JP4148658B2 - Pattern formation method - Google Patents

Pattern formation method Download PDF

Info

Publication number
JP4148658B2
JP4148658B2 JP2001119546A JP2001119546A JP4148658B2 JP 4148658 B2 JP4148658 B2 JP 4148658B2 JP 2001119546 A JP2001119546 A JP 2001119546A JP 2001119546 A JP2001119546 A JP 2001119546A JP 4148658 B2 JP4148658 B2 JP 4148658B2
Authority
JP
Japan
Prior art keywords
pattern
mask
fluid
supercritical
subcritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119546A
Other languages
Japanese (ja)
Other versions
JP2002313750A (en
Inventor
均 井上
Original Assignee
財団法人かがわ産業支援財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人かがわ産業支援財団 filed Critical 財団法人かがわ産業支援財団
Priority to JP2001119546A priority Critical patent/JP4148658B2/en
Publication of JP2002313750A publication Critical patent/JP2002313750A/en
Application granted granted Critical
Publication of JP4148658B2 publication Critical patent/JP4148658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業の属する技術分野】
本発明は、パターンの形成方法に関する。
【0002】
【従来の技術】
各種材料を利用する場合、単なるバルク体や薄膜ではなく、任意の形状にパターン化されたものが必要になることが多い。例えば、半導体デバイスのトランジスタやキャパシタなどの素子、各種ディスプレイの画素、圧電アクチュエーター、マイクロマシンの部品などを製造する場合、有機材料、無機材料、あるいはこれらの複合材料を、目的に応じて数ミルメートルからサブミクロンのオーダーのピッチでパターン化することが要求される。
パターン形成の手法としては、半導体デバイスで一般的なリソグラフィー技術や、スクリーン印刷、サンドブラスト、イオンエッチングなどが知られている。
【0003】
リソグラフィー技術ではサブミクロンピッチのパターン形成が可能である。しかし材料の製膜はCVDなどのドライプロセスが主に用いられ、材料そのものの加工はレジストパターンをマスクにしたエッチングによるので、対応可能な厚さもサブミクロンで、1μm以上の厚膜のパターン形成は困難である。
スクリーン印刷では、例えば特開2000−168257号公報に開示されているように孔を開けたマスクの上から材料粒子のペーストを注入するので、厚膜化は容易である。しかし、粒子を用いる方法では微小パターンへの注入は困難で、特に材料そのものを液体化しにくい無機材料に関しては、100μm以下のピッチのパターン形成は難しい。
【0004】
粒子のペーストに代えて液体状の無機材料である金属アルコキシドやその溶液を用いるゾルゲル法もあるが、ミクロンオーダーの微細ピッチのパターンに対応しやすい反面、アルコキシドの反応性の高さなどから膜厚はサブミクロンに制限されることが一般的に知られている。
特開平10−092775号公報などに開示されているサンドブラスト法や機械加工によるパターン形成も可能であるが、機械的に材料を削り取るこれらの手法では、やはり100μm以下のピッチの微細パターンは困難である。また、特開2000−024580号公報の、凹部を設けた基体に材料を埋め込んだ後に目的の基板に転写する方法や、特開2000−348607号公報の、硬化前の材料に冶具を押し付けて型を取る方法などが厚膜パターン形成方法として開示されているが、同様に微細パターンには対応できない。
レーザー加工やイオンエッチングなどの手法は微細な厚膜パターンを形成できるが、多大な時間とコストを要し、汎用的な手法とは言い難い。
以上のように、100μm以下のピッチで、ミクロンオーダーの厚膜パターンを容易に形成できる手法は存在しない。
【0005】
【発明が解決しようとする課題】
本発明は、100μm以下の微細ピッチの領域で、ミクロンオーダーの厚さを有するパターンを容易に形成できる手法を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明は、基体上に所望の形状に孔を開けたマスクを設け、マスクの上から物質を付着させることによりマスクの孔の形状通りのパターンを形成するに当たり、該物質を超臨界流体または亜臨界流体に溶解させて微小孔から基体に向けて噴射することを特徴とするパターン形成方法を要旨としている。
【0007】
超臨界流体または亜臨界流体として超臨界状態または亜臨界状態の二酸化炭素を用いており、その場合、本発明は、基体上に所望の形状に孔を開けたマスクを設け、マスクの上から物質を付着させることによりマスクの孔の形状通りのパターンを形成するに当たり、該物質を超臨界状態または亜臨界状態の二酸化炭素に溶解させて微小孔から基体に向けて噴射することを特徴とするパターン形成方法を要旨としている。
【0008】
超臨界流体または亜臨界流体に溶解させる物質が金属アルコキシドまたは金属錯体であり、その場合、本発明は、基体上に所望の形状に孔を開けたマスクを設け、マスクの上から金属アルコキシドまたは金属錯体を付着させることによりマスクの孔の形状通りのパターンを形成するに当たり、金属アルコキシドまたは金属錯体を、超臨界流体または亜臨界流体、より具体的には超臨界状態または亜臨界状態の二酸化炭素に溶解させて微小孔から基体に向けて噴射することを特徴とするパターン形成方法を要旨としている。
【0009】
【発明の実施の形態】
超臨界または亜臨界状態にするガスとしては、二酸化炭素、トリフロロメタン、脂肪族炭化水素類、アルコール類などが利用可能である。比較的温和な条件で超臨界または亜臨界状態となり、無害であることなどを考慮して、二酸化炭素が特に好適に用いられるが、溶解させる物質に応じて適宜選択すればよいが、超臨界状態または亜臨界状態の二酸化炭素が好ましい例として例示される。二酸化炭素は31℃、7.37MPa以上の条件で、気体と液体の区別がなくなる超臨界状態となる。この超臨界状態、あるいは、上記の温度、圧力よりも低いがこれに近い温度、圧力にある亜臨界状態の二酸化炭素は、気体に匹敵する高い拡散係数を持ちながら、液体に近い密度を有し、種々の物質を溶解できる。
【0010】
超臨界または亜臨界流体に溶解させる物質としては、種々のポリマー、モノマー等の有機物、金属アルコキシド、金属錯体あるいはこれらの混合物が用いられる。特に、他の方法では利用が難しい金属アルコキシドや金属錯体も、本発明によれば好適に用いることができる。金属アルコキシドや金属錯体は液体あるいは溶液化できる無機原料としてゾルゲル法などによる無機合成に用いられているが、反応性が高く、空気中の水分などで容易に分解するため、扱いに注意を要する物質である。この金属アルコキシドを超臨界または亜臨界流体に溶解させて微小孔から噴射することで、金属酸化物のパターンを形成することができる。 超臨界または亜臨界流体に溶解している状態では金属アルコキシド等は流体で十分に希釈されているので、分解は起こりにくく、安定に保管できる。またこれを微小孔から噴射した際には、析出した金属アルコキシド等は気化した流体に保護された状態で基体に到達し、ここで初めて分解、固化するので、通常のスプレー塗布のように、途中で分解してしまうこともなく、密着性のよい良質の膜が得られる。
一般的なゾルゲル法では、塗布した金属アルコキシド等の溶液を乾燥させる際に亀裂が生じやすいため、厚膜化が困難になるが、本発明では主溶媒は超臨界または亜臨界流体であり、噴射と同時に飛散するため、このような問題も生じない。
【0011】
パターンを形成する基体は金属、ガラス、プラスチック等、目的に応じて種々の物が用いられる。また、溶媒に溶解するポリマーやこれを金属やガラス表面に塗布したもの、あるいはハロゲン化アルカリなどを基体に用いると、パターン形成後にポリマーやハロゲン化アルカリを水や溶媒に浸して溶解除去することで、単独のパターン化材料を回収することもできる。特にハロゲン化アルカリを基体に用いれば、高温で熱処理した後にパターンを回収することも可能になる。
【0012】
本発明の実施形態について説明する。図1は本発明を実施する際に用いる装置例の概略図である。ボンベ1から供給された超臨界または亜臨界にするガスは高圧ポンプ2によって昇圧され、保圧弁3により一定圧力を維持された状態で、目的物質またはその前駆体が入れられた溶解槽4に送られる。溶解槽4はヒーター5によって所定温度に昇温されているので、ここでガスは超臨界、または亜臨界の状態となり、目的物質またはその前駆体を溶解する。溶解槽4内の圧力は圧力計6によってモニターされている。バルブ7を開くと、加圧状態にある溶解槽4内の流体が、微細な孔をあけた部品8を通して基体9上に噴射される。基体9上には所望の形状に孔を開けたマスク10が乗せてあり、マスク10の孔の部分にのみ基体9上に目的物質が付着し、パターンが形成される。溶解槽4からバルブ7を経て微細な孔をあけた部品8に至る経路や各部品、基体9および高圧ポンプ2から溶解槽4に至る経路についても、必要に応じてヒーターによって加熱できる。
一般に溶解槽の温度、圧力を変えると超臨界または亜臨界流体の物質溶解能力は変化するので、用いる物質に応じて温度、圧力は適当に設定すればよい。溶解槽4に入れる物質の量は必要な塗布膜厚に応じて調整すればよく、厚く塗布する必要がある時には多く、薄い塗布膜が必要な時には少なくする。
【0013】
【作用】
高圧、高密度の超臨界流体は物質溶解能力が高く、種々の目的物質、あるいはその前駆体を溶解することができる。これを微小孔から噴射すると、急激な膨張とそれに伴う圧力低下が起こり、流体の物質溶解能力が急減するので、それまで溶解していた溶質が微小粒子として析出し、基体に付着する。析出する粒子は極めて微細で、高速の流体の流れに乗って基体に吹き付けられるので、微細なマスクパターンの細部にまで入り込み、正確なマスクパターンの転写が可能になる。また、溶剤として働いていた流体は噴射と同時に気化、飛散するので、基体に付着するのは目的物質のみとなり、基体上で液が流れることもなく、厚膜パターンが形成できる。
一般的なゾルゲル法では、塗布した金属アルコキシド等の溶液を乾燥させる際に亀裂が生じやすいため、厚膜化が困難になるが、本発明では主溶媒は超臨界または亜臨界流体であり、噴射と同時に飛散するため、このような問題も生じない。
【0014】
【実施例】
本願発明の詳細を実施例で説明する。本願発明はこれら実施例によって何ら限定されるものではない。
【0015】
実施例1
容量500cm3のステンレススチール製の溶解槽にチタンテトライソプロポキシドの10%イソプロパノール溶液を入れ、45℃で、10MPaの二酸化炭素を導入し、温度、圧力を一定に保ち1時間撹拌した。ガラス板に銅製の200メッシュの網状マスク(網を構成する銅の幅約20μm、孔部分は一辺約100μmの正方形)を乗せて300℃に加熱しておき、これに向けて内径0.45mmのノズルを通して、10cmの距離から10分間、流体を噴射した。ガラス板からマスクを除いたところ、厚さ2μm、一辺約100μmの正方形の形状に、チタン酸化物のパターンが形成できていた。
【0016】
実施例2
銅製の400メッシュの網状マスク(網を構成する銅の幅約20μm、孔部分は一辺約40μmの正方形)を用いて実施例1と同様にしてパターンを形成した。マスクのサイズが小さくなっっても、実施例1と同様に、チタン酸化物のパターンが得られた。
【0017】
実施例3
容量500cm3のステンレススチール製の溶解槽にチタンテトラエトキシドの10%エタノール溶液を入れ、実施例1と同様にしてパターンを形成した。得られたチタン酸化物のパターンの厚さは約10μmであった。
【0018】
実施例4
容量500cm3のステンレススチール製の溶解槽にスズテトライソプロポキシドの10%イソプロパノール溶液を入れ、実施例1と同様にしてパターンを形成した。得られたスズ酸化物のパターンの厚さは約1μmであった。
【0019】
実施例5
容量500cm3のステンレススチール製の溶解槽にテトラエチルオルソシリケートの20%エタノール溶液と水3.46gを入れ、1気圧の二酸化炭素下、45℃で1時間撹拌した後、二酸化炭素を10MPaまで導入して、さらに1時間撹拌した。ニッケル板に銅製の200メッシュの網状マスク(網を構成する銅の幅約20μm、孔部分は一辺約100μmの正方形)を乗せて300℃に加熱しておき、これに向けて内径0.45mmのノズルを通して、10cmの距離から10分間、流体を噴射した。ガラス板からマスクを除いたところ、厚さ2μm、一辺約100μmの正方形の形状に、シリカのパターンが形成できていた。
【0020】
実施例6
ガスとしてトリフロロメタンを用い、実施例1と同様の条件でパターンを形成した。得られたパターンは二酸化炭素を用いた場合と同様であった。
【0021】
実施例7
マスクとして径1mmの孔を開けたアルミニウム板を用い、臭化カリウムの単結晶の壁開面に乗せ、実施例1と同様にしてパターンを形成した。その後臭化カリウムの結晶ごと500℃で2時間加熱処理し、水に浸して酸化チタンのパターンを剥離させて、径1mmのアナターゼ型酸化チタンの円盤を得た。
【0022】
【発明の効果】
本発明により、100μm以下の微細ピッチの領域で、ミクロンオーダーの厚さを有するパターンを容易に形成できる。
【図面の簡単な説明】
【図1】本発明を実施する際に用いる装置例の概略図である。
【符号の説明】
1 ガスボンベ
2 高圧ポンプ
3 保圧弁
4 溶解槽
5 ヒーター
6 圧力計
7 バルブ
8 微細な孔をあけた部品
9 基体
10 マスク
[0001]
[Technical field to which industry belongs]
The present invention relates to a pattern forming method.
[0002]
[Prior art]
When various materials are used, a material patterned in an arbitrary shape is often required instead of a simple bulk body or thin film. For example, when manufacturing elements such as transistors and capacitors of semiconductor devices, pixels of various displays, piezoelectric actuators, micromachine parts, etc., organic materials, inorganic materials, or composite materials of these materials can be used from several mil meters depending on the purpose. It is required to pattern with a pitch of submicron order.
As a pattern formation method, a lithography technique common to semiconductor devices, screen printing, sandblasting, ion etching, and the like are known.
[0003]
Lithography technology can form submicron pitch patterns. However, a dry process such as CVD is mainly used for film formation of the material, and the material itself is processed by etching using a resist pattern as a mask. Therefore, the corresponding thickness is also submicron, and pattern formation of a thick film of 1 μm or more is possible. Have difficulty.
In screen printing, for example, as disclosed in Japanese Patent Application Laid-Open No. 2000-168257, a paste of material particles is injected from above a mask having holes, so that it is easy to increase the film thickness. However, in the method using particles, it is difficult to inject into a fine pattern, and it is difficult to form a pattern with a pitch of 100 μm or less particularly for an inorganic material in which the material itself is difficult to liquefy.
[0004]
There is also a sol-gel method that uses metal alkoxide, which is a liquid inorganic material, or a solution thereof instead of particle paste, but it is easy to handle fine pitch patterns on the order of microns, but the film thickness is high due to the high reactivity of the alkoxide. Is generally known to be limited to submicron.
Although it is possible to form a pattern by sandblasting or machining as disclosed in Japanese Patent Application Laid-Open No. 10-092775, etc., it is difficult to form a fine pattern with a pitch of 100 μm or less by these methods of mechanically scraping the material. . In addition, a method of transferring a material to a target substrate after embedding a material in a base provided with a recess in Japanese Patent Laid-Open No. 2000-024580, or a tool by pressing a jig against a material before curing in Japanese Patent Laid-Open No. 2000-348607. Although a method for removing a thick film pattern is disclosed as a method for forming a thick film pattern, it cannot be applied to a fine pattern.
Although techniques such as laser processing and ion etching can form a fine thick film pattern, it requires a lot of time and cost, and is not a general-purpose technique.
As described above, there is no method that can easily form a micron-order thick film pattern with a pitch of 100 μm or less.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a technique capable of easily forming a pattern having a thickness on the order of microns in a fine pitch region of 100 μm or less.
[0006]
[Means for Solving the Problems]
In the present invention, when a mask having holes in a desired shape is provided on a substrate and a material is deposited on the mask to form a pattern according to the shape of the holes in the mask, The gist of the present invention is a pattern forming method characterized by being dissolved in a critical fluid and sprayed from a minute hole toward a substrate.
[0007]
Carbon dioxide in a supercritical state or subcritical state is used as the supercritical fluid or subcritical fluid. In this case, the present invention provides a mask having a hole formed in a desired shape on a substrate, and the substance is formed on the mask. In forming a pattern according to the shape of the hole of the mask by adhering, the pattern is characterized in that the substance is dissolved in carbon dioxide in a supercritical state or a subcritical state and sprayed from the microhole toward the substrate. The gist of the formation method.
[0008]
The substance to be dissolved in the supercritical fluid or subcritical fluid is a metal alkoxide or metal complex. In this case, the present invention provides a mask having a hole formed in a desired shape on a substrate, and the metal alkoxide or metal is formed on the mask. In forming the pattern according to the shape of the pores of the mask by attaching the complex, the metal alkoxide or metal complex is converted into a supercritical fluid or subcritical fluid, more specifically, carbon dioxide in the supercritical or subcritical state. The gist of the pattern forming method is that it is dissolved and sprayed from the micropores toward the substrate.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Carbon dioxide, trifluoromethane, aliphatic hydrocarbons, alcohols, and the like can be used as the gas to make the supercritical or subcritical state. Carbon dioxide is particularly preferably used in consideration of the fact that it becomes supercritical or subcritical under relatively mild conditions and is harmless, but may be appropriately selected depending on the substance to be dissolved, Alternatively, subcritical carbon dioxide is exemplified as a preferred example. Carbon dioxide is in a supercritical state where there is no distinction between gas and liquid under conditions of 31 ° C. and 7.37 MPa or more. This supercritical state, or subcritical carbon dioxide at a temperature and pressure lower than or close to the above temperature and pressure, has a density close to that of a liquid while having a high diffusion coefficient comparable to that of a gas. Various substances can be dissolved.
[0010]
As the substance to be dissolved in the supercritical or subcritical fluid, various polymers, organic substances such as monomers, metal alkoxides, metal complexes, or mixtures thereof are used. In particular, metal alkoxides and metal complexes that are difficult to use by other methods can also be suitably used according to the present invention. Metal alkoxides and metal complexes are used as inorganic raw materials that can be converted into liquids or solutions, but are used for inorganic synthesis by the sol-gel method, etc., but they are highly reactive and easily decompose with moisture in the air. It is. A metal oxide pattern can be formed by dissolving the metal alkoxide in a supercritical or subcritical fluid and spraying it from the micropores. In the state dissolved in the supercritical or subcritical fluid, the metal alkoxide or the like is sufficiently diluted with the fluid, so that the decomposition is unlikely to occur and can be stably stored. Also, when this is sprayed from the micropores, the deposited metal alkoxide etc. reaches the substrate in a state protected by the vaporized fluid and decomposes and solidifies for the first time here. A good-quality film with good adhesion can be obtained without being decomposed by.
In a general sol-gel method, cracking is likely to occur when drying a solution such as a coated metal alkoxide, so that it is difficult to increase the film thickness. However, in the present invention, the main solvent is a supercritical or subcritical fluid, and jetting is performed. At the same time, since it scatters, such a problem does not occur.
[0011]
Various substrates, such as metal, glass, and plastic, are used depending on the purpose. In addition, if a polymer that dissolves in a solvent, a coating of this on a metal or glass surface, or an alkali halide is used for the substrate, the polymer or alkali halide is immersed in water or a solvent after pattern formation to dissolve and remove it. A single patterned material can also be recovered. In particular, when an alkali halide is used for the substrate, the pattern can be recovered after heat treatment at a high temperature.
[0012]
An embodiment of the present invention will be described. FIG. 1 is a schematic view of an apparatus used for carrying out the present invention. The supercritical or subcritical gas supplied from the cylinder 1 is pressurized by a high-pressure pump 2 and is sent to a dissolution tank 4 containing a target substance or its precursor in a state where a constant pressure is maintained by a holding valve 3. It is done. Since the dissolution tank 4 is heated to a predetermined temperature by the heater 5, the gas is in a supercritical or subcritical state here and dissolves the target substance or its precursor. The pressure in the dissolution tank 4 is monitored by a pressure gauge 6. When the valve 7 is opened, the fluid in the dissolution tank 4 in a pressurized state is sprayed onto the substrate 9 through the component 8 having fine holes. A mask 10 having holes in a desired shape is placed on the substrate 9, and the target substance adheres to the substrate 9 only in the hole portions of the mask 10, thereby forming a pattern. The route from the dissolution tank 4 through the valve 7 to the part 8 having fine holes and the parts, the base 9 and the path from the high-pressure pump 2 to the dissolution tank 4 can be heated by a heater as necessary.
Generally, when the temperature and pressure of the dissolution tank are changed, the substance dissolving ability of the supercritical or subcritical fluid changes. Therefore, the temperature and pressure may be appropriately set according to the substance used. The amount of the substance to be placed in the dissolution tank 4 may be adjusted according to the required coating film thickness, and is increased when a thick coating is required and decreased when a thin coating is required.
[0013]
[Action]
A high-pressure, high-density supercritical fluid has a high substance dissolving ability and can dissolve various target substances or precursors thereof. When this is ejected from the micropores, rapid expansion and accompanying pressure drop occur, and the substance dissolving ability of the fluid rapidly decreases, so that the dissolved solute is deposited as microparticles and adheres to the substrate. Precipitated particles are extremely fine and are sprayed onto the substrate in a high-speed fluid flow, so that the fine mask pattern can be finely transferred and an accurate mask pattern can be transferred. In addition, since the fluid that worked as the solvent is vaporized and scattered at the same time as the jetting, only the target substance adheres to the base, and a thick film pattern can be formed without any liquid flowing on the base.
In a general sol-gel method, cracking is likely to occur when drying a solution such as a coated metal alkoxide, so that it is difficult to increase the film thickness. However, in the present invention, the main solvent is a supercritical or subcritical fluid, and jetting is performed. At the same time, since it scatters, such a problem does not occur.
[0014]
【Example】
The details of the present invention will be described in Examples. The present invention is not limited to these examples.
[0015]
Example 1
A 10% isopropanol solution of titanium tetraisopropoxide was placed in a dissolution vessel made of stainless steel having a capacity of 500 cm 3, 10 MPa of carbon dioxide was introduced at 45 ° C., and the temperature and pressure were kept constant and stirred for 1 hour. A 200 mesh mesh mask made of copper (copper width of about 20 μm and the hole part is a square with a side of about 100 μm) is placed on a glass plate and heated to 300 ° C., and the inner diameter is 0.45 mm. Fluid was ejected through the nozzle from a distance of 10 cm for 10 minutes. When the mask was removed from the glass plate, a titanium oxide pattern was formed in a square shape with a thickness of 2 μm and a side of about 100 μm.
[0016]
Example 2
A pattern was formed in the same manner as in Example 1 using a 400-mesh net-like mask made of copper (a copper having a width of about 20 μm and a hole portion having a side of about 40 μm). Even when the size of the mask was reduced, a titanium oxide pattern was obtained as in Example 1.
[0017]
Example 3
A 10% ethanol solution of titanium tetraethoxide was placed in a dissolution tank made of stainless steel having a capacity of 500 cm 3, and a pattern was formed in the same manner as in Example 1. The resulting titanium oxide pattern had a thickness of about 10 μm.
[0018]
Example 4
A 10% isopropanol solution of tin tetraisopropoxide was placed in a dissolution tank made of stainless steel having a capacity of 500 cm 3, and a pattern was formed in the same manner as in Example 1. The resulting tin oxide pattern had a thickness of about 1 μm.
[0019]
Example 5
Put a 20% ethanol solution of tetraethyl orthosilicate and 3.46g of water in a 500cm3 stainless steel dissolution tank and stir for 1 hour at 45 ° C under 1 atmosphere of carbon dioxide, then introduce carbon dioxide up to 10MPa. The mixture was further stirred for 1 hour. Put a 200 mesh mesh mask made of copper (copper width of the mesh is about 20 μm and the hole is a square with a side of about 100 μm) on a nickel plate and heat to 300 ° C., and the inner diameter is 0.45 mm. Fluid was ejected through the nozzle from a distance of 10 cm for 10 minutes. When the mask was removed from the glass plate, a silica pattern was formed in a square shape having a thickness of 2 μm and a side of about 100 μm.
[0020]
Example 6
A pattern was formed under the same conditions as in Example 1 using trifluoromethane as the gas. The pattern obtained was the same as when carbon dioxide was used.
[0021]
Example 7
A pattern was formed in the same manner as in Example 1 by using an aluminum plate with a 1 mm diameter hole as a mask and placing it on the wall surface of a potassium bromide single crystal. Thereafter, the crystals of potassium bromide were heat-treated at 500 ° C. for 2 hours, immersed in water to peel off the titanium oxide pattern, and an anatase-type titanium oxide disk having a diameter of 1 mm was obtained.
[0022]
【The invention's effect】
According to the present invention, a pattern having a thickness on the order of microns can be easily formed in a fine pitch region of 100 μm or less.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus used for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gas cylinder 2 High pressure pump 3 Holding pressure valve 4 Dissolution tank 5 Heater 6 Pressure gauge 7 Valve 8 Parts with a fine hole 9 Base 10 Mask

Claims (2)

基体上に所望の形状に孔を開けたマスクを設け、マスクの上から物質を付着させることによりマスクの孔の形状通りのパターンを形成するに当たり、該物質を超臨界流体または亜臨界流体に溶解させて微小孔から基体に向けて噴射すること、100μm以下の微細ピッチの領域で、ミクロンオーダーの厚さを有する厚膜パターンを形成すること、ならびに、該物質が金属アルコキシドであることを特徴とするパターン形成方法。In forming a pattern according to the shape of the hole of the mask by providing a mask with holes formed in a desired shape on the substrate and attaching the substance from the top of the mask, dissolve the substance in the supercritical fluid or subcritical fluid. And spraying from the fine holes toward the substrate, forming a thick film pattern having a thickness of micron order in a fine pitch region of 100 μm or less, and the substance being a metal alkoxide Pattern forming method. 超臨界流体または亜臨界流体として超臨界状態または亜臨界状態の二酸化炭素を用いる請求項1記載のパターン形成方法。  The pattern forming method according to claim 1, wherein carbon dioxide in a supercritical state or a subcritical state is used as the supercritical fluid or subcritical fluid.
JP2001119546A 2001-04-18 2001-04-18 Pattern formation method Expired - Fee Related JP4148658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119546A JP4148658B2 (en) 2001-04-18 2001-04-18 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119546A JP4148658B2 (en) 2001-04-18 2001-04-18 Pattern formation method

Publications (2)

Publication Number Publication Date
JP2002313750A JP2002313750A (en) 2002-10-25
JP4148658B2 true JP4148658B2 (en) 2008-09-10

Family

ID=18969751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119546A Expired - Fee Related JP4148658B2 (en) 2001-04-18 2001-04-18 Pattern formation method

Country Status (1)

Country Link
JP (1) JP4148658B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790483B2 (en) * 2002-12-06 2004-09-14 Eastman Kodak Company Method for producing patterned deposition from compressed fluid
JP4852293B2 (en) * 2005-10-19 2012-01-11 日立マクセル株式会社 Surface modification method for polymer substrate, polymer substrate, and coating member
JP4783110B2 (en) * 2005-10-06 2011-09-28 日立マクセル株式会社 Method for surface modification of polymer substrate
JP2007014889A (en) * 2005-07-08 2007-01-25 Shikoku Instrumentation Co Ltd Array-coating method and apparatus for microparticle by supercritical fluid
JP4919262B2 (en) 2006-06-02 2012-04-18 日立マクセル株式会社 Storage container, resin molding method and plating film forming method
JP5660605B2 (en) * 2010-10-19 2015-01-28 独立行政法人産業技術総合研究所 Method and apparatus for continuous mixing of high pressure carbon dioxide and high viscosity organic fluid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582731A (en) * 1983-09-01 1986-04-15 Battelle Memorial Institute Supercritical fluid molecular spray film deposition and powder formation
US5009367A (en) * 1989-03-22 1991-04-23 Union Carbide Chemicals And Plastics Technology Corporation Methods and apparatus for obtaining wider sprays when spraying liquids by airless techniques
JP3032875B2 (en) * 1991-11-07 2000-04-17 ノードソン株式会社 Liquid application method
JP3331940B2 (en) * 1997-08-27 2002-10-07 株式会社豊田中央研究所 Fine structure transfer method
JPH11197494A (en) * 1998-01-13 1999-07-27 Kenji Mishima Microparticle coating using supercritical fluid
JP3603592B2 (en) * 1998-03-17 2004-12-22 株式会社豊田中央研究所 Manufacturing method of shape transfer material
CN1239269C (en) * 1999-11-26 2006-02-01 旭硝子株式会社 Method and apparatus for forming thin film of organic material

Also Published As

Publication number Publication date
JP2002313750A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP4942263B2 (en) Cleaning device
TW559940B (en) Process and apparatus for treating a workpiece such as a semiconductor wafer
US20070246081A1 (en) Methods and apparatus for cleaning a substrate
JP4148658B2 (en) Pattern formation method
JP2006286665A (en) Method and apparatus for cleaning electronic device
US20180192521A1 (en) Methods of etching conductive features, and related devices and systems
CN107262428A (en) A kind of semiconductor equipment EncoreTa device feature cleaning protection tools and its method of cleaning
JP2007173785A5 (en)
JP2003332288A (en) Water feeding method and water feeding apparatus
JP2009167522A (en) Copper film forming method
US7655496B1 (en) Metal lift-off systems and methods using liquid solvent and frozen gas
KR100815081B1 (en) Method for release treatment of stamper
EP2218522B1 (en) Method and device for local treatment of substrates
JP2005163058A (en) Apparatus for forming film by depositing aerosol
WO2007105670A1 (en) Method for fabricating film-formed body by aerosol deposition
JP4407143B2 (en) Quartz glass component, manufacturing method thereof, and apparatus using the same
TW201843710A (en) Process for producing structured layers
KR101035051B1 (en) Substrate Cleaning Apparatus Using Bubble And Method Using The Same
Yan et al. Nanosphere lithography from template-directed colloidal sphere assemblies
JP2002343760A (en) Apparatus and method for removing organic polymer substance
TWI818336B (en) Surface treatment apparatus and surface treatment method
KR20130124864A (en) Method of forming silica thin film layer having nano-structure patterns
JP2000096240A (en) Treatment of perforated electrode board for plasma chemical deposition
JP4378555B2 (en) Surface treatment method inside thin film forming apparatus
KR102031299B1 (en) Apparatus and method for surface treatment of 3D printer products

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees