JP2008038170A - Rolled copper foil - Google Patents

Rolled copper foil Download PDF

Info

Publication number
JP2008038170A
JP2008038170A JP2006211543A JP2006211543A JP2008038170A JP 2008038170 A JP2008038170 A JP 2008038170A JP 2006211543 A JP2006211543 A JP 2006211543A JP 2006211543 A JP2006211543 A JP 2006211543A JP 2008038170 A JP2008038170 A JP 2008038170A
Authority
JP
Japan
Prior art keywords
copper foil
cross
rolled copper
sectional area
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006211543A
Other languages
Japanese (ja)
Inventor
Koichi Yamagishi
浩一 山岸
Yasushi Igai
靖 猪飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Copper Co Ltd
Original Assignee
Sumitomo Metal Mining Copper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Copper Co Ltd filed Critical Sumitomo Metal Mining Copper Co Ltd
Priority to JP2006211543A priority Critical patent/JP2008038170A/en
Publication of JP2008038170A publication Critical patent/JP2008038170A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide rolled copper foil not only having excellent bending resistance, but also free from deterioration in strength even if being stored at room temperature over a long period, and suitable for a flexible printed circuit (FPC). <P>SOLUTION: The rolled copper foil comprises 0.0003 to 0.0005 wt.% phosphorous. In the cross-sectional structure of the copper foil annealed after final rolling, the cross-sectional area ratio to the whole cross-sectional area of penetrated crystal grains 2 penetrated through the copper foil 1 to the sheet thickness direction is ≥40%. In the rolled copper foil, the number of bending exceeds 300,000 times sufficient as the bending resistance of copper foil for an FPC, and further, its tensile strength after being left at room temperature (30°C) for a year is ≥350 MPa. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フレキシブルプリント配線板(Flexible Printed Circuit、以下FPCとも称する)等の可撓性配線部材用として好適な、耐屈曲特性に優れた圧延銅箔に関する。   The present invention relates to a rolled copper foil having excellent bending resistance, which is suitable for a flexible wiring member such as a flexible printed circuit board (hereinafter also referred to as FPC).

最近の電気機器の小型化に伴い、狭い空間に実装が可能なFPCは、デジタルカメラや携帯電話、HDD、プリンター、液晶パネル等に、配線材料として実装されている。また、FPCは折り曲げでき、狭い空間にも実装可能であるため、HDDやDVD及びCD−ROM等のディスク関連機器の可動部、折りたたみ式携帯電話機の折り曲げ部等に多く用いられている。   With the recent miniaturization of electrical equipment, FPCs that can be mounted in a narrow space are mounted as wiring materials in digital cameras, mobile phones, HDDs, printers, liquid crystal panels, and the like. Further, since the FPC can be bent and can be mounted in a narrow space, the FPC is often used for a movable part of a disk-related device such as an HDD, a DVD, and a CD-ROM, and a folding part of a foldable mobile phone.

このような用途から、FPCには繰り返しの屈曲に対する高い耐久性が要求されている。FPCの耐屈曲特性は、ベースフィルムやカバーレイと比較して耐屈曲性に劣る銅箔素材によって決まると言われており、その構成材料のうち銅箔の耐屈曲特性が最も重要である。このような要求特性から、FPCには電解銅箔よりも高い耐屈曲特性を有する圧延銅箔が使用される傾向にある。   For such applications, the FPC is required to have high durability against repeated bending. It is said that the bending resistance of the FPC is determined by the copper foil material that is inferior in bending resistance compared to the base film and coverlay, and the bending resistance of the copper foil is the most important among the constituent materials. Because of such required characteristics, rolled copper foil having higher bending resistance than electrolytic copper foil tends to be used for FPC.

FPCの一般的な製造工程としては、例えば、ポリイミドやポリエステルなどからなるベースフィルムに、接着剤を介して銅箔を張り合わせ、全体を130〜180℃の温度に加熱することにより接着剤を硬化させた後、配線のパターニングを行い、その後配線の保護のためカバーレイを施す。また、接着剤で張り合わせる代わりに、ベースフィルムと銅箔を加熱加圧することによって一体化する方法もある。   As a general manufacturing process of FPC, for example, a copper foil is bonded to a base film made of polyimide or polyester via an adhesive, and the whole is heated to a temperature of 130 to 180 ° C. to cure the adhesive. After that, the wiring is patterned, and then a coverlay is applied to protect the wiring. There is also a method of integrating the base film and the copper foil by heating and pressing instead of bonding them with an adhesive.

一般的に、FPCに用いられる圧延銅箔の素材としては、FPCの製造工程でさらされる温度(130〜180℃)で軟化され、耐屈曲特性が改善されるタフピッチ銅が多い。しかし、機器の耐久性の観点から、更に耐屈曲特性の高い圧延銅箔が求められ、例えば、銅箔の結晶学的な配向を強めたり、圧延率を大きくしたり、最終圧延前の結晶粒径を小さくするなど、多くの耐屈曲特性改善の試みがなされている。   Generally, as a material of rolled copper foil used for FPC, there are many tough pitch coppers that are softened at a temperature (130 to 180 ° C.) exposed in the manufacturing process of FPC and improved in bending resistance. However, from the viewpoint of the durability of the equipment, a rolled copper foil with higher bending resistance is required, for example, strengthening the crystallographic orientation of the copper foil, increasing the rolling rate, crystal grains before final rolling Many attempts have been made to improve anti-bending properties such as reducing the diameter.

このような耐屈曲性に優れた圧延銅箔として、例えば、特許第3009383号公報には、200℃で30分間加熱して再結晶組織に調質した状態において、15%以上の伸びを有し、且つ圧延面のX線回折で求めた(200)面の強度(I)が、微粉末銅のX線回折で求めた(200)面の強度(I)に対し、I/I>20である立方体集合組織を有することを特徴とする圧延銅箔が報告されている。 As such a rolled copper foil having excellent bending resistance, for example, Japanese Patent No. 3009383 has an elongation of 15% or more in a state where the recrystallized structure is tempered by heating at 200 ° C. for 30 minutes. The strength (I) of the (200) plane determined by X-ray diffraction of the rolled surface is I / I 0 > with respect to the strength (I 0 ) of the (200) plane determined by X-ray diffraction of fine powder copper. A rolled copper foil characterized by having a cubic texture of 20 has been reported.

ところが、圧延率を大きくした場合や、最終圧延前の結晶粒径を小さくした場合には、銅箔内の歪の蓄積が大きくなるため、室温で保管した場合でも材料内の一部に再結晶が起こり、銅箔の強度低下が生じる。そのため、ベースフィルム張り合わせ前の銅箔単体の取り扱いにおいて、ハンドリング性が非常に悪くなるという問題点があった。   However, when the rolling rate is increased or when the crystal grain size before final rolling is reduced, the accumulation of strain in the copper foil increases, so even when stored at room temperature, recrystallization occurs partially in the material. Occurs and the strength of the copper foil is reduced. For this reason, in handling the copper foil alone before the base film is laminated, there is a problem that handling properties are very poor.

また、特開平1−319641号公報には、耐折疲労強度及び耐熱性に優れた軟質圧延銅箔として、リンを0.0005〜0.002重量%含有し、酸素などの不可避的不純物の含有量が0.005重量%以下であり、かつ最終圧延前の冷間加工度が65%以上である銅箔が記載されている。しかしながら、上記公報には、本発明が目的とする銅箔の耐屈曲性、耐室温強度低下の改善については言及されていない。   Japanese Patent Application Laid-Open No. 1-319641 discloses a soft rolled copper foil excellent in folding fatigue strength and heat resistance, containing 0.0005 to 0.002% by weight of phosphorus and containing inevitable impurities such as oxygen. A copper foil having an amount of 0.005% by weight or less and a cold work degree before final rolling of 65% or more is described. However, the above publication does not mention the improvement of the bending resistance and room temperature strength reduction of the copper foil which is the object of the present invention.

特許第3009383号公報Japanese Patent No. 3009383 特開平1−319641号公報JP-A-1-319641

本発明は、上記した従来の問題点に鑑み、耐屈曲特性に優れるだけでなく、室温で長期間保管しても強度の低下がなく、フレキシブルプリント基板用として好適な圧延銅箔を提供することを目的とする。   In view of the above-described conventional problems, the present invention provides a rolled copper foil that is not only excellent in bending resistance characteristics, but also does not decrease in strength even when stored at room temperature for a long period of time, and is suitable for a flexible printed circuit board. With the goal.

上記目的を達成するために、本発明が提供する圧延銅箔は、リン0.0003〜0.005重量%を含み、最終圧延後に焼鈍した銅箔の断面組織において、銅箔を板厚方向に貫通した結晶粒の断面面積率が40%以上であって、耐屈曲性に優れ且つ室温強度低下しないことを特徴とするものである。   In order to achieve the above object, the rolled copper foil provided by the present invention contains 0.0003 to 0.005% by weight of phosphorus, and in the cross-sectional structure of the copper foil annealed after the final rolling, The cross-sectional area ratio of the penetrating crystal grains is 40% or more, which is excellent in bending resistance and does not lower the room temperature strength.

本発明によれば、耐屈曲特性に優れていると同時に、室温(30℃)で1年以上保管しても強度の低下がない優れた圧延銅箔を提供することができる。従って、本発明の圧延銅箔は、繰り返し曲げに対する高い耐久性を有するだけでなく、ベースフィルム張り合わせ前の銅箔単体の貯蔵性やハンドリング性にも優れ、フレキシブルプリント基板用の銅箔として好適なものである。   According to the present invention, it is possible to provide an excellent rolled copper foil which is excellent in bending resistance and does not decrease in strength even when stored at room temperature (30 ° C.) for 1 year or longer. Therefore, the rolled copper foil of the present invention not only has high durability against repeated bending, but also has excellent storage and handling properties of the copper foil alone before bonding the base film, and is suitable as a copper foil for a flexible printed circuit board. Is.

本発明の圧延銅箔は、リンを0.0003〜0.005重量%含むと共に、最終圧延後に焼鈍した銅箔の断面組織において、板厚(厚さ)方向に貫通した結晶粒の断面面積率、即ち、板厚方向に貫通した結晶粒の断面積が全断面積に対して占める割合が、40%以上である。かかる特徴を有する圧延銅箔は、優れた耐屈曲特性を有すると同時に、特にリンを含有することで室温での強度低下が極めて小さくなる。リンの含有によって圧延銅箔の室温強度の低下が抑えられる理由としては、強加工によって銅箔内の歪の蓄積が大きくなった場合でも、銅マトリックス中にリンが固溶することで歪が開放されにくくなり、その結果再結晶が生じにくくなるためと考えられる。   The rolled copper foil of the present invention contains 0.0003 to 0.005% by weight of phosphorus and has a cross-sectional area ratio of crystal grains penetrating in the plate thickness (thickness) direction in the cross-sectional structure of the copper foil annealed after the final rolling. That is, the ratio of the cross-sectional area of crystal grains penetrating in the plate thickness direction to the total cross-sectional area is 40% or more. The rolled copper foil having such characteristics has excellent bending resistance, and at the same time, the decrease in strength at room temperature is extremely small by containing phosphorus in particular. The reason why the decrease in room temperature strength of rolled copper foil can be suppressed by the inclusion of phosphorus is that even if the accumulation of strain in the copper foil increases due to strong processing, the strain is released by the solid solution of phosphorus in the copper matrix. This is probably because recrystallization is less likely to occur.

本発明の圧延銅箔において、リンの含有量が0.0003重量%未満では、室温強度の低下を防止する効果が充分ではなく、逆にリンの含有量が0.005重量%を超える場合には、圧延率を高くしたり、圧延前の結晶粒径を小さくしたりしても、熱処理後の結晶粒が粗大化せず、充分な屈曲特性が得られないためである。また、リンの含有量が0.005重量%を超える場合には、銅箔の導電率が低下するという問題も発生する。   In the rolled copper foil of the present invention, when the phosphorus content is less than 0.0003% by weight, the effect of preventing the decrease in room temperature strength is not sufficient, and conversely, when the phosphorus content exceeds 0.005% by weight. This is because even if the rolling rate is increased or the crystal grain size before rolling is reduced, the crystal grains after the heat treatment are not coarsened and sufficient bending characteristics cannot be obtained. Further, when the phosphorus content exceeds 0.005% by weight, there is a problem that the conductivity of the copper foil is lowered.

また、本発明の圧延銅箔においては、十分な耐屈曲特性を得るために、銅箔の板厚方向に貫通した結晶粒の断面面積率を40%以上とすることが必要である。更に好ましくは、銅箔を板厚方向に貫通した結晶粒の断面面積率を60%以上とすることによって、銅箔を板厚方向に貫通した結晶粒が銅箔表面に現れる比率が急激に高まる傾向があり、このため銅箔の耐屈曲性がより一層改善される。   Moreover, in the rolled copper foil of this invention, in order to acquire sufficient bending-proof characteristic, it is necessary to make the cross-sectional area ratio of the crystal grain penetrated in the plate | board thickness direction of copper foil 40% or more. More preferably, by setting the cross-sectional area ratio of the crystal grains penetrating the copper foil in the plate thickness direction to 60% or more, the ratio of the crystal grains penetrating the copper foil in the plate thickness direction appearing on the copper foil surface rapidly increases. There is a tendency, and thus the bending resistance of the copper foil is further improved.

銅箔を板厚方向に貫通した結晶粒が多いほど銅箔の屈曲性が向上する理由は、以下のように考えられる。即ち、通常は屈曲による変形により転位が結晶粒内から発生し、この転位が粒界部に集積して、その粒界部分で破断が起こる。一方、結晶粒が銅箔の板厚を貫通した部分では、屈曲による変形は単結晶そのものの変形となり、結晶粒内に発生した転位が表面に抜けてしまうため、転位の集積が起こらず、繰り返しの変形に対して破断が起こり難くなるためと考えられる。   The reason why the flexibility of the copper foil is improved as the number of crystal grains penetrating the copper foil in the plate thickness direction is considered as follows. That is, dislocations are usually generated from within the crystal grains due to deformation due to bending, and the dislocations accumulate at the grain boundary part, and breakage occurs at the grain boundary part. On the other hand, in the part where the crystal grain penetrates the thickness of the copper foil, deformation due to bending becomes deformation of the single crystal itself, and dislocations generated in the crystal grain escape to the surface, so dislocation accumulation does not occur and is repeated. This is considered to be because breakage is less likely to occur with respect to the deformation.

銅箔を板厚方向に貫通した結晶粒の断面面積率は、図1に示すように、銅箔1の断面金属組織の顕微鏡写真観察により、銅箔1の表面1aと表面1bの間を板厚dの方向に貫通した貫通結晶粒2の断面積Aを求め、貫通していない非貫通結晶粒3も含めた銅箔1全体の断面積Bに対する比、即ち断面積A/断面積Bとして算出した。具体的な断面積の測定は、銅箔を樹脂に埋め込み、その銅箔の断面を機械研磨して鏡面に仕上げ、アンモニア−過酸化水素水でエッチングした後、光学顕微鏡による組織写真から測定した。   As shown in FIG. 1, the cross-sectional area ratio of crystal grains penetrating the copper foil in the plate thickness direction is determined by observing a cross-sectional metal structure of the copper foil 1 between the surface 1 a and the surface 1 b of the copper foil 1. The cross-sectional area A of the penetrating crystal grain 2 penetrating in the direction of the thickness d is obtained, and the ratio to the cross-sectional area B of the entire copper foil 1 including the non-penetrating crystal grain 3 not penetrating, ie, cross-sectional area A / cross-sectional area B Calculated. The specific cross-sectional area was measured by embedding a copper foil in a resin, mechanically polishing the cross-section of the copper foil to a mirror finish, etching with ammonia-hydrogen peroxide, and then measuring the structure with an optical microscope.

尚、フレキシブルプリント配線板(FPC)に用いる圧延銅箔の厚みは、一般的に50μm以下であり、最近では更に薄くなりつつある。従って、銅箔の断面積の測定に際しては、銅箔を折りたたんで何層かに積層して樹脂に埋め込むことが好ましい。また、断面の顕微鏡観察に用いる銅箔のサンプリングは、局部的な粗大結晶粒や微細結晶粒の影響を小さくするために、銅箔の板厚の少なくとも100倍以上の長さとすることが望ましい。   In addition, the thickness of the rolled copper foil used for a flexible printed wiring board (FPC) is generally 50 micrometers or less, and it is becoming still thinner recently. Therefore, when measuring the cross-sectional area of the copper foil, it is preferable that the copper foil is folded and laminated in several layers and embedded in the resin. In addition, the sampling of the copper foil used for the cross-sectional microscopic observation is preferably at least 100 times the plate thickness of the copper foil in order to reduce the influence of local coarse crystal grains and fine crystal grains.

本発明の圧延銅箔の製造は、リンを0.0003〜0.005重量%含む組成の銅素材を熱間圧延した後、所定の厚さとなるまで冷間圧延と焼純を繰り返し、最後に最終冷間圧延を施して所定の板厚、好ましくは50μm以下に仕上げる。その後、この最終圧延した銅箔を焼純するが、そのための焼純は、圧延銅箔の粗面化工程におけるメッキなどの表面処理後に熱処理を行うか、あるいはFPCの製造工程におけるベースフィルムとの一体化時にさらされる130〜180℃の温度での熱処理によって行われる。   In the production of the rolled copper foil of the present invention, after hot rolling a copper material having a composition containing 0.0003 to 0.005% by weight of phosphorus, cold rolling and tempering are repeated until a predetermined thickness is reached. Final cold rolling is performed to finish to a predetermined plate thickness, preferably 50 μm or less. Thereafter, the final rolled copper foil is smelted. For the smelting, the heat treatment is performed after the surface treatment such as plating in the roughening process of the rolled copper foil, or the base film in the FPC manufacturing process. It is performed by a heat treatment at a temperature of 130 to 180 ° C. exposed during the integration.

最終圧延後に焼鈍された状態の圧延銅箔において、板厚方向に貫通した結晶粒の断面面積率は、以下の条件により制御することが可能である。即ち、(1)最終圧延前の平均結晶粒径が同じであれば、最終圧延の圧下率(圧延率)が大きいほど、貫通した結晶粒の断面面積率を大きくすることができる。(2)最終圧延の圧下率(圧延率)が同一であれば、最終圧延前の平均結晶粒径が小さいほど、貫通した結晶粒の断面面積率を大きくすることができる。   In the rolled copper foil annealed after the final rolling, the cross-sectional area ratio of the crystal grains penetrating in the plate thickness direction can be controlled by the following conditions. That is, (1) If the average grain size before final rolling is the same, the larger the rolling reduction (rolling rate) of the final rolling, the larger the cross-sectional area ratio of the penetrating crystal grains. (2) If the rolling reduction (rolling rate) of the final rolling is the same, the smaller the average crystal grain size before the final rolling, the larger the cross-sectional area ratio of the penetrating crystal grains.

酸素濃度を0.001重量%以下に調整した銅の溶湯にリンを添加し、下記表1に示すようにリン濃度が0.0002〜0.0098重量%の銅を溶製した。その後、各試料の銅の溶湯から、それぞれ厚さ200mmm、幅650mmの鋳塊を作製した。   Phosphorus was added to a copper melt adjusted to an oxygen concentration of 0.001% by weight or less, and copper having a phosphorus concentration of 0.0002 to 0.0001% by weight was melted as shown in Table 1 below. Thereafter, ingots each having a thickness of 200 mm and a width of 650 mm were prepared from the molten copper of each sample.

これら各試料の鋳塊を、18mmの板厚まで熱間圧延し、表面のスケールを面削により除去した後、冷間圧延により2.0mmの板厚まで薄くし、中間焼鈍・洗浄を行い、エッジ部をトリミングして600mm幅とした。その後、更に冷間圧延と焼鈍・洗浄を繰り返した後、最終冷間圧延により板厚0.016mm(16μm)の圧延銅箔とした。   The ingots of these samples are hot-rolled to a plate thickness of 18 mm, the scale on the surface is removed by chamfering, thinned to a plate thickness of 2.0 mm by cold rolling, intermediate annealing and cleaning are performed, The edge portion was trimmed to a width of 600 mm. Thereafter, cold rolling and annealing / washing were further repeated, and a rolled copper foil having a thickness of 0.016 mm (16 μm) was obtained by final cold rolling.

上記最終圧延で得られた板厚16μmの各圧延銅箔を、FPCの製造工程での熱処理を模して、それぞれ180℃で30分の熱処理を行った。この時、上記最終圧延前の板厚を下記表1に示すように変えることにより、板厚16μmの最終圧延箔を焼鈍した状態での結晶組織を制御した。尚、最終圧延前の銅箔の平均結晶粒径は、いずれも20±3μmに調整した。   Each rolled copper foil having a plate thickness of 16 μm obtained by the final rolling was subjected to a heat treatment at 180 ° C. for 30 minutes, imitating the heat treatment in the FPC manufacturing process. At this time, by changing the plate thickness before the final rolling as shown in Table 1 below, the crystal structure in the state where the final rolled foil having a plate thickness of 16 μm was annealed was controlled. The average crystal grain size of the copper foil before final rolling was adjusted to 20 ± 3 μm.

最終圧延後の焼純された状態の各試料の圧延銅箔について、それぞれ板厚方向に貫通した結晶粒の断面面積率を測定し、その結果を下記表1に示した。尚、各圧延銅箔は、板厚に対して200倍の長さとなるようにサンプリングを行い、銅箔を積層させて樹脂に埋め込んだ後、銅箔の断面を機械研磨して鏡面に仕上げ、アンモニア−過酸化水素水でエッチングを行った後、光学顕微鏡により断面の金属組織を観察した。具体的には、400倍の顕微鏡写真を撮影した組織写真から、銅箔を板厚方向に貫通している結晶粒の面積の全断面積に対する割合(貫通粒断面面積率)を求めた。   About the rolled copper foil of each sample in the tempered state after final rolling, the cross-sectional area ratio of crystal grains penetrating in the plate thickness direction was measured, and the results are shown in Table 1 below. In addition, each rolled copper foil is sampled to be 200 times longer than the plate thickness, and after copper foil is laminated and embedded in resin, the cross section of the copper foil is mechanically polished and finished to a mirror surface, After etching with ammonia-hydrogen peroxide solution, the cross-sectional metal structure was observed with an optical microscope. Specifically, the ratio of the area of crystal grains penetrating the copper foil in the plate thickness direction to the total cross-sectional area (through-grain cross-sectional area ratio) was determined from a micrograph obtained by taking a 400-fold micrograph.

また、上記各試料の圧延銅箔の屈曲寿命を、図2に示す装置により測定した。即ち、この装置の固定板6と可動板7に試験用銅箔片5を固定し、可動板7を周期的に振動させることにより、試験用銅箔片5の中間部が所定の曲率半径でヘアピン状に屈曲され、ある回数に達した時に破断する。この破断までの回数を屈曲寿命とした。尚、上記試験用銅箔片5の圧延銅箔からの採取は、その長さ方向が圧延方向と平行になるように行った。また、測定条件は、試験用銅箔片5の幅12.7mm及び長さ200mm、曲率半径2.5mm、振動ストローク25mm、振動速度500回/分とした。得られた結果を下記表1に併せて示した。   Moreover, the bending life of the rolled copper foil of each sample was measured by the apparatus shown in FIG. That is, the test copper foil piece 5 is fixed to the fixed plate 6 and the movable plate 7 of this apparatus, and the movable plate 7 is periodically vibrated so that the intermediate portion of the test copper foil piece 5 has a predetermined radius of curvature. It is bent into a hairpin shape and breaks when it reaches a certain number of times. The number of times until this breakage was defined as the bending life. The test copper foil piece 5 was sampled from the rolled copper foil so that the length direction was parallel to the rolling direction. The measurement conditions were as follows: test copper foil piece 5 having a width of 12.7 mm and a length of 200 mm, a radius of curvature of 2.5 mm, a vibration stroke of 25 mm, and a vibration speed of 500 times / minute. The obtained results are also shown in Table 1 below.

更に、各試料の圧延銅箔について、室温保管での強度低下を調べた。圧延銅箔の室温での強度低下に関しては、30℃で1年間放置した後の引張強度で350MPa以上を維持することが必要である。そこで、圧延銅箔の初期引張強度を測定する共に、30℃で恒温槽に1年間保管した後の引張強度を測定した。得られた結果を下記表1に併せて示した。   Furthermore, about the rolled copper foil of each sample, the strength fall by storage at room temperature was investigated. Regarding the reduction in strength of the rolled copper foil at room temperature, it is necessary to maintain a tensile strength of 350 MPa or more after standing at 30 ° C. for one year. Therefore, the initial tensile strength of the rolled copper foil was measured, and the tensile strength after being stored in a thermostatic bath at 30 ° C. for one year was measured. The obtained results are also shown in Table 1 below.

Figure 2008038170
Figure 2008038170

上記表1の結果によれば、本発明の試料1〜5の各圧延銅箔は、リン含有量が0.0003〜0.005重量%の範囲内にあり、圧延銅箔を焼鈍した後の銅箔の断面組織において板厚方向に貫通した結晶粒(貫通粒)の断面面積率が40%以上であって、屈曲回数がFPC用銅箔の耐屈曲特性として充分な30万回を超えると同時に、1年間の保管後も350MPaの強度を維持し得ることが分る。   According to the result of the said Table 1, each rolled copper foil of the samples 1-5 of this invention exists in the range whose phosphorus content is 0.0003-0.005 weight%, and annealed rolled copper foil. When the cross-sectional area ratio of crystal grains (penetrating grains) penetrating in the plate thickness direction in the cross-sectional structure of the copper foil is 40% or more, and the number of bending exceeds 300,000 times sufficient as the bending resistance of the copper foil for FPC At the same time, it can be seen that the strength of 350 MPa can be maintained even after storage for one year.

一方、比較例の試料6〜8、10の各圧延銅箔は、リン含有量が0.0003重量%以上であるが、貫通粒の断面面積率が40%未満であるため、耐屈曲特性が30万回に達しなかった。また、比較例である試料9の圧延銅箔は、リン含有量が0.0003重量%未満と少な過ぎるため、耐屈曲性は充分であるが、僅か10ヶ月の室温保管で強度が350MPa以下に低下した。   On the other hand, each of the rolled copper foils of Comparative Samples 6 to 8 and 10 has a phosphorus content of 0.0003% by weight or more, but the cross-sectional area ratio of the penetrating grains is less than 40%. It did not reach 300,000 times. Further, the rolled copper foil of Sample 9 as a comparative example has a phosphorus content of less than 0.0003% by weight, so that the bending resistance is sufficient, but the strength is 350 MPa or less when stored at room temperature for only 10 months. Declined.

圧延銅箔断面の金属組織を示す模式図である。It is a schematic diagram which shows the metal structure of a rolled copper foil cross section. 圧延銅箔の屈曲寿命の測定に用いた屈曲試験装置の概略図である。It is the schematic of the bending test apparatus used for the measurement of the bending life of rolled copper foil.

符号の説明Explanation of symbols

1 銅箔
1a、1b 表面
2 貫通結晶粒
3 非貫通結晶粒
5 試験用銅箔片
6 固定板
7 可動板


DESCRIPTION OF SYMBOLS 1 Copper foil 1a, 1b Surface 2 Through crystal grain 3 Non-penetrating crystal grain 5 Copper foil piece for a test 6 Fixed plate 7 Movable plate


Claims (1)

リン0.0003〜0.005重量%を含み、最終圧延後に焼鈍した銅箔の断面組織において、銅箔を板厚方向に貫通した結晶粒の断面面積率が40%以上であって、耐屈曲性に優れ且つ室温強度低下しない圧延銅箔。


In the cross-sectional structure of copper foil containing 0.0003 to 0.005% by weight of phosphorus and annealed after final rolling, the cross-sectional area ratio of the crystal grains penetrating the copper foil in the plate thickness direction is 40% or more, and is resistant to bending Rolled copper foil that is superior in strength and does not lower room temperature strength.


JP2006211543A 2006-08-03 2006-08-03 Rolled copper foil Pending JP2008038170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211543A JP2008038170A (en) 2006-08-03 2006-08-03 Rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211543A JP2008038170A (en) 2006-08-03 2006-08-03 Rolled copper foil

Publications (1)

Publication Number Publication Date
JP2008038170A true JP2008038170A (en) 2008-02-21

Family

ID=39173547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211543A Pending JP2008038170A (en) 2006-08-03 2006-08-03 Rolled copper foil

Country Status (1)

Country Link
JP (1) JP2008038170A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001812A1 (en) * 2008-06-30 2010-01-07 新日鐵化学株式会社 Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP2010034541A (en) * 2008-06-30 2010-02-12 Nippon Steel Chem Co Ltd Flexible circuit board, manufacturing method therefor, and bend structure of flexible circuit board
JP2010056128A (en) * 2008-08-26 2010-03-11 Nippon Steel Chem Co Ltd Manufacturing method for flexible wiring board
JP2016188415A (en) * 2015-03-30 2016-11-04 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same
JP2021179000A (en) * 2020-05-14 2021-11-18 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319641A (en) * 1988-06-21 1989-12-25 Hitachi Cable Ltd Soft rolled copper foil and flexible printed board
JP2000212660A (en) * 1999-01-18 2000-08-02 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production
JP2006117977A (en) * 2004-10-20 2006-05-11 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319641A (en) * 1988-06-21 1989-12-25 Hitachi Cable Ltd Soft rolled copper foil and flexible printed board
JP2000212660A (en) * 1999-01-18 2000-08-02 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board and its production
JP2006117977A (en) * 2004-10-20 2006-05-11 Sumitomo Kinzoku Kozan Shindo Kk Rolled copper foil

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001812A1 (en) * 2008-06-30 2010-01-07 新日鐵化学株式会社 Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP2010034541A (en) * 2008-06-30 2010-02-12 Nippon Steel Chem Co Ltd Flexible circuit board, manufacturing method therefor, and bend structure of flexible circuit board
KR20110039283A (en) * 2008-06-30 2011-04-15 신닛테츠가가쿠 가부시키가이샤 Flexible circuit board and method for producing same and bend structure of flexible circuit board
CN102077698B (en) * 2008-06-30 2013-03-27 新日铁化学株式会社 Flexible circuit board and method for producing same and bend structure of flexible circuit board
US9060432B2 (en) 2008-06-30 2015-06-16 Nippon Steel & Sumikin Chemical Co., Ltd. Flexible circuit board and method for producing same and bend structure of flexible circuit board
KR101580822B1 (en) 2008-06-30 2015-12-30 신닛테츠 수미킨 가가쿠 가부시키가이샤 Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP2010056128A (en) * 2008-08-26 2010-03-11 Nippon Steel Chem Co Ltd Manufacturing method for flexible wiring board
JP2016188415A (en) * 2015-03-30 2016-11-04 Jx金属株式会社 Copper alloy foil for flexible printed circuit board, and copper cladding laminate, flexible printed circuit board and electronic apparatus using the same
JP2021179000A (en) * 2020-05-14 2021-11-18 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot
JP7158434B2 (en) 2020-05-14 2022-10-21 Jx金属株式会社 Copper alloy ingot, copper alloy foil, and method for producing copper alloy ingot

Similar Documents

Publication Publication Date Title
JP4285526B2 (en) Rolled copper foil and method for producing the same
JP4466688B2 (en) Rolled copper foil
JP4215093B2 (en) Rolled copper foil and method for producing the same
TWI491325B (en) A rolled copper foil, a copper clad laminate, a flexible printed wiring board, and a method of manufacturing the same
JP5320638B2 (en) Rolled copper foil and method for producing the same
JP4716520B2 (en) Rolled copper foil
JP4672515B2 (en) Rolled copper alloy foil for bending
JP2000212661A (en) Rolled copper foil for flexible printed circuit board and its production
JP2000212660A (en) Rolled copper foil for flexible printed circuit board and its production
JP2013060651A (en) Rolled copper foil
JP2010150598A (en) Rolled copper foil
JP2009242846A (en) Copper alloy foil
JP4430509B2 (en) Rolled copper foil
JP2016125126A (en) Copper alloy sheet material and manufacturing method therefor
JP2004256879A (en) Rolled copper foil having high elongation
JP2010150597A (en) Rolled copper foil
JP2008038170A (en) Rolled copper foil
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP5390852B2 (en) Rolled copper foil
JP3709109B2 (en) Rolled copper foil for printed circuit board excellent in overhang processability and method for producing the same
JP4242801B2 (en) Rolled copper foil and method for producing the same
JP4749780B2 (en) Copper alloy rolled foil
US20110311836A1 (en) Rolled copper foil
JP2008038169A (en) Rolled copper foil
JP5562218B2 (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090319

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Effective date: 20110916

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911