JP4139883B2 - Rapid preparation method for various solid catalysts and apparatus therefor - Google Patents

Rapid preparation method for various solid catalysts and apparatus therefor Download PDF

Info

Publication number
JP4139883B2
JP4139883B2 JP2002031689A JP2002031689A JP4139883B2 JP 4139883 B2 JP4139883 B2 JP 4139883B2 JP 2002031689 A JP2002031689 A JP 2002031689A JP 2002031689 A JP2002031689 A JP 2002031689A JP 4139883 B2 JP4139883 B2 JP 4139883B2
Authority
JP
Japan
Prior art keywords
catalyst
particles
catalyst component
supported
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002031689A
Other languages
Japanese (ja)
Other versions
JP2003230839A (en
Inventor
建彦 伊藤
基 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002031689A priority Critical patent/JP4139883B2/en
Publication of JP2003230839A publication Critical patent/JP2003230839A/en
Application granted granted Critical
Publication of JP4139883B2 publication Critical patent/JP4139883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、固体触媒の有効性の簡便な探索法として極めて有用な、多種の固体触媒の迅速調製方法及びそのための装置、並びに固体触媒の有効性を簡便に探索する方法及びそのための装置に関する。
【0002】
【従来の技術】
従来より、各種の化学品の合成、燃料の合成および各種排気ガスの浄化等で非常に多くの触媒が使用されているが、近年、環境問題やエネルギー問題からの要請により、触媒の特性や効率を更に上げるために新たな高性能触媒の迅速な開発が望まれている。
この触媒探索の迅速化はエネルギー・環境問題の改善に貢献できる極めて重要な技術となっている。特に多元系の固体触媒では各成分の組み合わせの数も膨大になり、例えば、5成分系の触媒で互いに異なる10種ずつの成分を組み合わせたとすると、単なる組み合わせの数だけでも10万種近くの触媒があることになり、さらには濃度等の組み合わせを含めると更に膨大な数となるため触媒探索の迅速化がどうしても必要となる。
【0003】
これら多元系の固体触媒の探索にはこれまでのところ効果的な迅速化方法がないため、触媒の探索は過去に蓄積したデータや知識から推定して探索範囲を一部に絞り込んで行われており、範囲を絞らない全面的な探索は経費や時間の面から困難と考えられている。
一方、近年、コンビナトリアルケミストリーとして医薬品等を並列的に多数作る方法が行われている。しかし、多元系固体触媒の場合には、各触媒成分の担持は一段で行われることが通常であり、多段で行う場合は成分の担持は反応でなく乾燥であることもあり、後段の操作により前段で処理した成分の移動等が起こりやすく目的とするものを得にくい。また、固体触媒では、固体そのもの又は固体に担持した成分から特に特定の化合物を作りそれを直接利用する訳ではなく、それが持つ触媒特性を利用するという特徴を持つため、通常のコンビナトリアルケミストリーで採用されているような、固相上に固定した基に対し反応を選択的に繰り返し、固相ごとに分離して最後に生成物を切り出すという、手数が非常に節約でき且つスマートな方法である”いわゆる固相合成法”を適用することは困難である。
更に、固体触媒の分野においては、確かな結果を得るためには、調製した触媒について簡単なモデル反応ではなく、実際に目的とする反応での反応性能評価を行う必要があり、目的とする性能の優劣を示す有効なデータを得るためにはこの部分にも非常に経費と時間がかかるため、並列合成により大量の試料が作れた場合も、大量の試料の試験が簡単に行える状況ではない。特に経費に糸目を付けない場合をのぞき、大量の試料で通常行えるのは必ずしも目的とする反応と同じ傾向を示すとは言えないごく単純な反応による予備評価に過ぎない。
実際、固体触媒の調製自体を考えても、先に示したように多元系では組み合わせの数が極めて多く、調製すべき試料の数も膨大になり、通常の方法により一つづつを並行して独立に作る方法では莫大な経費がかかるため広範な探索は非常に難しい。さりとて何らかの方法で一時に混合物として調製されたものでは各粒子に標識をつけ分離することも困難であり、通常では各粒子ごとに成分分析をする以外に区別方法が無いため、簡単にはその分離ができずその結果として特殊な例を除き種類別の性能評価は困難である。
【0004】
このような触媒探索において最も問題となるのは探索範囲内に有効な触媒が在るか否かが判らないと言うことである。もし有効な触媒がその範囲に無いと膨大な数の個別の触媒の調製と評価に多大の時間と経費を無駄に費やすことになる。広範な触媒探索では、具体的にどの組み合わせのどんな組成の触媒が有効かが明らかになる前に、この探索範囲には有効な触媒が存在するか否かを大略知ることが最も効率的である。現在の技術では、有効な触媒が特定のグループの中に存在することが明らかになればそこから個々の触媒を絞り込み最適化することは比較的容易である。
従って、多くの種類の多元系固体触媒をごく簡単に作れる方法とそこで調製された大量の触媒試料に関して少ない回数の反応試験を行うことによりある範囲の成分の組み合わせから成る有効な触媒の存在を明らかにできる方法を見いだし、更に、それを簡便に行うための装置を工夫できれば、高価な特別に新しい分析法や機器を考案したり、多大の費用をかけて大がかりな装置を導入しなくとも既存の方法を工夫することにより経済的に有効な触媒の探索の迅速化が可能となる。しかしながら、現時点では、そのような効率的な多くの触媒を創り出す簡便な装置や方法やそこで調製した触媒の中に有効な触媒が在るか否かを少ない手数で短時間に知る方法がないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は、上記した問題を解決するためになされたものであって、その第1の目的は、触媒の迅速探索に適した多種の固体触媒の効率的な簡便調製法とそのための装置を提供することであり、第2の目的は、そこで調製した触媒に関して少ない数の反応性能評価から探索範囲内での有効な触媒の存在の有無と、有効な触媒構成成分を明らかにできる固体触媒の探索方法並びにそのための装置を提供することにある。
【0006】
【問題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意検討した結果、個々の担体粒子ごとに所定の触媒成分を段階的・並行的に直接、即ち含浸容器を用いることなく供給・担持することにより、多種類の多元系固体触媒が個別的に簡便に調製できることを知見し、更に、これら個々の触媒から予め設定した成分を持つ多種の触媒混合物を得、該触媒混合物と同時に調製される基準となる触媒混合物との触媒作用を比較・評価することにより、極めて少ない評価回数で有効成分の有無の判定と、更にはそこに含まれる個々の触媒について評価を行うことで有効な個々の触媒を知ることができ、このようにすることにより触媒探索で大幅に触媒調製及び評価の手数が省かれることを見いだし、本発明を完成するに至った。
【0007】
すなわち、この出願によれば、以下の発明が提供される。
1.担体各1粒子に対し各触媒成分を混合することなく個別的に逐次、担持させて多種の固体触媒を迅速に調製する方法であって、以下の多段工程を含むことを特徴とする多種の固体触媒の迅速調製方法。
(1)直径0.5−3mmの担体粒子を貯留する工程
(2)貯留された担体粒子を第1触媒成分群担持帯域に分配する工程
(3)この帯域に第1触媒成分群に含まれる各触媒成分溶液を供給し、各担体粒子に第1触媒成分のそれぞれが担持された第1触媒成分担持粒子を得る工程
(4)上記で得た各第1触媒成分担持粒子を必要により乾燥及び/又は焼成、還元した後、所定の第2触媒成分群担持帯域に分配する工程
(5)この帯域に第2触媒成分群に含まれる各触媒成分溶液を供給し、各触媒粒子に第2触媒成分のそれぞれが更に担持された第2触媒成分担持粒子を得る工程
(6)上記で得た各第2触媒成分担持粒子を必要により乾燥及び/又は焼成、還元した後、所定の第3触媒成分群担持帯域に分配する工程
(7)この帯域に第3触媒成分群に含まれる各触媒成分溶液を供給し、各触媒粒子に第3触媒成分のそれぞれが更に担持された第3触媒成分担持粒子を得る工程
(8)以下最後の触媒成分群が担持されるまで上記と同様な操作を行い所定の固体触媒を調製する工程
(9)上記(1)〜(8)の工程を必要な数だけ繰り返し行い、各段から次の段への同種の触媒粒子の供給数は次の段の触媒成分数またはその倍数として、次の段では各粒子にすべての成分をそれぞれ担持することにより、各段階での触媒成分群から各々1つずつを選ぶ組み合わせにおいて論理的に可能な触媒成分の組み合わせの全てを持つ固体触媒を調製する工程
(10)工程(9)において、すべての段の触媒成分担持帯域に無処理帯域を設け、無処理帯域も含めたすべての第1触媒成分担持帯域へ担体粒子を供給し、その後の処理は無処理帯域も担持帯域と同様にして扱う工程
2.担体が多孔体球状粒子であることを特徴とする上記1に記載の多種の固体触媒の迅速調製方法。
3.担体粒子又は触媒担持粒子への触媒成分の担持が、担体各粒子又は触媒担持各粒子に対して触媒成分溶液を個別に直接吸収させることにより行われることを特徴とする上記1または2に記載の多種の固体触媒の迅速調製方法。
4.触媒成分がポンプにより担体粒子又は触媒担持粒子に直接送られることを特徴とする上記3に記載の多種の固体触媒の迅速調製方法。
5.触媒成分がサイホンにより担体粒子又は触媒担持粒子に直接送られることを特徴とする上記3に記載の多種の固体触媒の迅速調製方法。
6.担体粒子又は触媒担持粒子に供給される触媒成分溶液の量の調節を触媒担体の吸収能により自律的に行わせることを特徴とする上記5に記載の多種の固体触媒の迅速調製方法。
7.上記1〜6の何れかに記載の調製方法で得られた各触媒担持粒子を所定の複数の触媒群とし、当該触媒群に含まれる固体触媒の有効性を該触媒群を構成する個々の固体触媒に分離することなく判別することを特徴とする固体触媒の迅速探索評価方法。
【0008】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明の多種の固体触媒の迅速調製方法は、基本的には、担体各1粒子に対し各触媒成分を混合することなく個別的に逐次、担持させることを特徴としている。
担体粒子に対する触媒成分の担持は、各触媒成分が重複しないようにして、複数並行して段階的に行なうことが好ましい。
この場合、触媒成分の担持を、各段での触媒成分からそれぞれ1つを選ぶ論理的な組み合わせにより行うことが好ましく、更に、触媒成分の担持を、担体各1粒子に対して各触媒成分溶液を直接供給することにより行うことが最も好ましい。
【0009】
本発明の触媒成分の担持法は、特に制限されないが、含浸容器などを用いず1つずつの担体粒子に直接、触媒成分溶液を供給することにより触媒担持粒子が調製できる方法が好ましい。
担体としては、通常、最初の出発物質にシリカゲル、各種の構造規則性物質やアルミナ、ジルコニア等などの多孔性担体球状粒子を用いるのが最も単純で良好であるが、その他、各種の酸化物系担体の使用も可能である。また、はじめに用いる担体の代わりに触媒成分を担持した粒子や各種塩類の加水分解等により調製した共沈物の粒子等を用いることも可能である。さらに担体粒子は1種である必要はなく、規則的に変えて担体の異なるものを同時に作ることもできる。なお用いる粒子の形状としては球状のものが最も良い結果を与える。
担体の粒子径は、含浸担持及びその分配が問題なくできれば特に制限はないが、当然のことながらあまり粒子が大きい場合は含浸に時間がかかり不均一になりやすく全体の量が増え現実的でない。あまり小さいとその後の各種の処理が困難になる。
実際には含浸や移動の容易さも含め、直径0.5ー3mmの粒子が適当である。また、粒子の形状としては球状が自重で動く際に必要であるが、動力により移動させるのであれば破砕状等特に制限はない。
【0010】
これらの担体粒子に、各種の触媒成分溶液を吸収担持する方法は、液を一定量ポンプで送る方法、液を吹き付ける方法、液をサイフォンを通して自分で吸収させる方法などがあり、特に制限はない。粒径のそろった粒子で定量性をあげたい場合は装置コストが高くなるがポンプを用いる方法が優れている。通常は含浸法によりサイフォンを通し担体への吸着量を自律的に制御させる方法が最も簡便であり好ましい。
【0011】
含浸に使用する溶媒は水が最も使いやすいが、使用する塩類が溶解するものであればアルコールなど特に制限は無い。
触媒成分として使用する塩類は、使用する溶媒に溶解するものであれば、通常の塩類の他、複塩、錯化合物、有機金属化合物、及びそれらの混合物等特に制限はない。
担持する触媒成分の濃度は溶液にでき担体に担持できる範囲では特に制限はない。
【0012】
ところで、先に記したように、例えば、4種づつの4つのグループからなる16種類の異なる成分のうち、それぞれのグループから一つずつ成分を選ぶ4成分系の触媒を調製する場合、通常の並列合成であれば1成分および2成分のものも含め624種の触媒を通常の方法により624種の含浸溶液を作って1種ずつ作り評価しなくてはならない。 また、4成分触媒系で成分を固定し、その組成の影響を見る場合、濃度を各々4種類変える場合は、256種の溶液を作り含浸して評価しなくてはならない。更に、上の両者を併せて成分と濃度を同時に変える場合は8万種程度の含浸溶液が必要となり、並列合成としても大変な仕事となる。
【0013】
これに対して、本発明方法によれば、4種4グループからなる4成分系では、4段階で担持しその操作を5列並列して行う4段5列の並列の含浸装置を用い、わずか16種の触媒成分溶液を用意するだけで先に述べた624種の触媒が簡単に調製でき、それを自動的に、最後に担持した成分別に集めるようにすると、調製した触媒は最終段が無処理のものも含め各々125個の触媒を含む5つの触媒混合物として得ることができる。
そして、たとえば、この5個の触媒混合物の5回の反応性能評価の比較から有効な触媒の有無と最終段の成分の効果が分かり、調製法を変更して効果的な触媒が含まれる部分についてのみ調製し更に絞り込むか、または予め取り分けておいた個別の触媒の性能を調べれば有効成分を探索することができ、触媒調製と評価の手間を大幅に低減することが可能となる。
【0014】
同様なことは先に示した組成の影響を見る実験でも同様であり、本発明方法によれば、4つの濃度の異なる16種の触媒成分溶液があれば256種の触媒が簡単に調製でき触媒の最適化に利用できる。
さらに、濃度と成分を同時に変える場合は通常の方法であれば8万種に近い触媒溶液の調製を必要とするが、本発明では、わずか64種の触媒溶液を用意すれば良いことになる。
【0015】
即ち、従来の多元系固体触媒の調製法では、触媒を構成する各成分を一度で担持するには目的とする触媒の種類だけの数の溶液を作る必要があるが、本発明方法では、調製時必要とされる触媒成分溶液は、濃度の異なる成分も独立した成分として、組み合わせに用いる触媒成分の数だけでよく、極めて簡単に予め設定された論理的に可能な触媒成分溶液の全ての組み合わせを持つ多種の触媒粒子を調製することができるのである。
【0016】
また、成分溶液の含浸は、通常は触媒粒子の集まりを用いて、容器を用いこの容器内に収容した触媒溶液を担体に加えたり、逆に、担体を容器内の触媒溶液に加えることにより行われている。この方法での担体を容器から出し入れする操作は処理が煩雑であり、更には他成分による汚染を回避するには非常に面倒な操作を必要とする。更に、このような処理においては殆どの場合が粉体と同様の扱いになり容器への付着等がおこり、特に少量の場合正確な自動的な取り扱いは非常に難しく完全な自動化は困難である。
これに対し、本発明方法によれば、担体の取り扱いは一粒ずつ個別に行いしかも触媒成分溶液の担持は容器を用いずに球状粒子に直接吸収させる方式で十分であり、しかも粒子の移動及び供給は例えばその自重により行うことができるため、移動や供給のための動力機構や含浸容器の使用が省かれ、全ての取り扱いが非常に簡素化でき完全自動化も容易となる。
【0017】
更にまた、本発明方法では、担体粒子の取り扱いが一粒ずつで済むため担体(例えばシリカゲル粒子は直径1.0-1.4mm で1000個で1g程度)や触媒溶液も非常に少ない量で調製でき大量の探索ではコスト、時間、保存などで多くの利点があり、小型にできるうえ非常に簡便に低コストで自動化による広範な探索ができる。このためこれまでにコンビナトリアルケミストリーとして各種企業で開発された高価な並列合成装置とは異なり、現在ごく普通に用いられているガスクロと同程度の簡便安価な装置として個人レベルでの利用が可能である。
因みに、本発明方法の能力を試算すると、たとえば、4段5列の処理系を持つ小型の装置1台で4成分を主体とする多成分系触媒を調製する場合、1列で1分間に1個処理ができる場合、同じ種類のものを5個ずつ作るとすると、処理量は1分間に1種で、乾燥や、焼成・還元などの処理に伴うタイムラグや溶液の交換や担体粒子の交換などを別として、一日に12時間稼働させると1日720種、年間250日とすれば年間18万種となり、1種1個では90万種となり、本発明方法の能力の高さを示している。固体触媒を扱う分野ではこのような莫大な量を検討した例はなく、このように簡便な方法で5成分系などこれまでは広範な検討が困難なもので大量の調製・探索が自動化できることは触媒開発にとって画期的なものということができる。
【0018】
つぎに、本発明で具体的に採られる機械的で簡便な多種の固体触媒の迅速調製方法について説明する。
この迅速調製方法は、担体各1粒子に対し各触媒成分を混合することなく個別的に逐次、担持させて多種の固体触媒を迅速に調製する方法であって、以下の工程を含むことを特徴としている。
(1)直径0.5−3mmの担体粒子を貯留する工程
(2)貯留された担体粒子を第1触媒成分群担持帯域に分配する工程
(3)この帯域に第1触媒成分群に含まれる各触媒成分溶液を直接供給し、各担体粒子に第1触媒成分のそれぞれが担持された第1触媒成分担持粒子を得る工程
(4)上記で得た各第1触媒成分担持粒子を必要により乾燥及び/又は焼成、還元した後、所定の第2触媒成分群担持帯域に分配する工程
(5)この帯域に第2触媒成分群に含まれる各触媒成分溶液を直接供給し、各触媒粒子に第2触媒成分のそれぞれが更に担持された第2触媒成分担持粒子を得る工程
(6)上記で得た各第2触媒成分担持粒子を必要により乾燥及び/又は焼成、還元した後、所定の第3触媒成分群担持帯域に分配する工程
(7)この帯域に第3触媒成分群に含まれる各触媒成分溶液を直接供給し、各触媒粒子に第3触媒成分のそれぞれが更に担持された第3触媒成分担持粒子を得る工程
(8)以下最後の触媒成分群が担持されるまで上記と同様な操作を行い所定の固体触媒を調製する工程
(9)上記(1)〜(8)の工程を必要な数だけ繰り返し行い、各段から次の段への同種の触媒粒子の供給数は次の段の触媒成分数またはその倍数として、次の段では各粒子にすべての成分をそれぞれ担持する事により、各段階での触媒成分群から各々1つずつを選ぶ組み合わせにおいて論理的に可能な触媒成分の組み合わせの全てを持つ固体触媒を調製する工程
(10)すべての段の触媒成分担持帯域に無処理帯域を設け、無処理帯域も含めたすべての第1触媒成分担持帯域へ担体粒子を供給し、その後の処理は無処理帯域も担持帯域と同様にして扱う工程
【0019】
つぎに、上記(1)〜(10)工程について順次説明する。
【0020】
[(1)の工程について]
直径0.5−3mmの担体粒子を準備する工程であり1つまたは複数の貯留槽を持ち、例えば後記する図1の貯留槽では、少なくとも、調製する触媒成分群の数×各触媒成分群に含まれる触媒成分数の担体粒子が貯留される
【0021】
[(2)の工程について]
貯留された担体粒子を最初に触媒成分を担持させる第1触媒成分群担持帯域に分配する工程である。この分配工程では、担体自体の自重を利用する方法を採ることが好ましい。また、第1触媒成分群担持帯域には、少なくとも第1触媒成分群に含まれる触媒成分の数の帯域が設けられることが好ましく、通常、粒子は全ての帯域に等しく供給される。帯域数が少ない場合は同じ帯域で異なる成分を複数担持できるようにする必要が生じ装置は複雑になり、並列的な処理の部分が減るため調製効率は落ちる。また、誤り無く各触媒成分を自動的に所定の帯域に供給する上で、その担持帯域をたとえば1列、2列・・の如く指定しておくことが好ましい。
【0022】
[(3)の工程について]
第1触媒成分群担持帯域に分配された担体粒子に第1触媒成分群に含まれる触媒成分溶液を直接供給し、各担体粒子のそれぞれに第1の触媒成分のそれぞれが担持された第1触媒成分担持粒子を得る工程であり、並列的に処理が行われる。第1触媒成分は例えば図1に示される触媒成分溶液貯留溜に保持され、任意の手段例えばサイフォンやポンプにより第1触媒成分群担持帯域に供給され、該帯域に分配されている担体粒子に直接吸収含浸される。
【0023】
[(4)の工程について]
上記で得た各第1触媒成分担持粒子を必要により乾燥及び/又は焼成、更には還元処理した後、第2触媒成分群担持帯域のそれぞれに分配する工程である。通常は乾燥のみで行うことが各成分の混合をよくするために好ましいが、別の効果をねらう場合は焼成・還元も有効である。この分配工程では、触媒担持粒子の自重を利用する手段を採ることが好ましい。また、第2触媒成分群担持帯域には、少なくとも第2触媒成分群に含まれる触媒成分の数の帯域が設けられる。また、誤り無く各触媒成分を自動的に所定の帯域に供給する上で、その担持帯域をたとえば1列、2列・・の如く指定しておくことが好ましい。
【0024】
[(5)の工程について]
第2触媒成分群担持帯域に分配された第1触媒成分担持粒子に第2触媒成分群に含まれる触媒成分溶液を直接供給し、各担持粒子のそれぞれに第2触媒成分のそれぞれがさらに担持された第2触媒成分担持粒子を得る工程である。第2触媒成分は例えば図1に示される触媒成分溶液貯留溜に保持され、任意の手段例えばサイフォンやポンプにより第2触媒成分群担持帯域に供給され、該帯域に分配されている担体粒子に直接含浸吸収される。なお、第2触媒成分溶液の該帯域への供給は簡単に全ての組み合わせができるように、その供給先が重複することなく、全てに均等となるようにしておくが好ましい。
【0025】
[(6)の工程について]
上記で得た各第2触媒成分担持粒子を必要により乾燥及び又は焼成及び又は還元処理した後、第3触媒成分群担持帯域のそれぞれに分配する工程である。この分配工程では、触媒担持粒子の自重を利用する手段を採ることが好ましい。また、第3触媒成分群担持帯域には、少なくとも第3触媒成分群に含まれる触媒成分の数の帯域が設けられる。また、誤り無く各触媒成分を自動的に所定の帯域に供給する上で、その担持帯域をたとえば1列、2列・・の如く指定しておくことが好ましい。
【0026】
[(7)の工程について]
第3触媒成分群担持帯域に分配された第2触媒成分担持粒子に第3触媒成分群に含まれる触媒成分溶液を直接供給し、各担持粒子のそれぞれに第3触媒成分のそれぞれがさらに担持された第3触媒成分担持粒子を得る工程である。第3触媒成分は例えば図1に示される触媒成分溶液貯留溜に保持され、任意の手段例えばサイフォンやポンプにより第3触媒成分群担持帯域に供給され、該帯域に分配されている担体粒子に直接含浸吸収される。なお、第3触媒成分溶液の該帯域への供給は簡単に全ての組み合わせができるように、その供給先が重複することなく、全てに均等となるようにしておくが好ましい。
【0027】
[(8)の工程について]
上記のような工程を最後の触媒成分群が担持され乾燥必要に応じ焼成・還元されるまで行い、最初の各担体粒子に各段の触媒成分群から各々1つずつ選ばれた触媒成分が逐次、段階的に担持された所定の固体触媒を調製する工程である。
【0028】
[(9)の工程について]
(9)上記(1)〜(8)の工程を必要な数だけ繰り返し行い、各段から次の段への同種の触媒粒子の供給数は次の段の触媒成分数またはその倍数として、次の段では各粒子にすべての成分をそれぞれ担持する事により、各段階での触媒成分群から各々1つずつを選ぶ組み合わせにおいて論理的に可能な触媒成分の組み合わせの全てを持つ固体触媒を調製する工程である。
【0029】
[(10)の工程について]
すべての段の触媒成分担持帯域に無処理帯域を設け、(2)の工程の貯留槽からの担体粒子の分配で、無処理帯域も含めたすべての第1触媒成分担持帯域へ担体粒子を供給し、各段の触媒成分担持帯域から次の段へ供給する同種の触媒粒子の数を次の段で担持する成分数+1又はその和の倍数とし、それらに対し、無処理も含め次の段でのすべての成分の担持等の処理を均等に行なう工程である。
本発明方法は、たとえば1つだけある貯留槽から供給する最初の触媒担体粒子を、第1段階で担持する触媒成分数+1として、これらを1つの未処理帯域を備えた成分数に等しい担持帯域を持つ第1段階の触媒成分担持帯域に均等に供給することで、第1段階の各触媒成分が各々が担持された担持触媒粒子と第1段階の触媒が担持されていない未処理担体が得られ、その後、各段の各成分担持帯域からの次の段への触媒担持粒子の供給を同種のものについて次の段の触媒成分数+1とし、同様の操作を必要な段数繰り返すと最も機械的・効率的に無担持のものから、1成分、2成分、3成分・・から多成分まで考えられる組み合わせの種類を持つ触媒を調製することができる。
なお、これらの方法では同じ触媒成分群のものが共含浸された触媒はできないのでそのようなものを調製したい場合は、他の触媒成分群にその成分を入れるか、又は、触媒成分群を作り直して再度調らべればよい。なお、ここで用いる触媒成分は全てが異なっている必要はなく、目的とする成分組成により任意に選べばよい。
【0030】
上の操作で各段間での担持触媒粒子の再配分の方法は、コンピュータによる制御を考えると各種可能であるが、全ての組み合わせができる方法であれば特に制限はない。
【0031】
各段の成分数が異なるときは配分方法が複雑になるため、ここではまず、手順が比較的簡明な各段の成分数が等しい場合について表1に基づいて説明するが、、実際に行う場合もできるだけ各段の担持帯域数を等しくして極く簡便な機械的分配方法で行うことが効率化のため好ましい。
【0032】
【表1】

Figure 0004139883
【0033】
表1において、Sは担体粒子、第1段の1列〜5列は第1触媒成分群担持帯域、A1〜A5は第1触媒成分群に含まれる各触媒成分、第2段の1列〜5列は第2触媒成分群担持帯域、B1〜B5は第2触媒成分群に含まれる各触媒成分、第3段の1列〜5列は第3触媒成分群担持帯域、C1〜C5は第3触媒成分群に含まれる触媒成分、第4段の1列〜5列は第4触媒成分群担持帯域、D1〜D5は第4触媒成分群に含まれる触媒成分を表す。
この表1において、各段の5列目を無処理帯域とし、A5、B5、C5、D5をそれぞれ空成分としたのが、本発明方法である。
【0034】
表1において、第1段目に供給された第1巡の担体粒子Sは、第1段の各列から第2、3、4段の同じ列へ配分される、その結果、第1巡の担体粒子Sのそれぞれは各列でA1B1C1D1、A2B2C2D2、−−−−、A5B5C5D5の触媒担持粒子を与える(以下第1巡目という)
第2巡の粒子は第1段では第1巡の粒子と同じように第一段の各列に供給されるが、第1段から第2段の配布先を第一段と同じ列から1列ずつ左(又は右)の列に変え、2段目から3段目、3段目から4段目のの配布は第1巡目の粒子については同じ列に行う。その結果第2巡の粒子はそれぞれA5B1C1D1,A1B2C2D2,−−−−、A4B5C5Dの触媒担持粒子を与える(以下、第2巡目という)。1巡ごとに第2段の配布先を左に変えてまた配布先が元に戻るまで行う。次に2段目から3段目への配布先を全ての列において1つ左に移し上の操作を繰り返す。この操作を1段目から2段目への配布先が1回りするたびに行い、2段目から3段目への配布先が元に戻るまで続け、戻ったところで3段目から4段目への配布先を一つ左へずらし、このような操作を最下段への配布が1回りするまで続ける。
【0035】
このようにすると表1で担体粒子Sは第1列から第5列まで順次配分され、1巡目の粒子は直下に配分され各列でA1B1C1D1、A2B2C2D2、−−−−、A5B5C5D5を生成する。2巡目の粒子はそれぞれA5B1C1D1,A1B2C2D2,−−−−、A4B5C5D5を与え、これを4段目の配布先が一回りするまで続けることにより各段の成分を1つずつ含む全ての組み合わせの触媒がそれぞれ1つずつ得られる。
これらの配分方法を上の例とは逆に、先ず3段目から4段目への配布先を一回り変えることから始めて上の段を変えていくようにしても結果としては同じことになる。
【0036】
次に、各触媒成分群に含まれる触媒成分数が異なる場合の本発明の触媒の調製方法の1つの例を表2に示す。
【0037】
【表2】
Figure 0004139883
【0038】
表2において、Sは担体粒子、第1段の1列〜5列は第1触媒成分群担持帯域、A1〜A5は第1触媒成分群に含まれる各触媒成分、第2段の1列〜3列は第2触媒成分群担持帯域、B1〜B3は第2触媒成分群に含まれる各触媒成分、第3段の1列〜4列は第3触媒成分群担持帯域、C1〜C4は第3触媒成分群に含まれる触媒成分を表す。
この表2において、一段の5列目、2段の3列目、3段の4列目を無処理帯域とし、A5、B3、C4をそれぞれ空成分としたのが本発明方法である。
【0039】
先ず第1段の各列の第1触媒担持帯域に1つずつの担体粒子Sが配布される。このうちA1、A2、A3ではそれぞれの成分が担持されて直下のB1,B2,B3に配布されそれぞれの成分を担持される。B1,B2,B3にある粒子はそれぞれ直下のC1,C2,C3に配布されそれぞれの成分が担持され、ここでA1B1C1、A2B2C2、A3B3C3なる成分を持つ触媒担持粒子が生成する。一方A4,A5はそれぞれの成分を担持された後B1,B2に配布されそれぞれの成分を担持した後直下のC1,C2に配布され更にそれぞれの成分を担持し、ここでA4B1C1、A5B2C2なる成分を持つ触媒担持粒子が生成する。ここまでが1巡目の粒子である。
2巡目の粒子のうちA1,A2,A3はそれぞれ直下のB1,B2,B3に配布されB1,B2,B3からは配布先を1つ左に移してC2,C3,C4に配布されそれぞれA1B1C2、A2B2C3、A3B3C4 なる成分を持つ触媒担持粒子を生成する。一方、A4,A5はそれぞれB1,B2に配布された後そこから配布先を1つ左に移し、C2,C3に配布されC4B1C2、A5B2C3 なる成分を含む触媒担持粒子を生成する。このようにして3段目の配布先を一回り変え終わったら2段目の配布先を一回り変えることで各段から次の段へ同種の触媒担持粒子を各帯域に均等に供給でき各段の触媒成分からそれぞれ1つを選ぶ組み合わせのすべてが作られることになる。
【0040】
表1と表2の比較からわかるように表2の方法はあまり効率的でなく、可能な場合は少ない段の同じ成分の帯域数を倍にするなどしてなるべく各段の数を等しくすることが望ましい
なお、同じ種類の触媒粒子を複数作るには、配布先を変えた後、更に配布先を変えることなく1段目への配布を必要なだけ巡回させればよい。このようにすることで調製時には組み合わせる成分溶液を成分数だけ用意することで多種の多元触媒を簡単に得ることができる。
また、調製の迅速化のためには操作の待ち時間をできるだけ少なくするように、これらの粒子の移動は各列で全ての粒子がほぼ均等に動くように適当な時間差を持って同期して行うことが望ましい。
【0041】
本発明に係る多種の固体触媒の迅速調製方法によれば、各成分の担持が制御されて行われているため、最終段から出る粒子ごとに触媒の組成は決まっており、装置の最終段においては調製された触媒をその後の評価に合わせて個別、または混合物として集めることができる。
【0042】
調製が終わった触媒について、探索範囲に有効な触媒があるか否かを知る簡単な評価法は、実際には有効な触媒ができそうな系が触媒成分の組み合わせなどで変わるため、各人の各種知見に基づく適当なグループ分けをするなど各種考えられる。しかし、最も汎用性の高い自動的、機械的に行う方法は、調製した粒子を最終段の成分別(列別)に集めその混合物を評価にかける方法である。
【0043】
成分を4つずつ持つ4つのグループから1成分ずつを選ぶ4成分系の触媒を表1の例に従って作る場合について説明すると、1列、2列、3列、4列では触媒成分を担持し、5列は無処理とし、1段目でA成分群、2段目でB成分群、3段目はC成分群、4段目は最終段でD成分群を担持する。最後に、最終段の担持成分ごとに生成触媒粒子を分けると、実際には列ごとに生成物を集めればよいが、各々のグループはそれぞれ125種の触媒粒子を含む5つのグループに分けられる。
【0044】
ここで、見方を変え各グループの違いを見直すと、各グループは無処理のD5列のメンバーである各触媒成分にそれぞれD1,D2,D3,D4を更に加えたものとなっており、D5列とその他のグループの差は最終段の担持成分となり、各々の効果を比べることができる。即ち、各グループの混合触媒を用いて5回の反応評価を行い、このうち最終段で無処理の混合物(即ちD5列のグループ)による反応結果と、その他のグループを用いての結果を比較することにより、最終段の成分の効果の比較ができ、どの成分で処理したものの中に活性の高い触媒が存在するかが推定でき、各成分が有効かあるいは負に働くかが分かる。
【0045】
更に、それぞれの混合物の活性の大きさからそのグループに有効な触媒が存在するか否かも分かる。有効な触媒の存在が推定された場合には、実際には1グループが125種も触媒を含むため、更なる触媒の絞り込みが必要である。例えば、D1のグループに有効触媒の存在が推定される場合は、表1で第1段を全てD1とし2段目への配布は全て直下のみに行い、2段目をA成分群、3段をB成分群、最終段をC成分群とし、列ごとに集めると、C成分別に分類された25種の触媒からなる5つのグループが得られ、これを用いまた5回反応評価する事によりC成分の比較と有効成分の絞り込みができることになる。その結果これらの中でC2が有効となれば更に絞り込みをするため1段目は全てD1とし更に2段目は全てC2として3段目A成分群、最終段B成分群とし調製を行い各列ごとに5個ずつグループを得、5回の評価を行うと有効なB成分が分かる。最後はこのグループの個々の触媒の5つについて反応評価をすれば有効なA成分と、有効な触媒が明らかになることになり、有効触媒の決定が全部で僅か25回の反応評価でできることになる。実際は1グループ25種ぐらいに絞れた段階でどこかのグループに確かに有効触媒がありそうだとなったら更に絞り込みを行わなくとも、後は個々の触媒について反応評価を行ったとしても25回であり、これまでの5回を2回と合わせ35回の反応評価で625種の触媒から有効触媒が見いだせることになる。
【0046】
このように焼成した触媒を自動的に適当な混合物として集め、それを反応評価することにより、非常に少ない回数で触媒の探索が可能となる。これらの評価において1グループに含まれる触媒の種類が多いと高活性と低活性で活性の差があまりない場合は有効触媒の推定が難しくなる。活性の大きさと、分析精度等を考えその数を選ぶ必要があり、それを最終段での自動的な収集に反映させる必要がある。収集はコンピュータ等で自由に制御できるため、列ごとでも、列をいくつかに分けても、更に異なる収集形態で収集しても特に問題はない。
しかし、触媒性能の最適化の場合のようにあまり大きくない活性の大小を比較したい場合は上記の方法は必ずしも適していない。その場合、最終段で触媒粒子を種類別に集め個々に反応テストを行う方法によれば有効な触媒は確実に見いだせる。ただしその場合、反応テストの数は当然多くなる。そこで通常の触媒探索では本発明で示したように触媒調製自体は簡単に行えるため、収集法を変える等して範囲をしぼり、有効な触媒が推定された点で個々の触媒の評価を行うように、この両者を組合わせることが最も効果的である。
なお、目的によっては、例えば迅速探索を目的としないのであれば、調製した触媒を適当な種ごとに混合したり全く混合しないで評価するなどその方法に特に制限はない。例えば、反応性能のライブラリーを作るのであれば、本装置を用い個々の触媒を分けて集めそれを評価する事で大量データの取得が可能である。
【0047】
評価する反応としては固体触媒の評価装置で評価できる反応であれば特に制限は無い。触媒性能の評価に際しては、その方法に特に制限はない。
しかし、その目的とするところにより、評価用の触媒混合物に含まれる触媒の種類の数を選ぶことが望ましい。活性の確認が容易な特異的な反応では多くの種類をその中に含ませることができ、分析可能な範囲で有ればその数に特に制限はない。なお、活性があまり変わらない触媒の組み合わせでは、その数を多くすると活性の高いものを確認することが難しくなるので、直接個別の触媒について評価をする方が効果的である。
【0048】
本発明方法において、触媒混合物の活性評価をどのような手順で行うかは省力化に大きな影響がある。最も簡単な方法は、最終段での担持の後、無処理の部分も含め全てを混合しこれを評価に用いる方法であり、一度で考えられる全ての組み合わせの触媒の評価ができる。
この方法は活性の有無だけを見ることになり、通常は起こり難い、即ち通常は活性のあるものが殆どない反応に特異的に有効な触媒を探索する場合には適しており、大略ではあるが1回の評価で広い範囲の探索ができる。
【0049】
通常、最も効果的な方法は、最終段階で生成した触媒を列ごとにそのまま混合し、得た混合物を評価し、どれかのグループで高い活性が認められ有効な触媒の存在が推定された時点で、そのグループのみを再調製して更に細分化するか、またはそのグループの個々の触媒を改めて調製を行い個々の触媒の評価を行う、または予め取り分けておいた個々の触媒で反応評価を行う方法であり、こうすると有効な触媒が明らかにできる。なお、生成する触媒の数が少ない場合は、生成した触媒の一部を予め取り分けて保存し再評価に使用することも良いが、生成する数が多い場合はその保存管理に労力を要するため、ライブラリーの形成を目的とせず単に探索のみであれば本発明に関わる装置で再調整する方が容易である。
【0050】
なお、本発明における混合物を用いての評価での重要な知見は以下の通りである。
第一は、通常、担持型固体触媒の混合物では、各々の触媒粒子はある程度の大きさを持つ粒子内がほぼ均一の組成の触媒であり、これは粒子内で成分が混合した触媒とは異なり、各粒子においては互いに独立してその粒子特有の反応が起こり触媒の混合の影響が大きくでることは少ないという点である。
第二は、混合の影響がでる例は、反応生成物の二次反応が非常に速く、その反応に有効な触媒が混合物の中に含まれる場合にみられるが、この場合でも主反応は進行しているため有効触媒の探索上では大きな障害とならないということである。
第三は、まれに水素の活性化等が関連する反応で、水素の活性化能力を持つものが別に存在し単独では見いだせない活性を示すことがあるが、この場合も本来の反応が同時に起こるため、この様な混合物で新規な反応が起これば更に新たな発見となるだけで、ここでの触媒探索を特に妨げるものとはならないということである。
【0051】
次に、本発明方法で好ましく採用される機械的で簡便な多種の固体触媒の迅速調製装置について説明する。
【0052】
本発明の簡便な多種の固体触媒の迅速調製装置は、担体1粒子ごとに各触媒成分を混合することなく個別的に逐次、直接供給して担持させる手段を備えたことを特徴としている。
このような装置においては、更に触媒成分の担持を、各触媒成分が重複しないようにして、複数並行して段階的に行う手段を備えていることが好ましく、更には、触媒成分の担持を、各段での触媒成分からそれぞれ1つを選ぶ論理的な組み合わせ方法に従って行う手段を備えているものが好ましい。
【0053】
また、本発明の簡便な多種の固体触媒の迅速探索評価装置は上記のごとき調製装置で得られた各担持触媒粒子を所定の複数の触媒群とする分配混合装置と、該触媒群に含まれる固体触媒の有効性を該触媒群を構成する個々の固体触媒に分離することなく判別する装置を備えたことを特徴としている。
【0054】
本発明の代表的な固体触媒迅速調製装置の概要を図1のブロック図で説明する。この固体触媒迅速調製装置は大きく2つの部分からなる。1つは前記工程(1)を行う担体粒子貯留部であり、もう一つは工程(2)から(9)を行う触媒成分担持部(ここでは4段)である。この触媒成分担持部は、粒子分配部と触媒成分供給部、触媒成分担持帯域部と乾燥部から構成される。この場合、全ての触媒成分の担持を終了した触媒担持粒子の焼成還元を行う焼成・還元部を必要により設けておくことが好ましい。
【0055】
本発明の代表的な固体触媒迅速探索評価装置の概要を図2のブロック図で説明する。この固体触媒迅速探索評価装置は図1に示される調製装置に、該調製装置で得られた各担持触媒粒子を所定の複数の触媒群とする分配混合部と、該触媒群に含まれる固体触媒の有効性を該触媒群を構成する個々の固体触媒に分離することなく判別する評価する触媒評価部とからなる。この触媒評価部においては、反応に適した触媒粒子のグループ化を行う。また、最適な固体触媒の調製、探索評価が効率よく行えるように、この触媒評価部には触媒調製装置と反応評価部の両者を適宜コントールできる、制御部を設けておくことが望ましい。
【0056】
次に、本発明の具体的な固体触媒迅速調製装置の1例を図3に示す。
この装置は傾斜した台の上に設置されている構造を有する。1は担体粒子貯留部、2は担体貯留部1から粒子分配部3に分配される担体粒子を制御するゲート部、3は粒子分配部、4は触媒成分供給部、5は触媒成分担持帯域部、6は次段の乾燥部7に分配される触媒担持粒子を制御するゲート部、7は触媒担持粒子を乾燥する乾燥部、8は触媒担持粒子の焼成部、9は触媒担持粒子の還元部である。
担体粒子貯留部1に貯留された担体粒子はゲート部2により適宜調製されて粒子分配部3に分配され、分配された各担体粒子は触媒成分担持帯域部5に供給される。ここで各担体粒子には、触媒成分供給部4から供給された第1の触媒成分群に含まれる触媒成分溶液が含浸される。第1の触媒成分溶液がそれぞれ含浸された粒子はついでゲート6により乾燥部7に送られ乾燥される。乾燥された第1触媒担持粒子は次の段の粒子分配部、第2触媒成分担持帯域部に移送され、ここで第2触媒成分溶液が含浸され、ついで乾燥部7で第1段と同様にして乾燥され、第1触媒成分と第2触媒成分の両方が担持された触媒担持粒子が得られる。
同様にして全ての群の触媒成分(図3の場合、第1触媒成分群〜第4触媒成分群)が含浸された触媒担持粒子は焼成部8、必要に応じ還元部9に導かれ、この部分の先にある分配混合部10で各種触媒が混合した触媒群として得ることができる。
なお、図3に示される装置においては、その斜面の傾きは10〜20度がよく直径1mm程度の球状粒子を用いる場合は15度程度が最も好ましい。
【0057】
本発明の固体触媒迅速調製装置においては、多種の固体触媒の調製に際して、たとえば担体として球状の多孔体粒子を用い先ず担持したい触媒成分溶液を成分数だけパイプ等で供給し、好ましくは並行する斜面上のV字型の溝を自重で移動した粒子の一粒ずつに容器を用いず直接吸収させることで行われる。これにより、装置が非常に簡略化できる。
また、第1段階としての第1触媒成分群に含まれる触媒成分溶液の吸収担持後、この担持粒子は例えば自重で乾燥部に移り、加熱下不活性ガス中を所定の時間をかけて移動することにより短時間で乾燥され、第2段階としての第2触媒成分群に含まれる触媒成分の担持が可能となる。
【0058】
この場合、各段における触媒担持帯域のそれぞれに無処理帯域を設ける手段を付加したのが本発明の触媒調製装置であり、各列から出た乾燥した粒子は全ての組み合わせを作る設定に従い第2触媒成分群に含まれる触媒成分担持帯域と無処理帯域の列に振り分けられ、1段目と同様に1列は無処理とし、残りの列では第2の触媒成分がそれぞれ担持され乾燥される。以下同様にして4元系であれば成分溶液は4回担持される。このように担持を多段で行い、且つ、各段ごとに列の間で粒子を規則的に再配分する事で操作が非常に簡単になり、先にも示した4種4グループから1種ずつを選ぶ4成分系では、用いる成分溶液は担持する成分溶液数のみ(ここでは16種)でよく、それで理論上あり得る組み合わせの全てを持つ触媒がこの簡便な調製装置でほぼ自動的に得られることになる。なお、各段における成分数はそれぞれ異なっていても全く問題はない。
【0059】
また、本発明の探索範囲に有効な触媒があるか否かを知る簡単な探索評価装置によれば、上記調製装置により調製した粒子を最終段の成分別(列別)に集めその混合物と、例えば最終段で無処理の混合物と比較することにより、最終段での成分が有効か否かが分かり、またそれぞれの混合物の活性の大きさから有効な触媒の有無が分かり、非常に少ない反応評価で触媒の探索評価が可能となる。
【0060】
【実施例】
次に本発明を概要を以下の例によって説明するが、本発明はもちろんこれらの例に限定されるものではない。
【0061】
例1
本実験例に関わる装置では担体粒子及び触担持媒粒子の移動を重力で行うために各種の部品は図3に示すように斜面上に設置されている。装置最上部の担体貯留部1には原料となる直径1.0-1.4mmの担体粒子が貯留されており、これの下部からV字溝がのび、溝の中に担体粒子を1粒ずつ取り出すための、短い間隔で縦に並んだ2本の下から突き出したピンからなるゲート2がそのすぐ下流に設置されている。更にその下流にはゲート2から送り出された担体粒子をその下流にある触媒成分供給部4の5列の触媒成分担持帯域部5に分配するための粒子分配部3が設けられている。この部分は平面上に刻まれたV字溝を下にあるリニア移動機構で左右に動かすことで上の段の各列からでた粒子を下の目的とする列に送ることができる。
【0062】
各触媒群に含まれる触媒成分溶液は必要量が触媒成分液供給部4の溶液溜に入れられ液がサイホンで移動し易いように含浸する位置よりもやや高い位置に保持されている。
触媒成分担持帯域部5では上から送られてきた担持粒子が決まった位置で、下からでたピンのゲートで止められそこに担持する触媒成分の溶液溜に繋がった先端のごく細いパイプがスリットを通して上から下がり、担体粒子と接触し、毛細管引力とサイフォンの原理により、担体粒子に自然に吸収される。吸収は通常30秒以内に終わる。
【0063】
次にパイプを上げこの触媒担持粒子をパイプから離した後、ゲート6を開いてこの触媒担持粒子を下に送る。この部分は例えばフッ素樹脂で作られており、溶液および粒子は通路に付着することなく移送することができる。
触媒成分含浸帯域部5から出た触媒担持粒子は乾燥のために乾燥部7に送られる。乾燥部7(例えばフッ素樹脂上に刻まれたV字型の溝の上面に発熱板を設けたもの)は、たとえば120℃に加熱されており、その中を窒素ガスが流れている。粒子を一定時間ここに留めるため2.5mmの間隔で25本が2組の50本のピンが溝の中で交互に上下する構造を持ち通常は25分間かかってここを通過し、次の担持のために乾燥される。
【0064】
ここで乾燥した触媒担持粒子は、所定の時間間隔で乾燥部下部から送り出され、次の成分を担持するための成分担持ユニットに粒子分配部を通して送られる。触媒成分溶液の全ての組み合わせを作る場合は規則的に粒子の移送先を変えて2つ目の成分が担持される。全ての成分を担持するためにこの操作を4段にわたり繰り返すことにより全ての組み合わせを作ることができる。
通常の簡便機械的分配方法では前述したような表1の操作法が採られる。
このようにして調製時には組み合わせる16の成分数だけの成分溶液を用意することで624種の多元触媒を簡単に得ることができる。
【0065】
第1触媒群から始まって第4触媒群に含まれる触媒成分の全てが担持された触媒担持粒子は、必要により例えば石英ガラスからなる焼成部8、還元部9と移送される。焼成部8は、例えば先の乾燥部7と同様に上面に発熱板を持つ構造からなり、触媒担持粒子は乾燥空気が流れる中で所定の温度に加熱され、左右に傾くジグザグの通路を左右に動きながら所定の時間でこの中を下に移動して焼成される。ついで、所望により、焼成部8と同様な構造を持つ還元部9で水素気流中でその還元が行われる。
このようにして多種の多元触媒担持粒子は最終的に還元部から送り出され、すぐ後ろにある分配混合部10で予め設定したように各列ごとに分けて収集され、その後の触媒反応評価に供される。
【0066】
【発明の効果】
本発明方法によれば、多種の多元系固体触媒を容器を用いず直接1粒ずつの粒子に成分溶液を並列して段階的に含浸担持する装置を用い、個々の触媒又はそれらの固体触媒粒子の集まりからなる所定の触媒混合物をごく簡便に自動的に調製でき、ついで該触媒混合物に含まれる触媒粒子の有効性を該触媒混合物を用いた反応により判別する事により、有効な多元系固体触媒の有無が迅速に探索でき、更にその中の触媒に関して個々に評価する事により有効な触媒を明らかにできる。
従って、個々に多元系固体触媒を調製し、その都度その触媒の有効性を判定する従来法に比べ、極めて簡便に多種の多元系触媒を調製できると共に、極めて少ない回数の反応性能評価から探索範囲内での有効な触媒の存在の有無を知り、有効な触媒構成成分を低コストで飛躍的に迅速に探索することができる。
【図面の簡単な説明】
【図1】本発明に係る代表的な多種の固体触媒調製装置の説明図である。
【図2】本発明に係る代表的な多種の固体触媒探索評価装置の説明図である。
【図3】本発明の具体的な多種の固体触媒迅速調製装置の1例の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rapid preparation method and apparatus for various kinds of solid catalysts, and a method and apparatus for easily searching for the effectiveness of solid catalysts, which are extremely useful as a simple search method for the effectiveness of solid catalysts.
[0002]
[Prior art]
Conventionally, a large number of catalysts have been used in the synthesis of various chemicals, the synthesis of fuels, and the purification of various exhaust gases. However, in recent years, due to demands from environmental and energy problems, the characteristics and efficiency of the catalyst have been increased. In order to further improve the performance, rapid development of a new high performance catalyst is desired.
This rapid search for catalysts is an extremely important technology that can contribute to the improvement of energy and environmental problems. In particular, the number of combinations of each component is enormous in a multi-component solid catalyst. For example, if ten different components are combined in a five-component catalyst, nearly 100,000 types of catalysts can be obtained by a simple combination. In addition, if the combination of concentration and the like is included, the number becomes even larger, so it is necessary to speed up the catalyst search.
[0003]
So far, there is no effective expediting method for searching these multi-component solid catalysts, so the search for catalysts has been carried out by narrowing the search range to some extent based on data and knowledge accumulated in the past. Therefore, a full search without narrowing the scope is considered difficult due to cost and time.
On the other hand, in recent years, as a combinatorial chemistry, a method of making a large number of drugs and the like in parallel has been performed. However, in the case of a multi-component solid catalyst, the loading of each catalyst component is usually carried out in a single stage, and in the case of carrying out in a multi-stage, the loading of the component may be dry rather than a reaction. Movement of the component processed in the previous stage is likely to occur, and it is difficult to obtain the target product. In addition, solid catalysts do not use a specific compound made directly from the solid itself or the components supported on the solid, but use it directly, but use it in its usual combinatorial chemistry because it uses the characteristics of the catalyst. This is a smart and cost-saving method that selectively repeats the reaction on groups immobilized on the solid phase, separates the solid phase and finally cuts out the product. ” It is difficult to apply the so-called solid phase synthesis method.
Furthermore, in the field of solid catalysts, in order to obtain reliable results, it is necessary to evaluate the reaction performance of the prepared catalyst in a target reaction rather than a simple model reaction. In order to obtain effective data indicating superiority or inferiority, it is very expensive and time-consuming, so even if a large amount of samples can be made by parallel synthesis, it is not a situation where a large amount of samples can be easily tested. Except for cases where the cost is not particularly limited, what can usually be done with a large amount of sample is only a preliminary evaluation based on a very simple reaction that does not necessarily show the same tendency as the intended reaction.
In fact, even when preparing the solid catalyst itself, as shown above, the multi-component system has a very large number of combinations, and the number of samples to be prepared becomes enormous. Independent methods are very expensive and extensive search is very difficult. If it is prepared as a mixture at once by some method, it is difficult to label and separate each particle, and there is usually no distinction method other than component analysis for each particle. As a result, it is difficult to evaluate performance by type except for special cases.
[0004]
The most serious problem in such a catalyst search is that it is not known whether there is an effective catalyst within the search range. If there is no effective catalyst in that range, a great deal of time and money is wasted preparing and evaluating a large number of individual catalysts. In an extensive catalyst search, it is most efficient to know roughly whether there is an effective catalyst in this search range before it becomes clear what specific composition of which combination is effective. . With current technology, it is relatively easy to narrow down and optimize individual catalysts once it becomes clear that effective catalysts exist within a particular group.
Therefore, the existence of an effective catalyst consisting of a range of component combinations is demonstrated by a very simple method for making many types of multi-component solid catalysts and a small number of reaction tests on a large number of catalyst samples prepared there. If you can find a method that can be used in a simple manner and devise a device that can easily do it, you can devise expensive new special analysis methods and instruments, or you do not need to introduce a large-scale device at great expense. By devising the method, it is possible to expedite the search for an economically effective catalyst. However, at the present time, there is no simple apparatus and method for creating such an efficient many catalysts and a method for quickly knowing whether there is an effective catalyst among the catalysts prepared there. Is the current situation.
[0005]
[Problems to be solved by the invention]
The present invention has been made to solve the above-mentioned problems, and a first object of the present invention is to provide an efficient and simple method for preparing various solid catalysts suitable for rapid search for catalysts and an apparatus therefor. The second objective is to search for a solid catalyst capable of clarifying the existence of an effective catalyst within the search range and an effective catalyst component from a small number of reaction performance evaluations of the catalyst prepared there. It is to provide a method and an apparatus therefor.
[0006]
[Means for solving problems]
As a result of intensive studies to solve the above problems, the present inventors have supplied and supported a predetermined catalyst component for each individual carrier particle directly and stepwise, that is, without using an impregnation vessel, Knowing that various types of multi-component solid catalysts can be easily prepared individually, and further obtaining various types of catalyst mixtures having preset components from these individual catalysts. By comparing and evaluating the catalytic action with the catalyst mixture, it is possible to determine the presence or absence of active ingredients with a very small number of evaluations, and to know the effective individual catalyst by evaluating the individual catalysts contained therein. In this way, the inventors have found that the catalyst preparation and evaluation can be greatly omitted in the catalyst search, and the present invention has been completed.
[0007]
  That is,This applicationAccording to the present invention, the following invention is provided.
1. A method of quickly preparing various solid catalysts by individually supporting each particle of the support without mixing each catalyst component individually and comprising the following multistage steps. Rapid preparation of catalyst.
(1) Step of storing carrier particles having a diameter of 0.5-3 mm
(2) Distributing the stored carrier particles to the first catalyst component group carrying zone
(3) A step of supplying each catalyst component solution contained in the first catalyst component group to this zone to obtain first catalyst component-supported particles in which each of the first catalyst components is supported on each carrier particle.
(4) A step of distributing the first catalyst component-supported particles obtained above to a predetermined second catalyst component group-supported zone after drying and / or calcination and reduction as necessary.
(5) A step of supplying each catalyst component solution contained in the second catalyst component group to this zone to obtain second catalyst component-supported particles in which each of the second catalyst components is further supported on each catalyst particle.
(6) A step of distributing each of the second catalyst component-supported particles obtained above to a predetermined third catalyst component group-supported zone after drying and / or calcination and reduction as necessary.
(7) A step of supplying each catalyst component solution contained in the third catalyst component group to this zone to obtain third catalyst component-supported particles in which each of the third catalyst components is further supported on each catalyst particle.
(8) A step of preparing a predetermined solid catalyst by performing the same operation as described above until the last catalyst component group is supported.
(9) The above steps (1) to (8) are repeated as many times as necessary, and the number of the same kind of catalyst particles supplied from each stage to the next stage is determined as the number of catalyst components in the next stage or a multiple thereof. In this stage, by loading all components on each particle, a solid catalyst having all combinations of catalyst components that are logically possible in the combination of selecting one each from the catalyst component group in each stage is prepared. Process
(10) In step (9),An untreated zone is provided in each stage of the catalyst component carrying zone, and carrier particles are supplied to all the first catalyst component carrying zones including the untreated zone, and the subsequent treatment is performed in the same manner as the carried zone. Process to handle
2. 2. The rapid preparation method for various solid catalysts according to the above 1, wherein the support is porous spherical particles.
3. 3. The catalyst component supported on the carrier particles or the catalyst-carrying particles is performed by directly absorbing the catalyst component solution individually for each carrier particle or each catalyst-carrying particle. A rapid preparation method for various solid catalysts.
4). 4. The rapid preparation method for various kinds of solid catalysts as described in 3 above, wherein the catalyst component is directly sent to the carrier particles or the catalyst-carrying particles by a pump.
5. 4. The rapid preparation method of various solid catalysts according to the above item 3, wherein the catalyst component is directly sent to the carrier particles or the catalyst-carrying particles by siphon.
6). 6. The rapid preparation method for various kinds of solid catalysts according to 5 above, wherein the amount of the catalyst component solution supplied to the support particles or the catalyst support particles is adjusted autonomously by the absorption capacity of the catalyst support.
7. Each of the catalyst-supported particles obtained by the preparation method according to any one of 1 to 6 above is defined as a plurality of predetermined catalyst groups, and the effectiveness of the solid catalyst included in the catalyst group is determined for each solid constituting the catalyst group. A rapid search and evaluation method for a solid catalyst, wherein the determination is made without separating the catalyst.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  Hereinafter, the present invention will be described in more detail.
  The rapid preparation method of various solid catalysts of the present invention includes:Basically,Each catalyst component is supported individually and sequentially without mixing each catalyst component.
  It is preferable to carry the catalyst components on the carrier particles stepwise in parallel so that the catalyst components do not overlap each other.
  In this case, it is preferable that the catalyst component is supported by a logical combination of selecting one of the catalyst components at each stage, and further, the catalyst component is supported on each particle of the carrier by each catalyst component solution. Most preferably, it is carried out by supplying directly.
[0009]
The method for supporting the catalyst component of the present invention is not particularly limited, but a method in which the catalyst support particle can be prepared by directly supplying the catalyst component solution to each carrier particle without using an impregnation container or the like is preferable.
As a carrier, it is usually simplest and best to use silica gel, various structurally ordered substances, and porous carrier spherical particles such as alumina, zirconia, etc. as the first starting material. The use of a carrier is also possible. It is also possible to use particles carrying catalyst components, coprecipitate particles prepared by hydrolysis of various salts, etc., instead of the carrier used first. Furthermore, the carrier particles do not have to be one kind, and can be regularly changed and different carriers can be simultaneously produced. Note that spherical particles give the best results as the shape of the particles used.
The particle diameter of the carrier is not particularly limited as long as the impregnation support and its distribution can be carried out without any problem. However, if the particles are too large, it takes time for the impregnation and tends to become non-uniform and the total amount increases, which is not realistic. If it is too small, various subsequent processes become difficult.
In practice, particles having a diameter of 0.5-3 mm are suitable, including the ease of impregnation and movement. Further, the shape of the particles is necessary when the sphere moves by its own weight, but there is no particular limitation such as a crushed shape as long as it is moved by power.
[0010]
Methods for absorbing and supporting various catalyst component solutions on these carrier particles include a method of sending a liquid by a fixed amount pump, a method of spraying the liquid, a method of absorbing the liquid through a siphon, and the like. When it is desired to increase the quantitativeness with particles having a uniform particle size, the cost of the apparatus is increased, but a method using a pump is excellent. Usually, a method of autonomously controlling the amount of adsorption on the carrier through a siphon by an impregnation method is the simplest and preferable.
[0011]
Water is the easiest solvent to use for impregnation, but there is no particular limitation such as alcohol as long as the salts used can be dissolved.
The salt used as the catalyst component is not particularly limited as long as it is soluble in the solvent used, in addition to ordinary salts, double salts, complex compounds, organometallic compounds, and mixtures thereof.
The concentration of the catalyst component to be supported is not particularly limited as long as it can be made into a solution and supported on the support.
[0012]
By the way, as described above, for example, when preparing a four-component catalyst in which one component is selected from each of sixteen different components consisting of four groups of four, In the case of parallel synthesis, 624 types of catalysts including one component and two components must be prepared and evaluated one by one by making 624 types of impregnation solutions by a usual method. In addition, when the components are fixed in a four-component catalyst system and the influence of the composition is observed, when changing the concentration of each of the four types, 256 types of solutions must be prepared and impregnated for evaluation. Furthermore, when the components and concentrations are changed at the same time by combining both of the above, about 80,000 kinds of impregnation solutions are required, which is a serious work for parallel synthesis.
[0013]
On the other hand, according to the method of the present invention, a four-component system composed of four types and four groups uses a four-stage five-row parallel impregnation apparatus that supports four stages and performs the operation in parallel with five rows. By preparing 16 types of catalyst component solutions, the above-mentioned 624 types of catalyst can be easily prepared, and if they are automatically collected according to the last supported component, the prepared catalyst has no final stage. It can be obtained as a 5 catalyst mixture containing 125 catalysts each including those of the treatment.
And, for example, from the comparison of the five reaction performance evaluations of the five catalyst mixtures, the presence or absence of an effective catalyst and the effect of the final stage component can be understood, and the preparation method is changed to include an effective catalyst. If the performance of individual catalysts prepared in advance is further narrowed down or the performances of individual catalysts separated in advance are examined, it is possible to search for effective components, and it is possible to greatly reduce the effort of catalyst preparation and evaluation.
[0014]
The same is true in the experiment to see the influence of the composition shown above. According to the method of the present invention, if there are 16 kinds of catalyst component solutions having four different concentrations, 256 kinds of catalysts can be easily prepared. It can be used for optimization.
Furthermore, when the concentration and components are changed at the same time, it is necessary to prepare nearly 80,000 kinds of catalyst solutions in the ordinary method, but in the present invention, only 64 kinds of catalyst solutions may be prepared.
[0015]
That is, in the conventional method for preparing a multi-component solid catalyst, it is necessary to make as many solutions as the number of target catalysts in order to carry each component constituting the catalyst at one time. The catalyst component solution that is required at the time is only the number of catalyst components used for the combination, as components having different concentrations are also independent components, and all combinations of catalyst component solutions that are logically possible that are set up in a very simple manner. It is possible to prepare various kinds of catalyst particles having
[0016]
In addition, impregnation of the component solution is usually performed by using a collection of catalyst particles and using a container to add the catalyst solution contained in the container to the support, or conversely, adding the support to the catalyst solution in the container. It has been broken. The operation of taking the carrier in and out of the container by this method is complicated and further requires a very troublesome operation to avoid contamination with other components. Further, in such a process, in most cases, it is handled in the same manner as powder and adheres to the container, and in particular, in the case of a small amount, accurate automatic handling is very difficult and complete automation is difficult.
On the other hand, according to the method of the present invention, it is sufficient that the support is handled individually for each particle, and the catalyst component solution is supported directly on the spherical particles without using a container. Since the supply can be performed by its own weight, for example, the use of a power mechanism and an impregnation container for movement and supply can be omitted, and all handling can be greatly simplified and complete automation is facilitated.
[0017]
Furthermore, in the method of the present invention, since the carrier particles can be handled one by one, the carrier (for example, silica gel particles having a diameter of 1.0 to 1.4 mm and about 1 g for 1000 particles) and a catalyst solution can be prepared in a very small amount. Search has many advantages in terms of cost, time, storage, and the like, and can be made compact and can perform a wide range of searches by automation at a very low cost. For this reason, unlike expensive parallel synthesizers that have been developed as combinatorial chemistry by various companies so far, it can be used on a personal level as a simple and inexpensive device similar to the gas chromatographs that are currently in common use. .
Incidentally, when the capacity of the method of the present invention is estimated, for example, when a multi-component catalyst mainly composed of four components is prepared by one small apparatus having a four-stage five-row treatment system, one row per minute. When individual processing is possible, if 5 of the same type are made, the processing amount is 1 type per minute, time lag, solution exchange, carrier particle exchange, etc. associated with drying, baking, reduction, etc. Aside from the above, if it is operated for 12 hours a day, 720 types per day, 250 days per year, 180,000 types per year, and 900,000 types per type, indicating the high capability of the method of the present invention. Yes. In the field of dealing with solid catalysts, there are no examples of such enormous amounts studied, and it is difficult to conduct extensive studies such as the five-component system by such a simple method, and it is possible to automate a large amount of preparation / search. It can be said that it is a breakthrough for catalyst development.
[0018]
  Next, a rapid method for preparing various mechanical and simple solid catalysts specifically employed in the present invention will be described.
  This rapid preparation methodA method of rapidly preparing various solid catalysts by individually supporting each particle of the support without mixing each catalyst component individually,It is characterized by including the following steps.
(1)0.5-3mm in diameterStep of storing carrier particles
(2) Distributing the stored carrier particles to the first catalyst component group carrying zone
(3) A step of directly supplying each catalyst component solution contained in the first catalyst component group to this zone to obtain first catalyst component-supported particles in which each of the first catalyst components is supported on each carrier particle.
(4) A step of distributing the first catalyst component-supported particles obtained above to a predetermined second catalyst component group-supported zone after drying and / or calcination and reduction as necessary.
(5) A step of directly supplying each catalyst component solution contained in the second catalyst component group to this zone to obtain second catalyst component-supported particles in which each of the second catalyst components is further supported on each catalyst particle.
(6) A step of distributing each of the second catalyst component-supported particles obtained above to a predetermined third catalyst component group-supported zone after drying and / or calcination and reduction as necessary.
(7) A step of directly supplying each catalyst component solution contained in the third catalyst component group to this zone to obtain third catalyst component-supported particles in which each of the third catalyst components is further supported on each catalyst particle.
(8) A step of preparing a predetermined solid catalyst by performing the same operation as described above until the last catalyst component group is supported.
(9) The above steps (1) to (8) are repeated as many times as necessary, and the number of the same kind of catalyst particles supplied from each stage to the next stage is determined as the number of catalyst components in the next stage or a multiple thereof. In this stage, by supporting all the components on each particle, a solid catalyst having all the combinations of logically possible catalyst components in the combination of selecting one each from the catalyst component group in each stage is prepared. Process
(10) An untreated zone is provided in each stage of the catalyst component carrying zone, and carrier particles are supplied to all the first catalyst component carrying zones including the untreated zone. Process handled in the same way.
[0019]
  Next,Above (1) to (10)The steps will be described sequentially.
[0020]
  [About step (1)]
  0.5-3mm in diameter1 is a step of preparing carrier particles and has one or a plurality of storage tanks. For example, in the storage tank of FIG. 1 to be described later, at least the number of catalyst component groups to be prepared × the number of catalyst component carriers included in each catalyst component group Particles are stored
[0021]
[About step (2)]
This is a step of distributing the stored carrier particles to the first catalyst component group carrying zone for carrying the catalyst component first. In this distribution step, it is preferable to adopt a method that utilizes the weight of the carrier itself. The first catalyst component group-supporting zone is preferably provided with at least zones corresponding to the number of catalyst components contained in the first catalyst component group. Usually, particles are supplied equally to all zones. When the number of bands is small, it is necessary to support a plurality of different components in the same band, and the apparatus becomes complicated, and the efficiency of preparation decreases because the number of parallel processes is reduced. Further, in order to automatically supply each catalyst component to a predetermined zone without any error, it is preferable to designate the carrying zone as, for example, one row, two rows,.
[0022]
[About step (3)]
The catalyst component solution contained in the first catalyst component group is directly supplied to the carrier particles distributed in the first catalyst component group supporting zone, and each of the first catalyst components is supported on each of the carrier particles. This is a step of obtaining component-carrying particles, and processing is performed in parallel. The first catalyst component is held in, for example, the catalyst component solution reservoir shown in FIG. 1, and is supplied to the first catalyst component group carrying zone by any means such as a siphon or a pump, and directly onto the carrier particles distributed in the zone. Absorbed and impregnated.
[0023]
[About step (4)]
In this step, each of the first catalyst component-supported particles obtained above is dried and / or calcined, and further reduced if necessary, and then distributed to each of the second catalyst component group-supported zones. Usually, drying alone is preferable for improving the mixing of each component, but calcination and reduction are also effective for achieving another effect. In this distribution step, it is preferable to employ a means that utilizes the dead weight of the catalyst-carrying particles. Further, the second catalyst component group carrying zone is provided with at least a number of zones of the catalyst components included in the second catalyst component group. Further, in order to automatically supply each catalyst component to a predetermined zone without any error, it is preferable to designate the carrying zone as, for example, one row, two rows,.
[0024]
[About step (5)]
The catalyst component solution contained in the second catalyst component group is directly supplied to the first catalyst component-supported particles distributed to the second catalyst component group-supporting zone, and each of the second catalyst components is further supported on each of the supported particles. And obtaining second catalyst component-supported particles. The second catalyst component is held, for example, in the catalyst component solution reservoir shown in FIG. 1, and is supplied to the second catalyst component group carrying zone by any means such as a siphon or a pump, and directly onto the carrier particles distributed in the zone. Impregnated and absorbed. In addition, it is preferable that the supply destinations of the second catalyst component solution are equal to each other without overlapping, so that all combinations can be easily performed.
[0025]
[About step (6)]
In this step, each of the second catalyst component-supported particles obtained above is dried and / or calcined and / or reduced as necessary, and then distributed to each of the third catalyst component group-supported zones. In this distribution step, it is preferable to employ a means that utilizes the dead weight of the catalyst-carrying particles. Further, the third catalyst component group carrying zone is provided with at least a number of zones of the catalyst components included in the third catalyst component group. Further, in order to automatically supply each catalyst component to a predetermined zone without any error, it is preferable to designate the carrying zone as, for example, one row, two rows,.
[0026]
[About step (7)]
The catalyst component solution contained in the third catalyst component group is directly supplied to the second catalyst component-supported particles distributed to the third catalyst component group-supporting zone, and each of the third catalyst components is further supported on each of the supported particles. And obtaining third catalyst component-supported particles. The third catalyst component is held, for example, in the catalyst component solution reservoir shown in FIG. 1, and is supplied to the third catalyst component group carrying zone by any means such as a siphon or a pump, and directly onto the carrier particles distributed in the zone. Impregnated and absorbed. In addition, it is preferable that the third catalyst component solution is supplied to the zone so that all the combinations can be easily made, so that the supply destinations do not overlap and are equal to each other.
[0027]
[About step (8)]
The above-described steps are performed until the last catalyst component group is supported and dried and calcined / reduced as necessary, and the catalyst components selected from the catalyst component groups of each stage are sequentially added to the first carrier particles. This is a process for preparing a predetermined solid catalyst supported stepwise.
[0028]
[About step (9)]
(9) The above steps (1) to (8) are repeated as many times as necessary, and the number of the same kind of catalyst particles supplied from each stage to the next stage is determined as the number of catalyst components in the next stage or a multiple thereof. In this stage, by supporting all the components on each particle, a solid catalyst having all the combinations of logically possible catalyst components in the combination of selecting one each from the catalyst component group in each stage is prepared. It is a process.
[0029]
[About step (10)]
  Untreated zones are provided in all stages of catalyst component carrying zones, and carrier particles are supplied to all first catalyst component carrying zones including untreated zones by distributing carrier particles from the storage tank in step (2). The number of the same type of catalyst particles supplied from the catalyst component loading zone of each stage to the next stage is the number of components carried in the next stage + 1 or a multiple of the sum, and the next stage including no treatment This is a step of equally carrying out the processing such as loading of all the components.
  The method of the present inventionFor example, the first catalyst carrier particles supplied from only one storage tank are defined as the number of catalyst components carried in the first stage + 1, and these are the first stage having a loading zone equal to the number of components with one untreated zone. Are uniformly supplied to the catalyst component-supporting zone, thereby obtaining supported catalyst particles each supporting each catalyst component in the first stage and an untreated carrier on which the first-stage catalyst is not supported. When the number of catalyst components in the next stage is set to +1 for the same type of catalyst-carrying particles supplied from each component-supporting zone of the stage to the next stage, the same operation is repeated for the required number of stages. From the supported catalyst, it is possible to prepare a catalyst having various kinds of combinations from one component, two components, three components,.
  Since these methods do not allow a catalyst with the same catalyst component group to be co-impregnated, if you want to prepare such a catalyst, add the component to another catalyst component group or recreate the catalyst component group. You can check it again. The catalyst components used here do not have to be all different, and may be arbitrarily selected depending on the intended component composition.
[0030]
Various methods can be used for the method of redistributing the supported catalyst particles between the stages in the above operation, considering the control by the computer, but there is no particular limitation as long as all methods can be combined.
[0031]
Since the distribution method becomes complicated when the number of components at each stage is different, first, the case where the number of components at each stage is relatively simple will be described based on Table 1; In order to improve efficiency, it is preferable to carry out by an extremely simple mechanical distribution method by making the number of supported bands in each stage as equal as possible.
[0032]
[Table 1]
Figure 0004139883
[0033]
  In Table 1, S is the carrier particle, the first to fifth rows of the first stage are the first catalyst component group carrying zone, A1 to A5 are the respective catalyst components included in the first catalyst component group, the first row of the second stage to Row 5 is the second catalyst component group carrying zone, B1 to B5 are the respective catalyst components included in the second catalyst component group, the third row 1 to 5 is the third catalyst component group carrying zone, and C1 to C5 are the first The catalyst components included in the three catalyst component groups, the first to fifth rows in the fourth stage represent the fourth catalyst component group carrying zone, and D1 to D5 represent the catalyst components included in the fourth catalyst component group.
In Table 1, the method according to the present invention is that the fifth column of each stage is set as a no-process band and A5, B5, C5, and D5 are set as empty components.
[0034]
In Table 1, the first round carrier particles S supplied to the first stage are distributed from each row of the first stage to the same row of the second, third, and fourth stages. Each of the carrier particles S gives catalyst-supporting particles of A1B1C1D1, A2B2C2D2, ----, A5B5C5D5 in each row (hereinafter referred to as the first round).
The second round particles are supplied to the first row in the first stage in the same manner as the first round particles, but the first to second stage distribution destinations are one row from the same row as the first stage. Instead of the left (or right) column, the distribution from the 2nd to the 3rd, the 3rd to the 4th, is performed in the same column for the first round particles. As a result, the particles in the second round give catalyst-carrying particles of A5B1C1D1, A1B2C2D2, ----, and A4B5C5D, respectively (hereinafter referred to as the second round). The second stage distribution destination is changed to the left every round and the process is repeated until the distribution destination returns. Next, the distribution destination from the second stage to the third stage is moved to the left by 1 in all the columns, and the above operation is repeated. This operation is repeated each time the distribution destination from the first level to the second level is rotated once until the distribution destination from the second level to the third level returns to the original level. Shift the distribution destination to 1 to the left, and continue this operation until the distribution to the bottom row is completed once.
[0035]
Thus, in Table 1, the carrier particles S are sequentially allocated from the first column to the fifth column, and the first round particles are allocated immediately below to generate A1B1C1D1, A2B2C2D2, ----, and A5B5C5D5 in each column. The second round particles give A5B1C1D1, A1B2C2D2, ----, A4B5C5D5, respectively, and this is continued until the distribution destination of the fourth stage goes around, so that all combinations of the catalysts including one component in each stage are provided. Is obtained one by one.
Contrary to the above example, if these distribution methods are changed from the third stage to the fourth stage by first changing the distribution destination once and changing the upper stage, the result will be the same. .
[0036]
Next, Table 2 shows one example of the method for preparing the catalyst of the present invention when the number of catalyst components contained in each catalyst component group is different.
[0037]
[Table 2]
Figure 0004139883
[0038]
  In Table 2, S is the carrier particle, the first to fifth rows of the first stage are the first catalyst component group carrying zones, A1 to A5 are the respective catalyst components included in the first catalyst component group, the first row of the second stage to The third row is the second catalyst component group carrying zone, B1 to B3 are the respective catalyst components included in the second catalyst component group, the third row the first to fourth rows is the third catalyst component group carrying zone, and C1 to C4 are the first 3 represents catalyst components included in the catalyst component group.
In Table 2, according to the method of the present invention, the fifth row, the second row, the third row, and the fourth row of the third row are set as non-processing bands, and A5, B3, and C4 are used as empty components.
[0039]
First, one carrier particle S is distributed to the first catalyst supporting zone in each row of the first stage. Among these, in A1, A2, and A3, each component is supported and distributed to B1, B2, and B3 directly below, and each component is supported. The particles in B1, B2, and B3 are distributed to C1, C2, and C3 immediately below, and the respective components are supported thereon, and catalyst-supported particles having the components A1B1C1, A2B2C2, and A3B3C3 are generated. On the other hand, A4 and A5 are each distributed to B1 and B2 after being loaded with each component and then distributed to C1 and C2 immediately after each component is loaded and further loaded with each component, where the components A4B1C1 and A5B2C2 are The catalyst carrying particle which has is produced | generated. This is the first round of particles.
Of the particles in the second round, A1, A2, and A3 are distributed to B1, B2, and B3 immediately below, respectively, and from B1, B2, and B3, the distribution destination is moved one place to the left and distributed to C2, C3, and C4, and each A1B1C2 , A2B2C3 and A3B3C4 are produced as catalyst-carrying particles. On the other hand, after A4 and A5 are distributed to B1 and B2, respectively, the distribution destination is shifted one place to the left, and catalyst-carrying particles including components C4B1C2 and A5B2C3 distributed to C2 and C3 are generated. When the third-stage distribution destination is changed once in this way, the second-stage distribution destination is changed once so that the same kind of catalyst-supported particles can be evenly supplied to each zone from one stage to the next. All combinations of selecting one from each catalyst component will be made.
[0040]
As can be seen from the comparison between Table 1 and Table 2, the method in Table 2 is not very efficient, and if possible, make the number of stages as equal as possible, for example by doubling the number of bands of the same component in fewer stages. Is desirable
In order to make a plurality of catalyst particles of the same type, after changing the distribution destination, the distribution to the first stage may be circulated as necessary without changing the distribution destination. In this way, various multi-way catalysts can be easily obtained by preparing as many component solutions as the number of components to be combined at the time of preparation.
In order to speed up the preparation, the movement of these particles is performed synchronously with an appropriate time difference so that all the particles move almost uniformly in each row so as to minimize the operation waiting time. It is desirable.
[0041]
According to the rapid preparation method for various kinds of solid catalysts according to the present invention, since the loading of each component is controlled, the composition of the catalyst is determined for each particle exiting from the final stage. Can collect the prepared catalysts individually or as a mixture for subsequent evaluation.
[0042]
A simple evaluation method for knowing whether or not there is an effective catalyst in the search range for a catalyst that has been prepared is actually because the system that is likely to be an effective catalyst varies depending on the combination of catalyst components, etc. There are various ways such as appropriate grouping based on various findings. However, the most versatile automatic and mechanical method is a method in which the prepared particles are collected by the final component (by column) and the mixture is evaluated.
[0043]
Explaining the case where a four-component catalyst is selected according to the example of Table 1 to select one component from four groups each having four components, the catalyst components are supported in the first row, the second row, the third row, and the fourth row, The fifth row is not processed, and the first stage carries the A component group, the second stage the B component group, the third stage the C component group, the fourth stage the D component group at the final stage. Finally, when the produced catalyst particles are divided for each supported component in the final stage, the products may actually be collected for each row, but each group is divided into five groups each including 125 kinds of catalyst particles.
[0044]
Here, when the view is changed and the difference between the groups is reviewed, each group is obtained by further adding D1, D2, D3, and D4 to each catalyst component that is a member of the untreated column D5, respectively. And the difference between the other groups becomes the supported component in the final stage, and the effects of each can be compared. That is, the reaction evaluation is performed five times using the mixed catalyst of each group, and among these, the reaction result of the untreated mixture (that is, the group in the D5 row) is compared with the result using the other group. As a result, the effects of the components in the final stage can be compared, and it can be estimated which of the components treated with the active catalyst is present, and whether each component is effective or works negatively.
[0045]
Further, it can be seen from the magnitude of the activity of each mixture whether there is an effective catalyst in the group. When the existence of an effective catalyst is estimated, since one group actually includes 125 kinds of catalysts, it is necessary to further narrow down the catalysts. For example, if it is estimated that there is an active catalyst in the D1 group, the first stage in Table 1 is all D1 and all distribution to the second stage is performed directly below, the second stage is the A component group, the third stage Is a B component group, and the last stage is a C component group. By collecting each column, five groups of 25 types of catalysts classified by C component are obtained. It is possible to compare components and narrow down active ingredients. As a result, if C2 becomes effective, the first stage is all set to D1, and the second stage is all set to C2, so that the third stage A component group and the final stage B component group are prepared. For each group, 5 groups are obtained, and when the evaluation is performed 5 times, an effective B component can be found. Finally, if the reaction is evaluated for five of the individual catalysts in this group, the effective A component and the effective catalyst will be clarified, and the determination of the effective catalyst can be made with only 25 reaction evaluations in total. Become. Actually, if there are surely effective catalysts in some group at the stage where there are about 25 species per group, there is no need to narrow down further, even if the reaction evaluation for each catalyst is performed 25 times later. An effective catalyst can be found from 625 kinds of catalysts by 35 reaction evaluations including the previous 5 times and the 2 times.
[0046]
The catalyst thus calcined is automatically collected as an appropriate mixture, and the reaction is evaluated to search for the catalyst with a very small number of times. In these evaluations, when there are many kinds of catalysts included in one group, it is difficult to estimate an effective catalyst when there is not much difference in activity between high activity and low activity. It is necessary to select the number of activities in consideration of the size of the activity and the analysis accuracy, and it is necessary to reflect this in the automatic collection at the final stage. Since collection can be freely controlled by a computer or the like, there is no particular problem even if the collection is performed for each column, even if the columns are divided into several groups, and further collected in different collection forms.
However, the above method is not necessarily suitable for comparing the magnitudes of activities that are not so large as in the case of optimization of catalyst performance. In that case, an effective catalyst can be surely found by collecting the catalyst particles by type in the final stage and individually performing a reaction test. In that case, however, the number of reaction tests naturally increases. Therefore, in the normal catalyst search, as shown in the present invention, the catalyst preparation itself can be easily performed. Therefore, the range is narrowed by changing the collection method, etc., and each catalyst is evaluated at the point where an effective catalyst is estimated. In addition, it is most effective to combine the two.
Depending on the purpose, there is no particular limitation on the method, for example, if the purpose is not a quick search, the prepared catalyst is mixed for each appropriate species or evaluated without mixing at all. For example, if a library of reaction performance is created, a large amount of data can be acquired by collecting and evaluating individual catalysts using this apparatus.
[0047]
The reaction to be evaluated is not particularly limited as long as it can be evaluated with a solid catalyst evaluation apparatus. In evaluating the catalyst performance, there is no particular limitation on the method.
However, depending on the purpose, it is desirable to select the number of types of catalyst contained in the catalyst mixture for evaluation. In a specific reaction in which the activity can be easily confirmed, many types can be included therein, and the number is not particularly limited as long as it can be analyzed. In the case of a combination of catalysts whose activity does not change so much, it becomes more difficult to confirm a high activity if the number is increased, so it is more effective to directly evaluate individual catalysts.
[0048]
In the method of the present invention, the procedure for performing the activity evaluation of the catalyst mixture has a great influence on labor saving. The simplest method is a method in which all of the untreated parts are mixed and used for evaluation after loading in the final stage, and all combinations of catalysts considered at a time can be evaluated.
This method looks only at the presence or absence of activity, and is usually suitable for searching for a catalyst that is difficult to occur, that is, normally effective for a reaction that has almost no activity. A wide range of searches can be performed with a single evaluation.
[0049]
Usually, the most effective method is to mix the catalyst produced in the final stage as it is in each row, evaluate the resulting mixture, and when high activity is observed in any group and the presence of an effective catalyst is estimated. Then, re-preparing only the group and subdividing it further, or preparing individual catalysts of the group again and evaluating the individual catalysts, or evaluating the reaction with individual catalysts that have been separated in advance. This method reveals an effective catalyst. In addition, when the number of generated catalysts is small, it is also possible to separate and store a part of the generated catalyst in advance and use it for re-evaluation. It is easier to readjust with the apparatus according to the present invention if the search is not intended to form a library but only a search.
[0050]
In addition, the important knowledge in the evaluation using the mixture in the present invention is as follows.
The first is that, in a mixture of supported solid catalysts, each catalyst particle is a catalyst having a certain size within the particle and having a substantially uniform composition, which is different from a catalyst in which components are mixed in the particle. In each particle, a reaction specific to the particle is caused independently of each other, and the influence of the mixing of the catalyst is rare.
Secondly, an example where the influence of mixing occurs is when the secondary reaction of the reaction product is very fast and a catalyst effective for the reaction is contained in the mixture, but even in this case, the main reaction proceeds. Therefore, it does not become a major obstacle in searching for an effective catalyst.
The third is a reaction related to hydrogen activation, etc., which rarely has an ability to activate hydrogen and may show an activity that cannot be found alone, but in this case also the original reaction occurs simultaneously Therefore, if a new reaction occurs in such a mixture, only a new discovery will be made, and the search for the catalyst here will not be particularly hindered.
[0051]
Next, a mechanical and simple rapid preparation apparatus for various solid catalysts preferably used in the method of the present invention will be described.
[0052]
The simple rapid preparation apparatus for various solid catalysts of the present invention is characterized by comprising means for supplying and supporting each catalyst component individually and sequentially without mixing each catalyst component.
In such an apparatus, it is preferable to further comprise means for carrying the catalyst component in a stepwise manner in parallel so that the catalyst components do not overlap each other. What is provided with the means performed according to the logical combination method which selects one each from the catalyst component in each stage is preferable.
[0053]
In addition, the simple and rapid apparatus for rapid search and evaluation of various solid catalysts according to the present invention is included in a distribution and mixing apparatus in which each supported catalyst particle obtained by the preparation apparatus as described above is a predetermined plurality of catalyst groups, and the catalyst group. The present invention is characterized in that an apparatus for discriminating the effectiveness of the solid catalyst without separating it into the individual solid catalysts constituting the catalyst group is provided.
[0054]
An outline of a typical solid catalyst rapid preparation apparatus of the present invention will be described with reference to the block diagram of FIG. This solid catalyst rapid preparation apparatus mainly consists of two parts. One is a carrier particle storage unit for performing the step (1), and the other is a catalyst component supporting unit (here, four stages) for performing the steps (2) to (9). This catalyst component carrying part is composed of a particle distribution part, a catalyst component supply part, a catalyst component carrying zone part and a drying part. In this case, it is preferable to provide a calcination / reduction section for performing calcination reduction of the catalyst-carrying particles that have finished carrying all the catalyst components, if necessary.
[0055]
An outline of a typical solid catalyst rapid search and evaluation apparatus of the present invention will be described with reference to the block diagram of FIG. This solid catalyst rapid search and evaluation apparatus includes a preparation apparatus shown in FIG. 1, a distribution mixing unit in which each supported catalyst particle obtained by the preparation apparatus is a plurality of predetermined catalyst groups, and a solid catalyst included in the catalyst groups. And a catalyst evaluation unit that evaluates the effectiveness of the catalyst without separating it into individual solid catalysts constituting the catalyst group. In this catalyst evaluation section, catalyst particles suitable for the reaction are grouped. In addition, in order to efficiently prepare and search for an optimal solid catalyst, it is desirable to provide a control unit that can appropriately control both the catalyst preparation device and the reaction evaluation unit.
[0056]
Next, one example of a specific solid catalyst rapid preparation apparatus of the present invention is shown in FIG.
This device has a structure installed on an inclined table. 1 is a carrier particle storage unit, 2 is a gate unit that controls carrier particles distributed from the carrier storage unit 1 to the particle distribution unit 3, 3 is a particle distribution unit, 4 is a catalyst component supply unit, and 5 is a catalyst component carrying zone unit. , 6 is a gate unit for controlling the catalyst-carrying particles distributed to the subsequent drying unit 7, 7 is a drying unit for drying the catalyst-carrying particles, 8 is a calcining unit for the catalyst-carrying particles, and 9 is a reducing unit for the catalyst-carrying particles. It is.
The carrier particles stored in the carrier particle storage unit 1 are appropriately prepared by the gate unit 2 and distributed to the particle distribution unit 3, and each distributed carrier particle is supplied to the catalyst component support zone 5. Here, each carrier particle is impregnated with the catalyst component solution contained in the first catalyst component group supplied from the catalyst component supply unit 4. The particles impregnated with the first catalyst component solution are then sent to the drying section 7 by the gate 6 and dried. The dried first catalyst-carrying particles are transferred to the next stage particle distribution unit and the second catalyst component-carrying zone, impregnated with the second catalyst component solution, and then dried in the same manner as the first stage. And dried to obtain catalyst-carrying particles carrying both the first catalyst component and the second catalyst component.
Similarly, the catalyst-carrying particles impregnated with all groups of catalyst components (in the case of FIG. 3, the first catalyst component group to the fourth catalyst component group) are led to the calcination unit 8 and, if necessary, the reduction unit 9, It can be obtained as a catalyst group in which various catalysts are mixed in the distribution mixing unit 10 at the tip of the part.
In the apparatus shown in FIG. 3, the inclination of the inclined surface is 10 to 20 degrees, and when spherical particles having a diameter of about 1 mm are used, about 15 degrees is most preferable.
[0057]
In the solid catalyst rapid preparation apparatus of the present invention, when preparing various kinds of solid catalysts, for example, spherical porous particles are used as a support, and a catalyst component solution to be supported is first supplied by a pipe or the like, preferably parallel slopes. It is carried out by directly absorbing each particle moved by its own weight in the upper V-shaped groove without using a container. This can greatly simplify the device.
In addition, after the absorption and support of the catalyst component solution contained in the first catalyst component group as the first stage, the supported particles move to the drying section by their own weight, for example, and move in the inert gas under heating for a predetermined time. Thus, the catalyst component is dried in a short time, and the catalyst component contained in the second catalyst component group as the second stage can be supported.
[0058]
  In this case, it is the catalyst preparation apparatus of the present invention that is provided with means for providing an untreated zone in each of the catalyst supporting zones in each stage,The dried particles from each row are distributed to the catalyst component loading zone and the non-treatment zone row included in the second catalyst component group according to the setting for making all combinations, and one row is left untreated as in the first stage. In the remaining rows, the second catalyst component is supported and dried. Similarly, in the case of a quaternary system, the component solution is supported four times. In this way, the loading is performed in multiple stages, and the operation is greatly simplified by regularly redistributing the particles between the columns at each stage, and one type from the four types and four groups shown above. In the four-component system, the number of component solutions to be used is only the number of component solutions to be supported (16 types in this case), and a catalyst having all the theoretically possible combinations can be obtained almost automatically by this simple preparation apparatus. It will be. There is no problem even if the number of components in each stage is different.
[0059]
In addition, according to a simple search and evaluation device that knows whether or not there is an effective catalyst in the search range of the present invention, the particles prepared by the preparation device are collected by the components of the final stage (by column), and the mixture, For example, by comparing with the untreated mixture in the final stage, it can be determined whether or not the components in the final stage are effective, and the activity level of each mixture indicates the presence or absence of an effective catalyst. This makes it possible to search for and evaluate catalysts.
[0060]
【Example】
Next, the present invention will be outlined by the following examples, but the present invention is of course not limited to these examples.
[0061]
Example 1
In the apparatus according to this experimental example, various parts are installed on the slope as shown in FIG. 3 in order to move the carrier particles and the tactile support medium particles by gravity. The carrier storage part 1 at the top of the device stores carrier particles having a diameter of 1.0 to 1.4 mm as raw materials. A V-shaped groove extends from the lower part of the carrier particle to take out the carrier particles one by one into the groove. A gate 2 consisting of pins protruding from the bottom of two vertically arranged at short intervals is installed immediately downstream thereof. Further downstream, a particle distribution unit 3 is provided for distributing the carrier particles sent out from the gate 2 to the five catalyst component-supporting zone portions 5 of the catalyst component supply unit 4 downstream thereof. In this portion, the V-shaped groove carved on the plane is moved to the left and right by the linear movement mechanism below, so that the particles coming out from each row in the upper stage can be sent to the target row below.
[0062]
The required amount of the catalyst component solution contained in each catalyst group is held in a slightly higher position than the position where the required amount is placed in the solution reservoir of the catalyst component liquid supply unit 4 and the liquid is easily impregnated to move by siphon.
In the catalyst component loading zone 5, the supported particles sent from above are fixed at a fixed position, and a very thin pipe at the tip connected to the solution reservoir of the catalyst component supported by the gate of the pin protruding from the bottom is a slit. Through the top, come into contact with the carrier particles and are naturally absorbed by the carrier particles by capillary attraction and siphon principle. Absorption usually ends within 30 seconds.
[0063]
Next, after raising the pipe and separating the catalyst-carrying particles from the pipe, the gate 6 is opened to feed the catalyst-carrying particles downward. This part is made of, for example, a fluororesin, and the solution and particles can be transferred without adhering to the passage.
The catalyst-carrying particles exiting from the catalyst component impregnation zone 5 are sent to the drying unit 7 for drying. The drying unit 7 (for example, a heating plate provided on the upper surface of a V-shaped groove carved on a fluororesin) is heated to, for example, 120 ° C., and nitrogen gas flows therein. In order to keep the particles here for a certain period of time, 25 pairs of 25 pins with a distance of 2.5 mm have a structure in which 50 pins are alternately raised and lowered in the groove. To be dried.
[0064]
The dried catalyst-carrying particles are sent out from the lower part of the drying unit at predetermined time intervals, and sent to the component-carrying unit for carrying the next component through the particle distribution unit. When all combinations of catalyst component solutions are made, the second component is supported by regularly changing the particle transfer destination. All combinations can be made by repeating this procedure over four stages to support all components.
The normal simple mechanical dispensing method employs the operation method shown in Table 1 as described above.
In this way, 624 kinds of multi-way catalysts can be easily obtained by preparing component solutions corresponding to the number of 16 components to be combined at the time of preparation.
[0065]
Starting from the first catalyst group, the catalyst-carrying particles on which all of the catalyst components contained in the fourth catalyst group are carried are transferred to the firing unit 8 and the reduction unit 9 made of, for example, quartz glass as necessary. The firing section 8 has a structure having a heat generating plate on the upper surface, for example, like the previous drying section 7, and the catalyst-carrying particles are heated to a predetermined temperature while the dry air flows, and a zigzag passage tilting left and right is left and right. While moving, it is moved down in a predetermined time and fired. Then, if desired, the reduction is performed in a hydrogen stream in the reduction unit 9 having the same structure as the firing unit 8.
In this way, various multi-catalyst-supported particles are finally sent out from the reducing unit, collected separately for each column as set in advance in the distribution and mixing unit 10 immediately behind, and used for subsequent catalytic reaction evaluation. Is done.
[0066]
【The invention's effect】
According to the method of the present invention, an individual catalyst or a solid catalyst particle thereof can be obtained by using a device in which a component solution is impregnated and supported in parallel on each particle directly without using a container. An effective multi-component solid catalyst can be prepared easily and automatically by preparing a predetermined catalyst mixture consisting of a collection of the following, and then determining the effectiveness of the catalyst particles contained in the catalyst mixture by a reaction using the catalyst mixture. It is possible to quickly search for the presence or absence of the catalyst, and to clarify the effective catalyst by evaluating each of the catalysts in the catalyst.
Therefore, compared to the conventional method in which a multi-component solid catalyst is prepared individually and the effectiveness of the catalyst is determined each time, a variety of multi-component catalysts can be prepared very easily, and the search range can be determined from a very small number of reaction performance evaluations. It is possible to know the presence or absence of an effective catalyst in the inside and to search for an effective catalyst component rapidly and rapidly at a low cost.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory view of typical various solid catalyst preparation apparatuses according to the present invention.
FIG. 2 is an explanatory diagram of a variety of representative solid catalyst search and evaluation apparatuses according to the present invention.
FIG. 3 is an explanatory diagram of an example of various rapid solid catalyst preparation apparatuses according to the present invention.

Claims (7)

担体各1粒子に対し各触媒成分を混合することなく個別的に逐次、担持させて多種の固体触媒を迅速に調製する方法であって、以下の多段工程を含むことを特徴とする多種の固体触媒の迅速調製方法。
(1)直径0.5−3mmの担体粒子を貯留する工程
(2)貯留された担体粒子を第1触媒成分群担持帯域に分配する工程
(3)この帯域に第1触媒成分群に含まれる各触媒成分溶液を供給し、各担体粒子に第1触媒成分のそれぞれが担持された第1触媒成分担持粒子を得る工程
(4)上記で得た各第1触媒成分担持粒子を必要により乾燥及び/又は焼成、還元した後、所定の第2触媒成分群担持帯域に分配する工程
(5)この帯域に第2触媒成分群に含まれる各触媒成分溶液を供給し、各触媒粒子に第2触媒成分のそれぞれが更に担持された第2触媒成分担持粒子を得る工程
(6)上記で得た各第2触媒成分担持粒子を必要により乾燥及び/又は焼成、還元した後、所定の第3触媒成分群担持帯域に分配する工程
(7)この帯域に第3触媒成分群に含まれる各触媒成分溶液を供給し、各触媒粒子に第3触媒成分のそれぞれが更に担持された第3触媒成分担持粒子を得る工程
(8)以下最後の触媒成分群が担持されるまで上記と同様な操作を行い所定の固体触媒を調製する工程
(9)上記(1)〜(8)の工程を必要な数だけ繰り返し行い、各段から次の段への同種の触媒粒子の供給数は次の段の触媒成分数またはその倍数として、次の段では各粒子にすべての成分をそれぞれ担持することにより、各段階での触媒成分群から各々1つずつを選ぶ組み合わせにおいて論理的に可能な触媒成分の組み合わせの全てを持つ固体触媒を調製する工程
(10)上記(9)の工程において、すべての段の触媒成分担持帯域に無処理帯域を設け、無処理帯域も含めたすべての第1触媒成分担持帯域へ担体粒子を供給し、その後の処理は無処理帯域も担持帯域と同様にして扱う工程
A method of quickly preparing various solid catalysts by individually supporting each particle of the support without mixing each catalyst component individually and comprising the following multistage steps. Rapid preparation of catalyst.
(1) Step of storing carrier particles having a diameter of 0.5-3 mm (2) Step of distributing the stored carrier particles to the first catalyst component group carrying zone (3) This zone is included in the first catalyst component group Step of supplying each catalyst component solution and obtaining first catalyst component-supported particles in which each of the first catalyst components is supported on each carrier particle (4) If necessary, drying each of the first catalyst component-supported particles obtained above (5) Step of distributing to a predetermined second catalyst component group carrying zone after calcination and reduction (5) Supplying each catalyst component solution contained in the second catalyst component group to this zone, and supplying the second catalyst to each catalyst particle Step (6) for obtaining second catalyst component-carrying particles on which each of the components is further carried. After drying and / or calcining and reducing each of the second catalyst component-carrying particles obtained above as necessary, a predetermined third catalyst component is obtained. Step (7) of distributing to the group support zone The third catalyst in this zone Step (8) of supplying each catalyst component solution included in the subgroup and obtaining third catalyst component-supported particles in which each of the third catalyst components is further supported on each catalyst particle; and until the last catalyst component group is supported Step for preparing predetermined solid catalyst by performing the same operation as above (9) Repeating steps (1) to (8) as many times as necessary, and supplying the same kind of catalyst particles from each stage to the next stage The number is the number of catalyst components in the next stage or a multiple thereof, and in the next stage, all the components are supported on each particle, respectively, so that one is selected from each of the catalyst component groups in each stage. Process for preparing a solid catalyst having all possible combinations of catalyst components
(10) In the above step (9) , an untreated zone is provided in each stage of the catalyst component carrying zone, and the carrier particles are supplied to all the first catalyst component carrying zones including the untreated zone, and the subsequent treatment Is the process of handling the untreated zone in the same way as the carrying zone
担体が多孔体球状粒子であることを特徴とする請求項1に記載の多種の固体触媒の迅速調製方法。2. The rapid preparation method of various solid catalysts according to claim 1, wherein the support is porous spherical particles. 担体粒子又は触媒担持粒子への触媒成分の担持が、担体各粒子又は触媒担持各粒子に対して触媒成分溶液を個別に直接吸収させることにより行われることを特徴とする請求項1または2に記載の多種の固体触媒の迅速調製方法。The catalyst component is supported on the carrier particles or the catalyst-supported particles by directly absorbing the catalyst component solution individually for each carrier particle or each catalyst-supported particle. For rapid preparation of various solid catalysts. 触媒成分がポンプにより担体粒子又は触媒担持粒子に直接送られることを特徴とする請求項3に記載の多種の固体触媒の迅速調製方法。4. The rapid preparation method of various solid catalysts according to claim 3, wherein the catalyst component is directly sent to the support particles or the catalyst support particles by a pump. 触媒成分がサイホンにより担体粒子又は触媒担持粒子に直接送られることを特徴とする請求項3に記載の多種の固体触媒の迅速調製方法。The rapid preparation method of various solid catalysts according to claim 3, wherein the catalyst component is directly sent to the carrier particles or the catalyst-carrying particles by siphon. 担体粒子又は触媒担持粒子に供給される触媒成分溶液の量の調節を触媒担体の吸収能により自律的に行わせることを特徴とする請求項5に記載の多種の固体触媒の迅速調製方法。6. The rapid preparation method of various solid catalysts according to claim 5, wherein the amount of the catalyst component solution supplied to the support particles or the catalyst support particles is autonomously adjusted by the absorption capacity of the catalyst support. 上記請求項1から6の何れかに記載の調製方法で得られた各触媒担持粒子を所定の複数の触媒群とし、当該触媒群に含まれる固体触媒の有効性を該触媒群を構成する個々の固体触媒に分離することなく判別することを特徴とする固体触媒の迅速探索評価方法。Each of the catalyst-supported particles obtained by the preparation method according to any one of claims 1 to 6 is defined as a plurality of predetermined catalyst groups, and the effectiveness of the solid catalyst contained in the catalyst group is determined for each of the catalyst groups. A method for rapidly searching and evaluating a solid catalyst, wherein the solid catalyst is discriminated without being separated.
JP2002031689A 2002-02-08 2002-02-08 Rapid preparation method for various solid catalysts and apparatus therefor Expired - Lifetime JP4139883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031689A JP4139883B2 (en) 2002-02-08 2002-02-08 Rapid preparation method for various solid catalysts and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031689A JP4139883B2 (en) 2002-02-08 2002-02-08 Rapid preparation method for various solid catalysts and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2003230839A JP2003230839A (en) 2003-08-19
JP4139883B2 true JP4139883B2 (en) 2008-08-27

Family

ID=27775017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031689A Expired - Lifetime JP4139883B2 (en) 2002-02-08 2002-02-08 Rapid preparation method for various solid catalysts and apparatus therefor

Country Status (1)

Country Link
JP (1) JP4139883B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1057822A (en) * 1996-08-20 1998-03-03 Fuji Oil Co Ltd Method and apparatus for preparing catalyst
IT1292423B1 (en) * 1997-06-26 1999-02-08 Agip Petroli PROCEDURE FOR THE PREPARATION OF A COBALT AND SCANDIUM BASED CATALYST
ATE290544T1 (en) * 1998-12-14 2005-03-15 Deutsches Krebsforsch METHOD AND DEVICE FOR APPLYING SUBSTANCES TO A SUPPORT, IN PARTICULAR MONOMERS FOR THE COMBINATORY SYNTHESIS OF MOLECULE LIBRARIES
JP3932335B2 (en) * 1999-03-18 2007-06-20 独立行政法人産業技術総合研究所 Integrated catalyst and method for producing the same
US6689613B1 (en) * 1999-03-31 2004-02-10 General Electric Company Method for preparing and screening catalysts
JP2001004615A (en) * 1999-06-24 2001-01-12 Showa Denko Kk Screening method
JP4553443B2 (en) * 2000-03-15 2010-09-29 文章 大谷 Catalyst search method
JP4435404B2 (en) * 2000-12-01 2010-03-17 旭化成ケミカルズ株式会社 Catalyst precursor automatic synthesizer and catalyst automatic synthesizer
JP3757267B2 (en) * 2001-07-23 2006-03-22 独立行政法人産業技術総合研究所 Rapid search method for multi-component solid catalysts
JP3837489B2 (en) * 2001-09-19 2006-10-25 独立行政法人産業技術総合研究所 Rapid search method for hydrogen production catalysts
JP4307768B2 (en) * 2001-10-31 2009-08-05 旭化成ケミカルズ株式会社 Automatic synthesis apparatus and synthesis method for composite metal oxide catalyst precursor

Also Published As

Publication number Publication date
JP2003230839A (en) 2003-08-19

Similar Documents

Publication Publication Date Title
US6623967B1 (en) Process for testing catalysts using chromatography
US6472441B1 (en) Methods for optimizing Fischer-Tropsch synthesis of hydrocarbons in the distillate fuel and/or lube base oil ranges
Murphy et al. High-throughput approaches to catalyst discovery
US6862533B2 (en) Computer-aided optimization of substance libraries
JP4139883B2 (en) Rapid preparation method for various solid catalysts and apparatus therefor
Ozturk et al. Discovery of new fuel-lean NO reduction catalyst leads using combinatorial methodologies
Rodemerck et al. Parallel synthesis and fast screening of heterogeneous catalysts
US6455595B1 (en) Methods for optimizing fischer-tropsch synthesis
US6901334B2 (en) Methods and systems for high throughput analysis
Morra et al. High-throughput gas phase transient reactor for catalytic material characterization and kinetic studies
Volpe et al. High‐Throughput Heterogeneous Catalyst Research, Development, Scale‐up, and Production Support
Oh et al. Highly reliable 64-channel sequential and parallel tubular reactor system for high-throughput screening of heterogeneous catalysts
Rodemerck et al. Parallel synthesis and testing of heterogeneous catalysts
EP1609526A1 (en) Catalyst testing process and apparatus
JP3757267B2 (en) Rapid search method for multi-component solid catalysts
JP2004514553A (en) How to make multiple building blocks of a material library
EP1384995A1 (en) Catalyst testing process and apparatus
CA2465957A1 (en) Catalyst testing process and apparatus
Su et al. Laser-Induced Fluorescence Detection in High-Throughput Screening of Heterogeneous Catalysts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4139883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term