JP4162087B2 - Highly flexible rolled copper foil and method for producing the same - Google Patents

Highly flexible rolled copper foil and method for producing the same Download PDF

Info

Publication number
JP4162087B2
JP4162087B2 JP2003299314A JP2003299314A JP4162087B2 JP 4162087 B2 JP4162087 B2 JP 4162087B2 JP 2003299314 A JP2003299314 A JP 2003299314A JP 2003299314 A JP2003299314 A JP 2003299314A JP 4162087 B2 JP4162087 B2 JP 4162087B2
Authority
JP
Japan
Prior art keywords
copper foil
annealing
grain size
crystal grain
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003299314A
Other languages
Japanese (ja)
Other versions
JP2005068484A (en
Inventor
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2003299314A priority Critical patent/JP4162087B2/en
Publication of JP2005068484A publication Critical patent/JP2005068484A/en
Application granted granted Critical
Publication of JP4162087B2 publication Critical patent/JP4162087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Description

本発明は優れた屈曲性を有するフレキシブルプリント回路基板(Flexible printed circuit、以下FPCと表記する)等の可撓性配線部材に用いる圧延銅箔に関するものである。   The present invention relates to a rolled copper foil used for a flexible wiring member such as a flexible printed circuit board (hereinafter referred to as FPC) having excellent flexibility.

有機物を基材としたプリント配線基板は、ガラスエポキシまたは紙フェノール基板を構成材料とする硬質銅張積層板(リジット)と、ポリイミドまたはポリエステル基板を構成材料とする可撓性銅張積層基板(FPC)とに大別され、プリント配線基板の導電材には銅箔が使用されている。
上記プリント配線基板のうち、FPCは、樹脂基板に銅箔をラミネートし、接着剤あるいは加熱加圧により一体化して形成される。近年では高密度実装の有効な手段として、ビルドアップ基板と呼ばれる多層配線基板が多く用いられている。また、従来の三層銅張積層板に対し、二層銅張積層板が開発され、近年多用される傾向にある。三層材では接着剤を使用して銅箔と樹脂フィルムとを接着するのに対し、二層材では接着剤を介さずポリイミドフィルムと銅箔が一体化される。
Printed circuit boards based on organic materials are rigid copper clad laminates (rigids) composed of glass epoxy or paper phenolic substrates, and flexible copper clad laminates (FPC) composed of polyimide or polyester substrates. The copper foil is used for the conductive material of the printed wiring board.
Among the printed wiring boards, the FPC is formed by laminating a copper foil on a resin board and integrating them with an adhesive or heat and pressure. In recent years, a multilayer wiring board called a build-up board is often used as an effective means for high-density mounting. In addition, a two-layer copper-clad laminate has been developed compared to a conventional three-layer copper-clad laminate, and has recently been frequently used. The three-layer material uses an adhesive to bond the copper foil and the resin film, whereas the two-layer material integrates the polyimide film and the copper foil without using an adhesive.

FPCは、プリンターのヘッド部、ハードディスク内の駆動部、携帯電話のヒンジ部等、可動部分への配線が必要とされる場合に広く使用され、屈曲変形が繰り返し加えられる。近年の装置の小型化や高水準化に伴い、この屈曲性への要求はより高度化している。
銅箔にはその製造方法の違いにより電解銅箔と圧延銅箔の二種類があるが、FPCの構成部材となる銅箔には、主に圧延銅箔が用いられている。これは圧延銅箔の方が、屈曲性に優れるためである。また、圧延銅箔の素材には、主にタフピッチ銅(酸素含有量0.01〜0.05 mass%)が用いられる。タフピッチ銅箔は、インゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。その後、樹脂基板との接着性を向上させるため、圧延銅箔の表面に粗化めっきが施される。
FPC is widely used when wiring to a movable part such as a printer head part, a drive part in a hard disk, or a hinge part of a mobile phone is required, and bending deformation is repeatedly applied. With the recent miniaturization and high standardization of devices, the demand for this flexibility has become more sophisticated.
There are two types of copper foils, electrolytic copper foils and rolled copper foils, depending on the manufacturing method, but rolled copper foils are mainly used as the copper foils constituting the FPC. This is because the rolled copper foil is more flexible. Moreover, the tough pitch copper (oxygen content 0.01-0.05 mass%) is mainly used for the raw material of rolled copper foil. The tough pitch copper foil is manufactured by repeatedly cold rolling and annealing to a predetermined thickness after hot rolling the ingot. Then, in order to improve adhesiveness with a resin substrate, roughening plating is given to the surface of rolled copper foil.

三層銅張積層板の場合、粗化めっき後の銅箔は、裁断された後、樹脂基板と貼り合わせられる。銅箔と樹脂との貼りあわせには、例えばエポキシ等の熱硬化性樹脂からなる接着剤が用いられ、張り合わせ後130〜170℃の温度で1〜2時間加熱して硬化させる。
一方、二層銅張積層板の製造方法としては、ポリイミド樹脂の前駆体であるポリアミック酸を含むワニスを銅箔上に塗布して加熱硬化させる“キャスティング法”、銅箔をポリイミドフィルムに直接に積層する“ラミネート法”等がある。
In the case of a three-layer copper-clad laminate, the copper foil after rough plating is cut and then bonded to the resin substrate. For the bonding of the copper foil and the resin, for example, an adhesive made of a thermosetting resin such as epoxy is used. After the lamination, the adhesive is heated and cured at 130 to 170 ° C. for 1 to 2 hours.
On the other hand, as a method for producing a two-layer copper-clad laminate, a “casting method” in which a varnish containing polyamic acid, which is a precursor of a polyimide resin, is applied on a copper foil and heated and cured, and the copper foil is directly applied to a polyimide film. There is a “laminating method” for laminating.

銅張積層板の銅箔は、次工程で、種々の配線パターンにエッチング加工される。
銅箔の屈曲性は再結晶焼鈍を行うことにより圧延上がりよりも著しく向上する。そこで銅箔は再結晶組織に調質された状態でFPCの構成部材として使用される。このための再結晶焼鈍は、粗化めっきの前または後に行なわれる。一方、特別な再結晶焼鈍工程を付加せず、上述した銅張積層板の製造工程での熱履歴(接着剤の熱硬化、ワニスの加熱硬化等)により銅箔を再結晶させる場合もある。
The copper foil of the copper clad laminate is etched into various wiring patterns in the next step.
The bendability of the copper foil is remarkably improved over the rolling up by performing recrystallization annealing. Therefore, the copper foil is used as a constituent member of the FPC while being tempered to a recrystallized structure. The recrystallization annealing for this is performed before or after the rough plating. On the other hand, there is a case where the copper foil is recrystallized without adding a special recrystallization annealing process and by the heat history (such as heat curing of the adhesive and heat curing of the varnish) in the above-described manufacturing process of the copper-clad laminate.

FPCの屈曲性を高めるためには、その素材となる圧延銅箔の屈曲性を高めることが有効である。銅箔に屈曲変形を与えると、結晶粒界に沿って割れが進展し、銅箔が破断する。これに対し、特許文献1では、結晶粒界への応力集中を軽減するために、銅箔の立方体集合組織を発達させ、屈曲性を改善している。そして、再結晶焼鈍の際に立方体集合組織が発達するよう、銅箔の製造プロセスを最適化している。しかしながら、立方体集合組織が発達した銅箔には、引張強さおよび伸びが低いという欠点がある(例えば、非特許文献1参照。)。引張強さが低いと取り扱いの際に銅箔が変形する等の不具合が生じ、また伸びが低いと銅箔の折り曲げ性等が劣化する。   In order to increase the flexibility of FPC, it is effective to increase the flexibility of the rolled copper foil as the material. When bending deformation is given to the copper foil, cracks develop along the crystal grain boundaries, and the copper foil breaks. On the other hand, in patent document 1, in order to reduce the stress concentration to a crystal grain boundary, the cube texture of copper foil was developed and the flexibility was improved. And the manufacturing process of copper foil is optimized so that a cube texture may develop in the case of recrystallization annealing. However, a copper foil having a developed cubic texture has a drawback of low tensile strength and elongation (see, for example, Non-Patent Document 1). If the tensile strength is low, problems such as deformation of the copper foil occur during handling, and if the elongation is low, the bendability of the copper foil deteriorates.

特許第3009383号公報Japanese Patent No. 3009383 T.Hatano、Y.Kurosawa and J.Miyake: Journal of Electronic Materials、 Vol.29、 No.5 (2000)、 p.611-616.T. Hatano, Y. Kurosawa and J. Miyake: Journal of Electronic Materials, Vol. 29, No. 5 (2000), p.611-616.

本発明の目的は、引張強さおよび伸びを低下させることなく、銅箔の屈曲性を改善することである。   The object of the present invention is to improve the flexibility of copper foil without reducing the tensile strength and elongation.

前述したように、銅箔に屈曲変形を与えると、結晶粒界に沿って割れが進展し、銅箔の破断に至る。この場合、結晶粒を小さくすると、すなわち粒界の総面積を大きくすると、粒界への応力集中が分散されて小さくなり、屈曲寿命が向上することが期待される。
本発明者らは、再結晶後の銅箔の結晶粒径を微細化する方策を検討した。その結果、焼鈍条件を調整するだけでは不十分であり、CuへのSnの添加が極めて有効であることを見出した。純Cuには再結晶の際に立方体集合組織が発達する特徴があるが、立方体方位に配向する結晶粒の成長速度は著しく速く、このため純銅の結晶粒を微細化することは困難であった。Sn添加は焼鈍時立方体集合組織の発達を抑制し、その結果として結晶粒が微細化すると考えられた。
さらに本発明者らは、Snを添加することにより結晶粒を微細化した銅箔の特性を評価し、その屈曲性が非常に優れることを見出した。また、引張強さおよび伸びについても、従来の銅箔と比較して同等以上であった。
As described above, when bending deformation is applied to the copper foil, cracks develop along the crystal grain boundaries, leading to breakage of the copper foil. In this case, when the crystal grains are reduced, that is, when the total area of the grain boundaries is increased, the stress concentration at the grain boundaries is dispersed and reduced, and it is expected that the bending life is improved.
The inventors of the present invention have studied a method for reducing the crystal grain size of the copper foil after recrystallization. As a result, it was not sufficient to adjust the annealing conditions, and it was found that the addition of Sn to Cu is extremely effective. Pure Cu has a feature that a cubic texture develops upon recrystallization, but the growth rate of crystal grains oriented in the cube orientation is remarkably fast, and it is therefore difficult to refine pure copper grains. . It was considered that the addition of Sn suppressed the development of the cube texture during annealing, and as a result, the crystal grains became finer.
Furthermore, the present inventors evaluated the characteristics of the copper foil whose crystal grains were refined by adding Sn, and found that its flexibility was very excellent. Further, the tensile strength and elongation were also equal to or higher than those of the conventional copper foil.

本発明は以上の研究を通して、完成されたものであり、即ち
(1)Snを0.01〜0.2 mass%含有しSnとCuの合計が99.9 mass%以上であり、平均結晶粒径が5μm以下、最大結晶粒径が15μm以下である再結晶組織を有することを特徴とする圧延銅箔、
(2)インゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し、最終冷間圧延で箔の厚みに仕上げ、その後再結晶焼鈍を施すプロセスで製造し、
a)最終冷間圧延の直前の焼鈍を、この焼鈍で得られる再結晶粒の平均粒径が10μm以下になる条件下で行い、
b)最終冷間圧延の加工度を80%以上とし、
c)最終圧延後の焼鈍において、焼鈍温度、T(℃)および焼鈍時間、t(h)が、
800≦(T+273)×log(t+20)≦950
の関係になる条件下で焼鈍を行うことを特徴とする上記(1)の圧延銅箔の製造方法、
である。
The present invention has been completed through the above studies, that is, (1) 0.01 to 0.2 mass% of Sn, the total of Sn and Cu is 99.9 mass% or more, the average crystal grain size is 5 μm or less, and the maximum A rolled copper foil characterized by having a recrystallized structure having a crystal grain size of 15 μm or less,
(2) After the ingot is hot-rolled, cold rolling and annealing are repeated, the final cold rolling is finished to the thickness of the foil, and then recrystallization annealing is performed.
a) Annealing immediately before the final cold rolling is performed under the condition that the average grain size of recrystallized grains obtained by this annealing is 10 μm or less,
b) Final cold rolling degree of processing is 80% or more,
c) In the annealing after the final rolling, the annealing temperature, T (° C.) and annealing time, t (h) are:
800 ≦ (T + 273) × log (t + 20) ≦ 950
The method for producing a rolled copper foil according to the above (1), characterized in that annealing is performed under the conditions of
It is.

本発明の銅箔は、高い屈曲性、引張強さおよび伸びを併せ持つ。この銅箔は、フレキシブルプリント回路基板用の銅箔として好適である。   The copper foil of the present invention has high flexibility, tensile strength and elongation. This copper foil is suitable as a copper foil for a flexible printed circuit board.

以下に本発明を構成する各要素の限定理由について説明する。
(1)結晶粒径
結晶粒径を微細化することにより屈曲性が向上する。優れた屈曲性を得るためには、平均結晶粒径を5μm以下に調整する必要がある。また、最大結晶粒径にも留意する必要がある。平均結晶粒径が小さくても、局部的に大きな結晶粒があると、この大きな結晶粒に応力が集中し、この大きな結晶粒の粒界において割れが生成・成長するためである。最大結晶粒径を15μm以下にする必要がある。結晶粒の微細化には、引張強さおよび伸びを高くする効果もある。
The reasons for limiting each element constituting the present invention will be described below.
(1) Crystal grain size Flexibility is improved by reducing the crystal grain size. In order to obtain excellent flexibility, it is necessary to adjust the average crystal grain size to 5 μm or less. It is also necessary to pay attention to the maximum crystal grain size. This is because, even if the average crystal grain size is small, if there are locally large crystal grains, stress concentrates on the large crystal grains, and cracks are generated and grown at the grain boundaries of the large crystal grains. The maximum crystal grain size needs to be 15 μm or less. Refinement of crystal grains also has the effect of increasing tensile strength and elongation.

(2)組成
CuにSnを添加すると、結晶粒が微細化する。しかし、Sn濃度が0.01 mass%未満では、焼鈍を始めとする製造条件を調整しても、上記結晶粒径を得ることができない。また、Snが0.2 mass%を超えると導電率の低下が大きくなり、導電率が高いというCuの特徴が失われる。
一方、Snを添加するベースとなるCuには、酸素濃度が0.0005 mass%以下である無酸素銅と酸素濃度が0.01〜0.05 mass%のタフピッチ銅の二種類がある。本発明では無酸素銅にSnを添加する。タフピッチ銅にSnを添加すると、Snと酸素が化合物を生成するため、銅箔を屈曲した際にこの化合物粒子を起点にして破断が起こり、優れた屈曲性は期待できない。なお、 JIS-H3100(1999年)により、無酸素銅C1020の組成は、Cuが99.6 mass%以上と定義されている。
(2) When Sn is added to the composition Cu, the crystal grains become finer. However, if the Sn concentration is less than 0.01 mass%, the crystal grain size cannot be obtained even if the manufacturing conditions including annealing are adjusted. Further, when Sn exceeds 0.2 mass%, the decrease in conductivity becomes large, and the characteristic of Cu that the conductivity is high is lost.
On the other hand, there are two types of Cu as a base to which Sn is added: oxygen-free copper having an oxygen concentration of 0.0005 mass% or less and tough pitch copper having an oxygen concentration of 0.01 to 0.05 mass%. In the present invention, Sn is added to oxygen-free copper. When Sn is added to tough pitch copper, Sn and oxygen form a compound. Therefore, when the copper foil is bent, breakage occurs starting from the compound particles, and excellent flexibility cannot be expected. According to JIS-H3100 (1999), the composition of oxygen-free copper C1020 is defined as 99.6 mass% or more of Cu.

(4)箔の厚み
銅箔の厚みは5〜35μmであることが好ましい。箔の厚みが5μm未満の場合、各種部品に加工される際にしわがよったり、破れやすくなるなどハンドリングに困難が生じる。また、35μmを超えると、銅箔に曲げ変形を加えた際の曲げ部外周における歪が大きくなり、屈曲性や折り曲げ性が低下する。
(4) Thickness of foil The thickness of the copper foil is preferably 5 to 35 µm. When the thickness of the foil is less than 5 μm, it is difficult to handle such as wrinkles and easy tearing when processed into various parts. On the other hand, if it exceeds 35 μm, the strain at the outer periphery of the bent portion when bending deformation is applied to the copper foil increases, and the flexibility and the bendability deteriorate.

(5)製造プロセス
最終圧延後の再結晶焼鈍において微細結晶粒を得るためには、再結晶粒の核生成サイトを提供する必要がある。最終圧延で導入する格子欠陥、および最終圧延前の焼鈍で生成する再結晶粒の結晶粒界が、核生成サイトとして作用する。そこで、最終冷間圧延の加工度を80%以上に規定し、最終冷間圧延の直前の焼鈍で形成する再結晶粒の平均粒径を10μm以下に規定する。
また、微細結晶粒を得るためには、最終圧延後の焼鈍条件を適正化する必要がある。実験データに基づき、上記結晶粒を得るための焼鈍温度、T(℃)および焼鈍時間、t(h)を、次式で規定した。
800≦(T+273)×log(t+20)≦950
この式で規定されるTとtの範囲を図示すると、図1のようになる。より好ましい条件は、
850≦(T+273)×log(t+20)≦900
である。(以下、(T+273)×log(t+20)を式1とする。)
なお、この再結晶焼鈍は、粗化めっきの前に行ってもよいし、粗化めっきの後に行ってもよい。さらに、銅張積層板を製造する際の熱処理(接着剤の熱硬化、ワニスの加熱硬化等)を利用し、銅箔を再結晶させてもよい。
(5) In order to obtain fine crystal grains in the recrystallization annealing after the final rolling of the production process , it is necessary to provide nucleation sites for the recrystallized grains. Lattice defects introduced in the final rolling and crystal grain boundaries of recrystallized grains generated by annealing before the final rolling act as nucleation sites. Therefore, the workability of final cold rolling is defined as 80% or more, and the average grain size of recrystallized grains formed by annealing immediately before final cold rolling is defined as 10 μm or less.
Moreover, in order to obtain fine crystal grains, it is necessary to optimize the annealing conditions after the final rolling. Based on the experimental data, the annealing temperature , T (° C.), annealing time, and t (h) for obtaining the crystal grains were defined by the following formula.
800 ≦ (T + 273) × log (t + 20) ≦ 950
The range of T and t defined by this equation is illustrated in FIG. More preferred conditions are
850 ≦ (T + 273) × log (t + 20) ≦ 900
It is. (Hereinafter, (T + 273) × log (t + 20) is defined as Equation 1.)
This recrystallization annealing may be performed before the roughening plating or after the roughening plating. Further, the copper foil may be recrystallized by using heat treatment (such as heat curing of an adhesive or heat curing of a varnish) in manufacturing a copper clad laminate.

以下、本発明の様態を実施例により説明する
カーボン脱酸によりO濃度を0.0005 mass%以下に下げた溶銅に所定量のSnを添加し、表1に示す成分の厚さ200 mm、幅500 mmの銅インゴットを製造した。インゴットを熱間圧延した後、焼鈍と冷間圧延を繰り返し、最終の冷間圧延で所定の厚みの箔に仕上げ、最後に再結晶焼鈍を施した。最終圧延前の焼鈍では、焼鈍後の再結晶粒径を測定した。この測定では、圧延方向に直角な断面を鏡面研磨後に化学腐食し、切断法(JIS H 0501(1999年))により平均結晶粒径を求めた。
得られた銅箔について、次の評価を行った。
Hereinafter, embodiments of the present invention will be described by way of examples. A predetermined amount of Sn was added to molten copper whose O concentration was lowered to 0.0005 mass% or less by carbon deoxidation, and the thicknesses of components shown in Table 1 were 200 mm and width 500. mm copper ingots were produced. After the ingot was hot-rolled, annealing and cold rolling were repeated, the foil was finished to a predetermined thickness by the final cold rolling, and finally recrystallization annealing was performed. In the annealing before final rolling, the recrystallized grain size after annealing was measured. In this measurement, a cross section perpendicular to the rolling direction was subjected to chemical corrosion after mirror polishing, and an average crystal grain size was determined by a cutting method (JIS H 0501 (1999)).
The following evaluation was performed about the obtained copper foil.

1)再結晶後の結晶粒径
圧延面を鏡面研磨後に化学腐食し、切断法(JIS H 0501(1999年))に準じ、所定長さの線分により完全に切られる結晶粒数を数える方法により平均結晶粒径を求めた。また、最大結晶粒を求めた。ここで、最大結晶粒を求める際の粒径は、結晶粒を含む最小の円の直径と定義した。
1) Crystal grain size after recrystallization A method of counting the number of crystal grains that are completely cut by line segments of a predetermined length in accordance with the cutting method (JIS H 0501 (1999)) by chemically corroding the rolled surface after mirror polishing. Thus, the average crystal grain size was determined. Moreover, the maximum crystal grain was calculated | required. Here, the grain size when obtaining the maximum crystal grain was defined as the diameter of the smallest circle including the crystal grain.

2)屈曲性
図2に示す装置により、屈曲疲労寿命の測定を行った。この装置は、発振駆動体4に振動伝達部材3を結合した構造になっており、被試験銅箔1は、矢印で示したねじ2の部分と3の先端部の計4点で装置に固定される。振動部3が上下に駆動すると、銅箔1の中間部は、所定の曲率半径rでヘアピン状に屈曲される。本試験では、以下の条件下で屈曲を繰り返した時の破断までの回数を求めた。
試験片幅12.7 mm、試験片長さ:200 mm、試験片採取方向:試験片の長さ方向が圧延方向と平行になるように採取、曲率半径r:2.5 mm、振動ストローク:25 mm、振動速度:1500回/分
なお、厚みが18μmの銅箔でいえば、屈曲疲労寿命が40万回以上の場合に、優れた屈曲性を有していると判断した。また、この試験は加速試験であり、実際にFPCが使用させる条件よりも厳しい条件下で行っている。
2) Flexibility Flexural fatigue life was measured with the apparatus shown in FIG. This apparatus has a structure in which a vibration transmitting member 3 is coupled to an oscillation driver 4, and a copper foil 1 to be tested is fixed to the apparatus at a total of four points including a screw 2 part indicated by an arrow and a tip part of 3. Is done. When the vibration part 3 is driven up and down, the intermediate part of the copper foil 1 is bent into a hairpin shape with a predetermined radius of curvature r. In this test, the number of times until breakage when bending was repeated under the following conditions was determined.
Specimen width 12.7 mm, Specimen length: 200 mm, Specimen sampling direction: Collected so that the length direction of the specimen is parallel to the rolling direction, Curvature radius r: 2.5 mm, Vibration stroke: 25 mm, Vibration speed : 1500 times / minute It was determined that the copper foil having a thickness of 18 μm had excellent flexibility when the bending fatigue life was 400,000 times or more. In addition, this test is an accelerated test and is performed under conditions that are stricter than those actually used by the FPC.

3)引張試験
引張試験により引張強さと伸びを求めた。引張試験片は幅12.7mm、長さ150mmの短冊片を用い、引張速度を50mm/minに固定し、破断後の伸びを実測した。
3) Tensile test Tensile strength and elongation were determined by a tensile test. The tensile test piece was a strip having a width of 12.7 mm and a length of 150 mm, the tensile speed was fixed at 50 mm / min, and the elongation after fracture was measured.

4)導電率
定電圧直流電位差計を用いて比抵抗を測定し、導電率(IACS%)を求めた。測定試験片は引張試験片と同じ寸法とした。
(1)実施例1
4) Conductivity The specific resistance was measured using a constant voltage DC potentiometer to determine the conductivity (IACS%). The measurement test piece had the same dimensions as the tensile test piece.
(1) Example 1

素材成分の影響を示す。
種々の濃度のSnを添加した無酸素銅を素材とし、最終圧延加工度を90%、最終圧延前の結晶粒径を7〜8μmに調整し、厚み18μmの銅箔を製造した。この銅箔を400℃で1時間(式1:(T+273)×log(t+20)=890)の条件で焼鈍し、諸特性を評価した。この結果を表1に示す。
Shows the influence of material components.
Oxygen-free copper added with various concentrations of Sn was used as a raw material, the final rolling degree was adjusted to 90%, the crystal grain size before final rolling was adjusted to 7-8 μm, and a 18 μm thick copper foil was produced. This copper foil was annealed at 400 ° C. for 1 hour (formula 1: (T + 273) × log (t + 20) = 890), and various properties were evaluated. The results are shown in Table 1.

Figure 0004162087
Figure 0004162087

0.01〜0.2mass%の範囲のSnを含有する発明例No.1〜7は、平均結晶粒径が5μm以下、最大結晶粒径が15μm以下である。屈曲回数は60万回以上、引張強さは260MPa以上、伸びは20%以上である。
比較例No.10は、Snを含有しない無酸素銅である。立方体集合組織が発達したために、最終圧延前の結晶粒径を10μm以下に調整できず、最終焼鈍後の平均結晶粒径は5μmを超え、さらに最終焼鈍後の最大結晶粒径は15μmを超えた。この銅箔の屈曲回数、引張強さ、伸びは、いずれも発明例よりかなり劣っている。
比較例No.8は、Snを添加したもののその添加量が0.01mass%に満たない例である。最終焼鈍後の平均結晶粒径は5μmを超え、最終焼鈍後の最大結晶粒径は15μmを超えている。屈曲回数、引張強さおよび伸びは、発明例と比較して劣っている。
比較例No.9は、0.2mass%を超えるSnを添加した例である。屈曲回数、引張強さおよび伸びは発明例と同等であるが、導電率が他の例より低い。
比較例No.11は、Snを含有しない無酸素銅に対し、最終圧延加工度を98%と高くして立方体集合組織を極度に発達させることにより屈曲性を改善した例である。屈曲回数は本発明例と同等であるが、伸びおよび引張強さが非常に低い。
(2)実施例2
Invention Examples No. 1 to 7 containing Sn in the range of 0.01 to 0.2 mass% have an average crystal grain size of 5 μm or less and a maximum crystal grain size of 15 μm or less. The number of bendings is 600,000 times or more, the tensile strength is 260 MPa or more, and the elongation is 20% or more.
Comparative Example No. 10 is oxygen-free copper that does not contain Sn. Due to the development of the cubic texture, the crystal grain size before final rolling could not be adjusted to 10 μm or less, the average crystal grain size after final annealing exceeded 5 μm, and the maximum crystal grain size after final annealing exceeded 15 μm. . The number of bendings, tensile strength, and elongation of the copper foil are all inferior to those of the inventive examples.
Comparative Example No. 8 is an example in which Sn was added but the amount added was less than 0.01 mass%. The average crystal grain size after final annealing exceeds 5 μm, and the maximum crystal grain size after final annealing exceeds 15 μm. The number of bends, tensile strength and elongation are inferior to those of the inventive examples.
Comparative example No. 9 is an example in which Sn exceeding 0.2 mass% was added. The number of bends, tensile strength and elongation are the same as in the invention example, but the conductivity is lower than in the other examples.
Comparative Example No. 11 is an example in which the flexibility was improved by extremely developing the cubic texture by increasing the final rolling degree to 98% with respect to oxygen-free copper containing no Sn. The number of bendings is the same as that of the example of the present invention, but the elongation and tensile strength are very low.
(2) Example 2

最終圧延加工度および最終圧延前の結晶粒径の影響を示す。
Sn濃度が0.12mass%の無酸素銅を素材とし、最終圧延加工度および最終圧延前の結晶粒径を変化させ、厚み12μmの銅箔を製造した。この銅箔を360℃で5時間(式1:(T+273)×log(t+20)=885)の条件で焼鈍し、諸特性を評価した。この結果を表2に示す。
The influence of the final rolling work degree and the crystal grain size before final rolling is shown.
An oxygen-free copper having an Sn concentration of 0.12 mass% was used as a raw material, and the final rolling work degree and the crystal grain size before the final rolling were changed to produce a copper foil having a thickness of 12 μm. This copper foil was annealed at 360 ° C. for 5 hours (formula 1: (T + 273) × log (t + 20) = 885), and various properties were evaluated. The results are shown in Table 2.

Figure 0004162087
Figure 0004162087

発明例No.12〜15は、最終圧延加工度が80%以上、最終圧延前の結晶粒径が10μm以下の条件で製造されたものであり、平均結晶粒径が5μm以下、最大結晶粒径が15μm以下である。屈曲回数は100万回以上、引張強さは260MPa以上、伸びは20%以上である。
比較例No.16は最終圧延加工度が80%より小さいため、また比較例No.17は最終圧延前の結晶粒径が10μmを超えるため、平均結晶粒径は5μm以下であるが、最大結晶粒径が15μmを超えている。このため屈曲回数が非常に少ない。また、引張強さと伸びも発明例より低い。
(3)実施例3
Invention Examples Nos. 12 to 15 are manufactured under conditions where the final rolling degree is 80% or more and the crystal grain size before final rolling is 10 μm or less, the average crystal grain size is 5 μm or less, and the maximum crystal grain size Is 15 μm or less. The number of bendings is 1 million times or more, the tensile strength is 260 MPa or more, and the elongation is 20% or more.
Since Comparative Example No. 16 has a final rolling degree of less than 80%, and Comparative Example No. 17 has a crystal grain size before final rolling exceeding 10 μm, the average crystal grain size is 5 μm or less. The particle size exceeds 15 μm. For this reason, the number of times of bending is very small. Also, the tensile strength and elongation are lower than those of the inventive examples.
(3) Example 3

最終圧延後の焼鈍条件の影響を示す。
Sn濃度が0.15mass%の無酸素銅を素材とし、最終圧延加工度を92%、最終圧延前の結晶粒径を6〜7μmに調整し、厚み10μmの銅箔を製造した。この銅箔を種々の条件で焼鈍し、諸特性を評価した。この結果を表3に示す。
The influence of the annealing conditions after final rolling is shown.
An oxygen-free copper having an Sn concentration of 0.15 mass% was used as a raw material, the final rolling degree was adjusted to 92%, the crystal grain size before final rolling was adjusted to 6 to 7 μm, and a 10 μm thick copper foil was produced. This copper foil was annealed under various conditions, and various properties were evaluated. The results are shown in Table 3.

Figure 0004162087
Figure 0004162087

発明例No.18〜21は、式1:(T+273)×log(t+20)=800〜950の条件で焼鈍した例であり、屈曲回数は200万回以上、引張強さは260MPa以上、伸びは16%以上である。これら発明例の中でも、(T+273)×log(t+20)を、850〜900の範囲に最適化した発明例No.19、20の特性は特に優れている。なお、実施例1および2と比較して屈曲回数が多く伸びが低い理由は、厚みが薄いためである。
比較例No.22は式1:(T+273)×log(t+20)が800を下回ったため、圧延組織が完全に再結晶せずに未再結晶部が残留し、屈曲回数および伸びが発明例より劣る。
比較例No.23は式1:(T+273)×log(t+20)が950を超えたため、焼鈍後の結晶粒径が5μmを超え、焼鈍後の結晶粒径が15μmを超えた。このため、屈曲回数および引張強さが発明例より劣る。
Invention Examples No. 18 to 21 are examples annealed under the condition of Formula 1: (T + 273) × log (t + 20) = 800 to 950, the number of bendings is 2 million times or more, the tensile strength is 260 MPa or more, and the elongation is 16% or more. Among these invention examples, invention example No. in which (T + 273) × log (t + 20) is optimized in the range of 850 to 900 is included. The characteristics of 19 and 20 are particularly excellent. The reason why the number of bendings is large and the elongation is low compared to Examples 1 and 2 is that the thickness is small.
In Comparative Example No. 22, Formula 1: (T + 273) × log (t + 20) was less than 800, so that the rolled structure did not completely recrystallize and an unrecrystallized portion remained, and the number of flexing and elongation were inferior to those of the inventive examples. .
In Comparative Example No. 23, since the formula 1: (T + 273) × log (t + 20) exceeded 950, the crystal grain size after annealing exceeded 5 μm, and the crystal grain size after annealing exceeded 15 μm. For this reason, the number of bendings and the tensile strength are inferior to those of the inventive examples.

所定の結晶粒を得るための焼鈍時間と焼鈍時間、t(h)の関係を示した図である。It is the figure which showed the relationship between the annealing time for obtaining a predetermined crystal grain, annealing time, and t (h). 屈曲寿命の測定を行うために使用した屈曲試験装置の説明図である。It is explanatory drawing of the bending test apparatus used in order to measure a bending life.

符号の説明Explanation of symbols

1 銅箔
2 ねじ
3 振動伝達部材
4 発振駆動体
1 Copper foil 2 Screw 3 Vibration transmission member 4 Oscillation driver

Claims (2)

Snを0.01〜0.2 mass%含有しSnとCuの合計が99.9 mass%以上であり、平均結晶粒径が5μm以下、最大結晶粒径が15μm以下である再結晶組織を有することを特徴とする圧延銅箔。   A rolling characterized by containing 0.01 to 0.2 mass% of Sn, the total of Sn and Cu being 99.9 mass% or more, and having a recrystallized structure having an average crystal grain size of 5 μm or less and a maximum crystal grain size of 15 μm or less. Copper foil. インゴットを熱間圧延した後、冷間圧延と焼鈍とを繰り返し、最終冷間圧延で箔の厚みに仕上げ、その後再結晶焼鈍を施すプロセスで製造し、
a)最終冷間圧延の直前の焼鈍を、この焼鈍で得られる再結晶粒の平均粒径が10μm以下になる条件下で行い、
b)最終冷間圧延の加工度を80%以上とし、
c)最終圧延後の焼鈍において、焼鈍温度、T(℃)および焼鈍時間、t(h)が、
800≦(T+273)×log(t+20)≦950
の関係になる条件下で焼鈍を行う、
ことを特徴とする請求項1の圧延銅箔の製造方法。
After the ingot is hot-rolled, cold rolling and annealing are repeated, the final cold rolling is finished to the thickness of the foil, and then recrystallized annealing is performed.
a) Annealing immediately before the final cold rolling is performed under the condition that the average grain size of recrystallized grains obtained by this annealing is 10 μm or less,
b) Final cold rolling degree of processing is 80% or more,
c) In the annealing after the final rolling, the annealing temperature, T (° C.) and annealing time, t (h) are:
800 ≦ (T + 273) × log (t + 20) ≦ 950
Annealing is performed under the condition of
The manufacturing method of the rolled copper foil of Claim 1 characterized by the above-mentioned.
JP2003299314A 2003-08-22 2003-08-22 Highly flexible rolled copper foil and method for producing the same Expired - Fee Related JP4162087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003299314A JP4162087B2 (en) 2003-08-22 2003-08-22 Highly flexible rolled copper foil and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003299314A JP4162087B2 (en) 2003-08-22 2003-08-22 Highly flexible rolled copper foil and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005068484A JP2005068484A (en) 2005-03-17
JP4162087B2 true JP4162087B2 (en) 2008-10-08

Family

ID=34404570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003299314A Expired - Fee Related JP4162087B2 (en) 2003-08-22 2003-08-22 Highly flexible rolled copper foil and method for producing the same

Country Status (1)

Country Link
JP (1) JP4162087B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749780B2 (en) * 2005-07-06 2011-08-17 三井住友金属鉱山伸銅株式会社 Copper alloy rolled foil
US7789977B2 (en) 2006-10-26 2010-09-07 Hitachi Cable, Ltd. Rolled copper foil and manufacturing method thereof
JP4466688B2 (en) 2007-07-11 2010-05-26 日立電線株式会社 Rolled copper foil
JP5055088B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Copper foil and flexible printed circuit board using the same
JP5057932B2 (en) * 2007-10-31 2012-10-24 Jx日鉱日石金属株式会社 Rolled copper foil and flexible printed wiring board
JP2009158382A (en) * 2007-12-27 2009-07-16 Hitachi Cable Ltd Copper foil
WO2011078259A1 (en) * 2009-12-25 2011-06-30 新日鐵化学株式会社 Flexible circuit board and structure of bend section of flexible circuit board
JP5325175B2 (en) 2010-07-15 2013-10-23 Jx日鉱日石金属株式会社 Copper foil composite and method for producing molded body
MX2013005983A (en) * 2010-11-30 2013-12-06 Luvata Espoo Oy A new electrical conductor for attaching silicon wafers in photovoltaic modules.
KR101529417B1 (en) * 2011-05-13 2015-06-16 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Copper foil composite, copper foil used for the same, formed product and method of producing the same
EP2792483B1 (en) 2012-01-13 2016-10-19 JX Nippon Mining & Metals Corporation Copper foil composite, formed product, and method for producing same
KR101628590B1 (en) 2012-01-13 2016-06-08 제이엑스금속주식회사 Copper foil composite, molded body, and method for producing same
JP6294376B2 (en) * 2016-02-05 2018-03-14 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046768B (en) * 2016-02-05 2019-12-31 Jx金属株式会社 Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP6328679B2 (en) * 2016-03-28 2018-05-23 Jx金属株式会社 Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device

Also Published As

Publication number Publication date
JP2005068484A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP3009383B2 (en) Rolled copper foil and method for producing the same
KR100333567B1 (en) Rolled Copper Foil for Flexible Printed Circuits and Process for Producing the Same
JP5055088B2 (en) Copper foil and flexible printed circuit board using the same
JP4522972B2 (en) High gloss rolled copper foil for copper-clad laminates
JP4672515B2 (en) Rolled copper alloy foil for bending
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP4215093B2 (en) Rolled copper foil and method for producing the same
JP4466688B2 (en) Rolled copper foil
KR100344859B1 (en) rolled copper foil for flexible printed circuit board and method of manufacturing the same
JP5057932B2 (en) Rolled copper foil and flexible printed wiring board
JP5320638B2 (en) Rolled copper foil and method for producing the same
KR101632515B1 (en) Rolled copper foil
JP3824593B2 (en) Rolled copper foil with high elongation
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP3859384B2 (en) Rolled copper foil for flexible printed circuit board having excellent flexibility and manufacturing method thereof
JP5235080B2 (en) Copper alloy foil and flexible printed circuit board using the same
JP2010150597A (en) Rolled copper foil
TWI549575B (en) Flexible printed wiring board with copper foil, copper clad laminate, flexible printed wiring board and electronic equipment
CN112210689B (en) Copper foil for flexible printed substrate
JP2017115222A (en) Rolled copper foil, copper-clad laminate using the same, flexible printed substrate and electronic device
JP3709109B2 (en) Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same
JP2008038170A (en) Rolled copper foil
JP2012041574A (en) Copper foil for flexible printed wiring board and method for manufacturing the same
JP4242801B2 (en) Rolled copper foil and method for producing the same
JP3830680B2 (en) Rolled copper foil for flexible printed circuit board and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031027

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080612

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4162087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees