はない。つまり、第二導電型層の表面ドーパント濃度をさらに下げることが可能である。これにより、表面再結合速度をさらに下げることが可能となり、変換効率が上昇する。また、第二導電型層の透明導電層とのコンタクト部近傍には、図12に示すようなロー・ハイ接合が形成されるため、コンタクト部近傍ではエミッタ層内の少数キャリアの追い返し効果が大きくなる。これにより、開放電圧が向上し、光電変換効率の上昇が期待できる。
【図面の簡単な説明】
【図1】本発明の太陽電池の第一実施例を示す断面図。
【図2】凹部を有底孔に形成した例を示す斜視図。
【図3】凹部を溝状に形成した例を示す斜視図。
【図4】面粗し部を形成した場合の、凹部形成形態を示す断面図。
【図5】面粗し部の最大高さと凹部深さの関係を示す断面図。
【図6】図1の太陽電池の要部拡大斜視図。
【図7】図1の太陽電池の製造工程の一例を示すフローチャート。
【図8】図4の凹部において、透明導電層の下に金属層を形成した例を示す断面図。
【図9】本発明の太陽電池の、光電変換効率の測定分布の例を示すヒストグラム。
【図10】本発明の太陽電池の、内部量子効率の測定例を示すグラフ。
【図11】本発明の太陽電池の第二実施例を示す断面図。
【図12】ロー・ハイ接合を示すバンドダイヤグラム。
【図13】凹部以外の除去部の形成形態を例示する模式断面図。
【符号の説明】
1,10 シリコン単結晶基板(半導体基板)
2 ランダムテクスチャ(面粗し部)
3 絶縁保護膜
4 凹部
5,11 第二導電型層
6 透明導電層
7 金属層
8 裏面電極
9 コンタクト
13,14 出力用電極

Claims (15)

  1. 第一導電型の半導体基板の主表面を絶縁保護膜にて覆い、また、前記半導体基板の前記主表面に、前記絶縁保護膜を貫く形で半導体表層部を除去した除去部を複数形成し、当該除去部の内面表層領域を第二導電型層とすることにより、前記第一導電型の基板内部との間にp−n接合が形成され、さらに、それら複数の除去部の内面領域をなす前記第二導電型層を、前記半導体基板の前記主表面を覆う透明導電層により電気的に接続し、
    前記除去部の内面が金属層にて覆われ、該金属層がさらに前記透明電極にて覆われ、
    前記半導体基板の前記主表面の総面積をS0とし、該主表面に形成された前記除去部の開口面積の合計をSとして、SがS0の0.001%以上2%以下に調整されてなることを特徴とする太陽電池。
  2. 前記除去部は凹部であることを特徴とする請求項1記載の太陽電池。
  3. 前記凹部は有底孔又は溝であることを特徴とする請求項2記載の太陽電池。
  4. 前記半導体基板の、前記除去部の互いに隣接するもの同士を隔てる除去部間主表面領域とともに、各除去部の内面が前記透明導電層により一体的に覆われていることを特徴とする請求項1ないし3のいずれか1項に記載の太陽電池。
  5. 前記透明導電層は、前記除去部の内側に空間を残す形態で、該除去部の内面全面に倣うように形成されていることを特徴とする請求項4記載の太陽電池。
  6. 前記半導体基板の前記主表面に面粗し部が形成されてなることを特徴とする請求項1ないし5のいずれか1項に記載の太陽電池。
  7. 前記除去部の深さが0.1μm以上10μm以下であることを特徴とする請求項1ないし6のいずれか1項に記載の太陽電池。
  8. 前記半導体基板としてn型のものが使用されることを特徴とする請求項1ないし7のいずれか1項に記載の太陽電池。
  9. 前記第二導電型層は前記除去部の内面領域にのみ形成され、各除去部に対応する前記第二導電型層が第一導電型領域によって個々に隔離されていることを特徴とする請求項8記載の太陽電池。
  10. 隣接する前記除去部の形成間隔が、前記半導体基板の厚さの0.1倍以上2倍以下であることを特徴とする請求項8又は9に記載の太陽電池。
  11. 前記金属層の厚みが3Å以上1μm以下であることを特徴とする請求項1ないし10のいずれか1項に記載の太陽電池。
  12. 前記除去部は、前記半導体基板の前記主表面上において、予め定められた方向に等間隔に配列形成されていることを特徴とする請求項1ないし11のいずれか1項に記載の太陽電池。
  13. 請求項1ないし12のいずれか1項に記載の太陽電池の製造方法であって、
    第一導電型を有する半導体基板の主表面を絶縁保護膜で覆う絶縁保護膜形成工程と、
    前記半導体基板の前記主表面に、前記絶縁保護膜を貫く形で半導体表層部を除去した除去部を複数形成する除去部形成工程と、
    前記除去部の内面を覆うように第二導電型層を形成する第二導電型層形成工程と、
    前記半導体基板の主表面に、前記除去部の各内面に形成された前記第二導電型層を電気的に接続する透明導電層を形成する透明導電層形成工程と、
    を有し、さらに、
    前記透明導電層形成工程に先立って、前記除去部の内面に金属層を形成し、その後、該金属層を覆うように前記透明導電層を形成することを特徴とする太陽電池の製造方法。
  14. 前記除去部形成工程において、前記半導体基板の前記主表面に前記除去部をレーザースクライビングによって形成することを特徴とする請求項13記載の太陽電池の製造方法。
  15. 前記除去部形成工程は、前記半導体基板の前記主表面を前記絶縁保護膜にて覆った後、該絶縁保護膜の除去部形成予定領域をエッチングにより除去してパターニングするパターニング工程と、該パターニング後の絶縁保護膜をマスクとして、前記半導体基板をエッチングすることにより前記除去部を形成する除去部形成エッチング工程と、を有することを特徴とする請求項14記載の太陽電池の製造方法。
JP2002224119A 2002-07-31 2002-07-31 太陽電池及びその製造方法 Expired - Lifetime JP4170701B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224119A JP4170701B2 (ja) 2002-07-31 2002-07-31 太陽電池及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224119A JP4170701B2 (ja) 2002-07-31 2002-07-31 太陽電池及びその製造方法

Publications (2)

Publication Number Publication Date
JP2004064028A JP2004064028A (ja) 2004-02-26
JP4170701B2 true JP4170701B2 (ja) 2008-10-22

Family

ID=31943700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224119A Expired - Lifetime JP4170701B2 (ja) 2002-07-31 2002-07-31 太陽電池及びその製造方法

Country Status (1)

Country Link
JP (1) JP4170701B2 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130891A1 (en) * 2004-10-29 2006-06-22 Carlson David E Back-contact photovoltaic cells
WO2009027476A2 (en) 2007-08-30 2009-03-05 Oc Oerlikon Balzers Ag A thin-film solar cell system and method and apparatus for manufacturing a thin-film solar cell
CN101552295A (zh) 2008-04-03 2009-10-07 清华大学 太阳能电池
CN101562204B (zh) 2008-04-18 2011-03-23 鸿富锦精密工业(深圳)有限公司 太阳能电池
CN101562203B (zh) * 2008-04-18 2014-07-09 清华大学 太阳能电池
CN101527327B (zh) 2008-03-07 2012-09-19 清华大学 太阳能电池
DE102008024053A1 (de) * 2008-05-16 2009-12-17 Deutsche Cell Gmbh Punktkontakt-Solarzelle
JP2010251343A (ja) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp 太陽電池およびその製造方法
US8722453B2 (en) 2009-04-14 2014-05-13 Mitsubishi Electric Corporation Photovoltaic device and method for manufacturing the same
DE102010028189B4 (de) * 2010-04-26 2018-09-27 Solarworld Industries Gmbh Solarzelle
US8071418B2 (en) * 2010-06-03 2011-12-06 Suniva, Inc. Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
JP5381912B2 (ja) * 2010-06-28 2014-01-08 住友金属鉱山株式会社 表面電極付透明導電基板及びその製造方法、並びに薄膜太陽電池及びその製造方法
JP2012049285A (ja) 2010-08-26 2012-03-08 Shin Etsu Chem Co Ltd 太陽電池用基板及び太陽電池
JP2013103874A (ja) * 2011-11-11 2013-05-30 Yutaka Kamaike シリコンおよび製造方法
JP5914060B2 (ja) 2012-03-09 2016-05-11 三菱電機株式会社 炭化珪素半導体装置の製造方法
KR101940074B1 (ko) * 2012-04-30 2019-04-10 주성엔지니어링(주) 태양 전지 및 그 제조 방법
JP2016092238A (ja) 2014-11-05 2016-05-23 信越化学工業株式会社 太陽電池及びその製造方法
JP6502651B2 (ja) 2014-11-13 2019-04-17 信越化学工業株式会社 太陽電池の製造方法及び太陽電池モジュールの製造方法
CN109844959A (zh) 2016-09-29 2019-06-04 京瓷株式会社 太阳能电池元件及太阳能电池元件的制造方法
CN108933182B (zh) 2017-05-24 2020-05-15 清华大学 光探测器
CN108933172B (zh) 2017-05-24 2020-05-15 清华大学 半导体元件
CN108963003B (zh) * 2017-05-24 2020-06-09 清华大学 太阳能电池

Also Published As

Publication number Publication date
JP2004064028A (ja) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4170701B2 (ja) 太陽電池及びその製造方法
JP3872428B2 (ja) 太陽電池の製造方法
US9972738B2 (en) Solar cell and method for manufacturing the same
JP5328363B2 (ja) 太陽電池素子の製造方法および太陽電池素子
JP5629013B2 (ja) 半導体素子及びその製造方法
EP2434548B1 (en) Solar cell and method for manufacturing the same
EP3297038B1 (en) Solar cell
US8981210B2 (en) Solar battery cell and method of manufacturing the solar battery cell
US20100147368A1 (en) Photovoltaic cell with shallow emitter
US8936949B2 (en) Solar cell and manufacturing method thereof
CA2683524A1 (en) Photovoltaic cell with shallow emitter
US9997647B2 (en) Solar cells and manufacturing method thereof
WO2011074280A1 (ja) 光起電力装置およびその製造方法
JPWO2013136422A1 (ja) 太陽電池セルの製造方法
JP5882573B2 (ja) 太陽電池及びその製造方法
JP6336517B2 (ja) 太陽電池及びその製造方法
KR101714779B1 (ko) 태양전지 및 이의 제조 방법
JP2001257371A (ja) 太陽電池作製方法及び太陽電池並びに集光型太陽電池モジュール
KR20140003669A (ko) 태양전지 및 이의 제조 방법
JP5501549B2 (ja) 光電変換素子、およびそれから構成される光電変換モジュール
JP2004273829A (ja) 光電変換装置及びその製造方法
JP6125042B2 (ja) 太陽電池セルの製造方法
KR101322626B1 (ko) 태양 전지 및 그의 제조 방법
KR20140114532A (ko) 태양전지
KR20120084870A (ko) 태양전지 및 그 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080723

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4170701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140815

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term