JP4134964B2 - 発電制御装置 - Google Patents

発電制御装置 Download PDF

Info

Publication number
JP4134964B2
JP4134964B2 JP2004225033A JP2004225033A JP4134964B2 JP 4134964 B2 JP4134964 B2 JP 4134964B2 JP 2004225033 A JP2004225033 A JP 2004225033A JP 2004225033 A JP2004225033 A JP 2004225033A JP 4134964 B2 JP4134964 B2 JP 4134964B2
Authority
JP
Japan
Prior art keywords
power generation
mode
continuity
circuit
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004225033A
Other languages
English (en)
Other versions
JP2006050695A (ja
Inventor
忠利 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004225033A priority Critical patent/JP4134964B2/ja
Priority to US11/194,626 priority patent/US7015594B2/en
Priority to DE102005036257A priority patent/DE102005036257A1/de
Publication of JP2006050695A publication Critical patent/JP2006050695A/ja
Application granted granted Critical
Publication of JP4134964B2 publication Critical patent/JP4134964B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1446Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は、乗用車やトラック等に搭載される車両用発電機の発電量を制御する発電制御装置に関する。
近年、自動車に搭載されてエンジンにより回転駆動される車両用発電機の発電量を有効に活用する要求が高まっている。このような要求に応えるものとして、回転子を励磁する電流をトランジスタチョッパ式励磁回路を用いてバッテリに回生することで、発電電力の有効利用を図る交流発電機の発電制御装置が知られている(例えば、特許文献1参照。)。この発電制御装置では、界磁巻線にパワートランジスタによって形成される一対のアームとダイオードによって形成される一対のアームからなるブリッジ回路が接続されており、パワートランジスタのオンオフ制御を行うことにより、ブリッジ回路を介してバッテリから界磁巻線に励磁電流を流したり、界磁巻線に流れる励磁電流をブリッジ回路を介してバッテリに回生することが可能になる。
特開昭62−203599号公報(第2−4頁、図1−3)
ところで、特許文献1に開示された発電制御装置では、車両用発電機の発電状態にかかわらず、回生発電を実施している。このため、比較的電気負荷が軽く、車両用発電機の発電能力が高い状態(エンジンが高回転の場合)であって、バッテリは満充電状態に制御されている場合に、回生電力をバッテリで十分受け入れることができず、バッテリ電源端子においてスパイクノイズが発生するという問題があった。このスパイクノイズが車両の電子装置に印加されると、誤動作等の障害が発生するおそれがある。また、上述したブリッジ回路を備える励磁回路においては、励磁回路の制御として環流モードと回生モードとを切り替えられることが知られていいるが、環流モードと回生モードでは、パワートランジスタをPWM制御した際の回転子を励磁する平均電圧とPWMデューティの関係が異なるため、負荷応答制御のようPWMデューティの記憶量にしたがって制御する場合には、回転子を励磁する平均電圧がモード切替時に急変して、車両用発電機の出力電流や発電トルクが急増するという問題があった。このような出力電流等の急増は、エンジントルクに与える影響や車両電子装置に与える影響の点から好ましくないため、本来は多機能であるトランジスタチョッパ式励磁回路を備える発電制御装置があまり普及していないのが現状である。
本発明は、このような点に鑑みて創作されたものであり、その目的は、スパイクノイズの発生を抑えるとともに、車両用発電機の出力電流や発電トルクが急増することを防止することができる発電制御装置を提供することにある。
