JP2004360361A - Steel structure without fireproofing coating - Google Patents

Steel structure without fireproofing coating Download PDF

Info

Publication number
JP2004360361A
JP2004360361A JP2003162012A JP2003162012A JP2004360361A JP 2004360361 A JP2004360361 A JP 2004360361A JP 2003162012 A JP2003162012 A JP 2003162012A JP 2003162012 A JP2003162012 A JP 2003162012A JP 2004360361 A JP2004360361 A JP 2004360361A
Authority
JP
Japan
Prior art keywords
temperature
steel
strength
fire
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003162012A
Other languages
Japanese (ja)
Inventor
Tadayoshi Okada
忠義 岡田
Tatsuya Kumagai
達也 熊谷
Yasushi Mizutani
泰 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003162012A priority Critical patent/JP2004360361A/en
Publication of JP2004360361A publication Critical patent/JP2004360361A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel structure without fireproofing coating, restraining forced deformation to a column, and capable of finally restraining a column member angle to 1/50 or less, by reducing extension quantity of a beam in a fire, by providing a steel frame structure constituting column having high temperature strength (and high temperature time rigidity) of 600 to 800 °C, in a steel frame structure subjected to the fire. <P>SOLUTION: In this steel structure without fireproofing coating, the steel structure constituting column is formed of a novel steel material superior in the high temperature strength, on which a yield strength reduction ratio (p) (high temperature yield strength/ ordinary temperature yield strength) of making high temperature time yield strength dimensionless by ordinary temperature time yield strength, satisfies p ≥ -0.0029 x T + 2.48, in a range of the steel material temperature T of 600 to 800 °C; and the beam (including a composition beam) joined to this column is formed of a steel material always inferior in the high temperature strength to a column forming steel material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、火災時の梁の伸び出し量を低減可能な無耐火被覆鉄骨構造物に関するものである。
【0002】
【従来の技術】
鉄骨構造物が火災を受けた場合には、火災階の梁が熱膨張して、柱を押し出すことにより、柱に大きな部材角が生じ層崩壊に至る可能性がある。このため、平成12年建設省告示第1433号として告示された「耐火性能検証法」において、柱の部材角δ/h(ここで、δは梁の伸び出し量の総和、hは階の高さ)を1/50以下にするために、火災区画の床面積Sの規模(火災区画の加熱梁の総延長L≒√S)に応じた温度制限を設けている。
また、欧州鋼構造協会(ECCS)が1980年に公表した「標準火災加熱に対する鋼構造耐力部材の耐火設計ヨーロッパ基準」や、特許文献1の例では、柱の部材角δ/hを1/30以下とすることが開示されている。
【0003】
梁の伸び出し量を低減できる構造としては、例えば、特許文献2には、梁継手に形状記憶合金を用いて梁の伸び出しをキャンセルする熱変形吸収構造が提案されているが、この構造では数十mm以上に達する梁の伸び出し量を吸収させることは困難であり、かつ、高価ということに加えて、梁上部の床スラブに拘束される場合では、熱変形吸収効果が十分に発揮されないなどの問題がある。
また、特許文献3には、ブレース構面骨組の梁を長期曲げモーメントが小さくなる位置で分割し、この分割梁の分割側の端部を水平方向に摺動自在に接続するスライド継手を設けて梁の伸び出し量を低減させる構造が提案されているが、この構造においても、対象がブレース構面骨組および分割梁構造に限定され、かつ特殊なスライド継手の採用によるコスト高に加えて、梁上部の床スラブに拘束される場合には、スライド継手の効果が十分に発揮されないなどの問題がある。このため、火災時の梁の伸び出し量を効果的に低減でき、高温強度および高温剛性にも優れた無耐火被覆構造の鉄骨構造物の実現が課題となっていた。
【0004】
【特許文献1】
特開平11−326148号公報(p4の記載)
【特許文献2】
特開平7−18758号公報(請求項1、図1の記載)
【特許文献3】
特開平10−245889号公報(請求項1、図1の記載)
【0005】
【発明が解決しようとする課題】
本発明の課題は、火災を受ける鉄骨構造物において、高温強度および高温剛性に優れ、特殊な梁継手や骨組構造を用いることなく、火災時の梁の伸び出し量を低減して、柱部材角(δ/h)を最終的に1/50以下に抑制可能にして層崩壊を防止できる無耐火被覆鉄骨構造物を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、以下の(1)〜(4)を要旨とするものである。
(1) 火災を受ける鉄骨構造物であって、この鉄骨構造物を構成する柱を、常温時の降伏強度により高温時の降伏強度を無次元化した降伏強度低下率p(高温降伏強度/常温降伏強度)が、鋼材温度T(℃)が600℃以上800℃以下の範囲で、p≧−0.0029×T+2.48を満足する高温強度に優れた鋼材(以下「600〜800℃での高温強度に優れた鋼材」と呼称する。)で形成し、この柱と接合する梁を、柱形成用の鋼材より常に高温強度が劣る鋼材で形成したことを特徴とする無耐火被覆鉄骨構造物。
(2) (1)において、梁を合成梁としたことを特徴とする無耐火被覆鉄骨構造物。
(3) (2)において、合成梁を形成する床スラブに耐火補強筋を配したことを特徴とする無耐火被覆鉄骨構造物。
(4) (1)〜(3)のいずれかにおいて、高温強度に優れた柱形成用の鋼材が、質量%で、C:0.005%以上0.08%未満、Si:0.5%以下、Mn:0.1〜1.6%、P:0.02%以下、S:0.01%以下、Mo:0.1〜1.5%、Nb:0.03〜0.3%、Ti:0.025%以下、B:0.0005〜0.003%、Al:0.06%以下、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなる高温強度に優れた鋼材であることを特徴とする無耐火被覆鉄骨構造物。
【0007】
【発明の実施の形態】
本発明は、概念的には、火災を受ける可能性のある鉄骨構造物において、柱を600〜800℃での高温強度(および高温剛性)に優れた鋼材で形成して無耐火被覆構造を可能にするとともに、この柱と接合する梁を、柱形成用の鋼材より常に高温強度(および高温剛性)が劣る鋼材で形成して、火災時に伸びる梁の端部を高温剛性の大きい柱によって拘束して梁をたわませることにより、梁の伸び出しによる柱の強制変形を抑制し、柱部材角(δ/h)を最終的に1/50以下に抑制して層崩壊を防止するものである。
本発明者らは、火災による高温時に無耐火被覆構造で十分に耐えられる鉄骨構造物を実現するためには、600〜800℃での高温強度(および高温剛性)に優れた鋼材が必要であるが、柱と梁に同じ鋼材を使用した場合には、火災時の梁の伸び出しによって、柱に大きな押出力が作用し柱が強制変形して柱部材角(δ/h)が1/50以上、さらには1/30以上になって、火災時に層崩壊が生じやすくなるという知見を得た。
【0008】
本発明は、上記の知見に基づいてなされたものであり、より具体的には、以下の(1)〜(3)を要旨とするものである。
(1).鉄骨構造物を構成する柱を、常温時の降伏強度により高温時の降伏強度を無次元化した降伏強度低下率p(高温降伏強度/常温降伏強度)が、鋼材温度T(℃)が600℃以上800℃以下の範囲で、p≧−0.0029×T+2.48を満足する高温強度に優れた鋼材で形成し、この柱と接合する梁を、柱形成用の鋼材より常に高温強度が劣る鋼材、例えばSM490A(JIS G 3106)、SN490B(JIS G 3136)などの従来鋼材で形成することにより、火災時に伸びる梁の端部を柱によって拘束して梁をたわませることにより、梁の伸び出し量を低減して、梁の伸び出しによる柱の強制変形を抑制し、柱部材角(δ/h)を最終的に1/50以下に抑制する。
ここで、p≧−0.0029×T+2.48の条件は、火災による600〜800℃の高温時にも十分な降伏強度および高温剛性を確保して無耐火被覆構造を実現する重要な条件となるものである。
【0009】
この柱に接合する梁の条件としては、柱を上記の条件を満足する鋼材で形成した場合において、火災時の梁の伸び出しが、柱部材角(δ/h)が最終的に1/50以下になるように端部が柱で拘束される(伸びても撓むことにより伸び出し量が低減する)必要があることから、梁は柱形成用の鋼材より常に高温強度が劣る鋼材で形成することが重要な条件になる。(請求項1に相当)
なお、本発明で対象となる柱は、角形または円形の鋼管(溶接管を含む)やH形鋼などで構成され、また梁はH形鋼で構成される。この柱と梁の接合は、通常の場合、接合金物やダイアフラムを使用したボルト接合や、溶接接合またはボルト接合と溶接接合の併用により行われるが、いずれを組み合わせた場合にも本発明の適用は可能である。
【0010】
(2).梁は、合成梁{(鉄骨梁と、コンクリートからなる床スラブを頭付きスタッド(JIS B1198)などの剪断ずれ止めで接合することにより、梁と床スラブが一体となって曲げに抵抗する構造(日本建築学会:各種合成構造設計指針・同解説、1985)を有する梁を意味し、以下これを「合成梁」という。}とすることにより、床スラブのコンクリートの熱容量により、梁の伸び出し量をさらに低減できる構造とすることができる。(請求項2に相当)
この場合に、床スラブに耐火補強筋を配して上階床に対する耐荷力を増すことにより、高温時に梁が強度喪失しても水平防火区画としての床の機能を損なわないようにして、伸び出し量をさらに低減できる構造とすることができる。(請求項3に相当)
【0011】
(3).柱を形成する鋼材として、600〜800℃での高温強度および高温剛性に優れた鋼材を用いる。この鋼材は、1時間程度の比較的短時間における高温強度が優れたな低合金炭素添加の新規の鋼材である。
この鋼材としては、例えば、質量%で、C:0.005%以上0.08%未満、Si:0.5%以下、Mn:0.1〜1.6%、P:0.02%以下、S:0.01%以下、Mo:0.1〜1.5%、Nb:0.03〜0.3%、Ti:0.025%以下、B:0.0005〜0.003%、Al:0.06%以下、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなる鋼材が適性が高いものである。(請求項4に相当)
【0012】
従来、600℃以上での高温強度を有する鋼材は、一般に耐火鋼と呼称しており、例えば、特開平2−77523号公報に記載の発明では、600℃で常温降伏強度の2/3以上(約70%)の高温強度を有する耐火鋼が提案されている。その他の耐火鋼に関する発明の例でも、600℃での降伏強度を常温降伏強度の2/3以上とすることが一般的となっている。
しかしながら、700℃の耐火鋼、800℃の耐火鋼は、現時点では高温強度の設定(常温降伏強度との比率)に一般則が見られない。例えば、特開平2−77523号公報に記載の発明では、相当量のMoとNbを添加した鋼材で、600℃での降伏強度が常温降伏強度の70%以上を確保するものであるが、火災時の梁の伸び出し量を低減し無耐火被覆構造を可能とすることを前提とするものではないし、700℃、800℃での耐力も示されていない。
【0013】
また、600℃での降伏強度が常温降伏強度の70%程度では火災時の温度上昇を考慮すると、耐火被覆量の低減は可能であるものの省略が可能となる鉄骨構造物は立体駐車場やアトリウムなどの解放的空間に限定されるため、無耐火被覆での使用は著しく限定される。
また、特開平10−68044号公報に記載の発明では、相当量のMoとNbを添加した鋼材でミクロ組織をベイナイトとすることにより、700℃の降伏強度を、常温降伏強度の56%以上にするものであるが、800℃の降伏強度は示されていない。
すなわち、これらの例のように600℃程度の高温強度を確保した鋼材は、既に市場でも使用されており、700℃程度の高温強度を確保する鋼材の発明もなされているが、火災時の梁の伸び出し量を低減し無耐火被覆構造を可能とすることを前提として、700℃、800℃での高温強度を安定確保できる実用鋼材の安定的な供給は困難であった。
【0014】
本発明では、柱に600〜800℃での高温強度に優れた鋼材を用いるが、梁に前記鋼材より常に高温強度が劣る鋼材、例えばSM490A(JIS G 3106)、SN490B(JIS G 3136)などの従来鋼を用いることを主眼とする。例えば、柱、梁ともに600〜800℃での高温強度に優れた鋼材を用いた場合、梁が相対的に強く高温時の剛性も高くなるため、却って梁の伸び出し量が大きくなってしまい、柱の部材角制限(例えば1/50)を早期に超過して層崩壊に至る懸念が大となる。また、柱に600〜800℃での高温強度に優れた鋼材を用い、梁に従来鋼を耐火被覆して用いた場合でも、上記の例以上に梁が強くなってしまうため、梁の伸び出し問題が回避できないことから、通常、梁の耐火被覆厚さを吹き増して梁の伸び出しを抑制するなどの対策を施さざるを得ない。
そこで、本発明では、柱を600〜800℃での高温強度に優れた(同時に高温時の剛性にも優れた)新規な鋼材で形成し、梁を柱形成鋼材より高温強度に劣る(同時に高温時の剛性にも劣る)、例えばSM490A、SN490Bなどの従来鋼材で形成し、特殊な梁継手や骨組構造を用いることなく、火災時の梁の伸び出し量を低減できる構造を、無耐火被覆構造として新たに提供するものである。
なお、本発明では、例えば柱を800℃での高温強度に優れた鋼材で形成する場合は、梁を従来鋼のほか、例えば600℃耐火鋼、700℃耐火鋼などで形成することも可能である。
また本発明では、仕上げボード材の熱遮蔽効果により、柱の適用火災温度範囲の拡大も考慮に入れる。すなわち、柱に600〜800℃での高温強度に優れた鋼材を用いる場合、鋼材の裸使用であれば、火災温度の上限は950℃程度となるが、仕上げボード材の熱遮蔽を期待できれば、火災温度の上限は1150℃程度とすることができる。
【0015】
以下に、本発明について詳述する。
1.梁の伸び出し量低減の考え方
(a)梁の伸び出しと高温時剛性
火災時に建築物が層崩壊することは許容できないから、少なくとも柱の熱応力による損傷は極力回避する必要がある。したがって、柱に許容できない強制変形が起こる以前に、梁に局部破壊を生じさせて柱の熱応力を緩和すればよいという耐火設計の考え方が採り得る。
すなわち、火災時には、梁に対して柱が拘束を与えると考えられるので、柱の剛性を高めて梁の材端拘束度を大にして、梁を意図的に早期に局部破壊させて熱応力の緩和を図り、柱が外側に大きく押し出されるような強制変形を防止するのが有効である。ただし、梁の局部破壊後も、床スラブに耐火補強筋などを配して上階床に対する耐荷力を増し、水平防火区画としての床の機能を損なわないことが必要である。このようにすれば、梁が高温時に強度喪失しても、床の荷重は柱に直接伝達されるため、床崩壊を回避することが可能となる。
【0016】
図1(a)、(b)に梁の材端拘束度と熱変形の関係を示す。図1(a)は、柱に600〜800℃での高温強度に優れた(同時に高温時の剛性にも優れた)鋼材を用い、梁に前記鋼材より常に高温強度が劣る(同時に高温時の剛性にも劣る)従来鋼材を用いた場合を示し、柱による梁の材端拘束度を大きくして梁の伸び出しを小さくすることによって、柱の強制変形を小さくし柱部材角δ/hを1/50以下に小さくして層崩壊を防止できることが分かる。
なお、図1(b)は、柱と梁に同レベルの高温強度に優れた(同時に高温時の剛性にも優れた)鋼材を用いた場合を示し、柱による梁の材端拘束度が小さく梁の伸び出しが大きくなり、柱の強制変形が大きくなることによって柱部材角δ/hが1/50より大幅に大きくなり、層崩壊が生じやすくなる。したがって、このような現象の発生を回避する必要がある。
【0017】
なお、常温時の降伏強度により高温時の降伏強度を無次元化した降伏強度低下率p(高温降伏強度/常温降伏強度)と常温時のヤング係数により高温時のヤング係数を無次元化したヤング係数低下率r(高温ヤング率/常温ヤング率)を比較すると、同一温度ではp<rの関係があることが知られている。
図2(a)(b)に、建築物の総合防火設計法 第4巻 耐火設計法:建設省大臣官房技術調査室監修、(財)国土開発技術研究センター編集((財)日本建築センター平成元年4月発行)より転載した、従来鋼での鋼材温度T(℃)と降伏応力度比(降伏強度低下率pに相当)の関係、鋼材温度T(℃)と弾性係数比(ヤング係数低下率rに相当)の関係を示す。
また、図3(a)(b)に、建築構造用耐火鋼[NSFR]Cat.No.AC104:1996.2版(2000.1、新日本製鐵株式会社発行)より転載した600℃耐火鋼での鋼材温度T(℃)と応力の関係、鋼材温度T(℃)とヤング係数の関係を示す。
同じ温度で見た場合、図2と図3は、単位が同一のものではないが、同一の単位に置き換えた場合には、降伏強度低下率pよりヤング係数低下率rの方が低下の割合が緩やかであることを示しており、このことから、ヤング係数低下率rを、降伏強度低下率pで代用すれば安全側の評価ができることが分かる。また同時に、高温強度に優れた鋼材を用いることは、すなわち、高温剛性に優れた鋼材を用いることが分かる。よって、以下では、高温時の降伏強度低下率pをヤング係数低下率rに読み替えて用いることとする。
【0018】
(b)梁の伸び出し量の算定方法
火災時の加熱により梁温度が均等にT℃上昇して、熱応力σtを生じたとすると、この時の梁の歪度はεtとなり、熱膨張による梁の見掛け上の伸び率aは下式で表される。
σt=Etb×εt (1)
a=b×T−εt (2)
ここに、σt:高温時の梁の熱応力度(N/mm
εt:高温時の梁の歪度
Etb:高温時の梁のヤング係数(=rb×Eb)(N/mm
Eb:常温時のヤング係数(N/mm
rb:高温時の梁のヤング係数低下率
a:梁の見掛け上の伸び率
b:線膨張係数(=1.2×10−5
T:高温時の鋼材温度(℃)
【0019】
一方、高温時の梁の材端弾性固定係数(バネ定数)をkとすると、梁の熱応力度σtは、次式で表される。
σt=k×l/Ab×a (3)
ここに、k:高温時の梁の材端弾性固定係数(バネ定数)(N/mm)
Ab:梁の断面積(mm
l:梁の長さ(mm)
ただし、kは、図4に示す火災時変形のモデルを基に式(4)で求める。なお、柱は高温時においても長期荷重に対して十分な軸耐力を有するものとする。

Figure 2004360361
ここに、ku:火災階の上階柱(常温)による梁の材端拘束度(N/mm)
1/ku=(h−db)3 /(24×Ec×Ic)
+(h−db)/(Gc×Ac)
=(h−db)×{(h−db)2 +10.4×dc2 }
/(24×Ec×Ic)
h:階の高さ(mm)
db:梁のせい(梁の上下フランジの中心間距離)(mm)
Ec:常温時の柱のヤング係数(N/mm
Ic:柱の断面二次モーメント(=Ac×dc2 /6)(mm
Gc:常温時の柱の剪断弾性係数(=Ec/2.6)(mm
Ac:柱の断面積(mm
dc:柱のせい(柱の左右フランジの中心間距離)(mm)
kd:火災階の柱(高温)による梁の材端拘束度(N/mm)
1/kd=(h−db)
×{(h−db)2 +10.4×dc2 }
/(24×Etc×Ic)
Etc:高温時のヤング係数(=rc×Ec)(N/mm
rc:高温時の柱のヤング係数低下率
【0020】
式(1)に式(2)〜(4)を代入して、火災時の梁の見掛け上の伸び率aが求まる。
Figure 2004360361
ここに、Ec/Ed=1.0LAB=l/Ab
RCB=rc/{(1+rc)×rb}
HDC=(h−db)×{(h−db)2 }+10.4×dc2 }
よって、火災時の梁の伸び出し量の総和δが、次のように求められる。
Figure 2004360361
ここに、L:火災区画の梁の総延長(=n×l)(mm)
n:火災区画の梁のスパン数(ここでは各梁の長さはすべて同一と
する。)
【0021】
例えば、柱、梁ともに従来鋼を用いた場合、柱:□−400×19、梁:H−600×200×11×17、階の高さ(h):4m、各梁の長さ(l)6m、火災区画の加熱梁の総延長(L):24mとすれば、d=38.1cm、db:58.3cm、Ab=131.7cm 、Ic=66,600cm 、LAB=4.56/cm、HDC=45,100,000cm であり、550℃でrc=rb=0.4(表4参照)であるから、RCB=0.714となる。
よって、温度(T)が550℃の時点で梁の伸び出し量の総和δは、δ=14.2cmとなり柱部材角1/30(δ=13.3cm)を超えてしまう。
【0022】
2.合成梁による梁の伸び出し量の考え方
梁を合成梁とした場合、床スラブのコンクリートの熱容量により、コンクリートの上昇温度は鉄骨梁より小さくなり、梁の伸び出し量は前述した場合より低減される。文献「FR鋼の耐熱性能とこれを用いた合成梁の耐火性能」(窪田伸ほか):日本建築学会大会学術講演梗概集、1999.9、pp.43−46)より転載した、合成梁試験体の梁温度と床スラブ上面(スラブ裏面)温度の例を図5(a)に示す。図5(b)は、ここで用いた合成梁試験体と加熱実験装置例を示すものである。図5(a)に示すように、梁(ここではH−400×200×8×13)の下フランジおよびウエブの温度が約600℃の場合でも床スラブ上面は約50℃に留まっている。
【0023】
また、一般に梁は全断面一様の温度上昇を仮定するが、合成梁の場合、床スラブの熱容量のため、梁の下フランジから上フランジにかけて、梁断面の高さ方向に温度勾配が生じる。このため、梁に全断面一様の鋼材温度を仮定した場合に比べて、実際の梁の鋼材温度(平均値)は小さくなり、梁の伸び出し量は前述した場合よりさらに低減される。
図5(a)から、載荷開始時の梁の最高温度は、ウエブおよび下フランジの約600℃であるが、上フランジが約450℃のため、その平均値は約550℃となっており、最高温度から約10%低くなっていることが分かる。
梁断面の高さ方向での温度勾配を考慮した場合、梁には熱たわみが生じるため、梁端部には、この熱たわみを拘束する曲げモーメントが生じ、これより梁端部は温度勾配を配慮しない場合に比べ早期に塑性化(局部座屈発生)する。このため、梁のたわみは大きくなり、同時に柱が受ける梁からの押し出し量は小さくなる。
図6に、梁端部の座屈発生時の変形を示す。この図から局部座屈発生の結果、梁の伸び出し量は減少することが分かる。さらに梁温度が上昇すると、梁は大きく柱にぶら下がるような状態になり、一度外側に大きく押し出された柱は逆に内側に引き戻される。その後、温度を上昇させると、最終的に荷重を支えきれなくなり崩壊(3ヒンジ状態)に至る。図7に3ヒンジ形成時の変形を示す。この図から梁の伸び出し量がさらに減少することが分かる。
【0024】
3.高温強度確保および鋼材成分等の限定の考え方
(a)高温強度確保の考え方
耐火設計においては、火災継続時間内で高い強度を維持すればよく、従来の耐熱鋼のように、長時間の高温強度を維持する必要はなく、比較的短時間の高温強度を維持すればよい。例えば、800℃での保持時間が30分程度の短時間、降伏強度が確保できれば、本発明でいう800℃耐火鋼として十分利用できる。
従来の600℃耐火鋼では、高温降伏強度が常温時の2/3以上となるように性能を定めていたが、鉄骨構造物の実設計範囲が、常温降伏強度下限の0.2〜0.4倍程度であることを勘案すれば、常温時の降伏強度から高温時の降伏強度を無次元化した降伏強度低下率p(高温降伏強度/常温時降伏強度)が、鋼材温度T℃が600℃以上800℃以下の範囲でp≧−0.0029×T+2.48を満足することが必要となる。言い換えると、実績の降伏強度低下率(p)が、600℃でp≧0.74、700℃でp≧0.45、800℃でp≧0.16を満足すればよい。
【0025】
高温強度増加に対してはMo、Nbの複合添加により、高温において安定な炭窒化物の析出を促進するとともに、ミクロ組織のベイナイト化が有効である。常温強度を高め、高張力鋼としての特性を強調するためにはベイナイト単組織としてもよい。しかし、硬質ベイナイトの分率が多いほど常温の強度が高くなることから、降伏比の上限が要求される場合には、所要の常温強度および諸特性に応じて、ミクロ組織をベイナイト単組織または適切なベイナイト分率を有するフェライトとベイナイトの混合組織とすることが望ましい。
適切なミクロ組織を作り込み所要の常温強度範囲を達成するには低C化が有効である。低C化は、ベイナイトあるいはベイナイトとフェライトの混合組織の高温における熱力学的安定性を高め、オーステナイトへの逆変態温度(Ac)を上昇させる効果を持つ。しかし、この場合、ミクロ組織および材質が圧延条件とその後の冷却条件により影響を受けやすく、安定的な製造が困難であることが判明した。
【0026】
そこで、本発明者らは、ミクロ組織制御と高温強度の増加に取り組んだ結果、適量のB添加が製造安定化に有効であることを知見し、本発明の柱形成鋼材として適性の高い鋼材であると判断するに至った。一般的な溶接構造用鋼として、溶接性は従来と同様に具備する必要があるため、700〜800℃の高温強度は、Mo、Nb、V、Tiなどの合金元素の複合添加による析出強化とミクロ組織のベイナイト化による転位密度の増大、さらには固溶Mo、Nb、Vによる転位回復遅延が有効であり、Tiも若干の効果があることを突き止めた。
700〜800℃の強度と常温の強度の全てを同時に確保するためには、ミクロ組織を適切なフェライトとベイナイトの混合組織あるいはベイナイト単組織とするとともに、添加合金元素量を最適範囲として、高温における母相組織の熱的安定性と整合析出強化効果および転位回復遅延効果を得ることが重要であることを見い出した。さらに、低降伏比を確保するためには、ミクロ組織を適切なフェライトとベイナイトの混合組織とすることが必要である。
鋼材の降伏強度は、一般に450℃近傍から急激に低下するが、これは温度上昇に伴い熱活性化エネルギーが低下し、転位のすべり運動に対して低温では有効であった抵抗が無効となるためである。通常、700℃未満程度の温度域での強化に利用されるCr炭化物やMo炭化物などは、転位のすべり運動に対して600℃程度の高温までは有効な抵抗として作用するものの、800℃という高温では再固溶してしまうため、ほとんど強化効果を維持できない。
【0027】
本発明者らは、高温における安定性のより高い単独あるいは複合の析出物を種々検討した。その結果、MoとNb、Ti、Vの複合析出物は高温における安定性が高く、700〜800℃においても高い強化効果を有することを見出した。すなわち、Mo、Nb、Ti、Vを適量添加して圧延時の加熱温度を高くとることで、これらを十分に固溶させ、かつ、転位密度の高い適切な圧延組織の導入により、析出物が析出可能な析出サイトを確保することで、再昇温時、例えば火災による昇温中にMoとNb、Ti、Vの複合析出物が微細に析出する。
こうした複合析出物も、700〜800℃保持中に成長粗大化して、やがて強化効果は小さくなるが、非常に微細かつ高密度に分散して存在する場合、30分程度の保持時間内においては、800℃降伏強度目標値を十分得ることができる。しかし、析出物自体は安定であっても、温度上昇によって素地が変態すれば析出物と素地との整合性が失われて非整合になるために、析出物による強化作用が急激に低下する。すなわち、高温でも安定な複合析出物による強化効果を利用するためには、設計温度である800℃においても素地組織を変態させないことが材料にとって必須となる。したがって、具体的には、オーステナイトフォーマーであるMnの添加量を低くするなどの合金元素の調整によって、鋼のAc1変態温度を800℃以上とすることが必要である。
【0028】
(b)鋼材成分等の限定の考え方
以下に本発明による各成分の限定理由を説明する。なお、%は質量%を意味する。
Cは、鋼材の特性に最も顕著な効果を及ぼす元素であり、Mo、Nb、Ti、Vとの複合析出物(炭化物)を形成するために必須であるため、少なくとも0.005%が必要である。これ未満のC量では強度が不足する。0.08%を超えて添加するとAc変態温度が下降するために800℃における強度が得にくく、また靭性も低下するので、0.005%以上0.08%未満に限定する。さらに火災相当の高温加熱時にフェライトとベイナイトの混合母相組織を熱力学的に安定に保ち、Mo、Nb、Ti、Vの複合炭窒化析出物との整合性を維持して、強化効果を確保する上で、0.04%未満とすることがより望ましい。
Siは、脱酸目的のため鋼に含まれる元素であり、置換型の固溶強化作用を持つことから常温での母材強度向上に有効であるが、特に、600℃超の高温強度を改善する効果はない。また、多く添加すると溶接性、HAZ靭性が劣化するため、上限を0.5%に限定する。なお、鋼の脱酸はTi、Alのみでも可能であり、HAZ靭性、焼入性などの観点から低いほど好ましく必ずしも添加する必要はない。
【0029】
Mnは、強度、靭性を確保する上で不可欠な元素ではあるが、置換型の固溶強化元素であるMnは常温での強度上昇には有効であるが、特に600℃超の高温強度にはあまり大きな改善効果はない。したがって、本発明のように比較的多量のMoを含有する鋼において溶接性向上すなわち、PCM低減の観点から、1.6%以下に限定する。Mnの上限を低く抑えることにより、連続鋳造スラブの中心偏析の点からも有利となる。さらにAc変態温度を800℃以上とするためには、添加を抑制する必要があり、上限を0.9%とすることが望ましい。なお、下限については、特に限定しないが、母材の強度、靭性調整上、0.1%以上添加することが望ましい。
Pは、本発明鋼においては不純物であり、P量の低減はHAZにおける粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため、上限を0.02%とする。
Sは、Pと同様、本発明鋼においては不純物であり、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと、母材、溶接部の低温靭性を劣化させるため、上限を0.01%とする。
【0030】
Moは、高温強度を高める複合析出物を構成する基本元素であり、本発明鋼においては必須元素である。MoとNb、Tiとの複合析出物、あるいは、MoとNb、Ti、Vとの複合析出物を高密度に得て高温強度を高めるには、0.1%以上添加することが必要である。1.5%を超えて添加すると母材材質の一様性の制御が困難になるとともに、、溶接熱影響部の靭性の劣化を招き、さらには経済性を失するため、Moの添加量は0.1%以上1.5%以下、より好ましくは0.2%以上1.1%以下とする。
Nbは、Moを比較的多量に添加する本発明においては700℃〜800℃の高温強度を確保するために重要な役割を演ずる元素である。まず、一般的な効果として、オーステナイトの再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮する上で有用な元素である。また、圧延に先立つ再加熱や焼ならしや焼入れ時の加熱オーステナイトの細粒化にも寄与する。さらに、析出硬化として強度向上効果を有し、Moとの複合添加により高温強度向上にも寄与する。0.03%未満では700〜800℃における析出硬化の効果は少なく、0.1%以上の添加が好ましい。一方、0.3%を超えると母材の靭性を低下させる恐れがあるため、上限を0.3%とする。よって、0.03%〜0.3%を限定範囲とする。
【0031】
TiもNbと同様に、高温強度上昇に有効である。特に母材および溶接熱影響部靭性に対する要求が厳しい場合には、添加することが好ましい。なぜならばTiNは、Al量が少ないとき(例えば0.003%以下)、Oと結合してTi を主成分とする析出物を形成、粒内変態フェライト生成の核となり溶接部靭性を向上させる。また、TiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時に溶接熱影響部の組織を細粒化するためである。
これらの効果を得るためには、Tiは最低0.005%以上必要である。しかし、多過ぎるとTiCを形成し、低温靭性や溶接性を劣化させるので、好ましくは0.02%以下、上限は0.025%とする。
【0032】
Bは、ベイナイトの生成分率を介して強度を制御する上で極めて重要である。すなわち、Bはオーステナイト粒界に偏析してフェライトの生成を抑制することを介して焼入性を向上させ、空冷のような冷却速度が比較的小さい場合においてもベイナイトを安定的に生成させるのに有効である。この効果を享受するため、最低0.0005%以上必要である。しかし、多過ぎる添加は焼入性向上効果が飽和するだけでなく、旧オーステナイト粒界の脆化や靭性上有害になるB析出物を形成する可能性があるため、上限を0.003%とする。
Alは、一般に脱酸目的のため鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない(0%を含む)。しかし、Al量が多くなると、鋼の清浄度が悪くなるだけではなく、溶接金属の靭性が劣化するので上限を0.06%とする。
Nは、不可避不純物として鋼中に含まれるものであり、その下限は特に定めないが、N量の増加はHAZ靭性、溶接性に極めて有害であり、本発明鋼においてはその上限は0.006%とする。
【0033】
【実施例】
[実施例1]
本発明で柱形成に使用する600〜800℃での高温強度に優れた鋼材の実施例を以下に説明する。表1に示す化学成分組成を有する本発明による供試鋼と、表2に示す化学成分組成を有する比較鋼について、種々の鋼成分の鋼板(厚さ15〜50mm)を製造し、常温強度、靭性、700℃、800℃における降伏強度等を調査した。表3に比較鋼とともに本発明鋼の諸特性の調査結果を示す。
表3より、本発明鋼(600〜800℃での高温強度に優れた鋼材)No.1〜16の例は、いずれも所要の化学成分範囲であり、かつ、常温と高温の降伏強度比(p)が、鋼材温度T(℃)が600℃以上800℃以下の範囲で、p≧−0.0029×T+2.48を満足している。
【0034】
【表1】
Figure 2004360361
【0035】
【表2】
Figure 2004360361
【0036】
【表3】
Figure 2004360361
【0037】
これに対して、比較鋼No.17〜31の例は、それぞれ以下の点が未達である。比較鋼No.17はCが過剰でありオーステナイトへの逆変態開始温度(Ac)が800℃以下となるため、700℃、800℃でのpが低い。比較鋼No.18はCが不足であり490N/mm級として常温の降伏強度が不足であるとともにpが低い。
比較鋼No.19は、Mnが1.6%を超えているため、Ac1が800℃未満となりpが低い。比較鋼No.20は、Mnが0.1%未満のため、常温の降伏強度、引張強さが低い。比較鋼No.21は、Pが0.02%を超えているため、母材のvTrs、再現HAZのvEoが低い。比較鋼No.22は、Sが0.01%を超えているため、比較鋼No.21と同様に母材のvTrs、再現HAZのvEoが低い。
【0038】
比較鋼No.23は、Moの添加量不足により炭窒化析出相、BCC相中固溶Moがともに不足したため、800℃でのpが低い。比較鋼No.24は、Moが過剰のため、母材材質の不均一性が増大し、再現HAZのvEoが低い。比較鋼No.25は、Nbが不足し、十分な析出硬化効果を得ることができなかったため、pが低い。比較鋼No.26は、Nbが過剰のため、再現HAZのvEoが低い。
比較鋼No.27は、Tiが過剰のため母材のvTrs、再現HAZのvEoが低い。比較鋼No.28は、Bが不足し、十分な焼入れ性を得ることができないため常温の降伏強度が低い。比較鋼No.29はBが過剰のため母材のvTrsが0℃近傍にあり、再現HAZのvEoが低い。比較鋼No.30は、Alが0.06%を超えているため、比較鋼No.29と同様に母材のvTrsが0℃近傍にあり、再現HAZのvEoが低い。比較鋼No.31は、Nが0.006%を超えているため、再現HAZのvEoが低い。
【0039】
[実施例2]
実施例1で示したような600〜800℃での高温強度に優れた本発明鋼と従来鋼を、柱、梁に用いた場合について、式(6)に基づく梁の伸び出し量δと鋼材温度(T℃)との関係を図8、図9に示す。なお、ここでは、高温時の柱のヤング係数低下率rc(すなわち、ここでは降伏強度低下率)が0.2に達した時点で軸耐力の保持能力を喪失したとして計算をストップしている。
表4に、本発明例および比較例▲1▼、▲2▼で、柱と梁に使用した鋼材のヤング係数低下率rを示す。高温時のヤング係数低下率rは、高温時の降伏強度低下率pを読み替えたものであり、従来鋼では、文献:平成12年建設省告示1433号(耐火性能検証法に関する算出方法を定める件)を参照して設定している。
【0040】
【表4】
Figure 2004360361
【0041】
図8は、柱:□−400×19、梁:H−600×200×11×17、階の高さ(h):4m、各梁の長さ(l):6m、火災区画の加熱梁の総延長(L):30mの場合の鋼材温度と梁の伸び出し量δの関係を示すものである。図8より、柱、梁ともに従来鋼で形成した比較例▲1▼、柱、梁ともに発明鋼で形成した比較例▲2▼の場合いずれも、鋼材温度(T℃)が上昇するにつれて梁の伸び出し量δが増大して、温度が約250℃で柱部材角が1/50を、約400℃で柱部材角が1/30を超えることが分かる。
一方、柱を本発明鋼で形成し梁を従来鋼で形成した本発明例は、鋼材温度の上昇につれて梁の伸び出し量δが増大して、一旦、柱部材角が1/30を超えるものの、600℃でピークを迎えた後、梁の剛性低下が顕著になって梁の伸び出し量δが急激に減少して、700℃でほぼゼロになって、最終的に柱部材角がほぼゼロとなることが分かる。
【0042】
図9は、柱:□−400×19、梁:H−600×200×11×17、階の高さ(h):4m、各梁の長さ(l):6m、火災区画の加熱梁の総延長(L):18mの場合の鋼材温度と梁の伸び出し量δの関係を示すものである。図9より、加熱梁の総延長が図8の場合と比較して、3/5のため、梁の伸び出し量は小さくなるが、比較例は、鋼材温度が上昇するにつれて梁の伸び出し量δが増大して、約400℃で柱部材角が1/50を超え、約700℃で柱部材角が1/30を超える。一方、本発明例は、鋼材温度上昇につれてδが増大して、柱部材角が1/50を超えるものの、約600℃でピークを迎えた時点でも、柱部材角が1/30以下であり、最終的に柱部材角がほぼゼロとなっている。
図8、図9のいずれの場合も、本発明例では、柱を600〜800℃の高温強度に優れた鋼材で形成し、火災時による高温に対して無耐火被覆構造を可能にするとともに、梁を柱形成鋼材より高温強度の劣る鋼材で形成し、火災時の梁の伸び出しによる柱の強制変形を抑制することによって、柱部材角を最終的に1/50以下に抑制することができ、火災時の層崩壊を防止できることを示している。
【0043】
【発明の効果】
本発明は、火災を受ける可能性のある鉄骨構造物において、柱を600℃〜800℃で十分な高温強度と高温剛性を有する鋼材で形成して、梁を柱より高温強度(高温剛性)より劣る鋼材、例えば従来鋼で形成することにより、特殊な梁継手や骨組構造を用いることなく火災時の梁の伸び出し量を低減して、柱部材角を最終的に1/50以下に抑えることができ、火災による600℃〜800℃高温時においても層崩壊を生じない、無耐火被覆構造の鉄骨構造物を安定的に実現することができる。
【図面の簡単な説明】
【図1】梁の材端拘束度と熱変形の関係を示す説明図で、(a)図は、梁の材端拘束度が大きい場合を示し、(b)図は、梁の材端拘束度が小さい場合を示す。
【図2】(a)図は、従来鋼(SM50)における鋼材温度Tと降伏強度低下率pとの関係を示す説明図、(b)図は、従来鋼(SM50)における鋼材温度Tとヤング係数低下率rとの関係を示す説明図。
【図3】(a)図は、600℃耐火鋼(NSFR490A)における鋼材温度Tと降伏強度低下率pとの関係を示す説明図、(b)図は、600℃耐火鋼(NSFR490A)における鋼材温度Tとヤング係数低下率rとの関係を示す説明図。
【図4】火災時の梁の伸び出しによる柱−梁の変形モデルを示す側面説明図。
【図5】(a)図は、合成梁の各部位の温度例を示す説明図、(b)図は、(a)図の温度を測定するために用いた加熱実験装置例と合成梁試験体例を示す断面説明図。
【図6】梁の伸び出し量を減少させる、梁端部の座屈発生時の変形例を示す説明図。
【図7】梁の伸び出し量をさらに減少させる、3ヒンジ形成時の変形例を示す説明図。
【図8】実施例2における本発明例と比較例での鋼材の温度とL=30mの梁の伸び出し量との関係を示す説明図。
【図9】実施例2における本発明例と比較例での鋼材の温度とL=18mの梁の伸び出し量との関係を示す説明図。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a fire-resistant coated steel structure capable of reducing the amount of extension of a beam in a fire.
[0002]
[Prior art]
When a steel structure is fired, the beams on the fire floor expand thermally and the columns are pushed out, which may cause large member angles on the columns and lead to layer collapse. For this reason, in the “Fireproof Performance Verification Method” notified as Ministry of Construction Notification No. 1433 in 2000, the column member angle δ / h (where δ is the total amount of beam extension, and h is the floor height) In order to make the heat capacity 1/50 or less, a temperature limit is provided according to the scale of the floor area S of the fire compartment (total length L ≒ √S of the heating beam of the fire compartment).
Further, in the "European Standard for Fire Resistance Design of Steel Structural Strength Members against Standard Fire Heating" published by the European Steel Structure Association (ECCS) in 1980, and in the example of Patent Document 1, the column member angle δ / h is 1/30. It is disclosed that:
[0003]
As a structure that can reduce the amount of extension of the beam, for example, Patent Document 2 proposes a thermal deformation absorption structure that cancels the extension of the beam by using a shape memory alloy for the beam joint. It is difficult to absorb the extension of the beam reaching several tens of mm or more, and in addition to being expensive, when it is constrained by the floor slab above the beam, the thermal deformation absorbing effect is not sufficiently exhibited. There is such a problem.
Patent Document 3 discloses that a beam of a brace frame is divided at a position where a long-term bending moment is reduced, and a slide joint is provided to connect the divided side end of the divided beam slidably in a horizontal direction. A structure that reduces the amount of extension of the beam has been proposed. However, in this structure, the object is limited to a brace frame structure and a split beam structure. When restrained by the upper floor slab, there is a problem that the effect of the slide joint is not sufficiently exhibited. For this reason, there has been an issue of realizing a steel structure having a non-fireproof coating structure that can effectively reduce the amount of extension of a beam at the time of a fire and has excellent high-temperature strength and high-temperature rigidity.
[0004]
[Patent Document 1]
JP-A-11-326148 (p4 description)
[Patent Document 2]
JP-A-7-18758 (Claim 1, description of FIG. 1)
[Patent Document 3]
JP-A-10-245889 (Claim 1, FIG. 1)
[0005]
[Problems to be solved by the invention]
An object of the present invention is to reduce the amount of extension of a beam at the time of fire in a steel frame structure subject to fire, which is excellent in high-temperature strength and high-temperature rigidity, without using a special beam joint or a frame structure, and reduces the angle of a column member. It is an object of the present invention to provide a fire-resistant coated steel structure capable of finally suppressing (δ / h) to 1/50 or less and preventing layer collapse.
[0006]
[Means for Solving the Problems]
The present invention has the following (1) to (4).
(1) A steel structure subjected to a fire, and a column constituting the steel structure is provided with a yield strength reduction ratio p (high temperature yield strength / normal temperature) in which the yield strength at high temperature is made dimensionless by the yield strength at normal temperature. Yield strength) in a steel material temperature T (° C.) in the range of 600 ° C. or more and 800 ° C. or less, a steel material excellent in high temperature strength satisfying p ≧ −0.0029 × T + 2.48 (hereinafter, “600 to 800 ° C. A fire-resistant coated steel structure, characterized in that the beam joined to this column is formed of a steel material that is always inferior in high-temperature strength to the steel material for forming the column. .
(2) The fire-resistant coated steel structure according to (1), wherein the beam is a composite beam.
(3) The non-fire-resistant coated steel structure according to (2), wherein a fire-resistant reinforcing bar is arranged on the floor slab forming the composite beam.
(4) In any one of (1) to (3), the steel material for column formation having excellent high-temperature strength is, by mass%, C: 0.005% or more and less than 0.08%, Si: 0.5%. Hereinafter, Mn: 0.1 to 1.6%, P: 0.02% or less, S: 0.01% or less, Mo: 0.1 to 1.5%, Nb: 0.03 to 0.3% , Ti: 0.025% or less, B: 0.0005 to 0.003%, Al: 0.06% or less, N: 0.006% or less, with the balance being Fe and unavoidable impurities at a high temperature. A fire-resistant coated steel structure characterized by excellent steel material.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention conceptually enables a non-fire-resistant coating structure in a steel structure that may be subject to fire by forming columns of steel having excellent high-temperature strength (and high-temperature rigidity) at 600 to 800 ° C. At the same time, the beam to be joined to this column is made of steel that is always inferior in high-temperature strength (and high-temperature rigidity) to the steel material used to form the column. By bending the beam, the forced deformation of the column due to the extension of the beam is suppressed, and the column member angle (δ / h) is finally suppressed to 1/50 or less to prevent layer collapse. .
The present inventors need steel materials excellent in high-temperature strength (and high-temperature stiffness) at 600 to 800 ° C. in order to realize a steel structure that can sufficiently withstand a fire-resistant coating structure at high temperatures due to fire. However, when the same steel material is used for the column and the beam, a large pushing force acts on the column due to the extension of the beam at the time of fire, the column is forcibly deformed, and the column member angle (δ / h) is 1/50. As described above, it was further found that the ratio became 1/30 or more, and the layer collapse easily occurred at the time of fire.
[0008]
The present invention has been made based on the above findings, and more specifically, has the following (1) to (3).
(1). The yield strength reduction rate p (high-temperature yield strength / normal-temperature yield strength) obtained by reducing the yield strength at high temperature to non-dimensional by the yield strength at normal temperature, and the steel material temperature T (° C.) is 600 ° C. In the range of not less than 800 ° C. and below, a steel material excellent in high temperature strength satisfying p ≧ −0.0029 × T + 2.48 is formed, and a beam to be joined to this column is always inferior in high temperature strength to a steel material for column formation. By forming a steel material, for example, a conventional steel material such as SM490A (JIS G 3106) and SN490B (JIS G 3136), the end of the beam extending at the time of fire is restrained by a column to bend the beam, thereby extending the beam. The amount of protrusion is reduced, and the forced deformation of the column due to the extension of the beam is suppressed, and the column member angle (δ / h) is finally suppressed to 1/50 or less.
Here, the condition of p ≧ −0.0029 × T + 2.48 is an important condition for securing a sufficient yield strength and high-temperature rigidity even at a high temperature of 600 to 800 ° C. due to a fire to realize a fire-free coating structure. Things.
[0009]
As for the condition of the beam to be joined to this column, when the column is formed of a steel material satisfying the above conditions, the extension of the beam at the time of fire causes the column member angle (δ / h) to be finally 1/50. Since the ends need to be constrained by columns (the amount of extension is reduced by flexing even when stretched), the beam is always made of steel that is inferior in high-temperature strength to the steel for column formation Is an important condition. (Equivalent to claim 1)
The column to be used in the present invention is made of a square or circular steel pipe (including a welded pipe) or an H-beam, and the beam is made of an H-beam. In general, the joint between the column and the beam is performed by bolt joint using a joint hardware or a diaphragm, or by welding joint or a combination of bolt joint and welding joint. It is possible.
[0010]
(2). The beam is composed of a composite beam {(a steel beam and a floor slab made of concrete joined with a shear stud such as a stud with a head (JIS B1198)), so that the beam and the floor slab are united to resist bending ( Architectural Institute of Japan: Beams with various composite structural design guidelines and explanations, 1985), which are hereinafter referred to as “composite beams.”} Indicates the amount of extension of the beams due to the heat capacity of the concrete of the floor slab. Can be further reduced (corresponding to claim 2).
In this case, the floor slab is provided with fireproof reinforcement to increase the load bearing capacity on the upper floor, so that even if the beam loses strength at high temperatures, the function of the floor as a horizontal fire protection section is not impaired, and the elongation is increased. A structure that can further reduce the amount of protrusion can be obtained. (Corresponding to claim 3)
[0011]
(3). As the steel material forming the column, a steel material excellent in high-temperature strength and high-temperature rigidity at 600 to 800 ° C. is used. This steel material is a new steel material which is excellent in high-temperature strength in a relatively short time of about one hour and is added with low alloy carbon.
As this steel material, for example, in mass%, C: 0.005% or more and less than 0.08%, Si: 0.5% or less, Mn: 0.1 to 1.6%, P: 0.02% or less , S: 0.01% or less, Mo: 0.1 to 1.5%, Nb: 0.03 to 0.3%, Ti: 0.025% or less, B: 0.0005 to 0.003%, A steel material containing Al: 0.06% or less and N: 0.006% or less, with the balance being Fe and unavoidable impurities, has high suitability. (Corresponding to claim 4)
[0012]
Conventionally, a steel material having a high-temperature strength at 600 ° C. or higher is generally referred to as refractory steel. For example, in the invention described in Japanese Patent Application Laid-Open No. 2-77523, at room temperature at 600 ° C., the yield strength at room temperature is 2/3 or more ( Refractory steels having a high temperature strength of about 70%) have been proposed. Also in other examples of the invention relating to refractory steel, it is general that the yield strength at 600 ° C. is / or more of the normal temperature yield strength.
However, for the refractory steel at 700 ° C. and the refractory steel at 800 ° C., there is no general rule for setting the high-temperature strength (ratio with the normal-temperature yield strength) at present. For example, in the invention described in Japanese Patent Application Laid-Open No. 2-77523, a steel material to which a considerable amount of Mo and Nb is added ensures that the yield strength at 600 ° C. is 70% or more of the normal temperature yield strength. It is not based on the premise that the amount of extension of the beam at the time is reduced to enable a fire-free coating structure, and the yield strength at 700 ° C. and 800 ° C. is not shown.
[0013]
When the yield strength at 600 ° C. is about 70% of the normal temperature yield strength, considering the temperature rise at the time of fire, it is possible to reduce the amount of fireproof coating, but it is possible to omit the steel structure. Use in fire-resistant coatings is significantly limited.
Further, in the invention described in Japanese Patent Application Laid-Open No. 10-68044, the yield strength at 700 ° C. is reduced to 56% or more of the normal-temperature yield strength by making the microstructure bainite with a steel material to which a considerable amount of Mo and Nb are added. However, the yield strength at 800 ° C. is not shown.
That is, steel materials having a high-temperature strength of about 600 ° C. as in these examples have already been used in the market, and steel materials having a high-temperature strength of about 700 ° C. have been invented. On the premise of reducing the amount of elongation and enabling a fireless coating structure, it has been difficult to stably supply practical steel materials capable of stably ensuring high-temperature strength at 700 ° C. and 800 ° C.
[0014]
In the present invention, a steel material having excellent high-temperature strength at 600 to 800 ° C. is used for the column, but a steel material having a high-temperature strength that is always inferior to the steel material for the beam, such as SM490A (JIS G 3106) and SN490B (JIS G 3136). The main purpose is to use conventional steel. For example, when a steel material having excellent high-temperature strength at 600 to 800 ° C. is used for both the column and the beam, the beam is relatively strong and the rigidity at high temperatures is high, so the extension amount of the beam is rather large, There is a great concern that the limit of the column member angle (for example, 1/50) may be exceeded early on, leading to layer collapse. Further, even when a steel material having excellent high-temperature strength at 600 to 800 ° C. is used for the column and the conventional steel is used for the fire-resistant coating on the beam, the beam becomes stronger than the above example. Since the problem cannot be avoided, it is usually necessary to take measures such as increasing the thickness of the refractory coating of the beam to suppress the extension of the beam.
Therefore, in the present invention, the columns are formed of a novel steel material having excellent high-temperature strength at 600 to 800 ° C. (and also excellent in rigidity at high temperatures), and the beams are inferior in high-temperature strength to the column-forming steel materials (at the same time, high temperature). In addition, a structure made of conventional steel such as SM490A, SN490B and the like, which can reduce the amount of extension of a beam at the time of fire without using a special beam joint or a frame structure, has a non-fireproof structure. As a new offer.
In the present invention, for example, when the column is formed of a steel material having excellent high-temperature strength at 800 ° C., the beam may be formed of, for example, 600 ° C. refractory steel, 700 ° C. refractory steel, or the like in addition to the conventional steel. is there.
The present invention also takes into account the expansion of the applicable fire temperature range of the pillar due to the heat shielding effect of the finished board material. That is, when a steel material excellent in high-temperature strength at 600 to 800 ° C. is used for the pillar, if the steel material is used barely, the upper limit of the fire temperature is about 950 ° C., but if heat shielding of the finished board material can be expected, The upper limit of the fire temperature can be about 1150 ° C.
[0015]
Hereinafter, the present invention will be described in detail.
1. Concept of reducing beam extension
(A) Beam extension and high temperature rigidity
It is unacceptable for the building to collapse in the event of a fire, so it is necessary to avoid at least damage to the columns due to thermal stress. Therefore, it is possible to adopt a fire-resistant design concept in which local destruction of the beam is required to reduce the thermal stress of the column before unacceptable forced deformation occurs in the column.
In other words, in the event of a fire, the column is considered to constrain the beam.Therefore, the rigidity of the column is increased to increase the end-of-member constraint of the beam, and the beam is intentionally locally destructed early and the thermal stress is reduced. It is effective to alleviate the deformation and to prevent the column from being forcibly deformed such that the column is largely pushed outward. However, even after the local destruction of the beam, it is necessary that the floor slab be provided with fireproof reinforcements to increase the load bearing capacity on the upper floor and not to impair the function of the floor as a horizontal fire compartment. In this way, even if the beam loses strength at high temperatures, the load on the floor is transmitted directly to the columns, so that floor collapse can be avoided.
[0016]
FIGS. 1A and 1B show the relationship between the degree of constraint on the end of a beam and thermal deformation. FIG. 1 (a) shows that a pillar is made of a steel material having excellent high-temperature strength at 600 to 800 ° C. (and also has high rigidity at high temperature), and a beam is always inferior in high-temperature strength to the steel material (simultaneously at high temperature). This shows the case where a conventional steel material is used. In this case, the forcible deformation of the column is reduced and the column member angle δ / h is reduced by increasing the degree of constraining the end of the beam by the column and reducing the extension of the beam. It can be seen that layer collapse can be prevented by reducing it to 1/50 or less.
FIG. 1 (b) shows a case where a steel material having the same level of high-temperature strength (excellent in rigidity at high temperature) is used for the column and the beam, and the column has a small beam end constraint. As the extension of the beam increases and the forcible deformation of the column increases, the column member angle δ / h becomes much larger than 1/50, and the layer collapse easily occurs. Therefore, it is necessary to avoid occurrence of such a phenomenon.
[0017]
Note that the yield strength reduction rate p (high temperature yield strength / normal temperature yield strength), in which the yield strength at high temperatures is made dimensionless by the yield strength at room temperature, and the Young's modulus at high temperatures are made dimensionless, by the Young's modulus at room temperature. Comparing the coefficient decrease rate r (high temperature Young's modulus / normal temperature Young's modulus), it is known that there is a relationship of p <r at the same temperature.
Figures 2 (a) and 2 (b) show the Comprehensive Fire Protection Design Method for Buildings, Volume 4 Fire Protection Design Method, supervised by the Technical Research Office of the Secretariat of the Ministry of Construction, edited by the National Land Development Technology Research Center (Japan Building Center Heisei) The relationship between the steel temperature T (° C) and the yield stress ratio (corresponding to the yield strength reduction rate p) of the conventional steel, which was reprinted from April, 2006, the steel temperature T (° C) and the elastic modulus ratio (Young's modulus) (Corresponding to the decrease rate r).
FIGS. 3A and 3B show refractory steel for building structures [NSFR] Cat. No. AC104: Relationship between steel temperature T (° C) and stress, and relationship between steel temperature T (° C) and Young's modulus in 600 ° C refractory steel reprinted from 1996.2 edition (2000.1, Nippon Steel Corporation) Is shown.
When viewed at the same temperature, FIGS. 2 and 3 show that although the units are not the same, when replaced by the same unit, the Young's modulus reduction rate r is lower than the yield strength reduction rate p. Indicates that the evaluation on the safe side can be made by substituting the Young's modulus reduction rate r with the yield strength reduction rate p. At the same time, it can be seen that using a steel excellent in high-temperature strength means using a steel excellent in high-temperature rigidity. Therefore, hereinafter, the yield strength reduction rate p at the time of high temperature will be replaced with the Young's modulus reduction rate r and used.
[0018]
(B) Method of calculating the amount of beam extension
Assuming that the beam temperature rises uniformly by T ° C. due to heating during a fire and a thermal stress σt is generated, the skewness of the beam at this time is εt, and the apparent elongation a of the beam due to thermal expansion is expressed by the following equation. expressed.
σt = Etb × εt (1)
a = b × T−εt (2)
Here, σt: the degree of thermal stress of the beam at high temperature (N / mm 2 )
εt: Strain of beam at high temperature
Etb: Young's modulus of beam at high temperature (= rb × Eb) (N / mm 2 )
Eb: Young's modulus at normal temperature (N / mm 2 )
rb: Young's modulus reduction rate of beam at high temperature
a: Apparent elongation of beam
b: linear expansion coefficient (= 1.2 × 10 -5 )
T: Steel temperature at high temperature (° C)
[0019]
On the other hand, assuming that the material end elastic fixing coefficient (spring constant) of the beam at the time of high temperature is k, the thermal stress degree σt of the beam is expressed by the following equation.
σt = k × l / Ab × a (3)
Here, k: modulus of elasticity at the end of the beam at high temperature (spring constant) (N / mm)
Ab: Cross-sectional area of beam (mm 2 )
l: Beam length (mm)
Here, k is obtained by Expression (4) based on the model of the deformation at the time of fire shown in FIG. Note that the column has a sufficient axial proof stress against a long-term load even at a high temperature.
Figure 2004360361
Here, ku: Degree of restraint of beam end by upper column (normal temperature) of fire floor (N / mm)
1 / ku = (h-db) 3 / (24 × Ec × Ic)
+ (H-db) / (Gc × Ac)
= (H-db) × {(h-db) 2 + 10.4 × dc2}
/ (24 × Ec × Ic)
h: Floor height (mm)
db: Beam error (distance between centers of upper and lower flanges of beam) (mm)
Ec: Young's modulus of column at normal temperature (N / mm 2 )
Ic: second moment of area of column (= Ac × dc2 / 6) (mm 4 )
Gc: Shear modulus of column at normal temperature (= Ec / 2.6) (mm) 3 )
Ac: cross-sectional area of column (mm 2 )
dc: Pillar error (distance between centers of left and right flanges of pillar) (mm)
kd: Degree of restraint of beam end by pillar (high temperature) on fire floor (N / mm)
1 / kd = (h-db)
× {(h-db) 2 + 10.4 × dc2}
/ (24 × Etc × Ic)
Etc: Young's modulus at high temperature (= rc × Ec) (N / mm 2 )
rc: Young's modulus reduction rate of column at high temperature
[0020]
By substituting Equations (2) to (4) into Equation (1), the apparent elongation a of the beam at the time of fire is obtained.
Figure 2004360361
Here, Ec / Ed = 1.0 LAB = 1 / Ab
RCB = rc / {(1 + rc) × rb}
HDC = (h-db) × {(h-db) 2} + 10.4 × dc 2}
Therefore, the total sum δ of the amount of extension of the beam at the time of fire is obtained as follows.
Figure 2004360361
Here, L: total length of the beam of the fire compartment (= n × l) (mm)
n: Number of spans of the fire section beam (here, the length of each beam is the same
I do. )
[0021]
For example, when conventional steel is used for both the column and the beam, the column: □ −400 × 19, the beam: H−600 × 200 × 11 × 17, the floor height (h): 4 m, the length of each beam (l) ) 6 m, total length (L) of heating beam in fire compartment: 24 m, d = 38.1 cm, db: 58.3 cm, Ab = 131.7 cm 2 , Ic = 66,600 cm 4 , LAB = 4.56 / cm, HDC = 45,100,000 cm 3 Since rc = rb = 0.4 at 550 ° C. (see Table 4), RCB = 0.714.
Therefore, when the temperature (T) is 550 ° C., the total amount of extension δ of the beam is δ = 14.2 cm, which exceeds the column member angle 1/30 (δ = 13.3 cm).
[0022]
2. Concept of beam extension due to composite beam
When the beam is a composite beam, the temperature rise of the concrete becomes lower than that of the steel beam due to the heat capacity of the concrete of the floor slab, and the extension of the beam is reduced as compared with the case described above. Document "Heat resistance of FR steel and fire resistance of composite beam using the same" (Shin Kubota et al.): Abstracts of Academic Lecture Meeting of the Architectural Institute of Japan, 19999.9, pp. FIG. 5 (a) shows an example of the beam temperature and the floor slab upper surface (slab back surface) temperature of the composite beam test body, which was reprinted from 43-46). FIG. 5B shows an example of a composite beam test body and a heating test apparatus used here. As shown in FIG. 5A, the upper surface of the floor slab remains at about 50 ° C. even when the temperature of the lower flange and the web of the beam (here, H-400 × 200 × 8 × 13) is about 600 ° C.
[0023]
In general, the temperature of a beam is assumed to be uniform throughout the cross section. However, in the case of a composite beam, a temperature gradient occurs in the height direction of the beam cross section from the lower flange to the upper flange of the beam due to the heat capacity of the floor slab. For this reason, the actual steel material temperature (average value) of the beam becomes smaller and the amount of extension of the beam is further reduced as compared to the case described above, assuming that the steel material temperature of the entire section is uniform.
From FIG. 5 (a), the maximum temperature of the beam at the start of loading is about 600 ° C. for the web and the lower flange, but since the upper flange is about 450 ° C., the average value is about 550 ° C. It can be seen that the temperature is about 10% lower than the maximum temperature.
Considering the temperature gradient in the height direction of the beam cross-section, the beam undergoes thermal deflection.Therefore, a bending moment is generated at the beam end to restrain this thermal deflection. Plasticization (local buckling occurs) earlier than when no consideration is given. For this reason, the deflection of the beam increases, and at the same time, the amount of the column pushed out from the beam decreases.
FIG. 6 shows deformation of the beam end when buckling occurs. From this figure, it can be seen that as a result of the occurrence of local buckling, the amount of extension of the beam is reduced. When the beam temperature further rises, the beam is greatly hung on the column, and once the column is pushed outward, the column is pulled back inward. Thereafter, when the temperature is increased, the load cannot be finally supported, and collapse occurs (3 hinge state). FIG. 7 shows a deformation when three hinges are formed. From this figure, it can be seen that the extension amount of the beam is further reduced.
[0024]
3. Concept of securing high-temperature strength and limiting steel components
(A) Concept of ensuring high-temperature strength
In the fire-resistant design, it is sufficient to maintain high strength within the duration of the fire, and it is not necessary to maintain high-temperature strength for a long time as in conventional heat-resistant steel, and it is sufficient to maintain high-temperature strength for a relatively short time. . For example, if the yield strength can be secured for a short time of about 30 minutes at 800 ° C., the steel can be sufficiently used as the 800 ° C. refractory steel in the present invention.
In the conventional 600 ° C. refractory steel, the performance is determined so that the high-temperature yield strength is / or more of that at normal temperature. However, the actual design range of the steel frame structure is 0.2 to 0.3 mm, which is the lower limit of the normal-temperature yield strength. Taking into account that it is about four times, the yield strength reduction rate p (high temperature yield strength / normal temperature yield strength) obtained by making the yield strength at high temperature non-dimensional from the yield strength at normal temperature is 600 ° C. It is necessary to satisfy p ≧ −0.0029 × T + 2.48 in the range of not less than 800 ° C. In other words, the actual yield strength reduction rate (p) may satisfy p ≧ 0.74 at 600 ° C., p ≧ 0.45 at 700 ° C., and p ≧ 0.16 at 800 ° C.
[0025]
To increase the high-temperature strength, the combined addition of Mo and Nb promotes the stable precipitation of carbonitride at a high temperature and effectively converts the microstructure to bainite. A bainite single structure may be used in order to increase the room temperature strength and emphasize the characteristics as a high-tensile steel. However, since the strength at room temperature increases as the fraction of hard bainite increases, when the upper limit of the yield ratio is required, the microstructure can be changed to a bainite single structure or an appropriate structure according to the required room temperature strength and various properties. It is desirable to have a mixed structure of ferrite and bainite having a high bainite fraction.
It is effective to reduce C in order to form an appropriate microstructure and achieve a required room-temperature strength range. The reduction in C enhances the thermodynamic stability of bainite or a mixed structure of bainite and ferrite at high temperatures, and increases the reverse transformation temperature to austenite (Ac 1 ) Has the effect of raising. However, in this case, it has been found that the microstructure and the material are easily affected by the rolling conditions and the subsequent cooling conditions, and stable production is difficult.
[0026]
Then, the present inventors worked on microstructure control and increase in high-temperature strength, and found that the addition of an appropriate amount of B was effective for stabilizing the production. It was decided that there was. As a general welded structural steel, it is necessary to provide the same weldability as before, so the high-temperature strength at 700 to 800 ° C can be improved by precipitation addition by the addition of alloying elements such as Mo, Nb, V, and Ti. It has been found that the increase in dislocation density due to the formation of bainite in the microstructure and the delay in dislocation recovery due to solid solution Mo, Nb, and V are effective, and that Ti has some effect.
In order to simultaneously secure both the strength of 700 to 800 ° C. and the strength at ordinary temperature, the microstructure is appropriately mixed with ferrite and bainite or a single structure of bainite, and the amount of the added alloy element is set in an optimum range, and the microstructure at high temperature is controlled. It has been found that it is important to obtain the thermal stability of the matrix structure, the effect of strengthening coherent precipitation and the effect of delaying dislocation recovery. Furthermore, in order to ensure a low yield ratio, it is necessary to make the microstructure an appropriate mixed structure of ferrite and bainite.
In general, the yield strength of steel material sharply decreases from around 450 ° C. This is because the thermal activation energy decreases as the temperature increases, and the resistance that was effective at low temperatures for the slip motion of dislocations becomes invalid. It is. Usually, Cr carbide, Mo carbide, and the like used for strengthening in a temperature range of less than about 700 ° C. act as an effective resistance to dislocation sliding motion up to about 600 ° C. In this case, the solid solution is re-dissolved, so that the strengthening effect can hardly be maintained.
[0027]
The present inventors have studied various single or composite precipitates having higher stability at high temperatures. As a result, they have found that a composite precipitate of Mo, Nb, Ti, and V has high stability at high temperatures and has a high strengthening effect even at 700 to 800 ° C. That is, by adding an appropriate amount of Mo, Nb, Ti, and V and increasing the heating temperature during rolling, these are sufficiently dissolved to form a solid, and by introducing an appropriate rolling structure having a high dislocation density, precipitates are formed. By securing a deposition site where precipitation is possible, a composite precipitate of Mo, Nb, Ti, and V is finely precipitated during reheating, for example, during heating by a fire.
Such composite precipitates also grow and coarsen during holding at 700 to 800 ° C., and the strengthening effect eventually decreases. However, when they are very finely dispersed at a high density, within a holding time of about 30 minutes, The 800 ° C yield strength target value can be sufficiently obtained. However, even if the precipitate itself is stable, if the base material is transformed by a rise in temperature, the consistency between the precipitate and the base material is lost and becomes inconsistent, so that the strengthening action of the precipitate rapidly decreases. That is, in order to utilize the strengthening effect of the composite precipitate which is stable even at a high temperature, it is essential for the material not to transform the base structure even at the design temperature of 800 ° C. Therefore, specifically, it is necessary to make the Ac1 transformation temperature of the steel 800 ° C. or more by adjusting alloying elements such as reducing the amount of Mn which is an austenite former.
[0028]
(B) Concept of limiting steel components
The reasons for limiting each component according to the present invention will be described below. In addition,% means mass%.
C is an element that has the most remarkable effect on the properties of the steel material, and is essential for forming a composite precipitate (carbide) with Mo, Nb, Ti, and V, so that at least 0.005% is necessary. is there. If the C content is less than this, the strength is insufficient. When added in excess of 0.08%, Ac 1 Since the transformation temperature decreases, it is difficult to obtain the strength at 800 ° C., and the toughness also decreases. Therefore, the content is limited to 0.005% or more and less than 0.08%. Furthermore, the mixed matrix structure of ferrite and bainite is thermodynamically stabilized during high-temperature heating equivalent to a fire, and the integrity with the composite carbonitrides of Mo, Nb, Ti, and V is maintained, and the strengthening effect is secured. In doing so, it is more desirable that the content be less than 0.04%.
Si is an element contained in steel for the purpose of deoxidation, and is effective for improving the base metal strength at room temperature because it has a substitution-type solid solution strengthening effect. It has no effect. Further, if added in a large amount, the weldability and the HAZ toughness deteriorate, so the upper limit is limited to 0.5%. In addition, deoxidation of steel is possible only with Ti and Al, and from the viewpoint of HAZ toughness, hardenability and the like, the lower the lower, the more preferable it is not always necessary to add.
[0029]
Mn is an element indispensable for securing strength and toughness, but Mn, which is a substitution-type solid solution strengthening element, is effective for increasing strength at room temperature, but is particularly effective for high-temperature strength exceeding 600 ° C. There is not much improvement effect. Therefore, in a steel containing a relatively large amount of Mo as in the present invention, the weldability is improved, that is, P CM From the viewpoint of reduction, it is limited to 1.6% or less. By keeping the upper limit of Mn low, it is advantageous from the viewpoint of segregation of the center of the continuously cast slab. Further Ac 1 In order to raise the transformation temperature to 800 ° C. or higher, it is necessary to suppress the addition, and it is desirable to set the upper limit to 0.9%. Although the lower limit is not particularly limited, it is desirable to add 0.1% or more in order to adjust the strength and toughness of the base material.
P is an impurity in the steel of the present invention, and the lower the P content, the lower the intergranular fracture in the HAZ. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit is made 0.02%.
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low-temperature toughness of the base material. If the content is large, the low temperature toughness of the base material and the welded portion is deteriorated, so the upper limit is made 0.01%.
[0030]
Mo is a basic element constituting a composite precipitate that enhances high-temperature strength, and is an essential element in the steel of the present invention. In order to obtain a composite precipitate of Mo and Nb, Ti, or a composite precipitate of Mo and Nb, Ti, and V at a high density and to increase the high-temperature strength, it is necessary to add 0.1% or more. . If the addition exceeds 1.5%, it becomes difficult to control the uniformity of the base metal material, and the toughness of the weld heat affected zone is deteriorated, and furthermore the economy is lost. 0.1% or more and 1.5% or less, more preferably 0.2% or more and 1.1% or less.
Nb is an element that plays an important role in ensuring high-temperature strength of 700 ° C. to 800 ° C. in the present invention to which Mo is added in a relatively large amount. First, as a general effect, it is a useful element for increasing the recrystallization temperature of austenite and maximizing the effect of controlled rolling during hot rolling. In addition, it contributes to the re-heating prior to rolling, the refinement of the heated austenite during normalizing and quenching. Further, it has an effect of improving strength as precipitation hardening, and contributes to improvement of high-temperature strength by addition of Mo. If it is less than 0.03%, the effect of precipitation hardening at 700 to 800 ° C is small, and addition of 0.1% or more is preferable. On the other hand, if it exceeds 0.3%, the toughness of the base material may be reduced, so the upper limit is made 0.3%. Therefore, the limited range is 0.03% to 0.3%.
[0031]
Ti, like Nb, is also effective for increasing the high-temperature strength. In particular, when the requirements for the base material and the toughness of the weld heat-affected zone are severe, it is preferable to add them. Because, when the amount of Al is small (for example, 0.003% or less), TiN combines with O to form TiN. 2 O 3 Is formed as a main component, and serves as a nucleus for the formation of intragranular transformed ferrite to improve weld toughness. In addition, Ti combines with N and precipitates finely in the slab as TiN, which suppresses coarsening of γ grains during heating and is effective in reducing the grain size of the rolled structure. This is because the structure of the heat affected zone is refined.
To obtain these effects, Ti must be at least 0.005% or more. However, if too much, TiC is formed and the low-temperature toughness and weldability are deteriorated. Therefore, the content is preferably set to 0.02% or less, and the upper limit is set to 0.025%.
[0032]
B is extremely important in controlling the strength through the formation fraction of bainite. In other words, B improves hardenability by segregating at austenite grain boundaries and suppressing the formation of ferrite, and stably forms bainite even at a relatively low cooling rate such as air cooling. It is valid. In order to enjoy this effect, at least 0.0005% is required. However, too much addition not only saturates the effect of improving hardenability, but also may form B precipitates that are harmful to the austenite grain boundary and toughness, so the upper limit is 0.003%. I do.
Al is an element generally contained in steel for the purpose of deoxidation, but deoxidation is sufficient with only Si or Ti, and in the steel of the present invention, the lower limit is not limited (including 0%). However, when the amount of Al increases, not only does the cleanliness of steel deteriorate, but also the toughness of the weld metal deteriorates, so the upper limit is made 0.06%.
N is contained in steel as an unavoidable impurity, and its lower limit is not particularly defined. However, an increase in the amount of N is extremely harmful to HAZ toughness and weldability, and the upper limit is 0.006 in the steel of the present invention. %.
[0033]
【Example】
[Example 1]
Examples of steel materials having excellent high-temperature strength at 600 to 800 ° C. used for forming columns in the present invention will be described below. With respect to the test steel according to the present invention having the chemical composition shown in Table 1, and the comparative steel having the chemical composition shown in Table 2, steel plates (thickness: 15 to 50 mm) of various steel components were manufactured, The toughness, yield strength at 700 ° C. and 800 ° C., etc. were investigated. Table 3 shows the results of investigations on various properties of the steel of the present invention together with comparative steels.
From Table 3, the steel of the present invention (steel material excellent in high-temperature strength at 600 to 800 ° C) No. Examples 1 to 16 each have a required chemical component range, and the yield strength ratio (p) between normal temperature and high temperature is such that when the steel material temperature T (° C.) is in a range of 600 ° C. to 800 ° C., p ≧ −0.0029 × T + 2.48 is satisfied.
[0034]
[Table 1]
Figure 2004360361
[0035]
[Table 2]
Figure 2004360361
[0036]
[Table 3]
Figure 2004360361
[0037]
On the other hand, the comparative steel No. In the examples of Nos. 17 to 31, the following points have not been reached. Comparative steel No. No. 17 is a temperature at which C is excessive and the reverse transformation start temperature to austenite (Ac 1 ) Is 800 ° C. or less, so that p at 700 ° C. and 800 ° C. is low. Comparative steel No. 18 is 490 N / mm because C is insufficient. 2 As a class, the yield strength at room temperature is insufficient and p is low.
Comparative steel No. In No. 19, since Mn is more than 1.6%, Ac1 is less than 800 ° C. and p is low. Comparative steel No. In No. 20, since Mn is less than 0.1%, the yield strength and the tensile strength at room temperature are low. Comparative steel No. In No. 21, since the P exceeds 0.02%, the base material vTrs and the reproduced HAZ vEo are low. Comparative steel No. No. 22 is comparative steel No. 22 because S exceeds 0.01%. As in 21, the vTrs of the base material and the vEo of the reproduced HAZ are low.
[0038]
Comparative steel No. Sample No. 23 has a low p at 800 ° C. because the amount of dissolved Mo in the carbonitriding precipitation phase and the BCC phase was insufficient due to the insufficient amount of Mo added. Comparative steel No. In No. 24, since Mo is excessive, the non-uniformity of the base material is increased, and vEo of the reproduced HAZ is low. Comparative steel No. In No. 25, p was low because Nb was insufficient and a sufficient precipitation hardening effect could not be obtained. Comparative steel No. In No. 26, the vEo of the reconstructed HAZ is low due to excess Nb.
Comparative steel No. In No. 27, the vTrs of the base material and the vEo of the reproduced HAZ are low due to excessive Ti. Comparative steel No. In No. 28, the yield strength at room temperature is low because B is insufficient and sufficient hardenability cannot be obtained. Comparative steel No. In No. 29, since B is excessive, the base material vTrs is near 0 ° C., and the vEo of the reproduced HAZ is low. Comparative steel No. No. 30 is comparative steel No. 30 because Al exceeds 0.06%. As in the case of No. 29, the vTrs of the base material is near 0 ° C., and the vEo of the reproduced HAZ is low. Comparative steel No. In No. 31, since the N exceeds 0.006%, vEo of the reproduced HAZ is low.
[0039]
[Example 2]
When the steel of the present invention and the conventional steel excellent in high-temperature strength at 600 to 800 ° C. as shown in Example 1 are used for columns and beams, the beam extension amount δ and the steel material based on the formula (6) are used. The relationship with the temperature (T ° C.) is shown in FIGS. Here, the calculation is stopped on the assumption that the ability to maintain the axial proof strength has been lost when the Young's modulus reduction rate rc of the column at high temperature (that is, the yield strength reduction rate in this case) reaches 0.2.
Table 4 shows the Young's modulus reduction rates r of the steel materials used for the columns and beams in the present invention and Comparative Examples (1) and (2). The Young's modulus lowering rate r at high temperature is obtained by replacing the yield strength lowering rate p at high temperature. For conventional steels, the literature: Ministry of Construction Notification 1433 (2000) ).
[0040]
[Table 4]
Figure 2004360361
[0041]
FIG. 8 shows a column: □ -400 × 19, a beam: H-600 × 200 × 11 × 17, a floor height (h): 4 m, a length of each beam (l): 6 m, a heating beam of a fire compartment. Shows the relationship between the steel material temperature and the amount of extension δ of the beam when the total length (L) is 30 m. From FIG. 8, in Comparative Example (1) in which both the column and the beam were formed of conventional steel, and in Comparative Example (2) in which both the column and the beam were formed of the invention steel, as the steel material temperature (T ° C.) increased, It can be seen that the extension amount δ increases and the column member angle exceeds 1/50 at a temperature of about 250 ° C. and exceeds 1/30 at about 400 ° C.
On the other hand, in the example of the present invention in which the column is formed of the steel of the present invention and the beam is formed of the conventional steel, the extension amount δ of the beam increases as the steel material temperature increases, and although the column member angle once exceeds 1/30, After reaching a peak at 600 ° C., the rigidity of the beam is remarkably reduced and the amount of extension δ of the beam is sharply reduced, becomes almost zero at 700 ° C., and finally, the column member angle becomes almost zero. It turns out that it becomes.
[0042]
FIG. 9 shows a pillar: □ -400 × 19, a beam: H-600 × 200 × 11 × 17, a floor height (h): 4 m, a length of each beam (l): 6 m, a heating beam of a fire compartment. Shows the relationship between the steel material temperature and the amount of extension δ of the beam when the total length (L) is 18 m. From FIG. 9, the total extension of the heating beam is 3/5 as compared with the case of FIG. 8, so the extension of the beam is small. However, in the comparative example, the extension of the beam as the steel material temperature increases. As δ increases, the column member angle exceeds 1/50 at about 400 ° C. and the column member angle exceeds 1/30 at about 700 ° C. On the other hand, in the example of the present invention, δ increases as the steel material temperature rises, and the column member angle exceeds 1/50, but even at the time of peaking at about 600 ° C., the column member angle is 1/30 or less, Finally, the column member angle is almost zero.
In each case of FIGS. 8 and 9, in the present invention, the pillar is formed of a steel material having excellent high-temperature strength of 600 to 800 ° C., thereby enabling a fire-resistant coating structure against high temperatures caused by fire. By forming the beam with a steel material with lower high-temperature strength than the column-forming steel material and suppressing the forced deformation of the column due to the extension of the beam during a fire, the column member angle can be finally reduced to 1/50 or less. It shows that layer collapse at the time of fire can be prevented.
[0043]
【The invention's effect】
According to the present invention, in a steel structure which may be subject to fire, columns are formed of a steel material having sufficient high-temperature strength and high-temperature rigidity at 600 ° C. to 800 ° C., and beams are formed with higher temperature strength (high-temperature rigidity) than columns. By forming with inferior steel material, for example, conventional steel, the amount of extension of the beam at the time of fire is reduced without using a special beam joint or frame structure, and finally the column member angle is suppressed to 1/50 or less. It is possible to stably realize a steel structure having a non-fire-resistant coating structure in which layer collapse does not occur even at a high temperature of 600 to 800 ° C. due to a fire.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory diagrams showing a relationship between a material end constraint of a beam and thermal deformation, wherein FIG. 1A shows a case where the material end constraint of a beam is large, and FIG. The case where the degree is small is shown.
FIG. 2 (a) is an explanatory view showing a relationship between a steel material temperature T and a yield strength reduction rate p of a conventional steel (SM50), and FIG. 2 (b) is a steel material temperature T and a young steel of a conventional steel (SM50). Explanatory drawing which shows the relationship with coefficient reduction rate r.
FIG. 3A is an explanatory view showing a relationship between a steel material temperature T and a yield strength reduction rate p in a 600 ° C. refractory steel (NSFR490A), and FIG. 3B is a view showing a steel material in a 600 ° C. refractory steel (NSFR490A). Explanatory drawing which shows the relationship between the temperature T and the Young's modulus reduction rate r.
FIG. 4 is an explanatory side view showing a column-beam deformation model due to the extension of the beam during a fire.
5 (a) is an explanatory view showing an example of the temperature of each part of the composite beam, and FIG. 5 (b) is a diagram showing an example of a heating test apparatus and a composite beam test used for measuring the temperature of FIG. 5 (a). Sectional explanatory drawing which shows a body example.
FIG. 6 is an explanatory view showing a modified example at the time of occurrence of buckling at the beam end, which reduces the amount of extension of the beam.
FIG. 7 is an explanatory view showing a modified example when three hinges are formed to further reduce the amount of extension of the beam.
FIG. 8 is an explanatory diagram showing the relationship between the temperature of a steel material and the amount of extension of a beam with L = 30 m in the inventive example and the comparative example in Example 2.
FIG. 9 is an explanatory diagram showing the relationship between the temperature of a steel material and the amount of extension of a beam with L = 18 m in an example of the present invention and a comparative example in Example 2.

Claims (4)

火災を受ける鉄骨構造物であって、この鉄骨構造物を構成する柱を、常温時の降伏強度により高温時の降伏強度を無次元化した降伏強度低下率p(高温降伏強度/常温降伏強度)が、鋼材温度T(℃)が600℃以上800℃以下の範囲で、p≧−0.0029×T+2.48を満足する高温強度に優れた鋼材で形成し、この柱と接合する梁を、柱形成用の鋼材より常に高温強度が劣る鋼材で形成したことを特徴とする無耐火被覆鉄骨構造物。Yield strength reduction rate p (High temperature yield strength / Normal temperature yield strength) that is a steel frame structure subject to fire, and in which the columns constituting this steel structure are made dimensionless in yield strength at high temperature by yield strength at normal temperature. However, when the steel material temperature T (° C.) is in a range of 600 ° C. or more and 800 ° C. or less, a beam formed of a steel material excellent in high-temperature strength satisfying p ≧ −0.0029 × T + 2.48, A non-fire-resistant coated steel structure, which is always formed of a steel material having a lower high-temperature strength than a steel material for forming columns. 梁を合成梁としたことを特徴とする請求項1記載の無耐火被覆鉄骨構造物。The fire-resistant coated steel structure according to claim 1, wherein the beam is a composite beam. 合成梁を形成する床スラブに耐火補強筋を配したことを特徴とする請求項2記載の無耐火被覆鉄骨構造物。The fire-resistant coated steel frame structure according to claim 2, wherein a fire-resistant reinforcing bar is arranged on the floor slab forming the composite beam. 高温強度に優れた柱形成用の鋼材が、質量%で、C:0.005%以上0.08%未満、Si:0.5%以下、Mn:0.1〜1.6%、P:0.02%以下、S:0.01%以下、Mo:0.1〜1.5%、Nb:0.03〜0.3%、Ti:0.025%以下、B:0.0005〜0.003%、Al:0.06%以下、N:0.006%以下を含有し、残部がFeおよび不可避的不純物からなる高温強度に優れた鋼材であることを特徴とする請求項1〜3のいずれかに記載の無耐火被覆鉄骨構造物。Steel material for column formation excellent in high-temperature strength is, by mass%, C: 0.005% or more and less than 0.08%, Si: 0.5% or less, Mn: 0.1 to 1.6%, P: 0.02% or less, S: 0.01% or less, Mo: 0.1 to 1.5%, Nb: 0.03 to 0.3%, Ti: 0.025% or less, B: 0.0005 to A steel material containing 0.003%, Al: 0.06% or less, and N: 0.006% or less, with the balance being Fe and unavoidable impurities and having excellent high-temperature strength. 4. The fire-free coated steel structure according to any one of 3).
JP2003162012A 2003-06-06 2003-06-06 Steel structure without fireproofing coating Withdrawn JP2004360361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162012A JP2004360361A (en) 2003-06-06 2003-06-06 Steel structure without fireproofing coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162012A JP2004360361A (en) 2003-06-06 2003-06-06 Steel structure without fireproofing coating

Publications (1)

Publication Number Publication Date
JP2004360361A true JP2004360361A (en) 2004-12-24

Family

ID=34054275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162012A Withdrawn JP2004360361A (en) 2003-06-06 2003-06-06 Steel structure without fireproofing coating

Country Status (1)

Country Link
JP (1) JP2004360361A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249467A (en) * 2005-03-09 2006-09-21 Jfe Steel Kk Fire resistant steel excellent in toughness of weld heat-affected zone
JP2006307621A (en) * 2005-03-28 2006-11-09 Jfe Steel Kk Structure of common section of apartment
WO2007091725A1 (en) * 2006-02-08 2007-08-16 Nippon Steel Corporation Fire-resistant high-strength rolled steel material and method for production thereof
WO2008126944A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Steel material having excellent high-temperature strength and toughness, and method for production thereof
WO2008126910A1 (en) * 2007-04-06 2008-10-23 Nippon Steel Corporation Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
EP2060645A1 (en) * 2006-11-14 2009-05-20 Nippon Steel Corporation Refractory steel material with excellent welded-joint toughness and process for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249467A (en) * 2005-03-09 2006-09-21 Jfe Steel Kk Fire resistant steel excellent in toughness of weld heat-affected zone
JP2006307621A (en) * 2005-03-28 2006-11-09 Jfe Steel Kk Structure of common section of apartment
WO2007091725A1 (en) * 2006-02-08 2007-08-16 Nippon Steel Corporation Fire-resistant high-strength rolled steel material and method for production thereof
EP2060645A1 (en) * 2006-11-14 2009-05-20 Nippon Steel Corporation Refractory steel material with excellent welded-joint toughness and process for producing the same
EP2060645A4 (en) * 2006-11-14 2011-05-18 Nippon Steel Corp Refractory steel material with excellent welded-joint toughness and process for producing the same
US8323561B2 (en) 2006-11-14 2012-12-04 Nippon Steel Corporation Fire-resistant steel material superior in HAZ toughness of welded joint and method of production of same
WO2008126910A1 (en) * 2007-04-06 2008-10-23 Nippon Steel Corporation Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
CN101652495B (en) * 2007-04-06 2011-06-08 新日本制铁株式会社 Steel material having excellent high temperature properties and excellent toughness, and method for production thereof
US9023158B2 (en) 2007-04-06 2015-05-05 Nippon Steel & Sumitomo Metal Corporation Steel material superior in high temperature characteristics and toughness and method of production of same
WO2008126944A1 (en) * 2007-04-11 2008-10-23 Nippon Steel Corporation Steel material having excellent high-temperature strength and toughness, and method for production thereof

Similar Documents

Publication Publication Date Title
JP4197460B2 (en) Fireproof coated high strength bolt joint structure
FI112380B (en) Ultra-strength austenite-aged steels with extremely good cryogenic temperature toughness
AT409388B (en) EXTREMELY HIGH-STRENGTH TWO-PHASE STEELS WITH EXCELLENT DEPTH TEMPERATURE
EP0347156B2 (en) Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel obtained thereby
JPH0450362B2 (en)
Kanno Advances in steel materials for innovative and elegant steel structures in japan–A review
KR100630402B1 (en) High tensile steel excellent in high temperature strength and method for production thereof
JP2004360361A (en) Steel structure without fireproofing coating
JP2760191B2 (en) Manufacturing method of high weathering steel for steel building with excellent high temperature strength characteristics
JP4272594B2 (en) Steel sheet with low welding distortion and method for manufacturing the same
JP3635208B2 (en) Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JP3728240B2 (en) Non-fireproof coated steel member
JP4331971B2 (en) Method for producing 225 MPa and 235 MPa class low yield point steels excellent in toughness and material stability
JP3987813B2 (en) High-strength steel for fire-resistant building structures having a normal temperature yield stress exceeding 455 N / mm 2 and excellent high-temperature characteristics at 800 ° C.
JP3852279B2 (en) Manufacturing method of rolled H-section steel with excellent earthquake resistance
JP4156208B2 (en) Fireproof coated steel structure
JP3540927B2 (en) Low yield point steel with excellent toughness
JP3550721B2 (en) Method for producing hot-rolled steel strip for building with excellent fire resistance and toughness
JP2000096136A (en) Extra thick rolled wide flange shape combining earthquake resistance with refractoriness
JP2002173733A (en) 800°c high temperature fire resistant steel for building construction and its production method
JP2002105585A (en) 850°c high temperature fire resistant steel for building construction and its production method
JP3728211B2 (en) Fireproof coated steel structure
JP2004002991A (en) Steel for secondary fireproof building structure having tensile strength at room temperature of 400-490 n/mm2 and superior in high-temperature property at 800 °c, and method for manufacturing thick steel plate thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905