JP4749780B2 - Copper alloy rolled foil - Google Patents

Copper alloy rolled foil Download PDF

Info

Publication number
JP4749780B2
JP4749780B2 JP2005196997A JP2005196997A JP4749780B2 JP 4749780 B2 JP4749780 B2 JP 4749780B2 JP 2005196997 A JP2005196997 A JP 2005196997A JP 2005196997 A JP2005196997 A JP 2005196997A JP 4749780 B2 JP4749780 B2 JP 4749780B2
Authority
JP
Japan
Prior art keywords
copper alloy
foil
copper
rolled
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005196997A
Other languages
Japanese (ja)
Other versions
JP2007016260A (en
Inventor
浩一 山岸
岩男 宇田
Original Assignee
三井住友金属鉱山伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井住友金属鉱山伸銅株式会社 filed Critical 三井住友金属鉱山伸銅株式会社
Priority to JP2005196997A priority Critical patent/JP4749780B2/en
Publication of JP2007016260A publication Critical patent/JP2007016260A/en
Application granted granted Critical
Publication of JP4749780B2 publication Critical patent/JP4749780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、強度、耐熱性、耐屈曲特性に優れ、フレキシブルプリント配線板(Flexible
Printed Circuit;以下、FPCとも称する)等の可撓性配線部材用として好適な圧延銅箔に関する。
The present invention is excellent in strength, heat resistance and bending resistance, and has a flexible printed wiring board (Flexible).
The present invention relates to a rolled copper foil suitable for a flexible wiring member such as a printed circuit (hereinafter also referred to as FPC).

FPCは可撓性を有するため、従来から、折り曲げ部や可動部の電子回路に広く使用されている。例えば、HDDやDVD及びCD−ROM等のディスク関連機器の可動部や、折りたたみ式携帯電話機の折り曲げ部等に用いられている。また、最近では電気機器の小型化に伴い、デジタルカメラや携帯電話、HDD、プリンター、液晶パネル周り等の狭い空間に、折りたたんで実装されている。   Since FPC has flexibility, it has been widely used in electronic circuits of bent parts and movable parts. For example, it is used for a movable part of a disk-related device such as an HDD, a DVD, and a CD-ROM, and a folding part of a foldable mobile phone. Recently, with the miniaturization of electric equipment, the electronic device is folded and mounted in a narrow space such as a digital camera, a mobile phone, an HDD, a printer, and a liquid crystal panel.

このような折り曲げ部や可動部の電子回路への用途から、FPCには繰り返しの曲げに対する高い耐久性(耐屈曲特性)が要求されている。そのため、FPCの導電材として用いる銅箔には、電解銅箔よりも高い耐屈曲特性を有する圧延銅箔、特にタフピッチ銅や無酸素銅の圧延銅箔が使用されている。   Due to the use of such bent parts and movable parts for electronic circuits, the FPC is required to have high durability (flex resistance) against repeated bending. Therefore, a rolled copper foil having higher bending resistance than that of an electrolytic copper foil, particularly a rolled copper foil made of tough pitch copper or oxygen-free copper, is used as a copper foil used as an FPC conductive material.

また、最近の傾向として、FPCのファインピッチ化の要求から、従来のベースフィルム、接着剤、銅箔からなる3層基板から、ベースフィルムと銅箔からなる2層基板の使用が増加する傾向にある。圧延銅箔を使用して製造される2層基板では、従来よりも高い温度で処理されることが多く、また、使用される圧延銅箔の厚みも10μm以下と従来のものよりも薄くなっている。   In addition, as a recent trend, the demand for fine pitch FPCs has led to an increase in the use of two-layer substrates made of base film and copper foil, compared to conventional three-layer substrates made of base film, adhesive, and copper foil. is there. In a two-layer substrate manufactured using a rolled copper foil, it is often processed at a higher temperature than before, and the thickness of the used rolled copper foil is 10 μm or less, which is thinner than the conventional one. Yes.

このような最近の事情から、FPC用の圧延銅箔には、優れた耐屈曲特性と共に、薄くてもハンドリングしやすく且つ加工しやすいように、充分な強度が求められている。更に、最近では環境保護の観点から鉛のフリー化が進められ、はんだも鉛のフリー化によって融点が上昇しているため、FPC用の圧延銅箔にも、これらの温度に耐え得る耐熱性が要求されている。   Under these recent circumstances, rolled copper foil for FPC is required to have sufficient strength so that it can be easily handled and processed even if it is thin, as well as excellent bending resistance. Furthermore, lead-free soldering has been promoted recently from the viewpoint of environmental protection, and the melting point of solder has also increased due to lead-free soldering. Therefore, the rolled copper foil for FPC has heat resistance that can withstand these temperatures. It is requested.

しかしながら、FPC用として使用されているタフピッチ銅や無酸素銅の圧延銅箔は、熱処理後における耐屈曲特性には優れているが、上述した耐熱性及び強度の要求に対しては不充分であった。また、Sn等の添加元素を添加した銅合金圧延箔(例えば、特開2003−253357公報)では、耐熱性と強度が改善されるものの耐屈曲特性や導電率が低下しやすいため、これらの特性の調和のとれた改善向上が望まれている。   However, rolled copper foils of tough pitch copper and oxygen-free copper used for FPC are excellent in bending resistance after heat treatment, but are insufficient for the above-mentioned heat resistance and strength requirements. It was. In addition, a copper alloy rolled foil to which an additive element such as Sn is added (for example, Japanese Patent Application Laid-Open No. 2003-253357) has improved heat resistance and strength, but tends to have low bending resistance and conductivity. It is hoped that improvement and improvement will be harmonized.

特開2003−253357公報JP 2003-253357 A

本発明は、このような従来の事情に鑑み、従来のタフピッチ銅や無酸素銅の圧延銅箔に比較して、耐屈曲特性を損なわず且つ導電率をそれほど低下させることなく、強度及び耐熱性を改善向上させ、これらの特性がバランス良く調和した銅合金圧延箔を提供することを目的とする。   In view of such conventional circumstances, the present invention provides strength and heat resistance without impairing the bending resistance and reducing the electrical conductivity so much as compared with conventional rolled copper foil of tough pitch copper or oxygen-free copper. An object of the present invention is to provide a rolled copper alloy foil in which these characteristics are balanced and harmonized in a well-balanced manner.

上記目的を達成するため、本発明が提供する銅合金圧延箔は、0.05〜0.2重量%のSn、0.005〜0.02重量%のP、及び残部のCuからなり、最終冷間圧延前の焼鈍された状態での結晶粒径が20μm以下であることを特徴とするものである。また、この銅合金圧延箔においては、0.010〜0.02重量%のPを含有し、最終冷間圧延前の焼鈍された状態での結晶粒径が5μm以下であることが好ましい。   In order to achieve the above object, the rolled copper alloy foil provided by the present invention comprises 0.05 to 0.2% by weight of Sn, 0.005 to 0.02% by weight of P, and the balance of Cu. The crystal grain size in the annealed state before cold rolling is 20 μm or less. Moreover, in this copper alloy rolled foil, it is preferable that 0.0010 to 0.02 weight% of P is contained, and the crystal grain size in the annealed state before the final cold rolling is 5 μm or less.

本発明によれば、従来のタフピッチ銅や無酸素銅の圧延銅箔に比較して、耐屈曲特性を損なわず且つ導電率をそれほど低下させずに、強度及び耐熱性を改善向上させることができ、しかもこれらの特性がバランス良く調和した銅合金圧延箔を提供することができる。従って、本発明の銅合金圧延箔を用いることにより、強度と耐熱性に優れ、良好な耐屈曲特性と充分な導電性を備えたFPCを得ることができる。   According to the present invention, the strength and heat resistance can be improved and improved without impairing the bending resistance and reducing the electrical conductivity so much as compared with the conventional rolled copper foil of tough pitch copper or oxygen-free copper. Moreover, it is possible to provide a copper alloy rolled foil in which these characteristics are well balanced. Therefore, by using the copper alloy rolled foil of the present invention, an FPC having excellent strength and heat resistance, good bending resistance and sufficient conductivity can be obtained.

本発明の銅合金圧延箔は、タフピッチ銅あるいは無酸素銅に、錫(Sn)とリン(P)を添加し、圧延率と焼鈍温度を制御しながら冷間圧延と焼鈍を繰り返すことによって、最終冷間圧延前における焼鈍された材料の結晶粒径を20μm以下としたものである。その後、通常のごとく最終冷間圧延により所定の厚さとした後、熱処理を施してFPC用の銅合金圧延箔とする。   The copper alloy rolled foil of the present invention is finished by adding tin (Sn) and phosphorus (P) to tough pitch copper or oxygen-free copper, and repeating cold rolling and annealing while controlling the rolling rate and annealing temperature. The crystal grain size of the annealed material before cold rolling is 20 μm or less. Then, after making it predetermined thickness by final cold rolling as usual, it heat-processes and it is set as the copper alloy rolled foil for FPC.

本発明の銅合金圧延箔は、0.05〜0.2重量%のSn、0.005〜0.02重量%のP、及び残部のCuからなり、不可避的不純物を含むものである。添加成分のSnは、銅箔の耐熱性及び強度を改善する作用を有するが、添加量が0.05重量%未満ではその効果が充分ではなく、0.2重量%を超えると導電率の低下を招く。また、Pの添加により、耐熱性、強度、耐屈曲特性が改善されるが、添加量が0.005重量%未満ではその効果が充分ではなく、0.02重量%を超えると導電率の低下を招くため好ましくない。   The copper alloy rolled foil of the present invention comprises 0.05 to 0.2% by weight of Sn, 0.005 to 0.02% by weight of P, and the balance of Cu, and contains inevitable impurities. The additive component Sn has the effect of improving the heat resistance and strength of the copper foil, but the effect is not sufficient when the addition amount is less than 0.05% by weight, and the conductivity decreases when the addition amount exceeds 0.2% by weight. Invite. Further, the addition of P improves the heat resistance, strength, and bending resistance, but the effect is not sufficient when the addition amount is less than 0.005% by weight, and the conductivity decreases when the addition amount exceeds 0.02% by weight. This is not preferable.

また、最終冷間圧延前の焼鈍された状態での結晶粒径を20μm以下とすることにより、銅合金圧延箔の耐屈曲特性が改善される。最終冷間圧延前の結晶粒径を小さくすることにより耐屈曲特性が改善される理由は、以下のように考えられる。即ち、屈曲で生じる繰り返し応力により結晶粒内に発生する転位は粒界部分に蓄積され、ある一定以上蓄積された場合に破断に至るが、結晶粒径が小さくなることにより各結晶粒に蓄積される転位の量が分散され、その結果、同じ屈曲回数を経ても各結晶粒の蓄積転位は少なくなるため、破断までの屈曲回数が多くなるものと考えられる。   Moreover, the bending resistance characteristic of copper alloy rolled foil is improved by setting the crystal grain size in the annealed state before the final cold rolling to 20 μm or less. The reason why the bending resistance is improved by reducing the crystal grain size before the final cold rolling is considered as follows. In other words, dislocations generated in the crystal grains due to repetitive stress caused by bending are accumulated in the grain boundary part, and when they are accumulated over a certain level, they break, but are accumulated in each crystal grain as the crystal grain size becomes smaller. As a result, the accumulated dislocations of each crystal grain are reduced even after the same number of bendings, and it is considered that the number of bendings until breakage increases.

本発明においては、特にSnとの複合添加によって、強度及び耐熱性の改善向上と共に、それらを単独で添加した場合に比べて優れた耐屈曲特性が得られる。その理由は明らかではないが、SnとPの粒界への複合偏析が何らかの影響を及ぼしているものと考えられる。また、SnとPの添加量の制御、及び最終冷間圧延前の焼鈍された状態での結晶粒径の制御によって、銅箔の耐屈曲特性を損なうことなく、また導電率をそれほど低下させずに、強度と耐熱性を改善向上させることができる。特に、Pの添加量が0.010〜0.02重量%で、最終冷間圧延前の焼鈍された状態での結晶粒径が5μm以下であることが好ましい。   In the present invention, particularly by the combined addition with Sn, improvement in strength and heat resistance is improved, and excellent bending resistance is obtained as compared with the case of adding them alone. The reason is not clear, but it is thought that the composite segregation of Sn and P at the grain boundaries has some influence. In addition, the control of the addition amount of Sn and P and the control of the crystal grain size in the annealed state before the final cold rolling do not impair the bending resistance of the copper foil and do not significantly reduce the conductivity. In addition, the strength and heat resistance can be improved and improved. In particular, it is preferable that the addition amount of P is 0.010 to 0.02% by weight, and the crystal grain size in the annealed state before the final cold rolling is 5 μm or less.

酸素濃度10ppm以下の無酸素銅に、SnとPを下記表1に示す添加量でそれぞれ添加し、これを溶解して鋳造した。得られた各鋳塊を厚さ10mmまで熱間圧延により薄くした後、表面を面削し、冷間圧延、焼鈍、洗浄を繰り返して、厚さ0.2mmまで薄くした。この時、圧延率と焼鈍温度を選ぶことにより、最終冷間圧延前の焼鈍された状態での銅合金材料(厚さ0.2mm)の結晶粒径を、試料ごとに下記表1に示すように調整した。   Sn and P were added to oxygen-free copper having an oxygen concentration of 10 ppm or less in the addition amounts shown in Table 1 below, and these were dissolved and cast. Each obtained ingot was thinned by hot rolling to a thickness of 10 mm, then the surface was chamfered, and cold rolling, annealing, and washing were repeated to reduce the thickness to 0.2 mm. At this time, by selecting the rolling rate and the annealing temperature, the crystal grain size of the copper alloy material (thickness 0.2 mm) in the annealed state before the final cold rolling is shown in Table 1 below for each sample. Adjusted.

このようにして得られた厚さ0.2mmの銅合金材料について、それぞれ最終冷間圧延を行い、厚さ0.016mm(16μm)の圧延箔とした。その後、200℃で30分の熱処理を施して、銅合金圧延箔を得た。得られた各試料の銅合金圧延箔について、引張強度、耐屈曲特性、及び導電率を測定評価し、最終冷間圧延前の焼鈍された状態での結晶粒径と共に、下記表1に示した。   The copper alloy material having a thickness of 0.2 mm thus obtained was subjected to final cold rolling to obtain a rolled foil having a thickness of 0.016 mm (16 μm). Thereafter, heat treatment was performed at 200 ° C. for 30 minutes to obtain a copper alloy rolled foil. About the obtained copper alloy rolled foil of each sample, the tensile strength, the bending resistance, and the electrical conductivity were measured and evaluated, and the crystal grain size in the annealed state before the final cold rolling was shown in Table 1 below. .

尚、最終冷間圧延前の結晶粒径は、上記厚さ0.2mmの銅合金材料の断面を機械研磨して鏡面に仕上げ、アンモニア−過酸化水素水でエッチングを行った後、光学顕微鏡により金属組織を観察して測定した。引張強度は、幅12.7mm、長さ150mmの試験片を切り出し、引張方向を圧延方向とする引張試験により測定した。また、導電率は、4端子法により20℃で測定した。   The crystal grain size before final cold rolling was determined by mechanically polishing the cross section of the copper alloy material having a thickness of 0.2 mm to finish a mirror surface, etching with ammonia-hydrogen peroxide, and then using an optical microscope. The metal structure was observed and measured. The tensile strength was measured by a tensile test in which a test piece having a width of 12.7 mm and a length of 150 mm was cut out and the tensile direction was the rolling direction. In addition, the conductivity was measured at 20 ° C. by the 4-terminal method.

耐屈曲特性については、図1に示す装置により測定した屈曲回数で評価した。この装置は、銅合金圧延箔の試験片1を固定板2と可動板3に固定し、可動板3を周期的に振動させることにより、試験片1の中間部を所定の曲率半径でヘアピン状に屈曲させ、試験片1が破断に至った時点までの屈曲回数を求めた。測定条件は、試験片1の幅12.7mm、長さ200mm、曲率半径2.5mm、振動ストローク25mm、振動速度500回/分とした。また、試験片1の採取は、その長さ方向が圧延方向と直角になるように行った。   The bending resistance was evaluated by the number of bendings measured with the apparatus shown in FIG. In this apparatus, a test piece 1 of copper alloy rolled foil is fixed to a fixed plate 2 and a movable plate 3, and the movable plate 3 is periodically vibrated, whereby the intermediate portion of the test piece 1 is shaped like a hairpin with a predetermined radius of curvature. And the number of times of bending until the point when the test piece 1 was broken was obtained. The measurement conditions were a test piece 1 having a width of 12.7 mm, a length of 200 mm, a radius of curvature of 2.5 mm, a vibration stroke of 25 mm, and a vibration speed of 500 times / minute. Further, the specimen 1 was collected so that the length direction thereof was perpendicular to the rolling direction.

参考のために、従来からFPC用として一般に使用されているタフピッチ銅の圧延銅箔(熱処理後)についても、最終冷間圧延前の焼鈍された状態での結晶粒径と、上記と同様に200℃で30分の熱処理後における引張強度、耐屈曲特性及び導電率を上記と同様に測定評価し、下記表1に併せて示した。   For reference, the tough pitch copper rolled copper foil (after heat treatment) that has been generally used for FPC conventionally has also been annealed before final cold rolling, and the crystal grain size in the same manner as described above is 200. The tensile strength, bending resistance and electrical conductivity after heat treatment at 30 ° C. for 30 minutes were measured and evaluated in the same manner as described above, and are also shown in Table 1 below.

Figure 0004749780
Figure 0004749780

この結果から分かるように、本発明の実施例である試料1〜8の銅合金圧延箔は、従来品である試料14のタフピッチ銅の圧延銅箔と比較して、熱処理後における引張強度が著しく高くなっているにもかかわらず、その耐屈曲特性は同等又はそれ以上であり、導電率も実用上充分と考えられる80%IACS以上となっている。   As can be seen from the results, the copper alloy rolled foils of Samples 1 to 8 which are examples of the present invention have significantly higher tensile strength after heat treatment than the rolled copper foil of tough pitch copper of Sample 14 which is a conventional product. Despite being high, the bending resistance is equal or higher, and the conductivity is 80% IACS or higher which is considered to be practically sufficient.

一方、比較例である試料9〜13の銅合金圧延箔については、試料9は最終冷間圧延前の焼鈍された状態での結晶粒径が大きいため、試料10はP添加量が少なく及び試料12はSn添加量が少ないため、熱処理後の強度の改善はみられるものの、いずれの試料も耐屈曲特性が低下した。また、試料11はP添加量が多く及び試料13はSn添加量が多いため、いずれも従来品である試料14の圧延銅箔に比べて導電率が大幅に低下した。   On the other hand, for the copper alloy rolled foils of Samples 9 to 13 as Comparative Examples, Sample 9 has a large crystal grain size in the annealed state before the final cold rolling, so Sample 10 has a small amount of added P and Sample No. 12 had a small amount of Sn added, but although the strength after heat treatment was improved, the bending resistance of all the samples decreased. Moreover, since the sample 11 had a large amount of P addition and the sample 13 had a large amount of Sn addition, the conductivity was significantly reduced as compared with the rolled copper foil of the sample 14 which is a conventional product.

実施例において銅合金圧延箔の耐屈曲特性の測定に用いた装置の要部を示す概略の断面図である。It is a schematic sectional drawing which shows the principal part of the apparatus used for the measurement of the bending-proof characteristic of copper alloy rolled foil in an Example.

符号の説明Explanation of symbols

1 試験片
2 固定板
3 可動板
1 Test piece 2 Fixed plate 3 Movable plate

Claims (1)

0.13〜0.20質量%のSn、0.009〜0.019質量%のP、及び残部のCuからなり、最終冷間圧延前の焼純された状態での結晶粒径が1.0〜19.2μmであって、最終冷間圧延後に熱処理した状態での引張強度が509〜575MPaであることを特徴とするFPC用銅合金圧延箔。 It is composed of 0.13 to 0.20 % by mass of Sn, 0.009 to 0.019 % by mass of P, and the balance of Cu . A copper alloy rolled foil for FPC having a tensile strength of 509 to 575 MPa in a state of 0 to 19.2 μm and heat-treated after the final cold rolling.
JP2005196997A 2005-07-06 2005-07-06 Copper alloy rolled foil Active JP4749780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005196997A JP4749780B2 (en) 2005-07-06 2005-07-06 Copper alloy rolled foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005196997A JP4749780B2 (en) 2005-07-06 2005-07-06 Copper alloy rolled foil

Publications (2)

Publication Number Publication Date
JP2007016260A JP2007016260A (en) 2007-01-25
JP4749780B2 true JP4749780B2 (en) 2011-08-17

Family

ID=37753677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005196997A Active JP4749780B2 (en) 2005-07-06 2005-07-06 Copper alloy rolled foil

Country Status (1)

Country Link
JP (1) JP4749780B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156328B2 (en) * 2007-10-18 2013-03-06 福田金属箔粉工業株式会社 Copper alloy powder for conductive material paste
JP5329372B2 (en) * 2009-11-16 2013-10-30 Jx日鉱日石金属株式会社 Rolled copper foil, and negative electrode current collector, negative electrode plate and secondary battery using the same
JP5685869B2 (en) * 2010-09-14 2015-03-18 三菱マテリアル株式会社 Copper rolled foil for interconnector of solar cell panel and manufacturing method thereof
JP6246502B2 (en) * 2013-06-13 2017-12-13 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116742A (en) * 1985-11-14 1987-05-28 Furukawa Electric Co Ltd:The Highly flexible conductive copper alloy
JPH0616522B2 (en) * 1987-03-04 1994-03-02 日本鉱業株式会社 Copper alloy foil for tape carrier
JPH0815170B2 (en) * 1987-07-07 1996-02-14 株式会社ジャパエナジー Method of manufacturing film carrier
JPH0616523B2 (en) * 1987-07-07 1994-03-02 日本鉱業株式会社 Film carrier and manufacturing method thereof
JP2505481B2 (en) * 1987-08-27 1996-06-12 日鉱金属株式会社 Copper alloy foil for flexible circuit boards
JP4162087B2 (en) * 2003-08-22 2008-10-08 日鉱金属株式会社 Highly flexible rolled copper foil and method for producing the same

Also Published As

Publication number Publication date
JP2007016260A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
JP4672515B2 (en) Rolled copper alloy foil for bending
JP4716520B2 (en) Rolled copper foil
JP5054160B2 (en) Cu-Mg-P-based copper alloy strip and method for producing the same
EP1630239A1 (en) Copper alloy and method of manufacturing the same
JP2011132564A (en) Cu-Mg-P-BASED COPPER-ALLOY MATERIAL AND METHOD OF PRODUCING THE SAME
KR20120121402A (en) Cu-mg-p-based copper alloy bar and method for producing same
JP3824593B2 (en) Rolled copper foil with high elongation
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP6294257B2 (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP4749780B2 (en) Copper alloy rolled foil
JP4162087B2 (en) Highly flexible rolled copper foil and method for producing the same
JP2010031339A (en) COPPER ALLOY FOR ELECTRIC-ELECTRONIC COMPONENT HAVING EXCELLENT ELECTRIC CONDUCTIVITY AND STRENGTH, AND Sn-PLATED COPPER ALLOY MATERIAL
JP6643287B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2016014165A (en) Copper alloy material, method for producing copper alloy material, lead frame and connector
TWI545209B (en) Copper alloy plate and its electronic components with heat dissipation
JP6348621B1 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP6147077B2 (en) Rolled copper foil and method for producing rolled copper foil
JP2007270171A (en) High-conductivity copper-based alloy with excellent bendability, and its manufacturing method
JP4888586B2 (en) Rolled copper foil
JP4059150B2 (en) Copper alloy foil for printed wiring and manufacturing method thereof
JP5562218B2 (en) Rolled copper foil
JP5688178B1 (en) Copper alloy material, copper alloy material manufacturing method, lead frame and connector
JP6647253B2 (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JPH05177215A (en) Production of rolled foil of copper alloy for film carrier
JP5562217B2 (en) Rolled copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4749780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250