JP3987813B2 - High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C. - Google Patents

High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C. Download PDF

Info

Publication number
JP3987813B2
JP3987813B2 JP2003092011A JP2003092011A JP3987813B2 JP 3987813 B2 JP3987813 B2 JP 3987813B2 JP 2003092011 A JP2003092011 A JP 2003092011A JP 2003092011 A JP2003092011 A JP 2003092011A JP 3987813 B2 JP3987813 B2 JP 3987813B2
Authority
JP
Japan
Prior art keywords
temperature
steel
strength
yield stress
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003092011A
Other languages
Japanese (ja)
Other versions
JP2004002990A (en
Inventor
達也 熊谷
忠義 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003092011A priority Critical patent/JP3987813B2/en
Publication of JP2004002990A publication Critical patent/JP2004002990A/en
Application granted granted Critical
Publication of JP3987813B2 publication Critical patent/JP3987813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、常温降伏応力が455N/mm2超で800℃までの高温強度が高く、特に、高温耐火建築構造用高強度鋼として優れた性能を発揮する鋼およびその厚鋼板の製造方法に関するものである。
【0002】
【従来の技術】
一般に、建築物には火災時の安全性を確保するために、火災時における鋼材表面温度が350℃以下で使用するように耐火基準が定められており、ロックウールなどの耐火被覆が必要となる。しかし、耐火被覆施工費用は高額であり、工程も余分にかかること、さらには景観上からも、耐火被覆を完全に省略したいという要求は非常に高まっている。
【0003】
一方、昭和57年度から61年度にかけて、建設省総合技術開発プロジェクト「建築物の防火設計法の開発」の中で設けられた「耐火設計法の開発」という課題のもとで、性能型の新しい耐火設計法を具体化するための研究が行われた。
【0004】
その成果を受けて(建築基準法第38条に基づく認定により)、性能型の設計が可能となった結果、鋼材の高温強度と建物に実際に加わっている荷重とによって、どの程度の耐火被覆が必要かを決定できるようになり、場合によっては、無耐火被覆で鋼材を使用することも可能となった。
【0005】
こうした状況から、近年、短時間の高温強度を高めたいわゆる耐火鋼が多く開発された。特許文献1をはじめとして、600℃での高温降伏強度が常温時の2/3以上となる鋼材(以下、600℃耐火鋼という。)の技術は多数開示されている。
【0006】
また、特許文献2や特許文献3などでは、700℃での高温降伏強度が常温時の2/3となる鋼材(以下、700℃耐火鋼という。)の技術も開示されている。
【0007】
【特許文献1】
特開平2−77523号公報
【特許文献2】
特開平9−209077号公報
【特許文献3】
特開平10−68015号公報
【0008】
【発明が解決しようとする課題】
しかし、上記従来技術による600℃耐火鋼では、無耐火被覆構造が可能となるのは、比較的可燃物量が少ない立体駐車場や外部鉄骨に限られる。また、上記従来技術による700℃耐火鋼でも、無耐火被覆が可能となる構造物はそれほど多くはならない。
【0009】
これに対して耐火性能が800℃以上であれば、無耐火被覆構造が可能となる範囲の大幅な拡大が可能である。
【0010】
一方、現行の耐震設計法では、骨組みの変形による地震エネルギー吸収を前提としていることから、設計で想定した骨組みの崩壊形の確保や、部材の組成変形能力の確保、部材性能を十分発揮させるための接合部降伏強度や靭性の確保が必要となり、これに用いる建築構造用の鋼材には、降伏強度のばらつきの制限(つまり降伏強度の上下限の規定)や、降伏比上限の制約がある。
【0011】
高温強度を確保するためには、例えば、耐熱鋼で利用されるCr、Mo、Mn、Vなどの合金元素を添加する方法が一般的である。
【0012】
しかし、800℃というような高温においては、変態によって鋼材の組織が変化することや、炭化物などの析出物が粗大化あるいは消失して析出強化の効果が少なくなるため、耐火性能を確保するためには合金元素量が多量になり、溶接継手靭性などの溶接性を低下させ、また、常温強度が高くなるため上記建築構造用鋼で規定されている降伏強度上限を上回るなどの問題が生じる。
【0013】
こうしたことから、従来、800℃まで無耐火被覆での設計が可能な耐火性能を有する建築構造用鋼はなかった。
【0014】
そこで、本発明は、前述のような事情を鑑みなされたもので、特に、常温降伏応力が455N/mm2超で800℃までの高温強度が高く、高温耐火建築構造用高強度鋼として優れた性能を発揮する鋼とその厚鋼板の製造方法を提供することを目的とするものである。
【0015】
【課題を解決するための手段】
上述のように、耐震性を確保するための常温降伏強度の上限規定が、800℃での耐火鋼性能を付与するにあたってのひとつの制約である。そこで、本発明においては、耐震性に関するそうした制約を緩和できる鉄骨構造を採用することを前提とする。
【0016】
そのような鉄骨構造とは、主架構部材である柱や梁とは別に、損傷集中部材を有する構造であり、地震時の外部エネルギーをそこに集中させて吸収し、柱や梁の変形を弾性範囲内にとどめて柱や梁の損傷を防ぐものである。
【0017】
こうした構造においては、現行耐震設計法で鋼材に対して要求される常温降伏強度の上限や降伏比の上限の制限が必要でなくなる。むしろ、高い常温降伏応力を有する鋼材を用いることで、建築物の強度設計の幅が大きく広がることになる。
【0018】
一方、耐火設計では火災継続時間内で高い強度を維持すればよく、従来の耐熱鋼のように長時間の強度を考慮する必要はなく、比較的短時間の高温降伏強度が維持できればよい。例えば、800℃での保持時間が30分程度の短時間高温降伏強度が確保できれば800℃耐火鋼として十分利用できる。
【0019】
従来耐火鋼では、高温降伏強度が常温時の2/3となるように性能を定めていたが、鉄骨構造物の実設計範囲が常温降伏強度下限の0.2〜0.4倍であることを勘案し、常温降伏強度下限比0.3以上であれば使用できるとの考えに基づき、本発明では、800℃高温強度のめやすとしては、常温降伏強度下限比0.3以上とした。
【0020】
すなわち、本発明では、常温降伏強度下限が455N/mm2であるので、800℃降伏強さの目標値下限をその0.3倍の137N/mm2として、このような降伏強度を確保する方法について種々検討した。
【0021】
通常、700℃未満程度の温度域での強化に利用されるCr炭化物やMo炭化物などは、800℃といった高温では再固溶してしまうため、大きな強化効果を維持できない。
【0022】
そこで、本発明者らは、高温における安定性のより高い単独あるいは複合の析出物を種々検討した。その結果、Moと、Nb、Tiとの複合炭化物、あるいは、Moと、Nb、Ti、Vとの複合炭化物は、高温における安定性が高く、800℃においても高い強化効果を有することを見出した。
【0023】
こうした複合炭化物も、800℃保持中には成長粗大化して、やがて強化効果は小さくなるが、非常に微細かつ高密度に分散して存在する場合、具体的には、粒子径0.005〜0.2μmのMoと、Nb、Tiとの複合炭化物あるいはMoと、Nb、Ti、Vとの複合炭化物が平均粒子間隔20μm以下で鋼中に分散していれば、30分程度の保持時間内においては、上記の800℃降伏強さ目標値を十分得ることができる。
【0024】
なお、析出物の存在状態については電子顕微鏡により5万倍で10視野を観察し、析出物の同定、粒子径の測定、および平均粒子間隔の測定を行うものとする。
【0025】
しかし、析出物自体は安定であっても、温度上昇によって素地が変態すれば析出物と素地との整合性が失われて非整合になるために、析出物による強化作用が急激に低下する。すなわち、高温でも安定な複合炭化物による強化効果を利用するには、設計温度である800℃においても素地組織を変態させないことが材料にとって必須となる。
【0026】
具体的には、オーステナイトフォーマーであるMnの添加量を低くするなどの合金元素の調整によって、鋼のAc1変態温度(フェライトからオーステナイトに逆変態する温度)を800℃以上とすることが必要である。
【0027】
一方、Ac1変態温度が900℃を超えると必然的にAr3温度(オーステナイトからフェライトに変態する温度)が高くなるので、圧延中に変態が進行するために析出サイトとして有効な圧延組織が得られないことから、かえって、高温強度は得にくくなる。従って、Ac1変態温度は800℃以上、900℃以下であることが必要条件である。
【0028】
また、鋼材の素地組織をフェライトあるいはフェライト・パーライトの単組織とするよりも、ベイナイト単組織またはベイナイトとフェライトの混合組織とする方が高温強度が安定する。
【0029】
そのためには、圧延終了後にある程度以上の冷却速度を確保する製造方法とするとともに、鋼板の焼入性を高める成分組成とすることが必要であり、例えば、鋼板の焼入性を高めるB添加が有効である。
【0030】
しかし、一方で、焼入性を高めるためにC、Mnなどを多く添加すると、靭性が低下したり、変態温度を低下させる場合がある。
【0031】
そこで、本発明では、C添加量は低くしつつ鋼板の焼入性を高める手段として、Bを有効活用することとした。
【0032】
さらに、Mo、Nb、Tiは、析出せずに鋼中で固溶のままの状態にある場合でも、複合炭化物による析出強化ほどではないが、高温強度を向上させる効果がある。具体的には、800℃において鋼中に固溶するMo、Nb、Tiの合計量が、モル濃度で1×10−3以上あればその効果が明確に現れる。
【0033】
また、本発明は、析出物の活用によって高温強化を高めようとするものであるので、Cr、Mn、Moなど従来高温用鋼に多く添加されていた合金元素の添加量はむしろ低く抑えることができ、溶接性を低下させない合金設計が可能である。
【0034】
以上のような知見に基づく本発明の要旨は、以下の通りである。
【0035】
(1) 質量%で、C:0.02〜0.10%、Si:0.02%〜0.8%、Mn:0.5%以下、Al:0.001〜0.1%、Mo:0.3%超〜1.0%、Nb:0.01〜0.20%、Ti:0.01〜0.10%、B:0.0005〜0.010%を含有し、残部Feおよび不可避的不純物からなり、Ac1変態温度が800〜900℃であって、粒子径0.005〜0.2μmの(Mo,Nb)(Mo,Ti)(Mo,Nb,Ti)のいずれかの複合炭化物の1種あるいは2種以上が、平均粒子間隔20μm以下で鋼中に分散していることを特徴とする、常温降伏応力が455N/mm超で800℃高温特性に優れる耐火建築構造用高強度鋼。
【0036】
(2) 質量%で、C:0.02〜0.10%、Si:0.02%〜0.8%、Mn:0.5%以下、Al:0.001〜0.1%、Mo:0.1〜1.0%、Nb:0.01〜0.20%、Ti:0.01〜0.10%、V:0.01〜0.20%、B:0.0005〜0.010%を含有し、残部Feおよび不可避的不純物からなり、Ac1変態温度が800〜900℃であって、粒子径0.005〜0.2μmの(Mo,Nb)(Mo,Ti)(Mo,V)(Mo,Nb,Ti)(Mo,Nb,V)(Mo,Ti,V)(Mo,Nb,Ti,V)のいずれかの複合炭化物の1種あるいは2種以上が、平均粒子間隔20μm以下で鋼中に分散していることを特徴とする、常温降伏応力が455N/mm超で800℃高温特性に優れる耐火建築構造用高強度鋼。
【0037】
(3) さらに、質量%で、Cu:0.1〜2.0%、Ni:0.1〜0.5%、Cr:0.1〜1.0%のうちの1種または2種以上を含むことを特徴とする、上記(1)または(2)に記載の常温降伏応力が455N/mm2超で800℃高温特性に優れる高強度耐火建築構造用鋼。
【0038】
(4) さらに、質量%で、Mg:0.0001〜0.01%、Ca:0.0001〜0.01%のうちの1種または2種を含むことを特徴とする、上記(1)ないし(3)のいずれかに記載の常温降伏応力が455N/mm2超で800℃高温特性に優れる高強度耐火建築構造用鋼。
【0039】
(5) 前記鋼が、800℃で固溶するMo、Nb、Tiを、合計でモル濃度1×10-3以上含有することを特徴とする、上記(1)ないし(4)のいずれかに記載の常温降伏応力が455N/mm2超で800℃高温特性に優れる高強度耐火建築構造用鋼。
【0040】
(6) 上記(1)ないし(5)のいずれかに記載の成分組成を有する鋼片または鋳片を、1200℃以上に加熱し、930℃以下830℃以上の温度域で仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行い、圧延終了後、800℃以上の温度からの鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、冷却停止温度を450℃以下とした後に鋼板を575℃以下250℃以上の温度範囲で20分以上の焼戻し熱処理を行うことを特徴とする、常温降伏応力が455N/mm2超で800℃高温特性に優れる耐火建築構造用高強度鋼板の製造方法。
【0041】
(7) 上記(1)ないし(5)のいずれかに記載の成分組成を有する鋼片または鋳片を、1200℃以上に加熱し、930℃以下830℃以上の温度域で仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行い、圧延終了後、800℃以上の温度からの鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、冷却停止温度をAr1点以下450℃以上とすることを特徴とする、常温降伏応力が455N/mm2超で800℃高温特性に優れる耐火建築構造用高強度鋼板の製造方法。
【0042】
【発明の実施の形態】
以下に、本発明における各成分の限定理由を説明する。
【0043】
Cは、Mo、Nb、Ti、Vとの複合炭化物を形成するために必須であり、少なくとも0.02%が必要である。しかし、0.10%を超えて添加をすると、Ac1変態温度が低下して800℃において素地組織が変態するので、800℃高温強度が得にくく、靭性も低下するため、0.02%以上、0.10%以下に限定する。
【0044】
Siは、製鋼上脱酸元素として必要な元素であり、鋼中に0.02%以上の添加が必要であるが、0.8%を越えると溶接熱影響部の靭性を低下させるので、0.8%を上限とする。
【0045】
Mnは、常温強度に対する強化元素であるが、高温強度にはあまり効果がない。さらに、Ac1変態温度を800℃以上とするためには、その添加を抑制する必要があり、上限を0.5%とする。
【0046】
Alは、通常脱酸元素として添加される範囲の0.001〜0.1%とする。
【0047】
Moは、高温強度を高める複合炭化物を構成する基本元素であり、本発明鋼においては必須元素である。Moと、Nb、Tiとの複合炭化物、あるいは、Moと、Nb、Ti、Vとの複合炭化物を高密度に得るためには、0.3%超の添加が必要であるが、1.0%を超えて添加すると溶接熱影響部の靭性を低下させるので、Mo添加量は0.3%超、1.0%以下とする。
【0048】
Nbは、高温強度を高める複合炭化物の構成元素として、本発明鋼においては必須元素である。800℃高温強度を高めるには0.01%以上の添加が必要である。しかし、0.20%を超えて添加すると母材靭性を低下させる場合があるため、添加量は0.01%以上、0.20%以下とする。
【0049】
Tiも、高温強度を高める複合炭化物の構成元素として、本発明鋼においては必須元素である。800℃高温強度を高めるには0.01%以上の添加が必要である。しかし、0.10%を超えて添加すると溶接熱影響部の靭性を低下させて溶接性を低下させる場合があるため、添加量は0.01%以上、0.10%以下とする。
【0050】
Vは、高温強度を高める複合炭化物の構成元素として有効である。800℃高温強度を高めるには、0.01%以上の添加が有効である。しかし、0.20%を超えて添加すると母材靭性を低下させる場合があるため、その添加量は、0.01%以上、0.20%以下とする。
【0051】
Bは、焼入性を高め、ベイナイト単組織またはベイナイトとフェライトの混合組織を得るために添加する。この目的のためには0.0005%以上の添加を必要とするが、0.010%を超えて添加してもその効果は変わらないので、その添加量は、0.0005%以上、0.010%以下とする。
【0052】
Cuは、析出強化元素として添加する場合には0.1%以上の添加を必要とするが、2.0%を超えて添加してもその効果は変わらないので、その添加量は、0.1%以上、2.0%以下とする。
【0053】
Niは、母材靭性を高めるために添加する場合は0.1%以上を必要とするが、Ac1変態温度を低下させるため、0.5%を超えて添加すると高温強度が低下する。したがって、Niの添加量は0.1%以上、0.5%以下の範囲とする。
【0054】
Crは、焼入強化元素として添加する場合には0.1%以上を要するが、1.0%を超えて添加するとAc1変態温度を低下させて高温強度を低下させることから、その添加量は、0.1%以上、1.0%以下とする。
【0055】
MgおよびCaの1種または2種を添加することにより、硫化物や酸化物を形成して母材靭性および溶接熱影響部靭性を高めることができる。この効果を得るためには、MgあるいはCaは、それぞれ、0.0001%以上の添加が必要である。
【0056】
しかし、0.01%を超えて過剰に添加すると粗大な硫化物や酸化物が生成するため、かえって靭性を低下させることがある。したがって、その添加量を0.0001〜0.01%とする。
【0057】
上記の成分の他に不可避不純物として、P、S、Oは、母材靭性を低下させる有害な元素であるので、その量は少ないほうが良い。望ましくは、Pは0.02%以下、Sは0.02%以下、Oは0.005%以下とする。
【0058】
次に、本発明の厚鋼板の製造方法について説明する。
【0059】
本発明では、Nb、Tiなど本発明で利用する炭化物生成元素を十分に固溶させるために、鋼片または鋳片を1200℃以上の温度で溶体化処理するか、圧延時の加熱温度を1200℃以上とする。これらの処理温度が1200℃未満では、本発明が必要とする炭化物の効果が十分に得られない。
【0060】
さらに、930℃以下830℃以上の温度域で、仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行う。
【0061】
930℃超の温度域での熱間圧延では、また、40%未満の累積圧下率の熱間圧延では、十分な圧延歪が得らないため微細な金属組織を得ることができず、ひいては本発明が目的とする鋼材の常温特性を得ることができない。
【0062】
また、830℃未満の温度域で圧延を行うと、圧延中に加工誘起析出によって結晶粒界に析出物が析出するため、微細で素地と整合な複合炭化物を得にくくなり、ひいては、本発明が目的とする鋼材の高温特性を得ることができない。
【0063】
また、圧延終了後、800℃以上の温度からの鋼板表面の平均冷却速度が2℃/s以上の冷却を行う。
【0064】
これは、オーステナイト域での圧延後、変態開始までの間に析出した析出物は変態を経ることで素地との整合性を失って強化効果を大幅に減じることから、できるだけ変態開始までの時間を短くしてNb、Ti、V、Moを変態までできるだけ析出させないで固溶状態のままにしておくためであり、また、素地をベイナイト単組織またはベイナイトとフェライトの混合組織とするためである。
【0065】
この冷却の停止温度は、Ar1点以下450℃以上とするか、あるいは、この冷却の停止温度を450℃以下とした後に鋼板を575℃以下250℃以上の温度範囲で20分以上の焼戻し熱処理を行う。これは、冷却停止温度をAr1点以下450℃以上とした場合には徐冷中に、冷却停止温度を450℃以下とした場合にはその後の焼戻し熱処理中に、微細で素地と整合なMoと、Nb、Tiとの複合炭化物あるいはMoと、Nb、Ti、Vとの複合炭化物を高密度に得るためである。
【0066】
固溶状態にあるMo、Nb、Tiが高温強度を顕著に向上させるためには、それらの800℃における合計量がモル濃度で1×10-3以上は必要である。
【0067】
また、本発明の鋼は、厚鋼板の他、鋼管、薄鋼板、形鋼などの鋼材としても、十分に本発明の効果を享受可能である。
【0068】
【実施例】
表1に示す成分組成の鋼を溶製して得られた鋼片を、表2および表3に示す製造条件にて6〜50mm厚さの鋼板とした。これらのうち、1−A〜14−Nは本発明例であり、15−O〜34Aは比較例である。
【0069】
表2および表3中の複合炭化物の平均粒子間隔は、それぞれ5万倍の電子顕微鏡写真10枚から、粒子径が0.005〜0.2μmのものの(Mo,Nb)(Mo,Ti)(Mo,V)(Mo,Nb,Ti)(Mo,Nb,V)(Mo,Ti,V)(Mo,Nb,Ti,V)のすべての複合炭化物を測定し、それぞれの平均粒子間隔を測定したものである。
【0070】
また、固溶Mo、Nb、Tiの合計モル濃度は、800℃において鋼中に固溶するMo、Nb、Tiのモル濃度合計量の熱力学計算値を示した。
【0071】
これらの鋼板についての各種特性を表2および表3に示す。
【0072】
それぞれの表中で下線で示すものは、本発明の範囲を逸脱しているもの、または各特性の目標値に達していないものである。
【0073】
常温降伏強さの下限値は455N/mm2超、800℃降伏強さの目標値は137N/mm2である。
【0074】
靱性は−20℃におけるシャルピー衝撃試験により評価し、その目標値は吸収エネルギー値vE−20≧27Jとした。
【0075】
また、入熱が5kJ/mmの溶接を付与し、熱影響部の最粗粒域からシャルピー衝撃試験片を採取して評価し、その目標値はやはり−20℃の吸収エネルギー値vE−20≧27J とした。
【0076】
本発明例1−A〜14−Nは、いずれも、Ac1変態温度が800℃〜900℃の範囲にあり、複合炭化物の平均粒子間隔は20μm以下、常温降伏強さは455N/mm超、800℃降伏強さは137N/mmを超えており、700℃降伏強さも高い。
【0077】
また、母材および溶接熱影響部の−20℃吸収エネルギー(vE−20)は27J以上である。
【0078】
さらに、これらの本発明例のなかで、2−B、3−C、6−F、7−G、8−H、10−J、14−Nについては、800℃において鋼中に固溶するMo、Nb、Tiの合計量がモル濃度で1×10-3以上であり、800℃降伏強さは150N/mm2以上である。
【0079】
これに対し、比較例15−Oは、Cが低いため複合炭化物平均粒子間隔が大きく、800℃ 降伏強さが低く、かつ常温降伏強度も低い。比較例16−Pは、Cが高いためAc1変態温度が低く、800℃降伏強さが低く、かつ、母材および溶接熱影響部靭性も低い。比較例17−Qは、Siが高いため溶接熱影響部靭性が低い。
【0080】
比較例18−RはMnが高いため、比較例27−AAはNiが高いため、比較例28−ABはCrが高いため、それぞれ、Ac1変態温度が低く、800℃ 降伏強さも低い。比較例19−SはMoが低いため、比較例25−YはBが低いため、それぞれ複合炭化物平均粒子間隔が大きく、800℃降伏強度が低い。
【0081】
比較例21−UはNbが低いため、比較例23−WはTiが低いため、それぞれ、複合炭化物の平均粒子間隔が大きく、800℃降伏強度が低く、かつ、常温降伏強度も低い。
【0082】
比較例20−TはMoが高いため、比較例24−XはTiが高いため、溶接熱影響部靭性が低い。
【0083】
比較例22−VはNbが高いため、比較例26−ZはVが高いため、比較例29−ACはMgが高いため、比較例30−ADはCaが高いため、それぞれ母材および溶接熱影響部靭性が低い。
【0084】
また、比較例31−Aは、圧延時の加熱温度が低いため複合炭化物平均粒子間隔が大きく、800℃降伏強度が低く、かつ常温降伏強度も低い。
【0085】
比較例32−Bは、930℃以下830℃以上の温度域での累積圧下率が低いため、比較例33−Bは冷却速度が小さいため、比較例34−Aは焼き戻し温度が高いため、それぞれ複合炭化物平均粒子間隔が大きく、800℃降伏強度が低い。
【0086】
【表1】

Figure 0003987813
【0087】
【表2】
Figure 0003987813
【0088】
【表3】
Figure 0003987813
【0089】
【表4】
Figure 0003987813
【0090】
【発明の効果】
本発明によれば、常温降伏応力が455N/mm2超で、800℃までの高温強度が高く、特に、高温耐火建築構造用高強度鋼として優れた性能を発揮する鋼およびその厚鋼板の製造方法が提供でき、その工業界への効果は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a steel that exhibits high performance as a high-strength steel for high-temperature fireproof building structures, and a method for producing such a thick steel plate, with a normal temperature yield stress exceeding 455 N / mm 2 and high strength up to 800 ° C. It is.
[0002]
[Prior art]
In general, in order to ensure safety in the event of a fire, fire resistance standards are established so that the steel surface temperature during a fire is 350 ° C or lower, and fireproof coating such as rock wool is required. . However, there is a growing demand for fireproof coating to be completely omitted from the viewpoint that the construction cost of fireproof coating is expensive, extra steps are required, and the landscape is also required.
[0003]
On the other hand, a new performance type was developed under the task of “Development of fireproof design method” established in the Ministry of Construction's comprehensive technology development project “Development of fireproof design method for buildings” from 1982 to 1981. Research was carried out to materialize the fireproof design method.
[0004]
As a result of the results (according to Article 38 of the Building Standards Act), it became possible to design a performance type. As a result, how much fire-resistant coating was applied depending on the high-temperature strength of the steel and the load actually applied to the building. It is now possible to determine whether or not it is necessary, and in some cases, it is possible to use steel with a fireproof coating.
[0005]
Under such circumstances, many so-called refractory steels having high temperature strength for a short time have been developed in recent years. Including Patent Document 1, many techniques of steel materials (hereinafter referred to as 600 ° C. refractory steel) whose high-temperature yield strength at 600 ° C. is 2/3 or more at normal temperature are disclosed.
[0006]
Further, Patent Document 2 and Patent Document 3 disclose a technique of a steel material (hereinafter referred to as 700 ° C. refractory steel) in which the high-temperature yield strength at 700 ° C. becomes 2/3 at room temperature.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-77523 [Patent Document 2]
Japanese Patent Laid-Open No. 9-209077 [Patent Document 3]
Japanese Patent Laid-Open No. 10-68015
[Problems to be solved by the invention]
However, in the 600 ° C. refractory steel according to the above-described prior art, a fire-resistant covering structure is possible only in a multilevel parking lot or an external steel frame with a relatively small amount of combustible material. In addition, even in the 700 ° C. refractory steel according to the above-mentioned prior art, there are not so many structures that can be fire-resistant coated.
[0009]
On the other hand, if the fire resistance is 800 ° C. or higher, the range in which a fire-free coating structure is possible can be greatly expanded.
[0010]
On the other hand, since the current seismic design method presupposes seismic energy absorption by deformation of the framework, to ensure the collapsed shape of the framework assumed in the design, to ensure the composition deformation capacity of the member, to fully demonstrate the member performance It is necessary to ensure the yield strength and toughness of the joint, and the steel materials for building structures used for this have restrictions on variation in yield strength (that is, the upper and lower limits of yield strength) and upper limits on the yield ratio.
[0011]
In order to ensure the high temperature strength, for example, a method of adding alloy elements such as Cr, Mo, Mn, and V used in heat resistant steel is common.
[0012]
However, at a high temperature of 800 ° C., the structure of the steel material changes due to transformation, and precipitates such as carbides are coarsened or disappeared to reduce the effect of precipitation strengthening. Increases the amount of alloying elements, lowers weldability such as welded joint toughness, and raises the normal temperature strength, resulting in problems such as exceeding the upper limit of yield strength defined in the steel for building structures.
[0013]
For these reasons, there has been no steel for building structures having fire resistance that can be designed with a fireproof coating up to 800 ° C.
[0014]
Therefore, the present invention has been made in view of the circumstances as described above, and is particularly excellent as a high-strength steel for high-temperature fire-resistant building structures, with high-temperature strength up to 800 ° C. at room temperature yield stress exceeding 455 N / mm 2 . It aims at providing the manufacturing method of steel which exhibits performance, and its thick steel plate.
[0015]
[Means for Solving the Problems]
As described above, the upper limit of the room temperature yield strength to ensure earthquake resistance is one of the constraints for imparting fireproof steel performance at 800 ° C. Therefore, in the present invention, it is assumed that a steel structure that can alleviate such restrictions on earthquake resistance is adopted.
[0016]
Such a steel structure is a structure with damage concentrating members apart from the columns and beams that are the main frame members, which concentrates and absorbs external energy during an earthquake and elastically deforms the columns and beams. It is within the range to prevent damage to the pillars and beams.
[0017]
In such a structure, the upper limit of the room temperature yield strength and the upper limit of the yield ratio required for steel materials by the current seismic design method are not required. Rather, by using a steel material having a high room temperature yield stress, the range of strength design of the building is greatly expanded.
[0018]
On the other hand, in fireproof design, it is only necessary to maintain high strength within the fire duration, and it is not necessary to consider long-time strength unlike conventional heat-resistant steel, and it is only necessary to maintain high-temperature yield strength for a relatively short time. For example, if a high-temperature yield strength at a short time of about 30 minutes at 800 ° C. can be secured, it can be sufficiently used as 800 ° C. refractory steel.
[0019]
Conventional refractory steels have been defined so that the high-temperature yield strength is 2/3 at room temperature, but the actual design range of the steel structure is 0.2 to 0.4 times the lower limit of room-temperature yield strength. In consideration of the above, based on the idea that a room temperature yield strength lower limit ratio of 0.3 or more can be used, the present invention sets the room temperature yield strength lower limit ratio of 0.3 or more as an indication of 800 ° C. high temperature strength.
[0020]
That is, the method in the present invention, room temperature yield strength lower limit since it is 455N / mm 2, as 137N / mm 2 of 0.3 times the target lower limit of 800 ° C. yield strength, to secure such yield strength Various investigations were made.
[0021]
Usually, Cr carbide and Mo carbide used for strengthening in a temperature range of less than about 700 ° C. are re-dissolved at a high temperature such as 800 ° C., so that a large strengthening effect cannot be maintained.
[0022]
Therefore, the present inventors have studied various single or composite precipitates having higher stability at high temperatures. As a result, it was found that a composite carbide of Mo and Nb, Ti, or a composite carbide of Mo, Nb, Ti, and V has high stability at high temperatures and has a high strengthening effect even at 800 ° C. .
[0023]
Such a composite carbide also grows coarse during holding at 800 ° C., and eventually the strengthening effect becomes small. However, when it is dispersed in a very fine and high density, specifically, the particle diameter is 0.005 to 0. If a composite carbide of 2 μm Mo and Nb, Ti or a composite carbide of Mo and Nb, Ti, V is dispersed in steel with an average particle spacing of 20 μm or less, within a holding time of about 30 minutes Can sufficiently obtain the above-mentioned 800 ° C. yield strength target value.
[0024]
In addition, about the presence state of a precipitate, 10 visual fields are observed with an electron microscope at 50,000 times, and a precipitate is identified, a particle diameter is measured, and an average particle interval is measured.
[0025]
However, even if the precipitate itself is stable, if the substrate transforms due to a temperature rise, the consistency between the precipitate and the substrate is lost and becomes inconsistent, so the strengthening action by the precipitate is drastically reduced. That is, in order to use the strengthening effect of the composite carbide that is stable even at high temperatures, it is essential for the material not to transform the base structure even at the design temperature of 800 ° C.
[0026]
Specifically, it is necessary to adjust the Ac1 transformation temperature of steel (the temperature at which ferrite reversely transforms to austenite) to 800 ° C. or higher by adjusting the alloy elements such as lowering the amount of Mn that is an austenite former. is there.
[0027]
On the other hand, when the Ac1 transformation temperature exceeds 900 ° C., the Ar3 temperature (temperature at which austenite is transformed into ferrite) is inevitably increased, so that the transformation progresses during rolling, so that a rolling structure effective as a precipitation site cannot be obtained. On the contrary, high temperature strength is difficult to obtain. Accordingly, it is a necessary condition that the Ac1 transformation temperature is 800 ° C. or higher and 900 ° C. or lower.
[0028]
In addition, the high-temperature strength is more stable when the base structure of the steel material is a single structure of bainite or a mixed structure of bainite and ferrite than a single structure of ferrite or ferrite / pearlite.
[0029]
For that purpose, it is necessary to set it as the manufacturing method which ensures the cooling rate more than a certain degree after completion | finish of rolling, and to set it as the component composition which improves the hardenability of a steel plate, for example, B addition which improves the hardenability of a steel plate is required. It is valid.
[0030]
However, on the other hand, if a large amount of C, Mn or the like is added in order to improve hardenability, the toughness may be lowered or the transformation temperature may be lowered.
[0031]
Therefore, in the present invention, B is effectively utilized as a means for improving the hardenability of the steel sheet while reducing the C addition amount.
[0032]
Furthermore, even if Mo, Nb, and Ti are not precipitated but remain in a solid solution state in the steel, they are not as strong as precipitation strengthening by the composite carbide , but have an effect of improving high-temperature strength. Specifically, if the total amount of Mo, Nb, and Ti dissolved in the steel at 800 ° C. is 1 × 10 −3 or more in terms of molar concentration, the effect appears clearly.
[0033]
In addition, since the present invention intends to enhance the high-temperature strengthening by utilizing precipitates, it is possible to keep the addition amount of alloy elements, such as Cr, Mn, and Mo, which are conventionally added in a high temperature steel, rather low. It is possible to design an alloy that does not deteriorate weldability.
[0034]
The gist of the present invention based on the above findings is as follows.
[0035]
(1) By mass%, C: 0.02-0.10%, Si: 0.02% -0.8%, Mn: 0.5% or less, Al: 0.001-0.1%, Mo : More than 0.3% to 1.0%, Nb: 0.01 to 0.20%, Ti: 0.01 to 0.10%, B: 0.0005 to 0.010%, balance Fe And any one of (Mo, Nb) , (Mo, Ti) and (Mo, Nb, Ti) having an Ac1 transformation temperature of 800 to 900 ° C. and a particle diameter of 0.005 to 0.2 μm. One or more of these composite carbides are dispersed in steel with an average particle spacing of 20 μm or less, and a refractory building having a normal temperature yield stress exceeding 455 N / mm 2 and excellent in high temperature characteristics at 800 ° C. Structural high-strength steel.
[0036]
(2) By mass%, C: 0.02-0.10%, Si: 0.02% -0.8%, Mn: 0.5% or less, Al: 0.001-0.1%, Mo : 0.1-1.0%, Nb: 0.01-0.20%, Ti: 0.01-0.10%, V: 0.01-0.20%, B: 0.0005-0 (Mo, Nb) , (Mo, Ti) , containing 0.010%, consisting of the balance Fe and inevitable impurities, and having an Ac1 transformation temperature of 800 to 900 ° C and a particle diameter of 0.005 to 0.2 µm. (Mo, V) , (Mo, Nb, Ti) , (Mo, Nb, V) , (Mo, Ti, V) , (Mo, Nb, Ti, V) Any one or two of composite carbides more species, and wherein the dispersed in the steel below the average particle spacing 20 [mu] m, 800 ° C. ambient temperature a yield stress of at 455N / mm 2 than Fire-resistant building structures for high-strength steel with excellent temperature characteristics.
[0037]
(3) Furthermore, by mass%, Cu: 0.1 to 2.0%, Ni: 0.1 to 0.5%, Cr: 0.1 to 1.0%, or one or more of them The high-strength fire-resistant building structural steel having excellent high-temperature characteristics at 800 ° C. with a normal temperature yield stress of more than 455 N / mm 2 as described in (1) or (2) above.
[0038]
(4) The above (1), further comprising one or two of Mg: 0.0001 to 0.01% and Ca: 0.0001 to 0.01% by mass%. Or high strength fireproof building structural steel having excellent high temperature characteristics at 800 ° C. with a normal temperature yield stress exceeding 455 N / mm 2 according to any one of (3).
[0039]
(5) In any one of the above (1) to (4), the steel contains Mo, Nb, and Ti that are solid-solved at 800 ° C. in a total molar concentration of 1 × 10 −3 or more. A high-strength fire-resistant building structural steel having a normal temperature yield stress of more than 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.
[0040]
(6) A steel slab or cast slab having the composition described in any one of (1) to (5) above is heated to 1200 ° C or higher, and the finished plate thickness is 930 ° C or lower and 830 ° C or higher. The steel sheet is hot-rolled to ensure a cumulative reduction ratio of 40% or more, and after the rolling is finished, the steel sheet is cooled at an average cooling rate of 2 ° C./s or more from a temperature of 800 ° C. or more, and the cooling stop temperature is set to 450. A refractory building structure having a room temperature yield stress exceeding 455 N / mm 2 and excellent in high temperature characteristics at 800 ° C., characterized in that the steel sheet is subjected to a tempering heat treatment for 20 minutes or more at a temperature range of 575 ° C. For manufacturing high-strength steel sheets for industrial use.
[0041]
(7) A steel slab or slab having the composition described in any one of (1) to (5) above is heated to 1200 ° C. or higher, and is 930 ° C. or lower and 830 ° C. or higher to the finished sheet thickness. The steel sheet is hot-rolled to ensure a cumulative reduction of 40% or more. After the rolling is completed, the steel sheet is cooled at an average cooling rate of 2 ° C./s or more from a temperature of 800 ° C. or more, and the cooling stop temperature is set to Ar1. A method for producing a high-strength steel sheet for a fire-resistant building structure having a normal temperature yield stress of more than 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Below, the reason for limitation of each component in this invention is demonstrated.
[0043]
C is essential for forming a composite carbide with Mo, Nb, Ti, and V, and at least 0.02% is necessary. However, if added over 0.10%, the Ac1 transformation temperature is lowered and the substrate structure is transformed at 800 ° C, so that it is difficult to obtain 800 ° C high-temperature strength and toughness is reduced. It is limited to 0.10% or less.
[0044]
Si is an element necessary as a deoxidizing element in steelmaking, and it is necessary to add 0.02% or more to the steel. However, if it exceeds 0.8%, the toughness of the heat affected zone is reduced. .8% is the upper limit.
[0045]
Mn is a strengthening element for normal temperature strength, but is not very effective for high temperature strength. Furthermore, in order to make the Ac1 transformation temperature 800 ° C. or higher, it is necessary to suppress the addition, and the upper limit is made 0.5%.
[0046]
Al is 0.001 to 0.1% of the range usually added as a deoxidizing element.
[0047]
Mo is a basic element constituting a composite carbide that enhances the high-temperature strength, and is an essential element in the steel of the present invention. In order to obtain a composite carbide of Mo and Nb, Ti, or a composite carbide of Mo and Nb, Ti, V at a high density, addition of more than 0.3% is necessary. If added in excess of%, the toughness of the weld heat-affected zone will be reduced, so the Mo addition amount should be more than 0.3% and not more than 1.0%.
[0048]
Nb is an essential element in the steel of the present invention as a constituent element of the composite carbide that increases the high temperature strength. Addition of 0.01% or more is necessary to increase the 800 ° C. high temperature strength. However, if added over 0.20%, the toughness of the base metal may be lowered, so the addition amount is set to 0.01% or more and 0.20% or less.
[0049]
Ti is also an essential element in the steel of the present invention as a constituent element of the composite carbide that increases the high temperature strength. Addition of 0.01% or more is necessary to increase the 800 ° C. high temperature strength. However, if added over 0.10%, the toughness of the weld heat-affected zone may be lowered and weldability may be lowered, so the added amount is made 0.01% or more and 0.10% or less.
[0050]
V is effective as a constituent element of the composite carbide that increases the high-temperature strength. In order to increase the high temperature strength at 800 ° C., addition of 0.01% or more is effective. However, if added over 0.20%, the toughness of the base metal may be lowered. Therefore, the added amount is set to 0.01% or more and 0.20% or less.
[0051]
B is added to improve hardenability and obtain a bainite single structure or a mixed structure of bainite and ferrite. For this purpose, addition of 0.0005% or more is required, but even if added over 0.010%, the effect does not change. 010% or less.
[0052]
When Cu is added as a precipitation strengthening element, it needs to be added in an amount of 0.1% or more, but even if added over 2.0%, the effect does not change. 1% or more and 2.0% or less.
[0053]
When Ni is added in order to increase the base metal toughness, 0.1% or more is required. However, since Ni decreases the Ac1 transformation temperature, if it exceeds 0.5%, the high temperature strength decreases. Therefore, the amount of Ni added is in the range of 0.1% to 0.5%.
[0054]
When Cr is added as a quenching strengthening element, 0.1% or more is required. However, if added over 1.0%, the Ac1 transformation temperature is lowered and the high temperature strength is lowered. 0.1% or more and 1.0% or less.
[0055]
By adding one or two of Mg and Ca, sulfides and oxides can be formed to increase the base metal toughness and the weld heat affected zone toughness. In order to obtain this effect, Mg or Ca needs to be added in an amount of 0.0001% or more.
[0056]
However, if it is added in excess of 0.01%, coarse sulfides and oxides are produced, and the toughness may be lowered. Therefore, the addition amount is set to 0.0001 to 0.01%.
[0057]
In addition to the above-described components, P, S, and O are unavoidable impurities that are harmful elements that lower the base material toughness. Desirably, P is 0.02% or less, S is 0.02% or less, and O is 0.005% or less.
[0058]
Next, the manufacturing method of the thick steel plate of this invention is demonstrated.
[0059]
In the present invention, in order to sufficiently dissolve the carbide- forming elements used in the present invention such as Nb and Ti, the steel slab or slab is subjected to solution treatment at a temperature of 1200 ° C. or higher, or the heating temperature during rolling is set to 1200. ℃ or more. If these processing temperatures are less than 1200 ° C., the effect of carbide required by the present invention cannot be sufficiently obtained.
[0060]
Further, hot rolling is performed in a temperature range of 930 ° C. or lower and 830 ° C. or higher to ensure a cumulative reduction ratio of 40% or higher with respect to the finished sheet thickness.
[0061]
In hot rolling in a temperature range exceeding 930 ° C., and hot rolling with a cumulative reduction ratio of less than 40%, a sufficient metal strain cannot be obtained, so that a fine metal structure cannot be obtained. The normal temperature characteristic of the steel material which the invention aims at cannot be obtained.
[0062]
In addition, when rolling is performed at a temperature range of less than 830 ° C., precipitates are precipitated at the grain boundaries due to processing-induced precipitation during rolling, so that it is difficult to obtain a composite carbide that is fine and consistent with the base material. The high temperature characteristics of the target steel material cannot be obtained.
[0063]
Moreover, after completion | finish of rolling, the average cooling rate of the steel plate surface from the temperature of 800 degreeC or more is cooled to 2 degrees C / s or more.
[0064]
This is because the precipitates deposited after rolling in the austenite region until the start of transformation loses the consistency with the substrate by undergoing transformation and greatly reduces the strengthening effect. This is because the Nb, Ti, V, and Mo are not deposited as much as possible until transformation, and are kept in a solid solution state, and the base is made of a bainite single structure or a mixed structure of bainite and ferrite.
[0065]
The cooling stop temperature is set to 450 ° C. or higher at the Ar1 point or lower, or the steel plate is subjected to tempering heat treatment for 20 minutes or longer at a temperature range of 575 ° C. or lower and 250 ° C. or higher after the cooling stop temperature is set to 450 ° C. or lower. Do. This is because, when the cooling stop temperature is set to 450 ° C. or more below the Ar1 point, during the slow cooling, and when the cooling stop temperature is set to 450 ° C. or less, during the subsequent tempering heat treatment, Mo and Nb that are fine and consistent with the substrate is to obtain a composite carbide or Mo and Ti, Nb, Ti, the complex carbide and V high density.
[0066]
In order for Mo, Nb, and Ti in a solid solution state to significantly improve the high-temperature strength, the total amount at 800 ° C. is required to be 1 × 10 −3 or more in terms of molar concentration.
[0067]
Moreover, the steel of this invention can fully receive the effect of this invention also as steel materials, such as a steel pipe, a thin steel plate, and a shaped steel other than a thick steel plate.
[0068]
【Example】
Steel pieces obtained by melting steel having the component composition shown in Table 1 were made into steel plates having a thickness of 6 to 50 mm under the production conditions shown in Tables 2 and 3. Among these, 1-A to 14-N are examples of the present invention, and 15-O to 34A are comparative examples.
[0069]
The average particle spacing of the composite carbides in Tables 2 and 3 is (Mo, Nb) , (Mo, Ti) with particle diameters of 0.005 to 0.2 μm from 10 pieces of 50,000 times electron micrographs. , (Mo, V), ( Mo, Nb, Ti), (Mo, Nb, V), (Mo, Ti, V), (Mo, Nb, Ti, V) of all the composite carbide were measured, respectively The average particle spacing was measured.
[0070]
Moreover, the total molar concentration of solid solution Mo, Nb, Ti showed the thermodynamic calculation value of the total molar concentration of Mo, Nb, Ti dissolved in steel at 800 degreeC.
[0071]
Various properties of these steel sheets are shown in Tables 2 and 3.
[0072]
The underlined items in each table are those that deviate from the scope of the present invention or that do not reach the target values of the respective characteristics.
[0073]
The lower limit of the room temperature yield strength is over 455 N / mm 2 , and the target value of 800 ° C. yield strength is 137 N / mm 2 .
[0074]
Toughness was evaluated by a Charpy impact test at −20 ° C., and the target value was an absorbed energy value vE-20 ≧ 27 J.
[0075]
Further, welding with a heat input of 5 kJ / mm was applied, and Charpy impact test specimens were collected from the most coarse-grained region of the heat-affected zone and evaluated, and the target value is also an absorbed energy value of −20 ° C. vE-20 ≧ 27J.
[0076]
Invention Examples 1-A to 14-N all have an Ac1 transformation temperature in the range of 800 ° C. to 900 ° C., the average particle spacing of the composite carbide is 20 μm or less, and the room temperature yield strength is over 455 N / mm 2 . The 800 ° C. yield strength exceeds 137 N / mm 2 and the 700 ° C. yield strength is also high.
[0077]
Further, the −20 ° C. absorbed energy (vE-20) of the base material and the weld heat affected zone is 27 J or more.
[0078]
Further, among these examples of the present invention, 2-B, 3-C, 6-F, 7-G, 8-H, 10-J, and 14-N are dissolved in steel at 800 ° C. The total amount of Mo, Nb, and Ti is 1 × 10 −3 or more in terms of molar concentration, and the 800 ° C. yield strength is 150 N / mm 2 or more.
[0079]
On the other hand, since Comparative Example 15-O has a low C, the composite carbide average particle spacing is large, the 800 ° C. yield strength is low, and the room temperature yield strength is also low. Since Comparative Example 16-P has a high C, the Ac1 transformation temperature is low, the 800 ° C. yield strength is low, and the base metal and the weld heat affected zone toughness are also low. Since Comparative Example 17-Q has high Si, the weld heat affected zone toughness is low.
[0080]
Since Comparative Example 18-R has a high Mn, Comparative Example 27-AA has a high Ni, and Comparative Example 28-AB has a high Cr, the Ac1 transformation temperature is low and the 800 ° C. yield strength is also low. Since Comparative Example 19-S has a low Mo and Comparative Example 25-Y has a low B, the composite carbide average particle spacing is large and the 800 ° C. yield strength is low.
[0081]
Since Comparative Example 21-U has low Nb and Comparative Example 23-W has low Ti, the average grain spacing of the composite carbide is large, the 800 ° C. yield strength is low, and the room temperature yield strength is also low.
[0082]
Since Comparative Example 20-T has a high Mo and Comparative Example 24-X has a high Ti, the weld heat affected zone toughness is low.
[0083]
Comparative Example 22-V has a high Nb, Comparative Example 26-Z has a high V, Comparative Example 29-AC has a high Mg, and Comparative Example 30-AD has a high Ca. Affected zone toughness is low.
[0084]
In Comparative Example 31-A, since the heating temperature during rolling is low, the composite carbide average particle spacing is large, the 800 ° C. yield strength is low, and the room temperature yield strength is also low.
[0085]
Since Comparative Example 32-B has a low cumulative rolling reduction in a temperature range of 930 ° C. or lower and 830 ° C. or higher, Comparative Example 33-B has a low cooling rate, and Comparative Example 34-A has a high tempering temperature. The composite carbide average particle spacing is large and the 800 ° C. yield strength is low.
[0086]
[Table 1]
Figure 0003987813
[0087]
[Table 2]
Figure 0003987813
[0088]
[Table 3]
Figure 0003987813
[0089]
[Table 4]
Figure 0003987813
[0090]
【The invention's effect】
According to the present invention, a steel having a room temperature yield stress exceeding 455 N / mm 2 , a high strength at high temperatures up to 800 ° C., and particularly exhibiting excellent performance as a high strength steel for high temperature fireproof building structures and its thick steel plate Method can be provided, and its effect on the industry is extremely large.

Claims (7)

質量%で、
C :0.02〜0.10%、
Si:0.02%〜0.8%、
Mn:0.5%以下、
Al:0.001〜0.1%、
Mo:0.3%超〜1.0%、
Nb:0.01〜0.20%、
Ti:0.01〜0.10%、
B :0.0005〜0.010%
を含有し、残部Feおよび不可避的不純物からなり、Ac1変態温度が800〜900℃であって、粒子径0.005〜0.2μmの(Mo,Nb)(Mo,Ti)(Mo,Nb,Ti)のいずれかの複合炭化物の1種あるいは2種以上が、平均粒子間隔20μm以下で鋼中に分散していることを特徴とする、常温降伏応力が455N/mm超で800℃高温特性に優れる耐火建築構造用高強度鋼。
% By mass
C: 0.02-0.10%,
Si: 0.02% to 0.8%,
Mn: 0.5% or less,
Al: 0.001 to 0.1%,
Mo: more than 0.3% to 1.0%,
Nb: 0.01-0.20%,
Ti: 0.01-0.10%,
B: 0.0005 to 0.010%
(Mo, Nb) , (Mo, Ti) , (Mo, with an Ac1 transformation temperature of 800 to 900 ° C. and a particle diameter of 0.005 to 0.2 μm . Nb, Ti) one or more of the composite carbides of any one of Nb and Ti) is dispersed in the steel with an average particle spacing of 20 μm or less, and the room temperature yield stress exceeds 455 N / mm 2 and is 800 ° C. High-strength steel for fireproof building structures with excellent high temperature characteristics.
質量%で、
C :0.02〜0.10%、
Si:0.02%〜0.8%、
Mn:0.5%以下、
Al:0.001〜0.1%、
Mo:0.1〜1.0%、
Nb:0.01〜0.20%、
Ti:0.01〜0.10%、
V :0.01〜0.20%、
B :0.0005〜0.010%
を含有し、残部Feおよび不可避的不純物からなり、Ac1変態温度が800〜900℃であって、粒子径0.005〜0.2μmの(Mo,Nb)(Mo,Ti)(Mo,V)(Mo,Nb,Ti)(Mo,Nb,V)(Mo,Ti,V)(Mo,Nb,Ti,V)のいずれかの複合炭化物の1種あるいは2種以上が、平均粒子間隔20μm以下で鋼中に分散していることを特徴とする、常温降伏応力が455N/mm超で800℃高温特性に優れる耐火建築構造用高強度鋼。
% By mass
C: 0.02-0.10%,
Si: 0.02% to 0.8%,
Mn: 0.5% or less,
Al: 0.001 to 0.1%,
Mo: 0.1 to 1.0%,
Nb: 0.01-0.20%,
Ti: 0.01-0.10%,
V: 0.01-0.20%,
B: 0.0005 to 0.010%
(Mo, Nb) , (Mo, Ti) , (Mo, with an Ac1 transformation temperature of 800 to 900 ° C. and a particle diameter of 0.005 to 0.2 μm . V) , (Mo, Nb, Ti) , (Mo, Nb, V) , (Mo, Ti, V) , (Mo, Nb, Ti, V) , or one or more of the composite carbides A high-strength steel for fireproof building structures having a normal temperature yield stress of more than 455 N / mm 2 and excellent 800 ° C. high temperature characteristics, characterized by being dispersed in steel with an average particle spacing of 20 μm or less.
さらに、質量%で、
Cu:0.1〜2.0%、
Ni:0.1〜0.5%、
Cr:0.1〜1.0%
のうちの1種または2種以上を含むことを特徴とする、請求項1または2に記載の常温降伏応力が455N/mm2超で800℃高温特性に優れる高強度耐火建築構造用鋼。
Furthermore, in mass%,
Cu: 0.1 to 2.0%,
Ni: 0.1 to 0.5%,
Cr: 0.1 to 1.0%
The high-strength fireproof building structural steel according to claim 1 or 2, wherein the room temperature yield stress exceeds 455 N / mm 2 and is excellent in high-temperature characteristics at 800 ° C.
さらに、質量%で、
Mg:0.0001〜0.01%、
Ca:0.0001〜0.01%
のうちの1種または2種を含むことを特徴とする、請求項1ないし3のいずれか1項に記載の常温降伏応力が455N/mm2超で800℃高温特性に優れる高強度耐火建築構造用鋼。
Furthermore, in mass%,
Mg: 0.0001 to 0.01%
Ca: 0.0001 to 0.01%
A high-strength refractory building structure having a normal temperature yield stress of more than 455 N / mm 2 and excellent in high-temperature characteristics at 800 ° C. Steel.
前記鋼が、800℃で固溶するMo、Nb、Tiを、合計でモル濃度1×10-3以上含有することを特徴とする、請求項1ないし4のいずれか1項に記載の常温降伏応力が455N/mm2超で800℃高温特性に優れる高強度耐火建築構造用鋼。5. The room temperature yield according to claim 1, wherein the steel contains Mo, Nb, and Ti, which are solid-solved at 800 ° C., in total at a molar concentration of 1 × 10 −3 or more. A high-strength fire-resistant building structural steel with excellent stress at high temperature of 800 ° C with stress exceeding 455 N / mm 2 . 請求項1ないし5のいずれか1項に記載の成分組成を有する鋼片または鋳片を、1200℃以上に加熱し、930℃以下830℃以上の温度域で仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行い、圧延終了後、800℃以上の温度からの鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、冷却停止温度を450℃以下とした後に鋼板を575℃以下250℃以上の温度範囲で20分以上の焼戻し熱処理を行うことを特徴とする、常温降伏応力が455N/mm2超で800℃高温特性に優れる耐火建築構造用高強度鋼板の製造方法。A steel slab or cast slab having the composition according to any one of claims 1 to 5 is heated to 1200 ° C or higher, and 40% or more of the finished plate thickness in a temperature range of 930 ° C or lower and 830 ° C or higher. The steel sheet is hot-rolled to ensure the cumulative reduction ratio of the steel sheet, and after the rolling, the steel sheet is cooled at an average cooling rate of 2 ° C./s or higher from a temperature of 800 ° C. or higher, and the cooling stop temperature is set to 450 ° C. or lower. The steel sheet is later subjected to a tempering heat treatment at a temperature range of 575 ° C. or lower and 250 ° C. or higher for 20 minutes or longer, and a high-strength steel plate for fireproof building structures having a normal temperature yield stress of more than 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C. Manufacturing method. 請求項1ないし5のいずれか1項に記載の成分組成を有する鋼片または鋳片を、1200℃以上に加熱し、930℃以下830℃以上の温度域で仕上げ板厚に対して40%以上の累積圧下率を確保する熱間圧延を行い、圧延終了後、800℃以上の温度からの鋼板表面の平均冷却速度が2℃/s以上の冷却を行い、冷却停止温度をAr1点以下450℃以上とすることを特徴とする、常温降伏応力が455N/mm2超で800℃高温特性に優れる耐火建築構造用高強度鋼板の製造方法。A steel slab or cast slab having the composition according to any one of claims 1 to 5 is heated to 1200 ° C or higher, and 40% or more of the finished plate thickness in a temperature range of 930 ° C or lower and 830 ° C or higher. The steel sheet is hot-rolled to ensure the cumulative reduction ratio, and after the end of rolling, the steel sheet is cooled at an average cooling rate of 2 ° C./s or higher from a temperature of 800 ° C. or higher, and the cooling stop temperature is 450 ° C. below the Ar1 point. A method for producing a high-strength steel sheet for a fireproof building structure having a normal temperature yield stress of more than 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.
JP2003092011A 2002-03-29 2003-03-28 High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C. Expired - Fee Related JP3987813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092011A JP3987813B2 (en) 2002-03-29 2003-03-28 High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002094834 2002-03-29
JP2003092011A JP3987813B2 (en) 2002-03-29 2003-03-28 High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.

Publications (2)

Publication Number Publication Date
JP2004002990A JP2004002990A (en) 2004-01-08
JP3987813B2 true JP3987813B2 (en) 2007-10-10

Family

ID=30446358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092011A Expired - Fee Related JP3987813B2 (en) 2002-03-29 2003-03-28 High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.

Country Status (1)

Country Link
JP (1) JP3987813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350181B2 (en) * 2009-10-27 2013-11-27 株式会社神戸製鋼所 Case-hardened steel with excellent grain coarsening prevention properties
EP3856946A1 (en) * 2018-09-28 2021-08-04 Corning Incorporated Alloyed metals with an increased austenite transformation temperature and articles including the same
CN115572913B (en) * 2022-09-08 2023-07-25 舞阳钢铁有限责任公司 Fireproof high-strength steel and production method thereof

Also Published As

Publication number Publication date
JP2004002990A (en) 2004-01-08

Similar Documents

Publication Publication Date Title
JP2002533567A5 (en)
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP2002534601A5 (en)
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP4329583B2 (en) Low yield ratio H-section steel excellent in earthquake resistance and manufacturing method thereof
WO2006093282A1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPH0610040A (en) Production of high strength refractory steel excellent in toughness at low temperature in weld zone
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP3987813B2 (en) High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.
JP5098317B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP5381828B2 (en) Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method
JPS5952687B2 (en) Manufacturing method of tempered high-strength steel plate with excellent low-temperature toughness
JP4631299B2 (en) Low yield ratio rolled H-section steel excellent in fire resistance and manufacturing method thereof
KR102155431B1 (en) Shape steel and method of manufacturing the same
JP4860071B2 (en) 800 ° C high-temperature fireproof building structural steel and method for producing the same
JP4203343B2 (en) 800 ° C. high temperature properties excellent in normal temperature tensile strength 400 to 490 N / mm class 2 fireproof building structural steel and method for producing the thick steel plate
JP5347824B2 (en) Refractory steel material excellent in high-temperature strength of base metal and high-temperature ductility of weld heat-affected zone and its manufacturing method
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JP7297096B2 (en) Shaped steel and its manufacturing method
JP2655956B2 (en) Manufacturing method of low yield ratio refractory steel sheet for building structure
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

R151 Written notification of patent or utility model registration

Ref document number: 3987813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees