JP3837489B2 - Rapid search method for hydrogen production catalysts - Google Patents

Rapid search method for hydrogen production catalysts Download PDF

Info

Publication number
JP3837489B2
JP3837489B2 JP2001391203A JP2001391203A JP3837489B2 JP 3837489 B2 JP3837489 B2 JP 3837489B2 JP 2001391203 A JP2001391203 A JP 2001391203A JP 2001391203 A JP2001391203 A JP 2001391203A JP 3837489 B2 JP3837489 B2 JP 3837489B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
catalysts
hydrogen
lower hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001391203A
Other languages
Japanese (ja)
Other versions
JP2003164767A (en
Inventor
直樹 三村
和久 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001391203A priority Critical patent/JP3837489B2/en
Publication of JP2003164767A publication Critical patent/JP2003164767A/en
Application granted granted Critical
Publication of JP3837489B2 publication Critical patent/JP3837489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、気相反応に使用される好適な触媒を迅速に開発する方法に関するものである。さらに詳しくは、本発明は、メタン等の低級炭化水素の熱分解に用いる多様な水素製造用触媒を同時に比較することにより好適な触媒を短時間で簡易に開発する方法に関するものである。
【0002】
【従来の技術】
固体触媒を用いる化学反応では、通常、反応を制御することは困難である場合が多く、なかでも、その反応に好適な触媒の開発には時間をかけて試行錯誤を繰り返すことは避けられず、装置費、労力費などに多大なコストを要するものである。
最近、化学反応を液相で行う有機合成反応や錯体触媒反応等においては、コンビナトリアルと呼ばれる手法を利用し、多数の小型反応器と自動反応制御装置を組み合わせて短時間で多種多様な化合物を合成したり、反応に関与する諸因子の最適な組み合わせを探索する簡便な方法が採用されるようになり、様々な成果が得られている。
【0003】
ところが、固体触媒を用いる気相反応に同様の手法を適用して触媒開発を行うには、複数種の触媒を同時に試験するのに要する流量制御器、反応管及び分析機器などの装置を、試験対象とする触媒数とそれぞれ同数を用意しなければないうえに、これらをコンピューターなどを用いて制御する必要があり、多大な労力及びコストを要するなどの問題がある。また、温度センサーを用いて吸熱及び発熱の状態を追跡したり、生成物に特有な赤外線吸収を測定する方法或いはガスセンサーを検出器として用いる方法などの分析手法も提案されているが、未だ一般的な方法ではない。
【0004】
ところで、水素の製法は、次世代水素エネルギーシステムの中核を担う重要な技術として位置付けられており、特にメタンに代表される低級炭化水素の接触分解による水素の製造はCOを発生しないため、環境問題を引き起こさないクリーンな方法として注目される反応であるが、未だ十分に満足できる方法は開発されていない。そこで、低級炭化水素の分解による水素製造用触媒には、特に迅速な開発方法が求められている。
【0005】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。
すなわち、本発明の目的は、低級炭化水素の分解による水素の製法のような特定の気相反応に好適な触媒を、迅速かつ簡易に低コストで開発する探索手法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記した問題を解消するために、原料ガスの接触分解反応で固体及び気体を生成する反応について鋭意検討を重ねた結果、その反応に好適な触媒を容易に検出する手法を見出し、本発明を完成するに至った。
【0007】
すなわち、本発明における低級炭化水素の熱分解による水素製造用触媒の迅速探索方法は、上端が開口された複数の収納器に、それぞれ相異なる複数種の触媒を導入し、その複数の収納器の全てを密閉された反応容器中に配置し、その反応器内に低級炭化水素含有ガスを導入して、低級炭化水素含有ガスと前記複数種の触媒とを加熱条件下に接触させて、低級炭化水素の熱分解により水素を製造する反応を行わせ、反応後の各触媒上に生成した炭素重量を測定することにより、前記複数種の触媒性能を同時に選別評価することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明は、ガス状原料の気相接触反応によって、ガス状原料が分解して固体及び気体を生成し、出口生成ガスの分析を行わなくとも、反応の進行状況を正確に把握できるような反応系に用いられる好適な触媒を、迅速かつ簡易に開発する方法に使用できるものである。このような本発明方法が適用される代表的な気相反応としては、低級炭化水素、例えば、メタン、エタン、プロパン、エチレンなどの単独またはこれらの混合物を固体触媒の存在下に熱分解させて水素を製造する反応が挙げられる。
【0009】
本発明に用いられる原料の低級炭化水素としては、炭素数1〜4の低級アルカン等が挙げられるが、ここではメタンを熱分解させて水素を製造する反応に使用される固体触媒の開発を代表例として詳述する。
メタンの熱分解によって水素を製造する反応に使用される固体触媒は、未だ開発途上にあるが、その分解反応の生成物は固体の炭素と水素ガスである。
【0010】
メタンの分解反応による水素の製造では、つぎの反応式
CH → C + 2H
で表され、生成した固体の炭素は触媒表面上に残留し、一方、水素ガスは反応管出口から流出する。また、上記反応以外の副反応は殆ど起こらない。そのため、触媒表面に生成した炭素の量を定量すれば、出口ガスの分析を全く行うことなく、その触媒による生成水素量を計算によって容易かつ正確に求められるから、所定時間における触媒の水素製造能力を容易に導き出すことができる。
【0011】
そこで、本発明では、このような反応に使用可能と想定される多様な複数種の触媒を試験の対象とし、それらを同一条件で同時に試験し、各触媒の表面に生成した炭素量等から、それぞれの触媒性能を比較することにより、短時間で好適な触媒を容易にスクリーニングまたは選定するものである。
【0012】
メタンの分解反応による水素製造に用いる触媒の場合、試験の対象とする複数の触媒としては、触媒性能に関与する諸因子、例えば、活性成分の種類、触媒担体の種類、活性成分の含有率等について、それらの1種からなる触媒或いはそれらの2種以上を適宜組合せた触媒等、具体的には、2種の活性金属成分の組合せ、金属種と触媒担体との組合せ触媒等が挙げられる。
【0013】
また、原料ガスとしては、メタン単独でも良いが、アルゴン、窒素、ヘリウム等の不活性ガスで希釈して用いても良い。この場合のメタン含有率は特に限定されないが、1〜50容量%が好ましい。
【0014】
本発明に用いる触媒の収納器としては、反応温度に耐えられる石英、セラミックス、ガラス、金属等の耐熱性材料からなる容器であれば使用可能である。その形状としては、触媒を収納し、上部を流れるメタン含有ガスと内部の触媒とが均一かつ十分に接触できるものであれば良く、上端が開口された円形状物、角状物等からなる同形状のものが好ましく、例えば、同形状の石英製小皿、石英板に触媒を保持する同形状の窪みを設けたもの等が挙げられる。この反応容器は、大気と遮断され、全ての触媒を入れた収納器が均一に加熱される構造であることが好ましい。
【0015】
本発明の方法は、まず、管状物等の反応容器内に、試験の対象とする複数の触媒の所定量を、それぞれの小皿に入れて規則的に並べる。その際、それぞれの触媒が反応条件下で混り合わないように配置する。
その触媒は、反応開始前に予め水素ガスと500〜700℃程度の温度で接触させ、還元活性化処理を行っておくことが望ましい。
次に、反応容器を水素の生成に好適な300〜800℃程度、好ましくは450〜600℃にまで加熱し、その上部にメタン含有ガスを所定時間に亘って流し、各触媒と接触させて熱分解反応を行う。その際、その流速には特に限定されないが、遅すぎると触媒反応で生成した水素により平衡転化率が変化し、他の触媒の水素製造反応に悪影響を及ぼす可能性がある。そのため、毎分50ml以上で流すことが好ましい。また、用いる触媒量には特に限定されないが、1種の触媒に対して5〜500mg程度を用いることが好ましい。
【0016】
本発明では、多数の触媒を同時に同条件で所定時間反応させると、生成する水素ガスは全て反応管出口から流出する一方、生成する炭素は全て触媒表面上に残留するから、所定時間の反応後の各触媒上に生成した炭素の重量を測定することにより、それぞれの触媒性能を迅速かつ正確に選別評価することができる。また、反応時間や反応温度を変化させれば、触媒の時間特性及び温度特性の比較も容易に可能である。
【0017】
生成炭素量の測定は、公知の方法を用いることができる。例を挙げれば(1)反応前後の触媒重量の比較、(2)生成炭素を燃焼させ、その前後の重量比較、(3)熱重量測定装置でキャリアガスを空気または酸素として燃焼反応を行い重量の追跡を行う、等の方法があるが、これらに限定されるものではない。また、オートサンプリング機構の付いた装置を用いると、より効率良く分析することができる。
【0018】
さらに、本発明の態様について例示の図面を参照して詳しく説明する。
(1)図1に見るように、石英等の耐熱材料製の円形小皿内に、縦軸に示したシリカ、アルミナ、シリカアルミナ、チタニア、HY型ゼオライト、・・・(m個)の触媒担体と、横軸に示したNi、Fe、Co、・・・(n個)の活性金属種との組合せ触媒(m×n個)を入れて長方形状に並べる。これらの触媒は、小皿の中で活性金属の硝酸塩の溶液を活性金属の担持率が等しくなるように、所定量の触媒担体に含浸させた後、同条件で空気中において乾燥・焼成させることにより得られる。
次に、図2に見るように、得られた触媒を、配置した位置と触媒の種類の関係が分別できるようにして反応容器内に入れ、水素ガスと600〜650℃で接触させで還元活性化処理を行った後、所定濃度のメタン含有ガスと450〜550℃で接触させて熱分解反応を行う。
この反応を所定時間行った後、メタン含有ガスを窒素等の不活性ガスに切り替えて、触媒を室温まで冷却する。その後、各触媒に付着している炭素の重量を熱重量分析法を用いて求め、水素生成量を計算で求める。
この方法によれば、多数の組合せ触媒の中から、一度に有効な触媒担体と活性金属の組合せ触媒を、短時間で容易に見出すことができる。
【0019】
(2)前記(1)で明らかになった触媒材料と金属成分の組合せを用い、縦軸に活性金属成分の担持率、横軸に触媒前駆体金属塩のカウンターアニオン(硝酸イオン、酢酸イオン、塩化物イオンなど)を採用し、前記(1)と同様に行う。
この方法によれば、有効な担持率と前駆体の組合せ触媒が短時間で明らかになる。
【0020】
(3)前記(2)で得られた触媒をもとに、縦軸に助触媒成分、横軸に助触媒の含有率を採用し、前記(1)と同様に行う。この方法によれば、有効な助触媒成分とその含有率を、短時間で容易に求めることができる。
【0021】
(4)前記(1)と同様に行い、メタン含有ガスとの接触時間を変化させ、複数回反応実験を行う。この方法によれば、各触媒の時間特性が短時間で明らかになる。
【0022】
(5)前記(4)と同様に、変化させる因子を温度に変更すれば、触媒の温度特性が明らかになる。
【0023】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
12個の窪み(直径2cm、深さ5mm)を有するセラミック製の反応皿に、AlPO−5からなる担体0.1gを秤取した。次に、その各窪みに硝酸ニッケル水溶液0.25Mol/l(リットル)を滴下し、ガラス棒で担体と十分混合した後、100℃で乾燥させた。その後、750℃で5時間の加熱焼成を行うことにより、触媒を得た。この触媒のニッケル担持率は担体1gあたり1.25mmolであった。
反応操作は、図3(a)に示す石英製のカップ(内径5.5mm、外径7.0mm、高さ11.0mm)に触媒3〜5mgを充填し、セラミック製ボートに配置した(図3(b)参照)。
本実施例に用いたボートには最大12個のカップを搭載できる。カップが載っているボートを石英反応管(外径28mm、内径24mm)内に配置し、これを管状電気炉で加熱した(図3(c)参照)。
触媒の還元活性化処理は、600℃において水素(10vol%)とアルゴン(90vol%)の混合ガスを流速50ml/分で1時間流すことにより行った。
メタンの分解反応は、メタン(10vol%)とヘリウム(90vol%)の混合ガスを500℃に加熱された反応器内に流速150ml/分で流すことにより行った。反応を開始させて30分経過した後、メタンガスの供給を停止し、ヘリウムのみを流しながら100℃以下にまで冷却した。
その後、カップ内の触媒を取り出し熱重量分析装置を用いて、炭素重量と触媒重量を精密に測定した。
カップの配置場所による分解反応の差異を測定するために、ボートの両端部及び中央部の計3箇所に、それぞれ同一組成及び同一量の触媒(AlPO-5担体、ニッケル担持率:担体1gあたり1.25mmol)を入れたカップを配置し、反応を行った。カップの配置場所による析出炭素量の測定結果を表1に示す。
【0024】
【表1】

Figure 0003837489
表1の結果から、触媒活性の最大値と最小値の差は、6.7%以内の範囲であるので、カップの配置場所による誤差は十分許容範囲内であることがわかった。
【0025】
実施例2
表2に示す6種類の触媒を用い、本発明の迅速探索方法と、従来から広く使われている管型流通式反応器(縦置き型及び横置き型)を用いた方法との触媒活性(初期平均反応速度)を比較した結果を、表3示した。この実験方法は、上記の実施例1と同様であった。
【0026】
【表2】
Figure 0003837489
【0027】
【表3】
Figure 0003837489
【0028】
表3の結果から、本発明の方法は、触媒活性の序列(順位)について上位の3触媒と下位の3触媒との間には、順位に多少の変動はあるものの殆ど一致しており、多数の候補触媒の中から高性能な触媒を選び出す手法として優れていることが明らかになった。
さらに、実際に使用する触媒に関する詳細な検討は、触媒活性が上位の触媒のみについて検討すればよいので、研究開発に要する時間が大幅に短縮される。触媒活性は管型反応器の方が低くなっているが、横型反応器を用い触媒上方に空間を取った充填方法を用いることにより、本迅速探索手法とほぼ同等の活性が測定された。このことは、本発明の迅速探索手法で測定された活性の値が十分な信頼性を有することを示すものである。なお、触媒の充填方法や使用量などにより原料ガスの接触効率や局所的な平衡の影響などを受けて、得られる触媒活性に差異が生じたことが考えられる。
【0029】
【発明の効果】
本発明によれば、気相反応に使用される活性成分と触媒担体からなる触媒等の最適な組合せを、多数の触媒を同時に試験することにより、労力を低減し、迅速かつ簡易に低コストで短時間に探索できるから、触媒開発の迅速化に寄与するものである。特に、メタンの熱分解により水素を製造する反応触媒の迅速な開発に極めて有用である。
【図面の簡単な説明】
【図1】 本発明におけるメタンから水素を製造する熱分解反応に用いられる触媒の開発手法を示す概念図である。
【図2】 本発明に用いるメタンから水素を製造する反応容器の平面概略断面図(下部)及び正面概略断面図(上部)である。
【図3】 本発明の迅速探索方法に用いる反応装置の一例を示す概略構成図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for rapidly developing suitable catalysts for use in gas phase reactions. More specifically, the present invention relates to a method for easily developing a suitable catalyst in a short time by simultaneously comparing various hydrogen production catalysts used for thermal decomposition of lower hydrocarbons such as methane.
[0002]
[Prior art]
In a chemical reaction using a solid catalyst, it is usually difficult to control the reaction, and in particular, it is inevitable that it takes time and effort to develop a catalyst suitable for the reaction. The apparatus cost and labor cost are very expensive.
Recently, in organic synthesis reactions and complex catalyzed reactions in which chemical reactions are performed in the liquid phase, a method called combinatorial is used to synthesize a wide variety of compounds in a short time by combining many small reactors and automatic reaction control devices. And a simple method for searching for an optimal combination of factors involved in the reaction has been adopted, and various results have been obtained.
[0003]
However, in order to develop a catalyst by applying the same method to a gas phase reaction using a solid catalyst, test equipment such as a flow controller, reaction tube, and analytical instrument required to simultaneously test multiple types of catalysts. There is a problem in that the same number as the target number of catalysts must be prepared, and these must be controlled using a computer or the like, which requires a great deal of labor and cost. In addition, analytical methods such as a method of tracking the endothermic and exothermic states using a temperature sensor, a method of measuring infrared absorption peculiar to products, or a method of using a gas sensor as a detector have also been proposed, It's not a natural way.
[0004]
By the way, the hydrogen production method is positioned as an important technology that plays a central role in the next-generation hydrogen energy system. In particular, the production of hydrogen by catalytic cracking of lower hydrocarbons represented by methane does not generate CO 2 , so Although this reaction is attracting attention as a clean method that does not cause problems, a method that is not yet satisfactory has not been developed yet. Therefore, a particularly rapid development method is required for a catalyst for hydrogen production by decomposition of lower hydrocarbons.
[0005]
[Problems to be solved by the invention]
This invention is made | formed in view of the above-mentioned actual condition in a prior art.
That is, an object of the present invention is to provide a search method for rapidly and easily developing a catalyst suitable for a specific gas phase reaction, such as a method for producing hydrogen by cracking a lower hydrocarbon, quickly and easily.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present inventors have conducted extensive studies on a reaction that generates solids and gases by a catalytic cracking reaction of a raw material gas, and as a result, a method for easily detecting a catalyst suitable for the reaction. The headline and the present invention were completed .
[0007]
That is, the rapid search method of the catalyst for hydrogen production by thermal decomposition of lower hydrocarbons in the present invention introduces a plurality of different types of catalysts into a plurality of containers whose upper ends are opened, All of them are placed in a sealed reaction vessel, a lower hydrocarbon-containing gas is introduced into the reactor, and the lower hydrocarbon-containing gas and the plurality of types of catalyst are brought into contact with each other under heating conditions, thereby lower carbonization. to perform the reaction for producing hydrogen by thermal decomposition of hydrogen by Rukoto measuring the carbon weight generated on each of the catalysts after the reaction, characterized by selecting evaluating the plurality of kinds of catalytic performance at the same time.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention is a reaction in which a gaseous raw material is decomposed to generate a solid and a gas by a gas phase contact reaction of the gaseous raw material, and the progress of the reaction can be accurately grasped without analyzing the outlet generated gas. It can be used in a method for quickly and easily developing a suitable catalyst used in the system. As a typical gas phase reaction to which the method of the present invention is applied, a lower hydrocarbon, for example, methane, ethane, propane, ethylene or the like alone or a mixture thereof is thermally decomposed in the presence of a solid catalyst. A reaction for producing hydrogen may be mentioned.
[0009]
Examples of the raw material lower hydrocarbon used in the present invention include a lower alkane having 1 to 4 carbon atoms, but here, representative of the development of a solid catalyst used in a reaction for producing hydrogen by thermally decomposing methane. This will be described in detail as an example.
Solid catalysts used in the reaction for producing hydrogen by thermal decomposition of methane are still under development, but the products of the decomposition reaction are solid carbon and hydrogen gas.
[0010]
In the production of hydrogen by the decomposition reaction of methane, the following reaction formula CH 4 → C + 2H 2
The generated solid carbon remains on the catalyst surface, while the hydrogen gas flows out from the reaction tube outlet. In addition, side reactions other than the above reaction hardly occur. Therefore, if the amount of carbon produced on the catalyst surface is quantified, the amount of hydrogen produced by the catalyst can be determined easily and accurately without any analysis of the outlet gas. Can be easily derived.
[0011]
Therefore, in the present invention, various types of catalysts that are assumed to be usable for such reactions are subjected to testing, they are simultaneously tested under the same conditions, and from the amount of carbon generated on the surface of each catalyst, etc. By comparing the performance of each catalyst, a suitable catalyst can be easily screened or selected in a short time.
[0012]
In the case of a catalyst used for hydrogen production by a methane decomposition reaction, a plurality of catalysts to be tested include various factors related to catalyst performance, such as the type of active component, the type of catalyst carrier, the content of active component, etc. , A catalyst composed of one kind of them or a catalyst obtained by appropriately combining two or more kinds thereof, specifically, a combination of two kinds of active metal components, a combination catalyst of a metal kind and a catalyst carrier, and the like.
[0013]
The source gas may be methane alone or may be diluted with an inert gas such as argon, nitrogen or helium. The methane content in this case is not particularly limited, but is preferably 1 to 50% by volume.
[0014]
As the container for the catalyst used in the present invention, any container made of a heat-resistant material such as quartz, ceramics, glass, metal, etc. that can withstand the reaction temperature can be used. The shape is not limited as long as it contains the catalyst and the methane-containing gas flowing in the upper part and the internal catalyst can be in uniform and sufficient contact with each other. The shape is preferable, and examples thereof include a quartz plate having the same shape, and a quartz plate provided with a recess having the same shape for holding the catalyst. This reaction vessel is preferably cut off from the atmosphere, and the container containing all the catalyst is preferably heated uniformly.
[0015]
In the method of the present invention, first, a predetermined amount of a plurality of catalysts to be tested is placed regularly in a small dish in a reaction vessel such as a tubular product. In that case, it arrange | positions so that each catalyst may not mix under reaction conditions.
It is desirable that the catalyst is brought into contact with hydrogen gas at a temperature of about 500 to 700 ° C. in advance before the start of the reaction and subjected to reduction activation treatment.
Next, the reaction vessel is heated to about 300 to 800 ° C., preferably 450 to 600 ° C. suitable for the production of hydrogen, and a methane-containing gas is allowed to flow over it for a predetermined period of time and brought into contact with each catalyst. Perform a decomposition reaction. At that time, the flow rate is not particularly limited, but if it is too slow, the equilibrium conversion rate may change due to hydrogen produced by the catalytic reaction, which may adversely affect the hydrogen production reaction of other catalysts. Therefore, it is preferable to flow at 50 ml or more per minute. Further, the amount of catalyst to be used is not particularly limited, but it is preferable to use about 5 to 500 mg with respect to one type of catalyst.
[0016]
In the present invention, when a large number of catalysts are reacted simultaneously under the same conditions for a predetermined time, all the generated hydrogen gas flows out from the outlet of the reaction tube, while all the generated carbon remains on the catalyst surface. By measuring the weight of the carbon produced on each catalyst, the performance of each catalyst can be selected and evaluated quickly and accurately. Further, if the reaction time and the reaction temperature are changed, the time characteristics and temperature characteristics of the catalyst can be easily compared.
[0017]
A known method can be used to measure the amount of produced carbon. For example, (1) Comparison of catalyst weight before and after reaction, (2) Combustion of produced carbon, comparison of weight before and after that, (3) Weight by performing a combustion reaction with carrier gas as air or oxygen in thermogravimetry However, it is not limited to these methods. Further, when an apparatus with an auto sampling mechanism is used, analysis can be performed more efficiently.
[0018]
Further, aspects of the present invention will be described in detail with reference to exemplary drawings.
(1) As shown in FIG. 1, in a circular small plate made of a heat-resistant material such as quartz, silica, alumina, silica alumina, titania, HY zeolite shown on the vertical axis, (m pieces) catalyst carrier And a combination catalyst (m × n) with Ni, Fe, Co,... (N) active metal species shown on the horizontal axis, and arranged in a rectangular shape. These catalysts are obtained by impregnating a predetermined amount of catalyst support with a solution of an active metal nitrate in a small dish so that the active metal loading is equal, and then drying and calcining in air under the same conditions. can get.
Next, as shown in FIG. 2, the obtained catalyst is placed in a reaction vessel so that the relationship between the position of placement and the type of catalyst can be separated, and brought into contact with hydrogen gas at 600 to 650 ° C. to reduce the activity. After performing the chemical treatment, a thermal decomposition reaction is performed by contacting with a methane-containing gas having a predetermined concentration at 450 to 550 ° C.
After performing this reaction for a predetermined time, the methane-containing gas is switched to an inert gas such as nitrogen, and the catalyst is cooled to room temperature. Thereafter, the weight of carbon adhering to each catalyst is obtained using a thermogravimetric analysis method, and the amount of hydrogen produced is obtained by calculation.
According to this method, an effective catalyst carrier and active metal combination catalyst can be easily found out in a short time from a large number of combination catalysts.
[0019]
(2) Using the combination of the catalyst material and metal component clarified in (1) above, the vertical axis represents the active metal component loading rate, and the horizontal axis represents the catalyst precursor metal salt counter anion (nitrate ion, acetate ion, Chloride ions etc. are employed, and the same procedure as in (1) above is carried out.
According to this method, an effective loading rate and a combined catalyst of precursors are revealed in a short time.
[0020]
(3) Based on the catalyst obtained in the above (2), the vertical axis represents the promoter component and the horizontal axis represents the promoter content, and the same procedure as in (1) above is performed. According to this method, an effective promoter component and its content can be easily obtained in a short time.
[0021]
(4) Perform the same experiment as in (1) above, change the contact time with the methane-containing gas, and conduct the reaction experiment multiple times. According to this method, the time characteristic of each catalyst becomes clear in a short time.
[0022]
(5) Similar to the above (4), the temperature characteristic of the catalyst becomes clear by changing the changing factor to temperature.
[0023]
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples.
Example 1
12 recess (diameter 2 cm, depth 5mm) into a ceramic reaction dish with a was weighed carrier 0.1g consisting AlPO 4 -5. Next, 0.25 mol / l (liter) of nickel nitrate aqueous solution was dropped into each of the depressions, and the mixture was sufficiently mixed with the carrier with a glass rod, and then dried at 100 ° C. Then, the catalyst was obtained by performing heat baking for 5 hours at 750 degreeC. This catalyst had a nickel loading of 1.25 mmol per gram of support.
In the reaction operation, a quartz cup (inner diameter 5.5 mm, outer diameter 7.0 mm, height 11.0 mm) shown in FIG. 3A was filled with 3 to 5 mg of catalyst and placed in a ceramic boat (FIG. 3B). )reference).
A maximum of 12 cups can be mounted on the boat used in this embodiment. The boat on which the cup is placed was placed in a quartz reaction tube (outer diameter 28 mm, inner diameter 24 mm) and heated in a tubular electric furnace (see FIG. 3C).
The reduction activation treatment of the catalyst was performed by flowing a mixed gas of hydrogen (10 vol%) and argon (90 vol%) at a flow rate of 50 ml / min for 1 hour at 600 ° C.
The decomposition reaction of methane was performed by flowing a mixed gas of methane (10 vol%) and helium (90 vol%) into a reactor heated to 500 ° C. at a flow rate of 150 ml / min. After 30 minutes had passed since the reaction was started, the supply of methane gas was stopped, and the mixture was cooled to 100 ° C. or lower while flowing only helium.
Thereafter, the catalyst in the cup was taken out, and the carbon weight and the catalyst weight were accurately measured using a thermogravimetric analyzer.
To measure the difference in decomposition reactions by placement of a cup, a total of three places of both end portions and the central portion of the boat, respectively the same composition and the same amount of catalyst (AlPO 4 -5 carrier, supported nickel rate: per carrier 1g A cup containing 1.25 mmol) was placed and the reaction was carried out. Table 1 shows the measurement results of the amount of precipitated carbon depending on the location of the cup.
[0024]
[Table 1]
Figure 0003837489
From the results in Table 1, it was found that the difference between the maximum value and the minimum value of the catalyst activity was within 6.7%, so that the error due to the location of the cup was well within the allowable range.
[0025]
Example 2
Using the six types of catalysts shown in Table 2, the catalytic activity of the rapid search method of the present invention and the method using a tubular flow reactor (vertical and horizontal) that has been widely used conventionally ( The results of comparing the initial average reaction rates are shown in Table 3. This experimental method was the same as in Example 1 above.
[0026]
[Table 2]
Figure 0003837489
[0027]
[Table 3]
Figure 0003837489
[0028]
From the results of Table 3, the method of the present invention is almost consistent with the order of rank (rank) of the catalyst activity, although there are some variations in rank between the upper three catalysts and the lower three catalysts. As a result, it has become clear that it is an excellent method for selecting high-performance catalysts from among the candidate catalysts.
Furthermore, since detailed studies regarding the catalyst to be actually used need only consider a catalyst having a higher catalytic activity, the time required for research and development is greatly reduced. The catalytic activity of the tubular reactor is lower, but by using a filling method in which a space is provided above the catalyst using a horizontal reactor, the activity almost equivalent to this rapid search method was measured. This indicates that the activity value measured by the rapid search method of the present invention has sufficient reliability. In addition, it is possible that the catalyst activity obtained differs depending on the contact efficiency of the raw material gas and the influence of local equilibrium depending on the filling method and amount of the catalyst.
[0029]
【The invention's effect】
According to the present invention, the optimum combination of the active ingredient used in the gas phase reaction and the catalyst comprising the catalyst carrier is tested at the same time for a large number of catalysts, thereby reducing labor, quickly and easily at low cost. Since it can be searched in a short time, it contributes to the rapid development of the catalyst. In particular, it is extremely useful for rapid development of a reaction catalyst for producing hydrogen by thermal decomposition of methane.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing a method for developing a catalyst used in a thermal decomposition reaction for producing hydrogen from methane in the present invention.
FIG. 2 is a schematic plan view (lower part) and a front schematic sectional view (upper part) of a reaction vessel for producing hydrogen from methane used in the present invention.
FIG. 3 is a schematic configuration diagram showing an example of a reaction apparatus used in the rapid search method of the present invention.

Claims (4)

上端が開口された複数の収納器に、それぞれ相異なる複数種の触媒を導入し、その複数の収納器の全てを密閉された反応容器中に配置し、その反応器内に低級炭化水素含有ガスを導入して、低級炭化水素含有ガスと前記複数種の触媒とを加熱条件下に接触させて、低級炭化水素の熱分解により水素を製造する反応を行わせ、反応後の各触媒上に生成した炭素重量を測定することにより、前記複数種の触媒性能を同時に選別評価することを特徴とする低級炭化水素の熱分解による水素製造用触媒の迅速探索方法。A plurality of different types of catalysts are introduced into a plurality of containers whose upper ends are opened, all of the plurality of containers are placed in a sealed reaction vessel, and a lower hydrocarbon-containing gas is contained in the reactor. To produce a hydrogen on the catalyst after the reaction by bringing the lower hydrocarbon-containing gas and the above-mentioned plurality of catalysts into contact with each other under heating conditions to produce hydrogen by thermal decomposition of the lower hydrocarbon. the Rukoto measuring the carbon weight was, the quick search method more catalysts for hydrogen production by thermal decomposition of a lower hydrocarbon, wherein the catalyst performance at the same time sorting evaluated. 複数種の触媒が、2種以上の活性成分の組合せ又は活性成分と担体の組合せであることを特徴とする請求項に記載の水素製造用触媒の迅速探索方法。The rapid search method for a catalyst for hydrogen production according to claim 1 , wherein the plurality of types of catalysts are a combination of two or more active components or a combination of an active component and a support. 低級炭化水素含有ガスが、低級炭化水素と不活性ガスとの混合ガスであることを特徴とする請求項に記載の水素製造触媒の迅速探索方法。The rapid search method for a catalyst for hydrogen production according to claim 1 , wherein the lower hydrocarbon-containing gas is a mixed gas of a lower hydrocarbon and an inert gas. 低級炭化水素がメタンであることを特徴とする請求項1〜3のいずれか1項に記載の水素製造触媒の迅速探索方法。The rapid search method for a catalyst for hydrogen production according to any one of claims 1 to 3 , wherein the lower hydrocarbon is methane.
JP2001391203A 2001-09-19 2001-12-25 Rapid search method for hydrogen production catalysts Expired - Lifetime JP3837489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001391203A JP3837489B2 (en) 2001-09-19 2001-12-25 Rapid search method for hydrogen production catalysts

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-284305 2001-09-19
JP2001284305 2001-09-19
JP2001391203A JP3837489B2 (en) 2001-09-19 2001-12-25 Rapid search method for hydrogen production catalysts

Publications (2)

Publication Number Publication Date
JP2003164767A JP2003164767A (en) 2003-06-10
JP3837489B2 true JP3837489B2 (en) 2006-10-25

Family

ID=26622462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001391203A Expired - Lifetime JP3837489B2 (en) 2001-09-19 2001-12-25 Rapid search method for hydrogen production catalysts

Country Status (1)

Country Link
JP (1) JP3837489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210066176A (en) 2019-11-28 2021-06-07 한국화학연구원 Reactor for Evaluation of Catalytic Performance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139883B2 (en) * 2002-02-08 2008-08-27 独立行政法人産業技術総合研究所 Rapid preparation method for various solid catalysts and apparatus therefor
KR101936234B1 (en) 2017-03-23 2019-01-08 한국과학기술연구원 Method and apparatus for high-throughput screening of catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210066176A (en) 2019-11-28 2021-06-07 한국화학연구원 Reactor for Evaluation of Catalytic Performance

Also Published As

Publication number Publication date
JP2003164767A (en) 2003-06-10

Similar Documents

Publication Publication Date Title
Ming et al. Characterization of cobalt Fischer-Tropsch catalysts I. Unpromoted cobalt-silica gel catalysts
Krishnamoorthy et al. An investigation of the effects of water on rate and selectivity for the Fischer–Tropsch synthesis on cobalt-based catalysts
Borry et al. Non-oxidative catalytic conversion of methane with continuous hydrogen removal
Parrillo et al. Comparison of the acidic properties of H-[Al] ZSM-5, H-[Fe] ZSM-5, and H-[Ga] ZSM-5 using microcalorimetry, hexane cracking, and propene oligomerization
US5849973A (en) Oxidative coupling catalyst
CN108465466A (en) A kind of spheric catalyst and preparation method thereof of ceria package Pd
Amon et al. Kinetic investigations of the deactivation by coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzene using a catalytic wall reactor
d'Alnoncourt et al. The influence of ZnO on the differential heat of adsorption of CO on Cu catalysts: a microcalorimetric study
Barbier et al. Characterization of coke by hydrogen and carbon analysis
Braga et al. Liquid phase calorimetric-adsorption analysis of Si-MCM-41: Evidence of strong hydrogen-bonding sites
JP2009543679A (en) High-speed continuous experiments on catalysts and catalyst systems
Atashi et al. Intrinsic kinetics of the Fischer-Tropsch synthesis over an impregnated cobalt-potassium catalyst
Mirzaei et al. Kinetics modeling of Fischer–Tropsch synthesis on the unsupported Fe-Co-Ni (ternary) catalyst prepared using co-precipitation procedure
Omojola et al. Molecular behaviour of methanol and dimethyl ether in H-ZSM-5 catalysts as a function of Si/Al ratio: a quasielastic neutron scattering study
BR112019007810B1 (en) PRE-CATALYST AND OXIDATIVE DEHYDROGENATION CATALYST, PROCESS FOR THE SYNTHESIS OF SUCH CATALYST AND METHOD FOR OXIDATIVE DEHYDROGENATION
US5321185A (en) Methane oxidative coupling
Mihaylov et al. Structure sensitivity of methanol decomposition on Ni/SiO2 catalysts
BRPI0706688A2 (en) catalyst and method for producing olefins using the catalyst
JP3837489B2 (en) Rapid search method for hydrogen production catalysts
Li et al. The effect of coke deposition on the deactivation of sulfated zirconia catalysts
JP2008224257A (en) Catalytic activity evaluation device and evaluation method
Yang et al. Mechanism of Methanol Dehydration Catalyzed by Al8O12 Nodes Assisted by Linker Amine Groups of the Metal–Organic Framework CAU-1
Girardon et al. A new experimental cell for in situ and operando X-ray absorption measurements in heterogeneous catalysis
Boudjahem et al. Nanonickel particles supported on silica. Morphology effects on their surface and hydrogenating properties
Mashkovsky et al. Progress in single-atom methodology in modern catalysis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Ref document number: 3837489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term