上述した課題を解決するために、本発明の発電制御装置は、車両用発電機の励磁巻線に接続されたブリッジ回路を有し、ブリッジ回路の対向する一対の第1のアームをパワートランジスタで構成し、他の一対の第2のアームをダイオードで構成したトランジスタチョッパ式励磁回路を備えており、第1のアームを構成する一方のパワートランジスタを常時オン状態に制御するとともに他方のパワートランジスタをオンオフ制御することによりパワートランジスタのオフ状態において励磁巻線に流れる励磁電流を環流させる環流モードと、第1のアームを構成する一対のパワートランジスタを同期してオンオフ制御することによりパワートランジスタのオフ状態において励磁電流を回生する回生モードのいずれかの動作モードを選択する選択手段と、車両用発電機の発電余裕を判定する発電余裕判定手段とを備え、選択手段は、発電余裕判定手段によって車両用発電機の発電余裕が少ないと判定されたときに、動作モードとして回生モードを選択している。これにより、接続された電気負荷の大きさに対して車両用発電機の発電能力が低くて発電余裕が少ないときに、回生モードが選択されて励磁電流をバッテリに回生することができ、電気負荷に対して動作電力を有効に供給することが可能になる。また、発電余裕が少ないため、バッテリの電流受け入れ性がよいため、スパイクノイズの発生を抑えることが可能であり、車両電子装置にスパイクノイズが重畳されて電圧が印加することを防止することができる。
また、上述した発電余裕判定手段は、車両用発電機の発電余裕を、車両用発電機の回転数に基づいて判定することが望ましい。具体的には、上述した発電余裕判定手段は、車両用発電機の回転数が基準回転数よりも低いときに、発電余裕が少ないと判定することが望ましい。車両用発電機の発電量は回転数の上昇に伴って増大するため、回転数を観察することで、容易かつ確実に発電余裕の多少を判定することが可能になる。また、バッテリの充電電流や車両用発電機の出力電流を観察して発電余裕を判定する場合には電流センサ等が必要になるが、回転数検出の場合にはこのような別部品の追加がほとんど必要ないため、構成の簡略化が可能となる。
また、上述したパワートランジスタは、ボディダイオードを有する二重拡散型のMOSトランジスタであり、ダイオードとして、MOSトランジスタと同一断面構造を有するトランジスタのボディダイオードを用いることが望ましい。これにより、ブリッジ回路を構成する半導体素子として同一構造のトランジスタを用いることができるため、発電制御装置の集積化に際して小型化、低コスト化が可能になる。
また、上述した環流モードから回生モードに、あるいは回生モードから環流モードに切り替えたときに、オンオフ制御されるパワートランジスタの導通率を変更する導通率変更手段をさらに備えることが望ましい。パワートランジスタの導通率と励磁巻線に印加される平均電圧との関係は、環流モード時と回生モード時で異なっており、動作モードを相互に切り替えたときに導通率を維持すると、励磁巻線に印加される平均電圧が急変してしまうおそれがあるが、動作モード切り替え時に導通率を変更することによりこのような不都合を回避することができる。このため、車両用発電機の出力電流や発電トルクが急増し、これに伴ってエンジンへの負荷トルクが急増することを防止することができ、エンジンのアイドリング回転数の安定化を図ることが可能になる。
また、上述した導通率変更手段は、励磁巻線に印加される平均電圧が同程度になるように導通率を変更することが望ましい。これにより、容易に車両用発電機の出力電流や発電トルクの安定化を図ることができる。
また、上述した導通率変更手段は、環流モードから回生モードに切り替わるときに導通率を増加させ、回生モードから環流モードに切り替わるときに導通率を減少させることが望ましい。これにより、環流モードから回生モードへ切り替わるときと回生モードから環流モードへ切り替わるときの両方の場合において、確実に車両用発電機の出力電流や発電トルクの安定化を図ることができる。
また、上述した導通率変更手段は、環流モードから回生モードに切り替わる場合において、変更前の導通率をD1、変更後の導通率をD2としたときに、D2=(D1+1)/2の関係式を用いた導通率変換を行い、回生モードから環流モードに切り替わる場合において、変更前の導通率をD3、変更後の導通率をD4としたときに、D4=2×D3−1の関係式を用いた導通率変換を行うことが望ましい。導通率の変換を所定の関係式を用いた計算によって行うことにより、パワートランジスタをオンオフ制御する際のデューティ比と励磁巻線に印加される平均電圧との関係を確実に変更することができる。
また、上述した導通率変更手段は、導通率をnビットデータに対応させて保持しており、nビットデータに対するビットシフト操作を行い、このビットシフト操作後のnビットデータに基づいて変更後の導通率を設定することが望ましい。ビットシフト操作という簡単な処理によって導通率の変換を行うことにより、変換速度の高速化、変換に要する回路の縮小が可能になる。
以下、本発明を適用した一実施形態の発電制御装置について、図面を参照しながら説明する。
図1は、一実施形態の発電制御装置の構成を示す図であり、あわせてこの発電制御装置と車両用発電機やバッテリ等との接続状態が示されている。図1において、発電制御装置1は、車両用発電機2のB端子(出力端子)の電圧が所定の調整電圧設定値(例えば14V)になるように制御するためのものである。
車両用発電機2は、固定子に含まれる三相の固定子巻線200と、この固定子巻線200の三相出力を全波整流するために設けられた整流回路202と、回転子に含まれる励磁巻線204とを含んで構成されている。この車両用発電機2の出力電圧(B端子電圧)の制御は、励磁巻線204に対する通電を発電制御装置1によって適宜断続制御することにより行われる。車両用発電機2のB端子は、充電線6を介してバッテリ3と電気負荷4に接続されており、B端子からバッテリ3や電気負荷4に充電電流や動作電流が供給される。
次に、発電制御装置1の詳細構成について説明する。図1に示すように、発電制御装置1は、MOSFET10、11、ダイオード13、14、負荷応答制御回路15、電圧制御回路16、動作モード選択回路17、電圧比較器18、オア回路19、アンド回路20、ドライバ21、回転数判定回路30を備えている。
一対のMOSFET10、11と一対のダイオード13、14によって形成されるブリッジ回路によって、励磁巻線204に対して励磁電流の供給、環流、回生を行うトランジスタチョッパ式励磁回路が構成されている。一対のパワートランジスタであるMOSFET10、11からなるアーム(第1のアーム)を対象に、励磁巻線204に供給する励磁電流をPWM(パルス幅変調)制御するとともに、一対のダイオード13、14からなるアーム(第2のアーム)を介して、励磁巻線204に流れる励磁電流を環流あるいは回生するようになっている。
電圧比較器18は、車両用発電機2の出力電圧と調整電圧Vref とを比較し、出力電圧の方が調整電圧Vref よりも低くなったときにハイレベルの信号を出力し、反対に出力電圧の方が調整電圧Vref よりも高くなったときにローレベルの信号を出力する。電圧制御回路16は、電圧比較器18の出力信号の内容に応じてMOSFET10をPWM制御する信号(PWM信号)を生成する。電圧制御回路16の構成については様々なものが考えられる。例えば、電圧制御回路16には、電圧比較器18の出力信号を平滑するローパスフィルタと、鋸波発生回路と、電圧比較器が備わっており、電圧比較器18の出力信号をローパスフィルタで平滑した電圧と、鋸波発生回路によって発生した鋸波波形の電圧とを電圧比較器で比較してPWM信号を生成し、アンド回路20を介してドライバ21に向けて出力する。ドライバ21は、アンド回路20から出力されるPWM信号に応じて、ブリッジ回路の一方のハイサイドスイッチとしてのMOSFET10を駆動する。本実施形態では、アンド回路20から出力されるPWM信号がハイレベルのときにMOSFET10がオンする構成となっている。アンド回路20の出力信号は、ドライバ21に入力されるとともに、並行してオア回路19にも入力されている。オア回路19の出力信号は、ブリッジ回路の一方のローサイドスイッチとしてのMOSFET11に入力されている。
また、負荷応答制御回路15は、電気負荷4が急に大きくなったときに、徐々に励磁電流を増加させる負荷応答制御を行う。上述したように、アンド回路20の出力信号がハイレベルのときにドライバ21によってMOSFET10がオンされるため、電気負荷4が急に大きくなって車両用発電機2の出力電圧が急激に低下し、電圧比較器18の出力信号が急にハイレベルを維持するようになったときに、負荷応答制御回路15は、デューティ比が徐々に増加する信号を生成してアンド回路20に入力する。また、この負荷応答制御回路15は、導通率変更手段としての機能を有している。
回転数判定回路30は、発電余裕判定手段に対応しており、車両用発電機2の回転数の高低を判定する。この判定基準は、車両用発電機2の発電余裕の有無に対応している。例えば、エンジンのアイドリング回転数よりも若干高い回転数に相当する基準回転数よりも車両用発電機2の回転数が低いときに発電余裕がないと判断され回転数判定回路30からローレベルの信号が出力され、反対に、この基準回転数よりも車両用発電機2の回転数が高いときに発電余裕があると判断され回転数判定回路30からハイレベルの信号が出力される。
動作モード選択回路17は、選択手段に対応しており、車両用発電機2の回転数が低くて発電状態に余裕がないとき(回転数判定回路30からローレベルの信号が出力されたとき)に、ローレベルの信号を出力する。また、動作モード選択回路17は、車両用発電機2の回転数が高くなって発電状態に余裕が生じるとき(回転数判定回路30からハイレベルの信号が出力されたとき)に、ハイレベルの信号を出力する。本実施形態では、一方のMOSFET11を常時オン状態に制御するとともに他方のMOSFET10をオンオフ制御することによりMOSFET10のオフ状態において励磁巻線204に流れる励磁電流を環流させる環流モードと、2つのMOSFETを同期してオンオフ制御することによりMOSFET10、11のオフ状態において励磁電流をバッテリ3側に回生する回生モードとが存在しており、環流モードのときに動作モード選択回路17からハイレベルの信号が出力され、回生モードのときに動作モード選択回路17からローレベルの信号が出力される。
本実施形態の発電制御装置1はこのような構成を有しており、次にその動作を説明する。
環流モードの動作
図2は、環流モード時に励磁巻線204に励磁電流Ifが供給される経路を示す図である。また、図3は環流モード時に励磁巻線204に流れる励磁電流Ifを環流させる経路を示す図である。図4は励磁電流の変化の様子を示す図である。
車両が走行を開始して車両用発電機2の回転数が基準回転数よりも高くなり、発電余裕が生じると、回転数判定回路30からハイレベルの信号が出力される。このハイレベルの信号は、オア回路19を介してMOSFET11のゲートに入力されるため、MOSFET11は、常時オン状態に制御される。このとき、アンド回路20から出力されるPWM信号がハイレベルになると、MOSFET10がオンされ、図2に示す環流モードの動作状態となって、MOSFET10とMOSFET11を介して励磁巻線204に励磁電流が流れる。
また、アンド回路20から出力されるPWM信号がローレベルになるとMOSFET10がオフされ、図3に示す環流モードの動作状態となって、励磁電流Ifはダイオード13を通る環流動作によって徐々に減少する。この励磁電流Ifの変化の様子が図4の曲線aとして示されている。環流モードの動作においては、励磁巻線204の逆バイアス電圧がダイオード13の順方向電圧降下Vfとなるため、通常100〜200ms程度の時定数となる。
回生モードの動作
図5は、回生モードに対応する励磁電流Ifの経路を示す図である。エンジンがアイドリング回転中のときのように車両用発電機2の回転数が基準回転数よりも低くなり、発電余裕がなくなると、回転数判定回路30からローレベルの信号が出力される。したがって、アンド回路20から出力される信号がオア回路19を介してそのままMOSFET11に入力される。このため、2つのMOSFET10、11がアンド回路20から出力される信号に応じてオンオフ制御される。このとき、アンド回路20から出力されるPWM信号がローレベルになると2つのMOSFET10、11が両方ともオフされ、図5に示す回生モードの動作状態となって、励磁巻線204に流れる励磁電流はダイオード14を介してバッテリ3側に急速に放電される。この励磁電流Ifの変化の様子が図4の曲線bとして示されている。回生モードの動作においては、励磁巻線204の逆バイアス電圧がバッテリ3の端子電圧と2つのダイオード13、14の各順方向電圧降下Vの合計値となるため、20〜40ms程度の時定数となって励磁電流が急速に減衰する。
このように、本実施形態の発電制御装置1では、車両用発電機2の発電余裕が少ないときのみ励磁巻線204に流れる励磁電流を回生する回生モードで動作するが、接続される電気負荷4が大きくなってバッテリ3の電流受け入れ性が良い状態になるため、回生電流によるスパイクノイズの発生を抑制することができる。
また、エンジン回転が低回転に移行すると、通常のように励磁電流を環流させる場合には車両用発電機2は発電電圧を維持するために発電トルクが増加する。図6は、車両用発電機2の回転数と発電トルクの関係を示す図である。ところが、本実施形態では、エンジンが低回転になると回生モードで動作するため、車両用発電機2の励磁電流が急速に減衰して発電トルクが急速に減少し、不用なエンジン回転数の低下を防止してエンジンのアイドリング回転数を安定化させることができる。
なお、本実施形態では、エンジンのアイドリング回転に対応する回転数よりも若干高い基準回転数において車両用発電機2の出力と発電余裕がほぼバランスすると仮定し、この基準回転数よりも車両用発電機2の回転数が低いときに発電余裕がないものとして説明したが、実際に車両用発電機2の出力電流やバッテリ3の充電電流等を電流センサを用いて検出して、発電余裕の有無を判定するようにしてもよい。
また、発電制御装置1に備わった回転数判定回路30によって車両用発電機2の回転を検出して発電余裕の有無を判定する代わりに、エンジンの回転数を車両用発電機2の外部に設置されたエンジン制御装置ECU等で検出して車両用発電機2の発電余裕の有無を判定するようにしてもよい。
次に、負荷応答制御回路15の動作について説明する。接続される電気負荷4の大きさが安定している状態では、電圧比較器18の出力信号に応じて電圧制御回路16が動作してMOSFET10をオンオフするPWM制御を行っている。このPWM信号の出力パターンは負荷応答制御回路15に記憶されており、電気負荷4が接続されてバッテリ3の端子電圧が低下して電圧制御回路16から出力されるPWM信号のデューティ比が増加しても、負荷応答制御回路15から出力されるPWM信号のデューティ比を徐々に増加させることで、アンド回路20から出力されるPWM信号のデューティ比が徐々に増加するようになっており、車両用発電機2の出力電流が緩やかに増加する。したがって、発電トルクの急激な上昇を抑制することができ、エンジンに対する負荷トルクの増加を抑えてアイドリング回転数を安定化させる効果がある。
このような負荷応答制御を本実施形態の発電制御装置1において採用すると不具合が発生する。この不具合は、アンド回路20から出力されるPWM信号のデューティ比(オンオフ制御されるMOSFETの導通率)と励磁巻線204に印加される平均電圧との関係が、環流モードと回生モードとで異なることに起因する。
図7は、アンド回路20から出力されるPWM信号のデューティ比(PWMデューティ)と車両用発電機2の出力電圧との関係を示す図である。回生モードにおいて比較的電気負荷4が小さい状態(図7のA2で示される状態)で制御されていたときに、PWM信号のデューティ比が維持されたままで環流モードに切り替わると、車両用発電機2の出力電圧がA1で示される状態に遷移するため、車両用発電機2の出力電流が急激に増加する。この結果、不必要に発電トルクが増加し、エンジンに回転不調をもたらしたり、バッテリ充電電流の急増に伴うバッテリ2の端子電圧上昇によって各種電子機器に悪影響をもたらすおそれがある。本実施形態の負荷応答制御回路15では、このような不具合に対して対策がなされている。
図8は、負荷応答制御回路15の詳細構成を示す図である。図8に示すように、負荷応答制御回路15は、デューティ記憶値出力回路151、選択回路152、デューティ変換回路153、モード切替検出回路154を含んで構成されている。モード切替検出回路154は、動作モードが回生モードから環流モードに、あるいは環流モードから回生モードに切り替わるモードの切替タイミングを検出し、その後一定期間ハイレベルの信号を出力する。動作モード選択回路17からは、回生モードに対応してローレベルの信号が出力され、環流モードに対応してハイレベルの信号が出力されるため、動作モード選択回路17の出力信号の論理レベルが切り替わった後の一定期間だけモード切替検出回路154の出力信号がハイレベルになる。選択回路152は、モード切替検出回路154によるモードの切替タイミングの検出結果に応じて、2つの入力信号のいずれかを選択して出力する。具体的には、モードの切替タイミングが検出されてモード切替検出回路154の出力信号がハイレベルになったときにデューティ変換回路153から入力される信号が選択され、それ以外のときにアンド回路20から入力される信号が選択される。デューティ変換回路153は、アンド回路20から出力されるPWM信号のデューティ比を変換する。デューティ記憶値出力回路151は、選択回路152からPWM信号が入力されると、この信号のデューティ比を少しだけ増加させたPWM信号を生成して出力するデューティ比変換動作を行う。
図9は、負荷応答制御回路15の動作タイミング図である。図9において、「選択状態」は選択回路152においていずれの入力信号が選択されたかを示しており、aはアンド回路20から入力されるPWM信号が選択された状態に、bはデューティ変換回路153から入力されるPWM信号が選択された状態にそれぞれ対応している。
図9に示すように、環流モードから回生モードに変更されると、動作モード選択回路17の出力信号がハイレベルからローレベルに変化し、モード切替検出回路154の出力信号が一定期間ハイレベルとなる。このモード切替検出回路154の出力信号がハイレベルの期間に対応して、デューティ変換回路153では、アンド回路20から入力されるPWM信号のデューティ比(導通率)D1を、(D1+1)/2となるように変換した後のデューティ比D2のPWM信号を出力する。反対に、回生モードから環流モードに変更されると、動作モード選択回路17の出力信号がローレベルからハイレベルに変化し、モード切替検出回路154の出力信号が一定期間ハイレベルとなる。このモード切替検出回路154の出力信号がハイレベルの期間に対応して、デューティ変換回路153では、アンド回路20から入力されるPWM信号のデューティ比D3を、2×D3−1となるように変換した後のデューティ比D4のPWM信号を出力する。なお、これらのデューティ比D1〜D4は、値が1のときにデューティ比100%に対応している。
図8に示すデューティ変換回路153を用いることにより、回生モードと環流モードとが相互に切り替わったときに、切り替わりの前後で車両用発電機2の出力電圧が大きく変化しないようにアンド回路20から出力されるPWM信号のデューティ比を変更することができるため、車両用発電機2の出力を安定化させることが可能になる。
ところで、デューティ変換回路153におけるデューティ比設定用に8ビットデータQ0〜Q7(00000000のときにデューティ比0%が、11111111のときにデューティ比100%がそれぞれ対応している)を割り当てた場合には、図10に示すように、環流モードから回生モードへの切り替え時には、この8ビットデータQ0〜Q7を右シフトして最上位ビットに1を挿入すればよい。反対に、回生モードから環流モードへの切り替え時には、この8ビットデータQ0〜Q7を左シフトして最下位ビットに1を挿入すればよい。このように、単純なシフトレジスタでのビットシフト操作によってデューティ比の変換を行うことが可能になり、所持時間の短縮や回路構成の簡易化を実現することができる。
このように、本実施形態の発電制御装置1では、接続された電気負荷4の大きさに対して車両用発電機2の発電能力が低くて発電余裕が少ないときに、回生モードが選択されて励磁電流をバッテリ3に回生することができ、電気負荷4に対して動作電力を有効に供給することが可能になる。また、発電余裕が少ないため、バッテリ3の電流受け入れ性がよいため、スパイクノイズの発生を抑えることが可能であり、車両電子装置にスパイクノイズが重畳されて電圧が印加することを防止することができる。
また、車両用発電機2の発電量は回転数の上昇に伴って増大するため、回転数を観察することで、容易かつ確実に発電余裕の多少を判定することが可能になる。特に、バッテリ3の充電電流や車両用発電機2の出力電流を観察して発電余裕を判定する場合には電流センサ等が必要になるが、回転数検出の場合にはこのような別部品の追加がほとんど必要ないため、構成の簡略化が可能となる。
また、MOSFETの導通率と励磁巻線204に印加される平均電圧との関係は、環流モード時と回生モード時で異なっており、動作モードを相互に切り替えたときに導通率を維持すると、励磁巻線204に印加される平均電圧が急変してしまうおそれがあるが、動作モード切り替え時に導通率を変更することによりこのような不都合を回避することができる。このため、車両用発電機2の出力電流や発電トルクが急増し、これに伴ってエンジンへの負荷トルクが急増することを防止することができ、エンジンのアイドリング回転数の安定化を図ることが可能になる。
特に、上述した導通率の変更を、励磁巻線204に印加される平均電圧が同程度になるように行うことにより、容易に車両用発電機2の出力電流や発電トルクの安定化を図ることができる。また、環流モードから回生モードに切り替わるときに導通率を増加させ、回生モードから環流モードに切り替わるときに導通率を減少させることより、環流モードから回生モードへ切り替わるときと回生モードから環流モードへ切り替わるときの両方の場合において、確実に車両用発電機2の出力電流や発電トルクの安定化を図ることができる。
また、本実施形態の発電制御装置1では、環流モードから回生モードに切り替わる場合において、変更前の導通率をD1、変更後の導通率をD2としたときに、D2=(D1+1)/2の関係式を用いた導通率変換を行い、回生モードから環流モードに切り替わる場合において、変更前の導通率をD3、変更後の導通率をD4としたときに、D4=2×D3−1の関係式を用いた導通率変換を行っている。このようにして導通率の変換を所定の関係式を用いた計算によって行うことにより、MOSFETをオンオフ制御する際のデューティ比と励磁巻線204に印加される平均電圧との関係を確実に変更することができる。
また、導通率をnビットデータに対応させて保持するとともに、nビットデータに対するビットシフト操作を行い、このビットシフト操作後のnビットデータに基づいて変更後の導通率を設定することにより、ビットシフト操作という簡単な処理によって導通率の変換を行うことができ、変換速度の高速化、変換に要する回路の縮小が可能になる。
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において種々の変形実施が可能である。例えば、上述した実施形態では、ブリッジ回路を構成するハイサイドスイッチとしてのMOSFET10を用いてPWM制御を行い、ローサイドスイッチとしてのFET11を用いて動作モードの切り替えを行ったが、これらの組み合わせを反対にしてハイサイドスイッチとしてのMOSFET10を動作モードの切り替えように用いた方が、ドライバ21の駆動能力を小さくすることができるため、回路規模の点では有利である。
また、上述した実施形態では、励磁電流を回生および環流するためにダイオード13、14を用いたが、これらの代わりに、MOSFETのボディダイオードを用いるようにしてもよい。図11は、ダイオード13、14の代わりにMOSFET131、141を用いて励磁回路(ブリッジ回路)を構成した場合の発電制御装置の部分的な構成を示す図である。これにより、励磁回路全体を同一断面構造の二重拡散型のMOSFET101、111、131、141で構成することができるため、発電制御装置1の集積化に際して、小型化、低コスト化が可能になる。
一実施形態の発電制御装置の構成を示す図である。 環流モード時に励磁巻線に励磁電流が供給される経路を示す図である。 環流モード時に励磁巻線に流れる励磁電流を環流させる経路を示す図である。 励磁電流の変化の様子を示す図である。 回生モードに対応する励磁電流の経路を示す図である。 車両用発電機の回転数と発電トルクの関係を示す図である。 アンド回路から出力されるPWM信号のデューティ比と車両用発電機の出力電圧との関係を示す図である。 負荷応答制御回路の詳細構成を示す図である。 負荷応答制御回路の動作タイミング図である。 デューティ変換回路によるデューティ変換処理をビットシフト操作で行う場合の説明図である。 ダイオードの代わりにMOSFETを用いて励磁回路を構成した場合の発電制御装置の部分的な構成を示す図である。
符号の説明
1 発電制御装置
2 車両用発電機
3 バッテリ
4 電気負荷
10、11 MOSFET
13、14 ダイオード
15 負荷応答制御回路
16 電圧制御回路
17 動作モード選択回路
18 電圧比較器
19 オア回路
20 アンド回路
21 ドライバ
151 デューティ記憶値出力回路
152 選択回路
153 デューティ変換回路
154 モード切替検出回路
200 固定子巻線
202 整流回路
204 励磁巻線

Claims (9)

  1. 車両用発電機の励磁巻線に接続されたブリッジ回路を有し、前記ブリッジ回路の対向する一対の第1のアームをパワートランジスタで構成し、他の一対の第2のアームをダイオードで構成したトランジスタチョッパ式励磁回路を備える発電制御装置において、
    前記第1のアームを構成する一方の前記パワートランジスタを常時オン状態に制御するとともに他方の前記パワートランジスタをオンオフ制御することにより前記パワートランジスタのオフ状態において前記励磁巻線に流れる励磁電流を環流させる環流モードと、前記第1のアームを構成する一対の前記パワートランジスタを同期してオンオフ制御することにより前記パワートランジスタのオフ状態において前記励磁電流を回生する回生モードのいずれかの動作モードを選択する選択手段と、
    前記車両用発電機の発電余裕を判定する発電余裕判定手段とを備え、
    前記選択手段は、前記発電余裕判定手段によって前記車両用発電機の発電余裕が少ないと判定されたときに、動作モードとして前記回生モードを選択することを特徴とする発電制御装置。
  2. 請求項1において、
    前記発電余裕判定手段は、前記車両用発電機の発電余裕を、前記車両用発電機の回転数に基づいて判定することを特徴とする発電制御装置。
  3. 請求項2において、
    前記発電余裕判定手段は、前記車両用発電機の回転数が基準回転数よりも低いときに、発電余裕が少ないと判定することを特徴とする発電制御装置。
  4. 請求項1〜3のいずれかにおいて、
    前記パワートランジスタは、ボディダイオードを有する二重拡散型のMOSトランジスタであり、
    前記ダイオードとして、前記MOSトランジスタと同一断面構造を有するトランジスタのボディダイオードを用いることを特徴とする発電制御装置。
  5. 請求項1〜4のいずれかにおいて、
    前記環流モードから前記回生モードに、あるいは前記回生モードから前記環流モードに切り替えたときに、オンオフ制御される前記パワートランジスタの導通率を変更する導通率変更手段をさらに備えることを特徴とする発電制御装置。
  6. 請求項5において、
    前記導通率変更手段は、前記励磁巻線に印加される平均電圧が同程度になるように前記導通率を変更することを特徴とする発電制御装置。
  7. 請求項5または6において、
    前記導通率変更手段は、前記環流モードから前記回生モードに切り替わるときに前記導通率を増加させ、前記回生モードから前記環流モードに切り替わるときに前記導通率を減少させることを特徴とする発電制御装置。
  8. 請求項7において、
    前記導通率変更手段は、前記環流モードから前記回生モードに切り替わる場合において、変更前の前記導通率をD1、変更後の前記導通率をD2としたときに、D2=(D1+1)/2の関係式を用いた導通率変換を行い、前記回生モードから前記環流モードに切り替わる場合において、変更前の前記導通率をD3、変更後の前記導通率をD4としたときに、D4=2×D3−1の関係式を用いた導通率変換を行うことを特徴とする発電制御装置。
  9. 請求項5〜8のいずれかにおいて、
    前記導通率変更手段は、前記導通率をnビットデータに対応させて保持しており、前記nビットデータに対するビットシフト操作を行い、このビットシフト操作後のnビットデータに基づいて変更後の前記導通率を設定することを特徴とする発電制御装置。
JP2004225033A 2004-08-02 2004-08-02 発電制御装置 Expired - Fee Related JP4134964B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004225033A JP4134964B2 (ja) 2004-08-02 2004-08-02 発電制御装置
US11/194,626 US7015594B2 (en) 2004-08-02 2005-08-02 Vehicle-mounted electric generator control system which selectively supplies regenerative field current to battery in accordance with currently available generating capacity
DE102005036257A DE102005036257A1 (de) 2004-08-02 2005-08-02 Elektrisches Fahrzeug-Generatorsteuersystem, welcher zu einer Batterie selektiv einen regenerativen Feldstrom zuführen kann, und zwar in Einklang mit der verfügbaren Stromerzeugungskapazität

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225033A JP4134964B2 (ja) 2004-08-02 2004-08-02 発電制御装置

Publications (2)

Publication Number Publication Date
JP2006050695A JP2006050695A (ja) 2006-02-16
JP4134964B2 true JP4134964B2 (ja) 2008-08-20

Family

ID=35731382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225033A Expired - Fee Related JP4134964B2 (ja) 2004-08-02 2004-08-02 発電制御装置

Country Status (3)

Country Link
US (1) US7015594B2 (ja)
JP (1) JP4134964B2 (ja)
DE (1) DE102005036257A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4151604B2 (ja) * 2004-04-23 2008-09-17 株式会社デンソー 車両用発電制御装置
JP4581735B2 (ja) * 2005-02-21 2010-11-17 株式会社デンソー 車両用発電制御装置
JP4265548B2 (ja) * 2005-02-22 2009-05-20 株式会社デンソー 発電制御装置
US7276804B2 (en) * 2005-06-22 2007-10-02 C.E. Niehoff & Co. Voltage regulator with improved protection and warning system
US7498776B2 (en) * 2005-09-15 2009-03-03 Mitsubishi Denki Kabushiki Kaisha Control device for vehicle AC generator
JP4449882B2 (ja) * 2005-10-14 2010-04-14 株式会社デンソー 車両用発電制御装置
US7635922B2 (en) * 2006-04-03 2009-12-22 C.E. Niehoff & Co. Power control system and method
JP4442582B2 (ja) * 2006-04-17 2010-03-31 株式会社デンソー 車両用発電制御装置
US20070273205A1 (en) * 2006-05-22 2007-11-29 Denso Corporation Communication system for use in data communications between power generator and external unit
DE102006033046A1 (de) * 2006-07-14 2008-01-17 Bombardier Transportation Gmbh Anordnung und Verfahren zum Versorgen von Verbrauchern in einem Schienenfahrzeug
JP4556926B2 (ja) * 2006-08-07 2010-10-06 株式会社デンソー 車両用発電制御装置
JP5181666B2 (ja) * 2006-12-28 2013-04-10 日産自動車株式会社 界磁巻線型モータおよび界磁巻線型発電機の制御回路
US8253770B2 (en) * 2007-05-31 2012-08-28 Eastman Kodak Company Residential video communication system
US8159519B2 (en) * 2007-05-31 2012-04-17 Eastman Kodak Company Personal controls for personal video communications
US8063929B2 (en) * 2007-05-31 2011-11-22 Eastman Kodak Company Managing scene transitions for video communication
US8154578B2 (en) * 2007-05-31 2012-04-10 Eastman Kodak Company Multi-camera residential communication system
US8154583B2 (en) * 2007-05-31 2012-04-10 Eastman Kodak Company Eye gazing imaging for video communications
JP4388573B2 (ja) * 2007-11-02 2009-12-24 三菱電機株式会社 車両用回転電機装置
US8839920B2 (en) * 2008-04-17 2014-09-23 Levant Power Corporation Hydraulic energy transfer
US8376100B2 (en) * 2008-04-17 2013-02-19 Levant Power Corporation Regenerative shock absorber
US8392030B2 (en) * 2008-04-17 2013-03-05 Levant Power Corporation System and method for control for regenerative energy generators
JP5024222B2 (ja) * 2008-07-29 2012-09-12 株式会社デンソー 車両用回転電機
JP5374145B2 (ja) * 2008-12-26 2013-12-25 新日本無線株式会社 モータ制御装置
DE102010001247A1 (de) * 2010-01-27 2011-07-28 Robert Bosch GmbH, 70469 Schaltungsanordnung zur Reduzierung eines Stromes durch eine Induktivität und Verfahren zum Steuern einer solchen Schaltungsanordnung
US9035477B2 (en) 2010-06-16 2015-05-19 Levant Power Corporation Integrated energy generating damper
JP5008752B2 (ja) * 2010-07-07 2012-08-22 三菱電機株式会社 車両用交流発電機の制御装置
FR2979767B1 (fr) * 2011-09-01 2015-04-03 Leroy Somer Moteurs Procede de regulation d'un groupe electrogene
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
JP6396414B2 (ja) 2013-03-15 2018-09-26 クリアモーション,インコーポレイテッド 多経路流体ダイバータバルブ
EP3626485B1 (en) 2013-03-15 2024-05-29 ClearMotion, Inc. Active vehicle suspension improvements
WO2014176371A2 (en) 2013-04-23 2014-10-30 Levant Power Corporation Active suspension with structural actuator
JP6089942B2 (ja) * 2013-05-09 2017-03-08 株式会社デンソー 車両用回転電機
DE102014106218B4 (de) 2013-05-09 2021-11-25 Denso Corporation Drehende elektrische Maschine für ein Fahrzeug
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve
JP6419259B1 (ja) * 2017-05-31 2018-11-07 三菱電機株式会社 回転電機の制御装置
DE102018102145B4 (de) * 2018-01-31 2019-10-02 Infineon Technologies Ag Schaltung, System und Verfahren zum Polarisieren von magnetischem Material zur Entladung von Erregerspulen
FR3128080B1 (fr) * 2021-10-12 2023-09-08 Valeo Equip Electr Moteur Régulateur comprenant un module de sécurité pour une machine électrique tournante

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2586449B2 (ja) 1986-03-03 1997-02-26 株式会社明電舍 交流発電機の励磁制御装置
JP3385986B2 (ja) * 1998-12-18 2003-03-10 本田技研工業株式会社 シリーズハイブリッド車の出力制御装置
JP3702749B2 (ja) * 2000-05-24 2005-10-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US6664651B1 (en) * 2000-11-14 2003-12-16 Ford Motor Company Engine on idle arbitration for a hybrid electric vehicle
JP3826822B2 (ja) * 2002-03-20 2006-09-27 株式会社デンソー 車両用発電制御装置
KR100456851B1 (ko) * 2002-07-31 2004-11-10 현대자동차주식회사 직렬형 하이브리드 차량의 보조 동력 제어장치

Also Published As

Publication number Publication date
JP2006050695A (ja) 2006-02-16
US7015594B2 (en) 2006-03-21
US20060022647A1 (en) 2006-02-02
DE102005036257A1 (de) 2006-04-13

Similar Documents

Publication Publication Date Title
JP4134964B2 (ja) 発電制御装置
US10291168B2 (en) Power conversion control apparatus
JP4265548B2 (ja) 発電制御装置
US7088595B2 (en) Reversible buck-boost chopper circuit, and inverter circuit with the same
US11458844B2 (en) Power supply system for vehicle
US7400104B2 (en) Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method
US9912270B2 (en) Motor drive device
JP5716715B2 (ja) 車両用回転電機
JP4442582B2 (ja) 車両用発電制御装置
US9276497B2 (en) Method for operating a power converter, and power converter control unit
JP4391513B2 (ja) 車両用交流発電機の制御装置
CN109687696B (zh) 电源***
JP2011030227A (ja) 電気負荷の駆動回路及びこの回路を具えた電気システム
JP4561850B2 (ja) 車両システム
JP5726369B2 (ja) 車両用発電電動機の電力変換装置および車両用発電電動機の制御方法
JP2004194475A (ja) インバータ装置
US7514906B1 (en) Automotive rotary electrical apparatus
JP2005245067A (ja) 電圧変換装置、電圧変換装置の故障の判定方法、およびその方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP6377190B2 (ja) 回転電機の制御装置及び制御方法
CN107531232B (zh) 电动机装置
JP2005065460A (ja) 車両用発電電動機制御装置
US20220321035A1 (en) Motor control apparatus
JP2002247889A (ja) モータの駆動制御装置
CN110784138B (zh) 发电机控制电路
JP2004350388A (ja) モータ制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Ref document number: 4134964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees