JP4156208B2 - Fireproof coated steel structure - Google Patents

Fireproof coated steel structure Download PDF

Info

Publication number
JP4156208B2
JP4156208B2 JP2001119815A JP2001119815A JP4156208B2 JP 4156208 B2 JP4156208 B2 JP 4156208B2 JP 2001119815 A JP2001119815 A JP 2001119815A JP 2001119815 A JP2001119815 A JP 2001119815A JP 4156208 B2 JP4156208 B2 JP 4156208B2
Authority
JP
Japan
Prior art keywords
steel
temperature
yield strength
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119815A
Other languages
Japanese (ja)
Other versions
JP2002309671A (en
Inventor
忠義 岡田
達也 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2001119815A priority Critical patent/JP4156208B2/en
Publication of JP2002309671A publication Critical patent/JP2002309671A/en
Application granted granted Critical
Publication of JP4156208B2 publication Critical patent/JP4156208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築分野の鉄骨構造物に関し、より具体的には、高温降伏強度が高い耐火鋼材を用いた、無耐火被覆構造が可能な鉄骨構造物に関するものである。
【0002】
【従来の技術】
従来、建築分野の鉄骨構造物に使用される鋼材については、仕様規定により表面温度350℃以下で使用することが定められている。
このため多くの場合、吹付けロックウール等の耐火被覆が必要となり、施工費用及び工程、環境・美観上の問題から鉄骨構造の競争力を著しく阻害している。
昭和62年の防耐火総プロの成果を受けて(建築基準法・旧38条認定により)性能型の設計が可能となった結果、鋼材の高温強度と、建物に実際に加わっている荷重により、耐火被覆の能力を決定できるようになり、場合によっては鋼材を無耐火被覆で使用することも可能になった。
【0003】
上記防耐火総プロの成果を受けて、近年は短時間の高温強度を高めた、いわゆる耐火鋼が多数開発されており、例えば特開平2−77523号公報を始めとして、600℃での高温耐力が常温時の2/3以上となる鋼材(耐火鋼)が多数開示されている。また特開平9−209077号公報には、700℃での高温耐力が常温時の2/3以上となる鋼材(耐火鋼)が開示されている。
【0004】
これら従来の耐火鋼においては、経済性を失することなく鋼に耐火性を与えるため、C,Mn,Mo等の合金化を図っているが、成分元素の添加はコストアップに直結するだけでなく、溶接性や靭性、常温降伏強度にも大きく影響する。換言すると、高温降伏強度の上昇は必然的に溶接性や靭性の劣化、常温降伏強度の上昇を招くという問題がある。
【0005】
一方、現行の耐震設計法では骨組の変形による地震エネルギー吸収を前提としていることから、設計で想定した骨組の崩壊形の確保や、部材の塑性変形能力の確保、部材性能を十分発揮させるための接合部耐力の確保が必要となり、これに用いる建築構造用の鋼材として、靭性下限や降伏強度の「ばらつき」の制限(つまり降伏強度上限)、降伏比上限などの耐震性の規定、Ceq上限などの溶接性の規定が必要となる。
【0006】
例えばSN材(JIS G 3136−1994)は、これらの耐震性・溶接性に関する規定がなされた鋼材であり、400MPa級(降伏強度下限235MPa)の場合、靭性下限が0℃で27J、降伏強度上限が355MPa、降伏比上限が80%、Ceq上限が0.36質量%というように規定されている。
したがって、耐火性を有する建築構造用の鋼材には、耐火性(高温降伏強度確保)と、耐震性(靭性下限、常温降伏強度上限)、溶接性(Ceq上限)という相反する性能を両立させる技術の確立が求められ、これこそが従来の耐火鋼開発すなわち無耐火被覆構造化の課題となっていた。
【0007】
【発明が解決しようとする課題】
上記の700℃耐火鋼材では、無耐火被覆構造が可能となるのは、比較的可燃物量が少ない立体駐車場や外部鉄骨のみに限られ、無耐火被覆範囲を拡大するには、750℃〜850℃程度の耐火性能が必要である。
例えば、柱材として用いられることの多い箱形断面部材について、ISO834標準加熱を受けた場合の2次元熱伝導解析結果の例を図1に示す。図中の横軸1段目は鋼材の断面形状係数Hp/A(Hpは断面の周長、Aは断面積)を、横軸2段目は正方形断面とした場合の換算板厚(mm)を表す。なお、石膏ボードは通常使用される仕上材である。
【0008】
この図1では、
(1)耐火温度750℃以上の場合、鋼材裸使用ではHp/A≦80(換算板厚≧12.5mm)で30分無耐火被覆構造が可能である。
さらに、石膏ボード9.5mmとのセット使用では、すべての範囲で30分無耐火被覆構造が可能である。
(2)耐火温度800℃以上の場合、鋼材裸使用ではHp/A≦100(換算板厚≧11mm)で30分無耐火被覆構造が可能である。さらに、石膏ボード9.5mmとのセット使用では、すべての範囲で30分無耐火被覆構造が可能である。
(3)耐火温度850℃以上の場合、鋼材裸使用ではHp/A≦30(換算板厚≧37.5mm)で60分無耐火被覆構造が可能である。さらに石膏ボード9.5mmとのセット使用では、すべての範囲で30分無耐火被覆構造が可能である。
ことなどを示している。
【0009】
一方、耐震性(常温降伏強度上限)の確保の点から合金元素量の制約があるため、耐火性(高温降伏強度確保)と耐震性を同時に満足させることは非常に困難である。
そこで本発明では、火災を受ける可能性のある鉄骨構造物において、耐震性に関する制約を緩和できる鉄骨構造とすると共に、鉄骨部材として750℃〜850℃の高温領域で十分な降伏強度を確保できる耐火鋼材を用いることによって、少なくとも30分無耐火被覆構造が可能な鉄骨構造物を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、火災を受ける鉄骨構造物であって、損傷集中部材を介して柱に梁を接合する損傷制御構造専用として、この鉄骨構造物を構成する鉄骨部材を850℃での降伏強度が94MPa(常温降伏強度の下限比の0.4)以上であって靭性が破面遷移温度vTrs50で−12℃以下の耐火鋼材で形成した、750〜850℃で30分以上の無耐火被覆が可能な無耐火被覆鉄骨構造物である。
【0011】
【発明の実施の形態】
本発明では、火災を受ける可能性のある鉄骨構造物において、特に耐震性の制約を緩和できる損傷制御専用の鉄骨構造を採用し、鉄骨部材として常温降伏強度が235MPa以上で、850℃における降伏強度が94MPa(常温降伏強度の下限比の0.4)以上の耐火鋼材を用いるものであり、750〜850℃で少なくとも30分無耐火被覆鉄骨構造を実現するものである。
本発明でいう鉄骨構造とは、柱、梁などの主部材および各種の接合金物(スプリットテイ、エンドプレート、スプライスプレートなど)、損傷集中部材、ボルトを構成部材として形成されるものであり、基本的には、これらの構成部材を本発明による耐火鋼材で形成するものである。
【0012】
本発明の鉄骨構造物は、主として長期(常時荷重)および短期(常時荷重+地震力)に、作用応力が大きくなる部材端あるいは部材端接合部の柱梁接合部や柱脚などの接合構造部に適用されるものであり、例えば、柱・梁接合構造にあっては、損傷制御構造専用とすることにより、柱・梁部材に求められる靭性下限や降伏強度の「ばらつき」の制限(つまり降伏強度上限)、降伏比上限などの耐震性に関する制限を緩和し、耐火性に寄与する合金元素量の制約を緩和するものである。
【0013】
本発明の鉄骨部材を形成する耐火鋼材としては、例えば質量%で、C:0.01〜0.08%、Si:0.2〜2.0%、Mn:0.5%以下、Al:0.25〜1.0%、Mo:0.5〜2.0%、V:0.05〜0.50%、Nb:0.02〜0.50%、Ti:0.05〜0.30%を含有し、残部がFeおよび不可避不純物からなる耐火鋼による鋼材、または、さらに質量%で、Cu:0.1〜2.0%、Ni:0.1〜0.5%、Cr:0.1〜1.0%、B:0.005〜0.010%のうち1種または2種以上を含有する耐火鋼材が適性があり、このような鋼材で鉄骨部材を形成すれば、850℃において94MPa以上の降伏強度(常温降伏強度下限比の0.4以上)の条件を満足する無耐火被覆構造の鉄骨構造物の実現が可能である。
【0014】
本発明でいう「損傷制御構造(システム)」とは、地震などの外部入力エネルギーを吸収するための損傷集中部材を有する接合構造で、以下「損傷制御構造」という。
これらの部位での接合構造には、溶接接合以外の接合手段、例えば柱梁接合構造にあっては、図2(a)、(b)に示すように、損傷集中部材(軸力抵抗要素、軸力+剪断力抵抗要素、軸力+剪断力+曲げ力抵抗要素など)を介して、柱に梁を接合する接合構造を損傷制御構造とするものである。この接合構造を採用することにより、損傷集中部材によって地震時の揺れや変形を低減させるだけではなく、この部分に集中的に地震エネルギーを集中させることにより、主架構部材である柱や梁の変形を弾性範囲内の変形に留め損傷を防ぐと同時に、鋼材に要求される常温降伏強度上限の制約を撤廃でき、耐火性に寄与する合金元素量の制約を緩和することができる。
【0015】
損傷集中部材としては、各階配置型の制振ダンパーが一般的であり、鋼材や鉛、粘弾性体やオイルなどが用いられる。
また、損傷制御構造の鉄骨構造を採用し、柱や梁の変形を弾性範囲に留めることによって、構造部材の靭性下限(破面遷移温度に言い換えると破面遷移温度上限)の制約をさらに緩和できることで、高温降伏強度上昇代を確保し、経済性を失することなく耐火性を向上させることができる。
【0016】
高温降伏強度については、従来の耐火鋼の場合では、常温降伏強度の2/3以上となるように性能を定めていたが、鉄骨構造物の実設計範囲が常温降伏強度下限の0.2〜0.4倍程度であることを勘案し、常温降伏強度下限比0.4以上であれば使用可能であることから、本発明では、このような降伏強度領域での使用も考慮する。
【0017】
本発明では、耐震性に関する制約を緩和することを前提として、建築構造用として使用できる常温降伏強度の範囲内で、750〜850℃で保持時間が30分以上で、常温降伏強度下限比の0.4以上の高温降伏強度を確保する方法について検討した。
その結果、Vを核としたNb,Moの複合析出物を微細に析出させることで、750〜850℃においても短時間であれば十分強化に有効な微細析出状態を維持できることが判った。
【0018】
この複合析出物は、単独の析出物や他の複合析出物に比べて高温における安定性が非常に高く、750〜850℃においても短時間であれば十分微細なまま安定である。
しかし、析出物自体は安定であっても、温度上昇によって素地が変態して析出物と素地の整合性が失われて非整合になると、析出物による強化作用が急激に低下する。すなわち、高温でも安定したVを核としたNb,Moの複合析出物による強化を利用するには、設計温度である750〜850℃においても素地組織を変態させないことが必須となる。
【0019】
発明者らは、以下に述べる添加元素の工夫により変態温度を高くして、Ac1変態温度を750℃以上または850℃以上とすることで、750〜850℃で30分程度保持した場合にも、Vを核としたNb,Moの複合析出物と素地との整合性が維持でき、十分な強化が可能であることを見出した。
Ac1変態温度を効果的に高める元素としては、Siや5%以上のCrなどが上げられるが、これらは常温引張強度を上げ過ぎるため、400MPa級および490MPa級鋼の規格値を満足する範囲では750℃以上のAc1変態温度を得ることは困難である。
【0020】
常温強度をあまり上げないでAc1 変態温度を大幅に上げる元素としてはAlが有効である。しかしながら、Alは多量に添加すると、特に溶接部の靭性を損なう場合があることから、その添加量は、脱酸のために必要な0.01〜0.05%程度であり、例えば0.1%を超えて添加されることは通常なかった。
本発明では、作用応力の大きな部位を溶接レス構造とすることを前提としており、溶接性をあまり要求しないことから、この制約に拘束されずにAlのAc1 変態温度上昇効果を有効に利用することができる。
【0021】
Ac1変態温度を十分に高くするためには、0.2%以上の添加が特に有効である。さらに、常温強度を上げ過ぎない範囲でSiを添加すること、Ac1変態温度を低下させ、かつ常温強度も上げる元素であるCおよびMnの添加量を抑制することによって、常温温度を上げ過ぎずに750℃以上のAc1変態温度を得ることができる。
一方、Ac1変態温度が900℃を超えると、圧延中に変態が進行するため析出サイトとして有効な圧延組織が得られないことから、却って高温強度は得にくくなる。したがって、750℃以上の高温強度を得るためにはAc1変態温度が750℃以上、900℃以下であることが必要条件となる。
【0022】
以下に、本発明で用いる耐火鋼の各成分の限定理由を説明する。
Cは、常温での強度を得るために0.01%が必要であるが、0.10%を超える添加によりAc1変態温度が上昇するために750℃〜850℃の高温強度が得にくく、靭性も低下する。このため添加量は、750℃の高温強度を得るためには0.01%以上、0.10%以下に限定し、850℃高温強度を得るためには0.01%以上、0.08%以下に限定する。
【0023】
Siは、Ac1変態温度を高めるために有効な元素であり、0.2%以上の添加が望ましい。しかし、2.0%を超えると母材靭性を低下させる場合があるため、0.2%以上、2.0%以下に限定する。なお、常温降伏強度上限を考慮する場合には、Siの上限は1.2%とすることが望ましい。
Mnは、常温温度に対する強化元素であるが、高温強度にはあまり効果がない。却ってAc1変態温度を低くするため、750℃〜800℃の高温強度には有害となることから、添加量は、750℃の高温強度を得るためには0.6%以下に限定し、850℃高温強度を得るためには0.5%以下に限定する。
Alは、常温強度をあまり高めずにAc1変態温度を大きく上昇させる、本発明における重要な元素である。この目的のためには0.2%以上の添加が特に有効である。しかし、1.0%を超えて添加するとAc1変態温度が高くなり過ぎて却って高温強度が得にくくなる。このため添加量は、750℃の高温強度を得るためには0.2%以上、1.0%以下に限定し、850℃高温強度を得るためには0.25%以上、1.0%以下に限定する。
【0024】
Moは、高温強度を高める複合析出物を構成する元素であり、固溶強化による高温強度向上効果もあることから、本発明においては必須元素である。こうした特性を発揮して750℃〜850℃の高温強度を高めるには、0.5%以上の添加が必要であるが、2.0%を超えて添加すると母材靭性を低下させる場合があるため、0.5%以上、2.0%以下に限定する。なお、常温降伏強度上限を考慮する場合には、Moの上限を1.5%とすることが望ましい。
Vは、高温強度を高める複合析出物を構成する基本元素として重要である。750℃〜850℃の高温強度を高めるためには、0.05%以上の添加が有効である。しかし、0.50%を超えて添加すると微細析出物が得にくくなり、また母材靭性を低下させる場合があるため、添加量は0.05%以上、0.50%以下に限定する。なお、常温降伏強度上限を考慮する場合には、Vの上限は0.20%とすることが望ましい。
【0025】
Nbは、高温強度を高める複合析出物を構成する基本元素として重要である。750℃〜850℃の高温強度を高めるためには、0.01%以上の添加が有効である。しかし、0.50%を超えて添加すると微細析出物が得にくくなり、また母材靭性を低下させる場合があるため、添加量は、750℃高温強度を得るためには0.01%以上、0.20%以下に限定し、850℃高温強度を得るためには0.02%以上、0.50%以下に限定する。
Tiは、析出強化により750℃〜850℃の高温強度を高める析出物を得る元素として重要であり、その目的で添加する場合には、0.01%以上必要であるが、0.10%を超えて添加すると母材靭性を低下させる場合がある。このため添加量は、750℃高温強度を得るためには0.01%以上、0.10%以下に限定し、850℃高温強度を得るためには、母材靭性下限(換言すれば破面遷移動温度上限)の制約の緩和を条件として0.05%以上、0.30%以下に限定する。
【0026】
Cuは、析出強化元素として添加する場合には0.1%以上の添加を必要とするが、2.0%を超えて添加しても効果は変わらず、また靭性を低下させることから、添加量は0.1%以上、2.0%以下に限定する。
Niは、母材靭性を高めるために添加する場合には0.1%以上を必要とするが、Ac1変態温度を低下させるため、0.5%を超えて添加すると高温強度が低下することから、添加量は0.1%以上、0.5%以下に限定する。
Crは、焼入強化元素として添加する場合には0.1%以上を必要とするが、1.0%を超えて添加すると常温強度が高くなり過ぎ、またAc1変態温度を低下させて高温強度を低下させることから、添加量は0.1%以上、1.0%以下に限定する。
Bは、焼入性を高め、強度を得るために添加する場合には0.005%以上の添加を必要とするが、0.010%を超えて添加してもその効果が変わらないので、添加量は0.005%以上、0.010%以下に限定する。
【0027】
【実施例】
以下に、本発明で用いる鉄骨部材として適性のある耐火鋼材(以下「本耐火鋼材」という)の実施例について説明する。
表1に示すような化学組成を有する各種の圧延鋼板を供試鋼板とし、それぞれの鋼板から採取した長さ方向が圧延方向である試験片について、室温(常温)引張試験と850℃の高温引張試験を行った。この試験結果を表1に示す。
この実験に供された本耐火鋼材は、850℃の耐火特性、所要の靭性を有するものであり、耐火温度750℃、800℃の耐火特性も兼ねる750℃〜850℃で少なくとも30分無耐火被覆を可能とするものであり、ここでは実験例の評価は、850℃で少なくとも30分無耐火被覆が可能かどうかの観点で行っている。
【0028】
表1中、A1〜A10は本耐火鋼材、B1〜B14は化学組成が本耐火鋼材と異なる耐火鋼材(以下「比較鋼材」という)である。この比較鋼材で下線のあるところは、化学組成で本耐火鋼材と異なるところ、特性で本発明の鉄骨部材としての目標値に達していないところである。
なお、常温降伏強度の目標値は235MPa以上とし、Ac1 変態温度の目標値は850℃以上、900℃以下とした。
また、靭性は、JIS Z 2242記載の方法により破面遷移温度vTrs50を測定し、目標値はvTrs50≦−10℃とした。
【0029】
本耐火鋼材A1〜A10は、いずれもAc1 変態温度が850〜900℃の範囲にあり、850℃での降伏強度が94MPa以上、vTrs50が−10℃以下である。
これに対して、比較鋼材B1はCが高いため、比較鋼材B6はMoが高いため、比較鋼材B12はCuが高いため、それぞれAc1 変態温度が低く、850℃での降伏強度も低く、かつ靭性も低い。
比較鋼材B2はSiが低いため、比較鋼材B4はMnが高いため、比較鋼材B13はNiが高いため、比較鋼材B14はCrが高いため、それぞれAc1 変態温度が低く、850℃降伏強度も低い。
【0030】
比較鋼材B3はSiが高いため、Ac1 変態温度が高過ぎて、850℃降伏強度が低く、かつ靭性が低い。
比較鋼材B5はMoが低いため、比較鋼材B7はNbが低いため、比較鋼材B9はVが低いため、それぞれ850℃降伏強度が低い。
比較鋼材B8はNbが高いため、比較鋼材B10はVが高いため、比較鋼材B11はTiが高いため、それぞれ靭性が低い。
なお、本耐火鋼材は、図2、図3に示す柱梁接合部を有する鉄骨構造の構造部材にのみ限定して用いるものではなく、作用応力が大きな部位に接合部を有する各種の構造部材にも広く用いることができる。
【0031】
【表1】

Figure 0004156208
【0032】
【発明の効果】
本発明の鉄骨構造物は、損傷制御構造にして耐震性に関する制約を緩和することによって、常温降伏強度、靭性、高温降伏強度に優れた鋼材の使用を可能とし、常温降伏強度および750℃〜850℃での高温降伏強度が高く、30分以上の無耐火被覆構造が可能な鉄骨構造物を、経済性を失することなく市場に供給することが可能である。
30分以上の無耐火被覆構造とすることにより、耐火被覆省略によるコストダウン、工期短縮を可能とし、さらには耐火被覆工程省略による環境負荷低減や、無耐火被覆による鉄骨構造物を実現することが可能である。
【図面の簡単な説明】
【図1】箱形断面部材の温度と断面形状係数および正方形断面部材の換算板厚の関係を表す説明図。
【図2】本発明を適用する損傷制御構造の鉄骨構造例を示す側面説明図で、(a)図は、H形鋼柱にボルト接合された損傷集中部材にH形鋼梁をボルト接合した柱・梁接合構造を示す。(b)図は、H形鋼柱にボルト接合した損傷集中部材にH形鋼梁をボルト接合した柱・梁接合構造の他の例を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel structure in the field of architecture, and more specifically to a steel structure capable of a fireproof covering structure using a fireproof steel material having a high high temperature yield strength.
[0002]
[Prior art]
Conventionally, it is stipulated that the steel material used for the steel structure in the building field is used at a surface temperature of 350 ° C. or less according to the specification.
For this reason, in many cases, a fireproof coating such as spray rock wool is necessary, and the competitiveness of the steel structure is remarkably hindered due to construction costs, processes, environmental and aesthetic problems.
As a result of the performance of the fireproof and fireproof professionals in 1987 (according to the Building Standards Law / former Article 38 certification), performance-type design has become possible. As a result, the high-temperature strength of the steel and the load actually applied to the building It has become possible to determine the ability of a fireproof coating, and in some cases it has become possible to use steel with a fireproof coating.
[0003]
In recent years, in response to the results of the above general fireproofing and fireproofing professionals, many so-called fireproof steels having high temperature strength for a short time have been developed. For example, Japanese Patent Application Laid-Open No. 2-77523, high temperature resistance at 600 ° C. A large number of steel materials (refractory steels) having a temperature of 2/3 or more at normal temperature are disclosed. Japanese Patent Laid-Open No. 9-209077 discloses a steel material (refractory steel) having a high temperature proof stress at 700 ° C. of 2/3 or more at normal temperature.
[0004]
In these conventional refractory steels, alloying of C, Mn, Mo, etc. is attempted in order to give the steel fire resistance without losing economic efficiency, but the addition of the component elements only leads to an increase in cost. It also greatly affects weldability, toughness, and room temperature yield strength. In other words, there is a problem that an increase in high-temperature yield strength inevitably leads to deterioration of weldability and toughness, and an increase in normal-temperature yield strength.
[0005]
On the other hand, since the current seismic design method presupposes seismic energy absorption by deformation of the frame, it is necessary to ensure the collapsed shape of the frame assumed in the design, to ensure the plastic deformation capacity of the member, and to fully demonstrate the member performance It is necessary to secure joint strength, and as steel materials for building structures used for this, there are restrictions on toughness and "variation" of yield strength (that is, yield strength upper limit), earthquake resistance regulations such as yield ratio upper limit, Ceq upper limit, etc. It is necessary to define the weldability.
[0006]
For example, SN material (JIS G 3136-1994) is a steel material for which these rules regarding earthquake resistance and weldability are made, and in the case of 400 MPa class (yield strength lower limit 235 MPa), the toughness lower limit is 0 ° C. and 27 J, yield strength upper limit. Is 355 MPa, the yield ratio upper limit is 80%, and the Ceq upper limit is 0.36% by mass.
Therefore, the steel materials for building structures that have fire resistance have both conflicting performances of fire resistance (ensure high-temperature yield strength), seismic resistance (lower toughness, upper limit at room temperature yield strength), and weldability (upper limit of Ceq). This has been the subject of conventional fireproof steel development, that is, the construction of a fireproof coating.
[0007]
[Problems to be solved by the invention]
In the above 700 ° C. refractory steel, the free fire protection structure is possible, relatively combustible amount is limited to less steric parking and external steel, to enlarge free refractory coverage is 750 ° C. to 850 Fire resistance of about is required.
For example, FIG. 1 shows an example of a two-dimensional heat conduction analysis result when a box-shaped cross-section member often used as a column member is subjected to ISO 834 standard heating. In the figure, the first axis on the horizontal axis shows the cross-sectional shape factor Hp / A (Hp is the circumferential length of the cross section, A is the cross-sectional area), and the second plate on the horizontal axis shows the converted plate thickness (mm). Represents. Gypsum board is a finishing material usually used.
[0008]
In this FIG.
(1) In the case where the fireproof temperature is 750 ° C. or higher, a non-fireproof coating structure can be formed for 30 minutes with Hp / A ≦ 80 (converted plate thickness ≧ 12.5 mm ) when using bare steel.
Furthermore, when using a set with gypsum board 9.5 mm, a fire-resistant covering structure for 30 minutes is possible in the entire range.
(2) When the refractory temperature is 800 ° C. or more, a non-refractory coating structure can be formed for 30 minutes with Hp / A ≦ 100 (converted plate thickness ≧ 11 mm) when the steel material is used barely. Furthermore, when using a set with gypsum board 9.5 mm, a fire-resistant covering structure for 30 minutes is possible in the entire range.
(3) When the refractory temperature is 850 ° C. or higher, a non-refractory coating structure can be formed for 60 minutes with Hp / A ≦ 30 (equivalent plate thickness ≧ 37.5 mm) when using bare steel. Furthermore, when using a set with gypsum board 9.5 mm, a fire-resistant covering structure for 30 minutes is possible in the entire range.
It shows that.
[0009]
On the other hand, since there are restrictions on the amount of alloying elements from the viewpoint of ensuring earthquake resistance (room temperature yield strength upper limit), it is very difficult to satisfy fire resistance (high temperature yield strength ensured) and earthquake resistance at the same time.
Therefore, in the present invention, in a steel structure that is likely to receive a fire, a steel structure that can alleviate restrictions on earthquake resistance, and a fire resistance that can ensure sufficient yield strength in a high temperature region of 750 ° C. to 850 ° C. as a steel member. An object of the present invention is to provide a steel structure capable of a fireproof coating structure for at least 30 minutes by using a steel material.
[0010]
[Means for Solving the Problems]
The present invention is a steel structure subjected to a fire, and is used exclusively for a damage control structure in which a beam is joined to a column via a damage concentrating member. The steel member constituting the steel structure has a yield strength at 850 ° C. of 94 MPa. (A lower limit ratio of room temperature yield strength is 0.4) or more , and toughness is formed with a refractory steel material having a fracture surface transition temperature vTrs50 of −12 ° C. or less , and refractory coating for 30 minutes or more is possible at 750 to 850 ° C. It is a fireproof coated steel structure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a steel structure for damage control that can alleviate the seismic resistance restriction is adopted in a steel structure that may receive a fire, and the yield strength at 850 ° C. is 235 MPa or more at a room temperature yield strength as a steel member. Uses a refractory steel material of 94 MPa (0.4, the lower limit ratio of normal temperature yield strength) or more, and realizes a fireproof coated steel structure at 750-850 ° C. for at least 30 minutes.
The steel structure referred to in the present invention is formed by using main members such as columns and beams, various joint hardware (split tee, end plate, splice plate, etc.), damage concentration members, and bolts as constituent members. Specifically, these constituent members are formed of the refractory steel material according to the present invention.
[0012]
The steel structure according to the present invention is a joint structure such as a column beam joint or a column base of a member end or a member end joint where the acting stress increases mainly in the long term (normal load) and in the short term (normal load + seismic force). For example, in the case of a column / beam joint structure, by using a dedicated damage control structure, the lower limit of toughness and yield strength “variation” required for the column / beam member (that is, yield) The upper limit of strength) and the upper limit of yield ratio are alleviated, and the restrictions on the amount of alloying elements that contribute to fire resistance are relaxed.
[0013]
As a refractory steel material which forms the steel frame member of the present invention, for example, in mass%, C: 0.01 to 0.08%, Si: 0.2 to 2.0%, Mn: 0.5% or less, Al: 0.25-1.0%, Mo: 0.5-2.0%, V: 0.05-0.50%, Nb: 0.02-0.50%, Ti: 0.05-0. A steel material made of refractory steel containing 30% and the balance being Fe and inevitable impurities, or further by mass, Cu: 0.1 to 2.0%, Ni: 0.1 to 0.5%, Cr: Refractory steel materials containing one or more of 0.1 to 1.0% and B: 0.005 to 0.010% are suitable. If a steel member is formed of such steel materials, 850 is obtained. ℃ realization of steel structure of the non-fire protection structure which satisfies the conditions of 94MPa or more yield strength (0.4 or more at room temperature yield strength lower ratio) in It is a function.
[0014]
The “damage control structure (system)” in the present invention is a joint structure having a damage concentrating member for absorbing external input energy such as an earthquake, and is hereinafter referred to as “damage control structure”.
In the joining structure at these parts, as shown in FIGS. 2 (a) and 2 (b), in the joining means other than the welding joining, for example, in the column beam joining structure, the damage concentration member (the axial force resistance element, (Axial force + shearing force resistance element, axial force + shearing force + bending force resistance element, etc.) is used as a damage control structure. Adopting this joint structure not only reduces the shaking and deformation at the time of the earthquake by the damage concentrating member, but also concentrates the seismic energy on this part, thereby deforming the columns and beams that are the main frame members. The deformation within the elastic range is retained to prevent damage, and at the same time, the upper limit of room temperature yield strength required for steel materials can be eliminated, and the restriction on the amount of alloy elements contributing to fire resistance can be relaxed.
[0015]
As the damage concentrating member, a vibration damper of each floor arrangement type is generally used, and steel material, lead, viscoelastic body, oil or the like is used.
In addition, by adopting a steel structure with a damage control structure and keeping the deformation of columns and beams within the elastic range, the restriction on the toughness lower limit of the structural member (in other words, the upper limit of the fracture surface transition temperature) can be further relaxed Thus, it is possible to secure a margin for increasing the high-temperature yield strength and improve fire resistance without losing economic efficiency.
[0016]
For high-temperature yield strength, in the case of conventional refractory steel, the performance was determined so that it would be 2/3 or more of the normal temperature yield strength, but the actual design range of the steel structure is 0.2 to the lower limit of the normal temperature yield strength. In consideration of the fact that it is about 0.4 times, it can be used if the room temperature yield strength lower limit ratio is 0.4 or more. Therefore, in the present invention, use in such a yield strength region is also considered.
[0017]
In the present invention, on the premise that the constraint on earthquake resistance is relaxed, the retention time is 30 minutes or more at 750 to 850 ° C. within the range of room temperature yield strength that can be used for building structures, and the room temperature yield strength lower limit ratio is 0. A method for securing a high temperature yield strength of 4 or more was examined.
As a result, it was found that fine precipitates effective for strengthening can be maintained for a short time even at 750 to 850 ° C. by finely depositing Nb and Mo composite precipitates with V as a nucleus.
[0018]
This composite precipitate has a very high stability at a high temperature as compared with a single precipitate and other composite precipitates, and is stable at a fine temperature even at 750 to 850 ° C. for a short time.
However, even if the precipitate itself is stable, the strengthening action due to the precipitate is drastically reduced if the substrate is transformed by the temperature rise and the consistency between the precipitate and the substrate is lost and becomes inconsistent. That is, in order to utilize the strengthening by the composite precipitate of Nb and Mo having V as a nucleus, which is stable even at a high temperature, it is essential that the base structure is not transformed even at the design temperature of 750 to 850 ° C.
[0019]
The inventors have raised the transformation temperature by devising the additive element described below, and by setting the Ac1 transformation temperature to 750 ° C. or higher or 850 ° C. or higher, even when the temperature is maintained at 750 to 850 ° C. for about 30 minutes, It has been found that the consistency between the composite precipitate of Nb and Mo with V as a nucleus and the substrate can be maintained, and sufficient strengthening is possible.
Examples of elements that effectively increase the Ac1 transformation temperature include Si and Cr of 5% or more. However, since these elements increase the room temperature tensile strength excessively, they are 750 within a range that satisfies the standard values of 400 MPa class and 490 MPa class steels. It is difficult to obtain an Ac1 transformation temperature of ℃ or higher .
[0020]
Al is effective as an element that greatly increases the Ac1 transformation temperature without significantly increasing the normal temperature strength. However, when Al is added in a large amount, the toughness of the welded portion may be impaired, so the addition amount is about 0.01 to 0.05% necessary for deoxidation, for example 0.1% It was usually not added in excess of%.
In the present invention, it is premised that a site having a large acting stress has a welding-less structure, and weldability is not so required. Therefore, the effect of increasing the Ac1 transformation temperature of Al is effectively used without being restricted by this restriction. Can do.
[0021]
In order to sufficiently increase the Ac1 transformation temperature, addition of 0.2% or more is particularly effective. Furthermore, by adding Si within a range that does not raise the room temperature strength excessively, by suppressing the addition amount of C and Mn, which are elements that lower the Ac1 transformation temperature and increase the room temperature strength, the room temperature temperature is not raised excessively. An Ac1 transformation temperature of 750 ° C. or higher can be obtained.
On the other hand, if the Ac1 transformation temperature exceeds 900 ° C., transformation progresses during rolling, and a rolling structure effective as a precipitation site cannot be obtained. Therefore, 750 ° C. or more in order to obtain a high temperature strength Ac1 transformation temperature 750 ° C. or higher, a necessary condition to be at 900 ° C. or less.
[0022]
Below, the reason for limitation of each component of the fireproof steel used by this invention is demonstrated.
C needs 0.01% in order to obtain the strength at room temperature, but the Ac1 transformation temperature rises by addition exceeding 0.10%, so that it is difficult to obtain a high temperature strength of 750 ° C. to 850 ° C. , and toughness Also decreases. Therefore, the addition amount is limited to 0.01% or more and 0.10% or less to obtain a high temperature strength of 750 ° C. , and 0.01% or more and 0.08% to obtain a high temperature strength of 850 ° C. Limited to:
[0023]
Si is an effective element for increasing the Ac1 transformation temperature, and is preferably added in an amount of 0.2% or more. However, if it exceeds 2.0%, the toughness of the base metal may be lowered, so it is limited to 0.2% or more and 2.0% or less. In addition, when considering the room temperature yield strength upper limit, the upper limit of Si is desirably 1.2%.
Mn is a strengthening element with respect to normal temperature, but has little effect on high temperature strength. On the other hand, since the Ac1 transformation temperature is lowered, it is harmful to the high temperature strength of 750 ° C. to 800 ° C. , so the addition amount is limited to 0.6% or less to obtain the high temperature strength of 750 ° C. In order to obtain high temperature strength, it is limited to 0.5% or less.
Al is an important element in the present invention that greatly increases the Ac1 transformation temperature without significantly increasing the normal temperature strength. For this purpose, addition of 0.2% or more is particularly effective. However, if added over 1.0%, the Ac1 transformation temperature becomes too high, making it difficult to obtain high-temperature strength. For this reason, the addition amount is limited to 0.2% or more and 1.0% or less to obtain a high temperature strength of 750 ° C. , and 0.25% or more and 1.0% to obtain a high temperature strength of 850 ° C. Limited to:
[0024]
Mo is an element constituting a composite precipitate that enhances the high-temperature strength, and is also an essential element in the present invention because it also has an effect of improving the high-temperature strength by solid solution strengthening. In order to exhibit such characteristics and increase the high temperature strength at 750 ° C. to 850 ° C. , addition of 0.5% or more is necessary, but if added over 2.0%, the base material toughness may be lowered. Therefore, it is limited to 0.5% or more and 2.0% or less. In addition, when considering the room temperature yield strength upper limit, it is desirable that the upper limit of Mo be 1.5%.
V is important as a basic element constituting a composite precipitate that increases the high-temperature strength. In order to increase the high-temperature strength at 750 ° C. to 850 ° C. , addition of 0.05% or more is effective. However, if added over 0.50%, it becomes difficult to obtain fine precipitates, and the toughness of the base metal may be lowered. Therefore, the addition amount is limited to 0.05% or more and 0.50% or less. In addition, when considering the room temperature yield strength upper limit, the upper limit of V is preferably 0.20%.
[0025]
Nb is important as a basic element constituting a composite precipitate that increases the high-temperature strength. In order to increase the high temperature strength at 750 ° C. to 850 ° C. , addition of 0.01% or more is effective. However, if added over 0.50%, it becomes difficult to obtain fine precipitates, and the base material toughness may be lowered. Therefore, the addition amount is 0.01% or more in order to obtain 750 ° C high temperature strength, It is limited to 0.20% or less, and in order to obtain 850 ° C. high temperature strength, it is limited to 0.02% or more and 0.50% or less.
Ti is important as an element for obtaining a precipitate that enhances the high-temperature strength of 750 ° C. to 850 ° C. by precipitation strengthening, and when added for that purpose, 0.01% or more is necessary, but 0.10% is required. If added in excess, the base material toughness may be reduced. For this reason, the addition amount is limited to 0.01% or more and 0.10% or less in order to obtain 750 ° C. high temperature strength, and in order to obtain 850 ° C. high temperature strength, the base material toughness lower limit (in other words, fracture surface) The upper limit of the transition dynamic temperature is limited to 0.05% or more and 0.30% or less on condition of relaxation of the constraint.
[0026]
When Cu is added as a precipitation strengthening element, it needs to be added in an amount of 0.1% or more, but even if added over 2.0%, the effect is not changed, and the toughness is reduced. The amount is limited to 0.1% or more and 2.0% or less.
When Ni is added in order to increase the base metal toughness, 0.1% or more is required. However, in order to reduce the Ac1 transformation temperature, if added over 0.5%, the high-temperature strength decreases. The addition amount is limited to 0.1% or more and 0.5% or less.
When Cr is added as a quenching strengthening element, 0.1% or more is required, but if added over 1.0%, the normal temperature strength becomes too high, and the Ac1 transformation temperature is lowered to increase the high temperature strength. Therefore, the addition amount is limited to 0.1% or more and 1.0% or less.
B increases the hardenability and needs to be added in an amount of 0.005% or more when added in order to obtain strength, but even if added over 0.010%, its effect does not change. The addition amount is limited to 0.005% or more and 0.010% or less.
[0027]
【Example】
Below, the Example of the fire-resistant steel material (henceforth "this fire-resistant steel material") suitable as a steel frame member used by this invention is described.
Various rolled steel plates having chemical compositions as shown in Table 1 are used as test steel plates, and a room temperature (room temperature) tensile test and a high temperature tensile at 850 ° C. are used for test pieces whose length direction is the rolling direction taken from each steel plate. A test was conducted. The test results are shown in Table 1.
The refractory steel material used in this experiment has a fire resistance of 850 ° C. and required toughness, and also has a fire resistance of 750 ° C. and 800 ° C. at 750 ° C. to 850 ° C. for at least 30 minutes. Here, the evaluation of the experimental example is performed from the viewpoint of whether or not the fire-proof coating is possible at 850 ° C. for at least 30 minutes.
[0028]
In Table 1, A1 to A10 are refractory steel materials, and B1 to B14 are refractory steel materials having chemical compositions different from those of the refractory steel materials (hereinafter referred to as “comparative steel materials”). The underlined portion of this comparative steel material is different from the present refractory steel material in chemical composition, and is not yet reached the target value as a steel member of the present invention due to its characteristics.
The target value for the normal temperature yield strength was 235 MPa or more, and the target value for the Ac1 transformation temperature was 850 ° C. or more and 900 ° C. or less.
As for toughness, the fracture surface transition temperature vTrs50 was measured by the method described in JIS Z 2242, and the target value was vTrs50 ≦ −10 ° C.
[0029]
All of the refractory steel materials A1 to A10 have an Ac1 transformation temperature in the range of 850 to 900 ° C, a yield strength at 850 ° C of 94 MPa or more, and vTrs50 of -10 ° C or less.
On the other hand, since the comparative steel B1 has a high C, the comparative steel B6 has a high Mo, and the comparative steel B12 has a high Cu, the Ac1 transformation temperature is low, the yield strength at 850 ° C. is low, and the toughness is low. Is also low.
Since the comparative steel material B2 is low in Si, the comparative steel material B4 is high in Mn, the comparative steel material B13 is high in Ni, and the comparative steel material B14 is high in Cr, so that the Ac1 transformation temperature is low and the yield strength at 850 ° C. is also low.
[0030]
Since the comparative steel material B3 is high in Si, the Ac1 transformation temperature is too high, the 850 ° C. yield strength is low, and the toughness is low.
Since comparative steel B5 has a low Mo, comparative steel B7 has a low Nb, and since comparative steel B9 has a low V, the yield strength at 850 ° C. is low.
Since the comparative steel material B8 has high Nb, the comparative steel material B10 has high V, and the comparative steel material B11 has high Ti, so the toughness is low.
Note that this refractory steel material is not limited to the steel structure structural member having the beam-column joint shown in FIGS. 2 and 3, and is used for various structural members having the joint at a portion having a large acting stress. Can also be widely used.
[0031]
[Table 1]
Figure 0004156208
[0032]
【The invention's effect】
The steel structure of the present invention can use a steel material having excellent room temperature yield strength, toughness, and high temperature yield strength by relaxing damage control structure and seismic resistance restriction, and room temperature yield strength and 750 ° C. to 850 ° C. It is possible to supply to the market a steel structure having a high high-temperature yield strength at 0 ° C. and capable of a fire-resistant coating structure of 30 minutes or longer without losing economy.
It is possible to reduce the cost and shorten the work period by omitting the fireproof coating by making the fireproof coating structure for 30 minutes or more, and further to realize the steel structure by reducing the environmental load by omitting the fireproof coating process and the fireproof coating Is possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing the relationship between a temperature of a box-shaped cross-sectional member, a cross-sectional shape factor, and a converted plate thickness of a square cross-sectional member.
FIG. 2 is an explanatory side view showing an example of a steel structure of a damage control structure to which the present invention is applied. FIG. 2 (a) is a diagram showing an H-shaped steel beam bolted to a damage concentrating member bolted to an H-shaped steel column. The column-beam connection structure is shown. (B) The figure shows the other example of the column and beam junction structure which bolted the H-shaped steel beam to the damage concentration member bolted to the H-shaped steel column.

Claims (1)

火災を受ける鉄骨構造物であって、損傷集中部材を介して柱に梁を接合する損傷制御構造専用として、この鉄骨構造物を構成する鉄骨部材を850℃での降伏強度が94MPa(常温降伏強度の下限比の0.4)以上であって靭性が破面遷移温度vTrs50で−12℃以下の耐火鋼材で形成した、750〜850℃で30分以上の無耐火被覆が可能な無耐火被覆鉄骨構造物。A steel structure subject to fire, dedicated to a damage control structure that joins a beam to a column via a damage concentrating member, the steel member constituting this steel structure has a yield strength at 850 ° C. of 94 MPa (room temperature yield strength) 0.4) or more of the lower limit ratio of the above , and the toughness is formed of a refractory steel material having a fracture surface transition temperature vTrs50 of -12 ° C or less , and the refractory coated steel frame capable of fireproof coating at 750-850 ° C for 30 minutes or more Structure.
JP2001119815A 2001-04-18 2001-04-18 Fireproof coated steel structure Expired - Fee Related JP4156208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119815A JP4156208B2 (en) 2001-04-18 2001-04-18 Fireproof coated steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119815A JP4156208B2 (en) 2001-04-18 2001-04-18 Fireproof coated steel structure

Publications (2)

Publication Number Publication Date
JP2002309671A JP2002309671A (en) 2002-10-23
JP4156208B2 true JP4156208B2 (en) 2008-09-24

Family

ID=18969968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119815A Expired - Fee Related JP4156208B2 (en) 2001-04-18 2001-04-18 Fireproof coated steel structure

Country Status (1)

Country Link
JP (1) JP4156208B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307621A (en) * 2005-03-28 2006-11-09 Jfe Steel Kk Structure of common section of apartment
KR20240005647A (en) 2023-12-26 2024-01-12 플러스스틸 주식회사 System for preventing degradation of strength of steel beam structure according to fire

Also Published As

Publication number Publication date
JP2002309671A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP4197460B2 (en) Fireproof coated high strength bolt joint structure
JP5296350B2 (en) Damping member
JPH0277523A (en) Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel
Kanno Advances in steel materials for innovative and elegant steel structures in japan–A review
TW201135037A (en) Metal joint
JP4156208B2 (en) Fireproof coated steel structure
JP3728211B2 (en) Fireproof coated steel structure
JP3728240B2 (en) Non-fireproof coated steel member
JP2004360361A (en) Steel structure without fireproofing coating
Sarno et al. Special metals for seismic retrofitting of steel buildings
JP4860071B2 (en) 800 ° C high-temperature fireproof building structural steel and method for producing the same
JP3987813B2 (en) High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.
JP3411217B2 (en) Low yield point steel with high yield ratio and excellent base metal and weld toughness
JP4203343B2 (en) 800 ° C. high temperature properties excellent in normal temperature tensile strength 400 to 490 N / mm class 2 fireproof building structural steel and method for producing the thick steel plate
JP2733866B2 (en) Gas shielded arc welding method
JPH0252196A (en) Welding wire for fire resistant steel
JP5005178B2 (en) Cast steel beam-to-column joint hardware with excellent weldability and impact resistance
JP3835369B2 (en) Steel material for vibration control damper and manufacturing method thereof
JPH10204584A (en) Heat treated type earthquake-proof steel product excellent in hot-dip galvanizing crack resistance
JP3879383B2 (en) Welding method for low yield point steel
JP2002105585A (en) 850°c high temperature fire resistant steel for building construction and its production method
JP2005305460A (en) Gas shielded metal-arc welding wire for structural steel of fireproof building
JPH11229076A (en) Steel with low yield point excellent in toughness
JPH1112648A (en) Steel excellent in buckling resistance and fire resistance
JPH10331323A (en) Steel member excellent in buckling resistant characteristic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees