JP3331940B2 - Fine structure transfer method - Google Patents

Fine structure transfer method

Info

Publication number
JP3331940B2
JP3331940B2 JP36726697A JP36726697A JP3331940B2 JP 3331940 B2 JP3331940 B2 JP 3331940B2 JP 36726697 A JP36726697 A JP 36726697A JP 36726697 A JP36726697 A JP 36726697A JP 3331940 B2 JP3331940 B2 JP 3331940B2
Authority
JP
Japan
Prior art keywords
reaction product
activated carbon
reaction
precursor
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36726697A
Other languages
Japanese (ja)
Other versions
JPH11128722A (en
Inventor
博昭 若山
喜章 福嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP36726697A priority Critical patent/JP3331940B2/en
Priority to US09/297,051 priority patent/US6194650B1/en
Priority to EP98940586A priority patent/EP0934819A4/en
Priority to PCT/JP1998/003822 priority patent/WO1999010167A1/en
Publication of JPH11128722A publication Critical patent/JPH11128722A/en
Application granted granted Critical
Publication of JP3331940B2 publication Critical patent/JP3331940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【技術分野】本発明は,触媒活性,吸着特性等の化学
的,物理的特性に優れた各種の反応生成物を得ることが
できる,微細構造転写方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microstructure transfer method capable of obtaining various reaction products having excellent chemical and physical properties such as catalytic activity and adsorption properties.

【0002】[0002]

【従来技術】例えば,触媒活性,吸着特性等の化学的,
物理的特性に優れた物質を得るために,微細孔を有する
構造体に有機物或いは無機物からなるコーティング物質
をコーティングしたり,或いはコーティングにより得た
被覆物質を剥離して表面に上記構造体の微細孔形状を反
転させた細孔表面物質を得る方法が知られている。
2. Description of the Related Art Chemical activity such as catalytic activity and adsorption characteristics,
In order to obtain a material having excellent physical properties, a structure having micropores is coated with a coating material made of an organic or inorganic substance, or the coating material obtained by coating is peeled off and the surface of the structure has micropores. There is known a method for obtaining a pore surface material having an inverted shape.

【0003】かかる方法としては,例えば構造体の表面
にゾル,ゲル等のコーティング物質をコーティングする
方法がある。しかし,この方法では,構造体がミクロン
オーダー(μm)よりも細かい微細孔を有する場合,微
細孔の開孔部がコーティング物質により閉塞され易い。
そのため,コーティング物質が微細孔の内部まで浸入せ
ず,目的とする細孔表面物質を効果的に得ることができ
ない。
As such a method, for example, there is a method of coating the surface of a structure with a coating material such as sol or gel. However, in this method, when the structure has fine pores smaller than the micron order (μm), the opening of the fine pores is likely to be closed by the coating material.
Therefore, the coating substance does not penetrate into the inside of the fine pores, and the target pore surface substance cannot be obtained effectively.

【0004】また,CVD等の気相法により構造体にコ
ーティング物質をコーティングする方法もある。しか
し,この場合には,コーティング物質の蒸気を微細孔内
に浸入させるため,特に蒸気圧の低い物質の場合は蒸気
になる量が少なくコーティングに長時間を必要とする。
There is also a method of coating a structure with a coating substance by a gas phase method such as CVD. However, in this case, since the vapor of the coating substance penetrates into the fine pores, especially in the case of a substance having a low vapor pressure, the amount of vapor becomes small and the coating requires a long time.

【0005】また,上記の問題に対応するため,高分子
材料を溶解した超臨界流体を無機多孔質膜に接触させる
方法(特開平7−144121号公報)がある。また,
ポリカルボシラン,ポリシラン等のセラミック前駆物質
を溶解した超臨界流体を,炭素/炭素複合体に浸透,析
出させ,次いで熱処理を行なって,表面にSiC,Si
N等のセラミック膜を形成させ,耐酸化性を増大させる
方法(特開平1−308873号公報)がある。
To cope with the above-mentioned problem, there is a method in which a supercritical fluid in which a polymer material is dissolved is brought into contact with an inorganic porous membrane (JP-A-7-144121). Also,
A supercritical fluid in which a ceramic precursor such as polycarbosilane or polysilane is dissolved is infiltrated and deposited in the carbon / carbon composite, and then heat-treated to form SiC, Si on the surface.
There is a method of increasing the oxidation resistance by forming a ceramic film of N or the like (JP-A-1-308873).

【0006】[0006]

【解決しようとする課題】しかしながら,上記公開公報
に記載されたいずれの方法においても,上記前二者の場
合と同様に,ミクロンオーダーよりも細かい微細孔に対
しては,上記高分子材料等がその開孔部を塞ぎ,これら
を溶解させた超臨界流体が充分に浸入し難い。そのた
め,目的とするコーティングを行なうことが困難であ
る。
However, in any of the methods described in the above-mentioned publications, as in the former two cases, the polymer material or the like is used for fine pores smaller than the micron order. The opening is closed, and the supercritical fluid in which these are dissolved is hard to penetrate sufficiently. Therefore, it is difficult to perform a target coating.

【0007】本発明はかかる従来の問題点に鑑み,構造
体の表面に,効率良く反応生成物をコーティングした被
覆物質及びこの被覆物質から構造体の一部又は全部を除
去し,構造体の微細構造を転写した反応生成物を得るこ
とができる,微細構造転写方法を提供しようとするもの
である。
The present invention has been made in view of the above-mentioned conventional problems, and provides a coating material in which a reaction product is efficiently coated on the surface of a structure, and a method of removing a part or all of the structure from the coating material, thereby reducing the size of the structure. An object of the present invention is to provide a method for transferring a fine structure capable of obtaining a reaction product having a transferred structure.

【0008】[0008]

【課題の解決手段】本発明は,超臨界流体に反応前駆体
を溶解して前駆体流体を作製する溶解工程と,反応開始
剤を含有させた構造体に上記前駆体流体を接触させて,
上記反応前駆体と反応開始剤とを反応させ,該構造体上
に反応生成物をコーティングするコート工程を含んで
かつ上記コート工程の後に,上記反応生成物をコーティ
ングした上記構造体から,該構造体の一部又は全部を除
去することにより,上記構造体の備える微細構造を反映
した反応生成物を採取することを特徴とする微細構造転
写方法にある。
The present invention provides a dissolving step of dissolving a reaction precursor in a supercritical fluid to produce a precursor fluid, and contacting the precursor fluid with a structure containing a reaction initiator,
Reacting the reaction initiator and the reaction precursor include coating step of coating the reaction product on said structure,
And, after the above coating step, the above reaction product is
Removing part or all of the structure from the
To reflect the fine structure of the above structure
A method for transferring a fine structure, characterized by collecting a reaction product obtained .

【0009】さらに,本発明において,前記コート工程
の後に,反応生成物をコーティングした構造体から,該
構造体の一部又は全部を除去する。
Further, in the present invention, after the coating step, part or all of the structure is removed from the structure coated with the reaction product .

【0010】本発明において最も注目すべき点は,上記
構造体に反応開始剤を含有させておき,該構造体の微細
孔内にまで上記前駆体流体を浸入させ,構造体上に反応
生成物をコーティングするコート工程を含んで,かつ上
記コート工程の後に,上記反応生成物をコーティングし
た上記構造体から,該構造体の一部又は全部を除去する
ことにより,上記構造体の備える微細構造を反映した反
応生成物を採取することにある。
The most remarkable point in the present invention is that a reaction initiator is contained in the structure, the precursor fluid is penetrated into the fine pores of the structure, and the reaction product is placed on the structure. include coating step of coating, and on
After the coating step, the above reaction product is coated.
Removing part or all of the structure from the above structure
As a result, the anti-reflection
Collecting the reaction product .

【0011】次に,本発明の作用効果につき説明する。
本発明においては,まず反応前駆体を超臨界流体に溶解
して前駆体流体を準備する。また,反応開始剤を含有さ
せた構造体を準備する。そして,上記前駆体流体内に上
記構造体を浸漬することなどにより両者を接触させて,
前駆体流体を構造体の微細孔内にまで浸入させる。
Next, the operation and effect of the present invention will be described.
In the present invention, first, a precursor fluid is prepared by dissolving a reaction precursor in a supercritical fluid. Also, a structure containing a reaction initiator is prepared. Then, the two are brought into contact with each other by immersing the structure in the precursor fluid, and the like.
The precursor fluid penetrates into the micropores of the structure.

【0012】このとき,前駆体流体は,上記超臨界流体
を溶媒としているので,微細孔へ浸入し易い。また,超
臨界流体に溶解させた反応前駆体は,低分子量であり,
分子サイズが小さいので,上記従来例に示した高分子材
料,ポリカルボシラン等の高分子物質のごとく,微細孔
の開孔部を閉塞することがない。
At this time, since the precursor fluid uses the above-mentioned supercritical fluid as a solvent, it easily penetrates into the micropores. The reaction precursor dissolved in the supercritical fluid has a low molecular weight,
Since the molecular size is small, unlike the polymer materials such as the polymer material and the polycarbosilane shown in the above-mentioned conventional example, the openings of the fine pores are not closed.

【0013】次に,このようにして微細孔内に浸入した
前駆体流体中の反応前駆体は,構造体内に含有させた反
応開始剤と反応する。そして,反応前駆体は目的とする
反応生成物となり,構造体をコーティングし,反応生成
物をコーティングした上記構造体から,該構造体の一部
又は全部を除去することにより,上記構造体の備える微
細構造を反映した反応生成物を得る。以上,本発明によ
れば,構造体の表面に,効率良く反応生成物をコーティ
ングすることができる。
Next, the reaction precursor in the precursor fluid thus penetrated into the micropores reacts with the reaction initiator contained in the structure. The reaction precursor then becomes the desired reaction product, coating the structure ,
A part of the structure from the above structure coated with an object
Or, by removing all of them,
A reaction product reflecting the fine structure is obtained. As described above, according to the present invention, the surface of a structure can be efficiently coated with a reaction product.

【0014】次に,上記超臨界流体とは,液体と同等の
溶解能力と,気体に近い拡散性,粘性を有する物質であ
る。そのため,微細孔内にまで容易,かつ迅速に多量の
反応前駆体を運ぶことができる。上記溶解能力は,温
度,圧力,エントレーナー(添加物)等により調整でき
る。
Next, the above-mentioned supercritical fluid is a substance having a dissolving ability equivalent to that of a liquid and a diffusivity and a viscosity close to those of a gas. Therefore, a large amount of the reaction precursor can be easily and quickly carried into the micropores. The above dissolving ability can be adjusted by temperature, pressure, entrainer (additive) and the like.

【0015】上記超臨界流体としては,例えば,二酸化
炭素,メタン,エタン,プロパン,メタノール,エタノ
ール,アセトン,エチレン,ブタン等がある。また,超
臨界流体への反応前駆体の溶解度を調整するために,メ
タノール,エタノール,アセトン等のエントレーナーを
用いることもできる。
The supercritical fluid includes, for example, carbon dioxide, methane, ethane, propane, methanol, ethanol, acetone, ethylene, butane and the like. Further, in order to adjust the solubility of the reaction precursor in the supercritical fluid, an entrainer such as methanol, ethanol, and acetone can be used.

【0016】次に,上記反応前駆体としては,例えば金
属または半金属(半導体)のアルコキシド,アセチルア
セテート,有機酸塩,硝酸塩,オキシ塩化物,塩化物等
の1種又は2種以上よりなる金属または半金属(半導
体)反応前駆体がある。
The reaction precursor is, for example, a metal or metalloid (semiconductor) alkoxide, acetylacetate, organic acid salt, nitrate, oxychloride, chloride, etc. Or there is a metalloid (semiconductor) reaction precursor.

【0017】また,上記反応開始剤としては,上記反応
前駆体に対するものとして水および/または−OH基等
の表面官能基がある。反応開始剤を構造体に含有させる
方法としては,例えば気相接触法,液相浸漬法等があ
る。構造体として,多孔質体等の細孔を有する物質や,
反応開始剤と親和性のある表面を有する物質を用いる場
合は,反応開始剤を含む気体,液体と接触させることで
容易に構造体の細孔内あるいは表面に反応開始剤を含有
させることができる。
The above-mentioned reaction initiator has a surface functional group such as water and / or an —OH group as the one for the above-mentioned reaction precursor. Examples of a method for incorporating a reaction initiator into the structure include a gas phase contact method and a liquid phase immersion method. As a structure, a substance having pores such as a porous body,
When using a substance having a surface that has an affinity for the initiator, the initiator can be easily contained in the pores or on the surface of the structure by contact with a gas or liquid containing the initiator. .

【0018】次に,上記構造体としては,濾過膜,浸透
膜,イオン交換膜,透析膜等がある。また,構造体とし
ては例えば比表面積が100m2 /g以上の多孔質体等
がある。かかる多孔質体としては,活性炭,多孔質シリ
カ,多孔質アルミナ,アルミナシリケート等がある。本
発明は,特に1000Å以下の,ミクロンオーダーより
も小さい細孔径の微細孔を有する構造体に適用する場
合,その効果が大きい。
Next, examples of the above-mentioned structure include a filtration membrane, a permeable membrane, an ion exchange membrane, and a dialysis membrane. Examples of the structure include a porous body having a specific surface area of 100 m 2 / g or more. Examples of such a porous body include activated carbon, porous silica, porous alumina, and alumina silicate. The present invention has a great effect particularly when applied to a structure having fine pores having a pore diameter smaller than the micron order of 1000 ° or less.

【0019】次に,上記反応前駆体と反応開始剤とが反
応して生成する反応生成物としては,上記金属反応前駆
体より生成される金属酸化物,或いは,シリカ等の半金
属(半導体)酸化物等がある。
Next, the reaction product produced by the reaction between the reaction precursor and the reaction initiator includes a metal oxide produced from the metal reaction precursor or a semimetal (semiconductor) such as silica. There are oxides and the like.

【0020】次に,上記のごとく,構造体上に形成され
た反応生成物は,必要に応じて加熱および/または溶剤
添加等により構造体の一部分又は全てを取り除き,構造
体の微細孔構造をも反映した反応生成物として採取
る。また,構造体上に形成された反応生成物は必要に応
じて酸化または還元処理等の後処理によって機能を付与
することができる。そして,構造体が大きい表面積を有
する多孔質の場合には,大表面積を有する反応生成物を
コーティングした構造体を得ることができ,更には上記
のごとく構造体を除去することにより大表面積の反応生
成物単体を得ることができる。
Next, as described above, the reaction product formed on the structure is removed, if necessary, by heating and / or adding a solvent to remove a part or all of the structure, thereby reducing the fine pore structure of the structure. It is taken as a reaction product, which was also reflected
You. Further, the reaction product formed on the structure can be given a function by post-treatment such as oxidation or reduction treatment, if necessary. When the structure is porous having a large surface area, a structure coated with a reaction product having a large surface area can be obtained. Further, by removing the structure as described above, a reaction surface having a large surface area can be obtained. The product alone can be obtained.

【0021】このようにして得られた反応生成物をコー
ティングした構造体,或いは反応生成物に対しては,そ
の反応生成物の特性により,触媒活性,吸着特性,耐熱
性,耐薬品性,耐酸化性,導電性,強磁性,強誘電性,
超電導性,光学機能(反射,吸収等)等を付与すること
ができる。また,上記反応生成物は,例えば,耐薬品性
膜+光学機能性膜のごとく,2層以上に積層して形成す
ることもできる。
The structure or reaction product coated with the reaction product obtained as described above depends on the characteristics of the reaction product, depending on the catalytic activity, adsorption characteristics, heat resistance, chemical resistance, and acid resistance. Chemical, conductive, ferromagnetic, ferroelectric,
Superconductivity, optical functions (reflection, absorption, etc.) can be provided. Further, the reaction product can be formed by laminating two or more layers, for example, like a chemical resistant film + an optical functional film.

【0022】上記反応生成物は,例えば導電性物質とし
てのIn2 O−SnO2 のごとく,2種以上の金属酸化
物の複合体とすることもできる。上記反応生成物が金属
酸化物の場合,後処理として還元処理をすることで,金
属に変化させることができる。この方法で作製した物質
は,構造体を金属でコーティングした状態,あるいは構
造体上に金属クラスターが担持された状態であり,金属
としてPt,Pd,Rh等の触媒活性に優れたものを用
いることで,触媒材料として好適な物質を作製すること
ができる。
The reaction product may be a composite of two or more metal oxides, for example, In 2 O—SnO 2 as a conductive substance. When the above reaction product is a metal oxide, it can be converted to a metal by performing a reduction treatment as a post-treatment. The substance produced by this method is a state in which the structure is coated with a metal, or a state in which a metal cluster is supported on the structure, and a metal having excellent catalytic activity such as Pt, Pd, Rh or the like must be used. Thus, a substance suitable as a catalyst material can be produced.

【0023】また,反応生成物のコーティング量は,反
応開始剤の量および/または反応前駆体の量を調整する
ことによって,数原子からなるクラスターサイズから調
節することができる。例えば,反応開始剤が水および/
または−OH等の表面官能基であり,反応生成物がシリ
カ(SiO2 ),構造体が活性炭の場合,活性炭中の水
分量は,活性炭の接する雰囲気中の水分量を調節するこ
とにより,活性炭の表面積・等温吸着線等のデータをも
とに加減でき,−OH等の表面官能基の量は活性炭の賦
活条件を最適化することによって調節できる。このよう
にして,所定量のシリカを生成させるのに必要な量の水
および/または−OH等の表面官能基を担持させた活性
炭を用いて,シリカのコート量を数原子からなるクラス
ターサイズから精密に設計することが可能である。
The coating amount of the reaction product can be adjusted from the cluster size consisting of several atoms by adjusting the amount of the reaction initiator and / or the amount of the reaction precursor. For example, if the initiator is water and / or
Alternatively, when the reaction product is silica (SiO 2 ) and the structure is activated carbon, the amount of water in the activated carbon is adjusted by adjusting the amount of water in the atmosphere in contact with the activated carbon. And the amount of surface functional groups such as -OH can be adjusted by optimizing the activated carbon activation conditions. In this manner, the amount of silica is reduced from the cluster size consisting of several atoms by using water and / or activated carbon carrying a surface functional group such as -OH necessary to produce a predetermined amount of silica. It is possible to design precisely.

【0024】また,反応開始剤を含む構造体に,更に別
の物質を担持した場合には,コーティング後に反応生成
物から構造体の一部又は全部を取り除いた反応生成物
は,構造体の構造を反映するとともに,担持されていた
物質の構造をも反映しているために,この担持物或いは
類似の物質を選択的に吸着することができるという優れ
た機能を有している。
Further, when another substance is supported on the structure containing the reaction initiator, the reaction product obtained by removing a part or all of the structure from the reaction product after coating is the structure of the structure. And also reflects the structure of the carried substance, and therefore has an excellent function of selectively adsorbing the carried substance or similar substance.

【0025】また,電場を印可して構造体に反応生成物
をコーティングする場合には,前駆体流体が超臨界流体
としての高拡散性・低粘度という性質を有しているた
め,前述のように構造体の超微細孔内にまで容易に迅速
に十分な量の前駆体流体を運ぶことができる。そのた
め,十分な量を均一にコーティングすることができる。
When a reaction product is coated on a structure by applying an electric field, the precursor fluid has a property of high diffusivity and low viscosity as a supercritical fluid. A sufficient amount of precursor fluid can be easily and quickly transported into the micropores of the structure. Therefore, a sufficient amount can be uniformly coated.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態例1 反応前駆体としてのテトラエトキシシラン〔Si(C2
5 O)4 〕を,温度120度,圧力200気圧の超臨
界流体としての二酸化炭素に溶解し,前駆体流体を作成
した。一方,水を含有した,構造体としての活性炭(比
表面積810m2 /g)を準備し,該活性炭を上記前駆
体流体の中に浸漬した。
Embodiment 1 Tetraethoxysilane [Si (C 2
H 5 O) 4 ] was dissolved in carbon dioxide as a supercritical fluid at a temperature of 120 ° C. and a pressure of 200 atm to prepare a precursor fluid. On the other hand, activated carbon (specific surface area: 810 m 2 / g) as a structure containing water was prepared, and the activated carbon was immersed in the precursor fluid.

【0027】これにより,上記前駆体流体を活性炭の微
細孔内に浸透させ,活性炭中の水とテトラエトキシシラ
ンとを反応させると共に,活性炭の微細孔表面(内壁
面)にシリカをコーティングした。このコーティング処
理は3時間おこなった。その後,上記活性炭を前駆体流
体中から引き揚げ,乾燥し,次いで,空気中,650℃
の熱処理により活性炭シリカコート物より活性炭を取り
除いた。
As a result, the precursor fluid was allowed to penetrate into the fine pores of the activated carbon, causing the water in the activated carbon to react with tetraethoxysilane, and the surface (the inner wall surface) of the fine pores of the activated carbon was coated with silica. This coating process was performed for 3 hours. Thereafter, the activated carbon is withdrawn from the precursor fluid, dried, and then at 650 ° C. in air.
Activated carbon was removed from the activated carbon silica coat by the heat treatment.

【0028】活性炭,活性炭シリカコート物及び反応生
成物(シリカのみ)の走査型電子顕微鏡写真を図1〜図
3にそれぞれ示す。また,窒素吸着により測定した比表
面積の値を表1に示す。図1は,活性炭原料のヤシがら
の植物組織に由来する構造を示している。
Scanning electron micrographs of the activated carbon, the silica-coated product of the activated carbon, and the reaction product (silica only) are shown in FIGS. 1 to 3, respectively. Table 1 shows the values of the specific surface areas measured by nitrogen adsorption. FIG. 1 shows a structure derived from a plant tissue of coconut palm as a raw material of activated carbon.

【0029】また,図2は,シリカコート後も微細構造
が保たれていることを示している。また,図3は,活性
炭の微細構造を転写したシリカが得られていることを示
している。
FIG. 2 shows that the fine structure is maintained after the silica coating. FIG. 3 also shows that silica in which the fine structure of activated carbon was transferred was obtained.

【0030】実施形態例2 超臨界流体の二酸化炭素に,添加剤(エントレーナ)と
してアセトンを10%(重量)混合する以外は実施形態
例1と同じ条件で反応生成物(シリカのみ)を作製し
た。反応生成物(シリカのみ)の走査型電子顕微鏡写真
を図4に示す。図4より,得られたシリカは活性炭の構
造を忠実に転写していることが分かる。
Embodiment 2 A reaction product (silica only) was prepared under the same conditions as in Embodiment 1 except that acetone (10% by weight) was added as an additive (entrainer) to carbon dioxide as a supercritical fluid. . FIG. 4 shows a scanning electron micrograph of the reaction product (silica only). FIG. 4 shows that the obtained silica faithfully transfers the structure of activated carbon.

【0031】実施形態例3 超臨界流体である二酸化炭素に,添加剤(エントレー
ナ)としてエタノールを10%(重量)混合する以外は
実施形態例1と同じ条件で反応生成物(シリカのみ)を
作製した。反応生成物(シリカのみ)の走査型電子顕微
鏡写真を図5に示す。図5より,得られたシリカは活性
炭の構造を忠実に転写していることが分かる。
Embodiment 3 A reaction product (silica only) is produced under the same conditions as in Embodiment 1 except that 10% (by weight) of ethanol as an additive (entrainer) is mixed with carbon dioxide as a supercritical fluid. did. FIG. 5 shows a scanning electron micrograph of the reaction product (silica only). FIG. 5 shows that the obtained silica faithfully transfers the structure of activated carbon.

【0032】実施形態例4 反応前駆体としてテトラブトキシチタン〔Ti(C4
9 O)4 〕用い,これを温度160℃,圧力250気圧
の超臨界二酸化炭素に溶解し,水を含有した構造体とし
ての活性炭(比表面積800m2 /g)に浸透させた。
活性炭中の水とテトラブトキシチタンとの反応により,
活性炭の微細孔表面(内壁面)にまでチタニア(TiO
2 )をコーティングした。
Embodiment 4 Tetrabutoxytitanium [Ti (C 4 H)
9 O) 4 ] and dissolved in supercritical carbon dioxide at a temperature of 160 ° C. and a pressure of 250 atm, and permeated into activated carbon (specific surface area 800 m 2 / g) as a structure containing water.
By the reaction of water in activated carbon with tetrabutoxy titanium,
Titania (TiO2) up to the microporous surface (inner wall) of activated carbon
2 ) Coated.

【0033】このコーティング処理は3時間おこなっ
た。次いで,実施形態例1と同様にして,空気中,65
0℃の熱処理により活性炭チタニアコート物より活性炭
を取り除いた。反応生成物(チタニアのみ)の走査型電
子顕微鏡写真を図6に示す。図6より,得られたチタニ
アは活性炭の構造を忠実に転写していることが分かる。
This coating treatment was performed for 3 hours. Next, in the same manner as in the first embodiment, 65
Activated carbon was removed from the activated carbon titania coat by heat treatment at 0 ° C. FIG. 6 shows a scanning electron micrograph of the reaction product (titania only). FIG. 6 shows that the obtained titania faithfully transcribes the structure of activated carbon.

【0034】実施形態例5 構造体として,活性炭(比表面積1740m2 /g)を
用いる以外は実施形態例1と同じ条件で反応生成物(シ
リカのみ)を作製した。窒素吸着による比表面積の測定
結果を表1に示す。
Embodiment 5 A reaction product (silica only) was produced under the same conditions as in Embodiment 1 except that activated carbon (specific surface area: 1740 m 2 / g) was used as the structure. Table 1 shows the measurement results of the specific surface area by nitrogen adsorption.

【0035】実施形態例6 構造体として,活性炭(比表面積3120m2 /g)を
用いる以外は実施形態例1と同じ条件でコーティング処
理を行い,活性炭シリカコート物を作製した。窒素吸着
による比表面積の測定結果を表1に示す。
Embodiment 6 Coating treatment was carried out under the same conditions as in Embodiment 1 except that activated carbon (specific surface area: 3120 m 2 / g) was used as a structure to produce an activated carbon silica-coated product. Table 1 shows the measurement results of the specific surface area by nitrogen adsorption.

【0036】実施形態例7 構造体として,活性炭(比表面積3120m2 /g)を
用いる以外は実施形態例4と同じ条件でコーティング処
理を行い,活性炭チタニアコート物を作製した。窒素吸
着による比表面積の測定結果を表1に示す。
Embodiment 7 A coating treatment was carried out under the same conditions as in Embodiment 4 except that activated carbon (specific surface area: 3120 m 2 / g) was used as a structure, to prepare an activated carbon titania coat. Table 1 shows the measurement results of the specific surface area by nitrogen adsorption.

【0037】比較例1 水を含有させた活性炭(比表面積800m2 /g)を,
120℃のテトラエトキシシラン〔Si(C2 5 O)
4 〕に3時間浸漬させた。得られた活性炭シリカコート
物及び反応生成物(シリカのみ)の走査型電子顕微鏡写
真を図7,図8に示す。窒素吸着により測定した比表面
積の値を表1に示す。
Comparative Example 1 Activated carbon containing water (specific surface area: 800 m 2 / g) was
120 ° C. tetraethoxysilane [Si (C 2 H 5 O)
4 ] for 3 hours. FIGS. 7 and 8 show scanning electron micrographs of the obtained activated carbon silica-coated product and the reaction product (silica only). Table 1 shows the values of the specific surface areas measured by nitrogen adsorption.

【0038】図7,図8より,コーティングにより活性
炭の微細孔が生成したシリカによって閉塞されているこ
とが分かる。
7 and 8 that the fine pores of the activated carbon are blocked by the silica formed by the coating.

【0039】[0039]

【表1】 [Table 1]

【0040】表1及び各図より次のことが分かる。実施
形態例1〜7では,反応生成物(シリカ,チタニア)を
コートした活性炭及び反応生成物(シリカ,チタニア)
は,高比表面積を保っており,活性炭の構造を忠実に転
写しているが,比較例1では,シリカコート活性炭及び
シリカは,比表面積が著しく低下しており,活性炭の微
細構造を転写できていない。
The following can be seen from Table 1 and each figure. In the first to seventh embodiments, activated carbon coated with a reaction product (silica, titania) and a reaction product (silica, titania)
Maintains a high specific surface area and faithfully transfers the structure of activated carbon. In Comparative Example 1, however, silica-coated activated carbon and silica have a significantly reduced specific surface area, and can transfer the fine structure of activated carbon. Not.

【0041】[0041]

【発明の効果】本発明によれば,構造体の表面に,効率
良く反応生成物をコーティングした被覆物質及びこの被
覆物質から構造体の一部又は全部を除去し,構造体の微
細構造を転写した反応生成物を得ることができる,微細
構造転写方法を提供することができる。
According to the present invention, a coating material on which a reaction product is efficiently coated on the surface of a structure and a part or all of the structure are removed from the coating material to transfer a fine structure of the structure. And a method for transferring a fine structure capable of obtaining a reaction product obtained by the method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態例1における,構造体としての活性炭
の図面代用走査型電子顕微鏡写真(倍率540倍)。
FIG. 1 is a scanning electron micrograph (magnification: 540 times) of a drawing of an activated carbon as a structure in Embodiment Example 1;

【図2】実施形態例1における,活性炭シリカコート物
の図面代用走査型電子顕微鏡写真(倍率2540倍)。
FIG. 2 is a scanning electron micrograph (magnification: 2540 times) of a drawing coated with activated carbon silica in Example 1 as a substitute for a drawing.

【図3】実施形態例1における,活性炭の微細構造をナ
ノオーダーまで反映した,反応生成物としてのシリカの
図面代用走査型電子顕微鏡写真(倍率2250倍)。
FIG. 3 is a scanning electron micrograph (magnification: 2250 times) of a silica as a reaction product, which reflects the fine structure of activated carbon down to the nanometer order, in Embodiment 1;

【図4】実施形態例2における,活性炭の微細構造をナ
ノオーダーまで反映した,反応生成物としてのシリカの
図面代用走査型電子顕微鏡写真(倍率4510倍)。
FIG. 4 is a scanning electron micrograph (magnification: 4510 times) of silica as a reaction product, which reflects the fine structure of activated carbon down to the nanometer order, in Embodiment 2;

【図5】実施形態例3における,活性炭の微細構造をナ
ノオーダーまで反映した,反応生成物としてのシリカの
図面代用走査型電子顕微鏡写真(倍率850倍)。
FIG. 5 is a scanning electron microscope photograph (magnification: 850 times) of silica as a reaction product, reflecting the fine structure of activated carbon down to the nanometer order, in Embodiment 3;

【図6】実施形態例4における,活性炭の微細構造をナ
ノオーダーまで反映した,反応生成物としてのチタニア
の図面代用走査型電子顕微鏡写真(倍率1090倍)。
FIG. 6 is a scanning electron microscope photograph (magnification: 1090 times) of titania as a reaction product, reflecting the fine structure of activated carbon down to the nanometer order, in Embodiment 4;

【図7】比較例1における,活性炭シリカコート物の図
面代用走査型電子顕微鏡写真(倍率500倍)。
FIG. 7 is a scanning electron micrograph (magnification: 500 ×) of the activated carbon silica-coated product in Comparative Example 1 instead of a drawing.

【図8】比較例1における,反応生成物としてのシリカ
の図面代用走査型電子顕微鏡写真(倍率560倍)。
FIG. 8 is a scanning electron micrograph (magnification: 560) of a silica as a reaction product in Comparative Example 1 instead of a drawing.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−117407(JP,A) 特開 昭60−21215(JP,A) 特開 昭61−91085(JP,A) 特開 平5−68936(JP,A) 特表2001−513832(JP,A) 欧州特許出願公開179589(EP,A 2) 国際公開96/29716(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B01J 19/00 B05D 1/00 - 5/12 C03B 19/12 - 19/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-117407 (JP, A) JP-A-60-21215 (JP, A) JP-A-61-91085 (JP, A) 68936 (JP, A) Table 2001-513832 (JP, A) European Patent Application Publication 179589 (EP, A2) WO 96/29716 (WO, A1) (58) Fields investigated (Int. Cl. 7 , (DB name) B01J 19/00 B05D 1/00-5/12 C03B 19/12-19/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 超臨界流体に反応前駆体を溶解して前駆
体流体を作製する溶解工程と, 反応開始剤を含有させた構造体に上記前駆体流体を接触
させて,上記反応前駆体と反応開始剤とを反応させ,該
構造体上に反応生成物をコーティングするコート工程を
含んで かつ上記コート工程の後に,上記反応生成物をコーティ
ングした上記構造体から,該構造体の一部又は全部を除
去することにより,上記構造体の備える微細構造を反映
した反応生成物を採取する ことを特徴とする微細構造転
写方法。
1. A dissolving step of dissolving a reaction precursor in a supercritical fluid to prepare a precursor fluid, and contacting the precursor fluid with a structure containing a reaction initiator to form a reaction precursor with the reaction precursor. the reaction initiator is reacted, include coating step of coating the reaction product on said structure, and after the coating process, Koti the reaction product
Removing part or all of the structure from the
To reflect the fine structure of the above structure
A microstructure transfer method , comprising collecting a reaction product obtained .
JP36726697A 1997-08-27 1997-12-24 Fine structure transfer method Expired - Fee Related JP3331940B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP36726697A JP3331940B2 (en) 1997-08-27 1997-12-24 Fine structure transfer method
US09/297,051 US6194650B1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
EP98940586A EP0934819A4 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same
PCT/JP1998/003822 WO1999010167A1 (en) 1997-08-27 1998-08-26 Coated object and process for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-247910 1997-08-27
JP24791097 1997-08-27
JP36726697A JP3331940B2 (en) 1997-08-27 1997-12-24 Fine structure transfer method

Publications (2)

Publication Number Publication Date
JPH11128722A JPH11128722A (en) 1999-05-18
JP3331940B2 true JP3331940B2 (en) 2002-10-07

Family

ID=26538481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36726697A Expired - Fee Related JP3331940B2 (en) 1997-08-27 1997-12-24 Fine structure transfer method

Country Status (1)

Country Link
JP (1) JP3331940B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529293B2 (en) * 2001-01-31 2010-08-25 株式会社豊田中央研究所 Method for manufacturing form transfer material
JP4148658B2 (en) * 2001-04-18 2008-09-10 財団法人かがわ産業支援財団 Pattern formation method
JP5007968B2 (en) * 2005-08-16 2012-08-22 独立行政法人産業技術総合研究所 Surface treatment using carbon dioxide
EP2792406A1 (en) * 2006-01-30 2014-10-22 Advanced Technology Materials, Inc. A fluid storage and dispensing apparatus
JP2008144053A (en) * 2006-12-11 2008-06-26 Dow Corning Toray Co Ltd Composite microparticle and method for producing the same
JP5323466B2 (en) * 2008-12-15 2013-10-23 学校法人 名古屋電気学園 Manufacturing method of composite activated carbon
US8679231B2 (en) 2011-01-19 2014-03-25 Advanced Technology Materials, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Also Published As

Publication number Publication date
JPH11128722A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
RU2108860C1 (en) Precursor of catalyst or ceramic membrane and method of preparation thereof
Imai et al. Preparation of porous anatase coating from sol‐gel‐derived titanium dioxide and titanium dioxide‐silica by water‐vapor exposure
EP1935476B1 (en) Gas separator apparatus
EP0242208A1 (en) Composite membrane
EP1323846B1 (en) Process for preparing metal coatings from liquid solutions utilizing cold plasma
US6027796A (en) Mesoporous ceramic film with one dimensional through channels and process for its production
Sobel et al. Nanoscale structuring of surfaces by using atomic layer deposition
KR100460450B1 (en) Preparation of the silica composite membranes with thermal stability by Soaking-Rolling method
JP3331940B2 (en) Fine structure transfer method
JP2001130911A (en) Method for producing high crystal silica mesoporous thin film
US20070154639A1 (en) Coated articles and methods of manufacture thereof
EP1899157B1 (en) Method of fabricating nanoscale structures
Schattka et al. Sol–gel templating of membranes to form thick, porous titania, titania/zirconia and titania/silica films
Yacou et al. One pot synthesis of hierarchical porous silica membrane material with dispersed Pt nanoparticles using a microwave-assisted sol–gel route
US20070149399A1 (en) Multifunctional catalyst and methods of manufacture thereof
JP3030328B2 (en) Ultrafine noble metal dispersed titanium oxide thin film and its manufacturing method
JP2004277260A (en) Porous ceramic material and method of manufacturing the same
JP2000015112A (en) Production of photocatalyst
Simon et al. Effect of different metal in situ growing routes on the morphology and gas separation properties of polyetherimide/palladium nanocomposite asymmetric membranes
JP4461670B2 (en) A method for producing a metal particle inclusion thin film.
JPH0871385A (en) Carbon dioxide separator
KR100911575B1 (en) Titania-palladium compositesand preparing method for the same
JP3580136B2 (en) Catalyst production method
JPH02298325A (en) Denatured membrane
JP2001248024A (en) Hollow ceramic fiber product and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130726

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140726

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees