JP4104154B2 - Liquid crystal polymer etching solution and liquid crystal polymer etching method. - Google Patents

Liquid crystal polymer etching solution and liquid crystal polymer etching method. Download PDF

Info

Publication number
JP4104154B2
JP4104154B2 JP2005102888A JP2005102888A JP4104154B2 JP 4104154 B2 JP4104154 B2 JP 4104154B2 JP 2005102888 A JP2005102888 A JP 2005102888A JP 2005102888 A JP2005102888 A JP 2005102888A JP 4104154 B2 JP4104154 B2 JP 4104154B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal polymer
etching
weight
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005102888A
Other languages
Japanese (ja)
Other versions
JP2006282791A (en
Inventor
雅典 秋田
稔 小山
美晴 金子
浩二 富山
高正 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAYTECH, INC.
Toray Engineering Co Ltd
Original Assignee
RAYTECH, INC.
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAYTECH, INC., Toray Engineering Co Ltd filed Critical RAYTECH, INC.
Priority to JP2005102888A priority Critical patent/JP4104154B2/en
Priority to TW095110913A priority patent/TW200641101A/en
Priority to KR1020060028747A priority patent/KR20060105541A/en
Publication of JP2006282791A publication Critical patent/JP2006282791A/en
Application granted granted Critical
Publication of JP4104154B2 publication Critical patent/JP4104154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/02Etching, surface-brightening or pickling compositions containing an alkali metal hydroxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • C11D2111/22

Description

本発明は微細金属回路をもった電子部品やカラーフィルタの検査用プローブなどの高い寸法精度の要求される電子部品などの製造に関する。   The present invention relates to the manufacture of electronic components having high dimensional accuracy, such as electronic components having fine metal circuits and inspection probes for color filters.

フレキシブルプリント基板、TAB、CSPやハードディスクドライブ用の基材として、また、最近では、カラーフィルタの検査用プローブ用材料としても銅張りポリイミドフィルム基材が使用されている。しかし、ポリイミドは耐熱性は非常に高いが、吸水性が大きく、高い湿度の条件によって寸法精度が低下するという問題がある。そこで、最近では、電子機器の小型化、高精度化、信号の高周波化などに伴い、銅張りポリイミドフィルムに替わって半田接合時に要求される耐熱性を有し、吸水性や誘電率が小さく、さらに寸法精度のすぐれた熱可塑性液晶ポリエステルが注目されるようになってきた。   As a base material for flexible printed circuit boards, TAB, CSP, and hard disk drives, and recently, a copper-clad polyimide film base material is also used as a probe material for color filter inspection. However, although polyimide has very high heat resistance, there is a problem in that the water absorption is large and the dimensional accuracy is deteriorated due to high humidity conditions. Therefore, recently, with the downsizing, high accuracy, and high frequency of electronic devices, it has heat resistance required at the time of soldering instead of copper-clad polyimide film, and has low water absorption and dielectric constant. Further, thermoplastic liquid crystal polyesters having excellent dimensional accuracy have been attracting attention.

一般に、銅張り樹脂基材から電子部品を製造する場合には、金属配線回路のほかに、樹脂基材にスルーホールやブラインドホールのようなビアホール、デバイスホールなどが形成される。特に、フライングリードのような配線をもつデバイスホールや複雑で微細なビアホールの形成では、金属張り樹脂基材に対するパンチング加工やレーザーエッチングの適用が難しいため、それらに替わってプラズマエッチングやエッチング液を使用したケミカルエッチングを使用することが望ましい。   In general, when an electronic component is manufactured from a copper-clad resin base material, via holes, device holes, etc. such as through holes and blind holes are formed in the resin base material in addition to the metal wiring circuit. In particular, in the formation of device holes with wiring like flying leads and complicated and fine via holes, it is difficult to apply punching and laser etching to metal-clad resin substrates, so plasma etching and etching solutions are used instead. It is desirable to use chemical etching.

しかしながら、液晶ポリエステルに代表される液晶ポリマーは、分子構造が剛直な液晶構造をしており、耐薬品が高く、かつ、吸水性や親水性がないため、汎用のポリエステル樹脂であるポリエチレンテレフタレートにおいて、従来から表面加工などのエッチング処理に使われている苛性アルカリ水溶液によるエッチングではエッチング速度が遅すぎて実用的に満足なエッチング加工ができない。   However, liquid crystal polymers represented by liquid crystal polyester have a liquid crystal structure with a rigid molecular structure, high chemical resistance, and no water absorption or hydrophilicity. Therefore, in polyethylene terephthalate, which is a general-purpose polyester resin, Etching with a caustic aqueous solution that has been conventionally used for etching processing such as surface processing cannot achieve practically satisfactory etching processing because the etching rate is too slow.

そこで、最近、ポリイミドエッチング液として開発された無機アルカリ水溶液とアミノアルコールの混合物からなるポリイミドエッチング液を液晶ポリエステルのエッチング液として使用するエッチング方法が提案されている。   Therefore, recently, an etching method has been proposed in which a polyimide etching solution made of a mixture of an inorganic alkaline aqueous solution and amino alcohol, which has been developed as a polyimide etching solution, is used as an etching solution for liquid crystal polyester.

例えば、特許文献1には液晶ポリマーを、35重量%〜55重量%の高濃度の無機アルカリ塩と10〜35重量%の水溶性可溶化剤(アルカノールアミン)を含む水溶液を用いて、50°C〜120°Cでエッチングする方法が開示されており、エッチング速度が大きく、エッチング加工後に優れた穴形状が得られる旨記載されている。   For example, Patent Document 1 discloses that a liquid crystal polymer is mixed with an aqueous solution containing a high concentration of 35 to 55% by weight of an inorganic alkali salt and 10 to 35% by weight of a water-soluble solubilizer (alkanolamine). A method of etching at C to 120 ° C. is disclosed, and it is described that an etching rate is high and an excellent hole shape can be obtained after etching processing.

しかしながら、このエッチング方法では、液晶ポリエステルのエッチングが良好に進むけれども、液の安定性が極めて悪く、使用中に空気中の炭酸ガスを吸収してエッチング液中に白色の浮遊物や沈殿がすぐに発生し、さらに、この白色物質が時間の経過とともに、反応液中で結晶化し、反応槽壁に付着したり、エッチング処理物に付着しやすい。   However, with this etching method, the liquid crystal polyester proceeds well, but the stability of the solution is extremely poor, and during use, carbon dioxide in the air is absorbed, and white suspended matters and precipitates immediately appear in the etching solution. Furthermore, the white substance is crystallized in the reaction solution over time, and is likely to adhere to the reaction vessel wall or to the etched product.

したがって、この方法を工業的に利用する場合には、通常のエッチング工程でエッチング処理物に付着した付着物を除去することが難しく、安定したエッチング加工操作がやりにくいという問題がある。   Therefore, when this method is used industrially, there is a problem that it is difficult to remove deposits attached to the etched product in a normal etching process, and it is difficult to perform a stable etching process.

また、ポリイミドエッチング液として市販されている約30重量%の無機アルカリ化合物と約30重量%(40重量%以下)のエタノールアミンを含む水溶液を液晶ポリエステルのエッチングに使用する場合は、上記のような不溶解物は生成しないものの、エッチング速度が遅く、エッチング用マスク周辺において液晶ポリエステルのサイドエッチングが起こるため、例えば、図2に示すように孔の開口部の形状が扁平になり、微細な孔加工ができないという問題があった。   In addition, when an aqueous solution containing about 30% by weight inorganic alkali compound and about 30% by weight (40% by weight or less), which is commercially available as a polyimide etching solution, is used for etching liquid crystal polyester, Although insoluble matter is not generated, the etching rate is slow, and side etching of the liquid crystalline polyester occurs around the etching mask. For example, the shape of the opening of the hole becomes flat as shown in FIG. There was a problem that could not.

一方、レーザーエッチングによる方法では、装置的に大掛りなものになり、また、液晶ポリマーが熱可塑性であるため、レーザ光の熱により樹脂が変形することによって、その上に形成された配線やビアホールなどのパターンが変形し、設計どおりのパターン加工ができないという問題がある。   On the other hand, the method using laser etching is large in terms of apparatus, and since the liquid crystal polymer is thermoplastic, the resin is deformed by the heat of the laser beam, so that wiring and via holes formed thereon are formed. There is a problem that the pattern cannot be processed as designed.

特表2004−504439号公報JP-T-2004-504439

液晶ポリエステルに代表される液晶ポリマー基材、特に液晶ポリマーフィルムと金属箔との熱溶着または液晶ポリマー表面へのメッキ処理によって形成された金属張り液晶ポリマーフィルム基材に、エッチング加工によってデバイスホールやビアホールなどを形成する際に用いる液晶ポリマーのエッチング液、及び、そのエッチング液を用いて液晶ポリマーフィルム基材に、設計どおりのパターン形状やビア形状を容易に、かつ、安定したエッチング加工操作によって、しかも安価に加工できる液晶ポリマーのエッチング方法を提供することである。   Device holes and via holes are etched into metal-coated liquid crystal polymer film substrates formed by thermal welding of liquid crystal polymer film and metal foil or plating treatment on the surface of the liquid crystal polymer, represented by liquid crystal polyester. Etching solution of liquid crystal polymer used when forming etc., and liquid crystal polymer film substrate using the etching solution, pattern shape and via shape as designed easily and by stable etching processing operation, An object of the present invention is to provide a method for etching a liquid crystal polymer that can be processed at low cost.

液晶ポリマーフィルムと金属箔との熱溶着または液晶ポリマーへのメッキ処理で形成された金属張り液晶ポリマーフィルム基材において、デバイスホールやブラインドビアなどのビアホールをケミカルエッチング加工で行う場合、パターン形状やビア形状が設計どおりに加工できる工業的に利用価値の高いエッチング液組成やその効果的なエッチング方法について鋭意検討した結果、金属張り液晶ポリマーフィルム基材やその基材を用いて形成された金属配線などを有する液晶ポリマー基板を、無機アルカリ化合物と2−アミノエタノ−ルのような分子中に少なくとも1個以上のアミノ基と水酸基を有する脂肪族アミノアルコール類の水溶液からなり、かつ、これらの構成物質が極めて限定された組成であるアルカリエッチング液でエッチングすることにより、金属や樹脂マスク等に実質的な損傷を与えることなく、そして液晶ポリマーだけを選択的に加水分解して樹脂のサイドエッチングが少ない形状の優れた孔加工が可能な工業的に実用性の高い効果的なエッチング方法を見出した。   When metal vias such as device holes and blind vias are formed by chemical etching on metal-coated liquid crystal polymer film substrates formed by thermal welding of liquid crystal polymer film and metal foil or plating treatment on liquid crystal polymer, pattern shapes and vias As a result of intensive studies on industrially useful etchant compositions whose shapes can be processed as designed and their effective etching methods, metal-coated liquid crystal polymer film substrates and metal wiring formed using these substrates, etc. A liquid crystal polymer substrate comprising an aqueous solution of an aliphatic aminoalcohol having at least one amino group and a hydroxyl group in a molecule such as an inorganic alkali compound and 2-aminoethanol, and these constituents are Etch with alkaline etchant with very limited composition By doing so, it can be used practically industrially without causing substantial damage to metals, resin masks, etc., and by selectively hydrolyzing only the liquid crystal polymer to form holes with less side etching of the resin. We found a highly effective etching method.

すなわち、30重量%以上35重量%未満のアルカリ金属水酸化物などの無機アルカリ化合物と、45〜50重量%の分子中に少なくとも1個以上のアミノ基と水酸基を有する脂肪族アミノアルコール及び水から構成され、かつ、全アルカリ成分濃度(無機アルカリ化合物とアミノアルコールの合計)が75重量%〜80重量%である水溶液を用いて液晶ポリマーをエッチングすることにより、液晶ポリマーが比較的容易にエッチングされ、樹脂マスクや金属配線パターンなどにも実質的な損傷をあたえることなく、図3に示すような、サイドエッチングが少なく、かつ、テーパー角の大きいデバイスホールやビアホールを所望どおりに安定して形成できることを見出した。   That is, from 30% by weight to less than 35% by weight of an inorganic alkali compound such as an alkali metal hydroxide, 45 to 50% by weight of an aliphatic amino alcohol having at least one amino group and a hydroxyl group in the molecule, and water. The liquid crystal polymer is etched relatively easily by etching the liquid crystal polymer using an aqueous solution that is composed and has a total alkali component concentration (total of inorganic alkali compound and amino alcohol) of 75 wt% to 80 wt%. 3) Device holes and via holes having a small taper angle and a large taper angle can be stably formed as desired without giving substantial damage to resin masks, metal wiring patterns, and the like. I found.

本発明によれば、芳香族液晶ポリマーのエッチングにおいて、テーパー角の大きい優れた形状のビアホールを比較的容易に得ることができる上に、従来のポリイミドエッチング用アルカリエッチング液で加工処理を行った場合に比べて、エッチング速度が非常に速いので、サイドエッチングが少ない所望する形状の製品も容易に得ることができる。   According to the present invention, in etching of an aromatic liquid crystal polymer, a via hole having an excellent shape with a large taper angle can be obtained relatively easily, and when processing is performed with a conventional alkali etching solution for polyimide etching Compared to the above, since the etching rate is very high, a product having a desired shape with little side etching can be easily obtained.

また、無機アルカリが35重量%以上の高濃度アルカリ液に比べて、液の安定性が極めてよくビアホールだけでなく、フライングリードのあるオープンホール(デバイスホール)等も容易に形成することが可能である。さらに、エッチング面の平滑性によりスルーホールやブライドビアホールの導通メッキ処理において非常に良い効果が得られる。   In addition, compared to high-concentration alkaline solutions containing 35% by weight or more of inorganic alkali, the stability of the solution is extremely good, and it is possible to easily form not only via holes but also open holes (device holes) with flying leads. is there. Furthermore, the smoothness of the etched surface can provide a very good effect in the conductive plating treatment of through holes and bride via holes.

本発明で使用される液晶ポリマー基材としては、分子中に水酸基やカルボキシル基を有する芳香族モノマーの共重合で得られるポリエステル樹脂基材がある。これの分子構造を図1に示す。 The liquid crystal polymer substrate used in the present invention includes a polyester resin substrate obtained by copolymerization of an aromatic monomer having a hydroxyl group or a carboxyl group in the molecule. The molecular structure of this is shown in FIG.

具体的には表1に示すような市販されている芳香族液晶ポリエステルであり、住友化学株式会社のエコノール(商品名)、クラレ株式会社のVECSTARなどが挙げられる。   Specifically, it is a commercially available aromatic liquid crystal polyester as shown in Table 1, and includes Econol (trade name) of Sumitomo Chemical Co., Ltd. and VECSTAR of Kuraray Co., Ltd.

Figure 0004104154
なお、上述の液晶ポリマーフィルムに銅箔を熱溶着した銅張り液晶ポリマーフィルム基材としては、ジャパンゴアテックス株式会社の銅張り液晶ポリマーフィルム基材「BIAC」や新日本製鉄化学株式会社の「LCPエスパネックスLシリーズ(クラレVECSTARを使用)」などがある。また、金属張り液晶ポリマーは、市販品のほかにも表面処理した液晶ポリマーフィルムに無電解メッキと電解メッキなどのメッキ処理を施すことによっても製造することができる。
Figure 0004104154
The copper-clad liquid crystal polymer film base material in which copper foil is thermally welded to the above-mentioned liquid crystal polymer film includes “BIAC”, a copper-clad liquid crystal polymer film base material of Japan Gore-Tex Co., Ltd., and “LCP” of Nippon Steel Corporation. Espanex L series (using Kuraray VECSTAR) ”. In addition to commercially available products, the metal-clad liquid crystal polymer can also be produced by subjecting a surface-treated liquid crystal polymer film to plating treatment such as electroless plating and electrolytic plating.

また、本発明で使用される液晶ポリマー基材用のエッチング液は、30重量%以上35重量%未満、好ましくは32重量%以上35重量%未満のアルカリ金属水酸化物などの無機アルカリ化合物と、45〜50重量%の分子中に少なくとも1個以上のアミノ基と水酸基を有する脂肪族アミノアルコール及び水から構成され、かつ、全アルカリ成分濃度(無機アルカリ化合物とアミノアルコールの合計)が75重量%以上80重量%未満である水溶液である。   The etching liquid for the liquid crystal polymer substrate used in the present invention is 30 wt% or more and less than 35 wt%, preferably 32 wt% or more and less than 35 wt% of an inorganic alkali compound such as an alkali metal hydroxide, It is composed of an aliphatic amino alcohol having at least one amino group and a hydroxyl group in the molecule of 45 to 50% by weight and water, and the total alkali component concentration (total of inorganic alkali compound and amino alcohol) is 75% by weight. The aqueous solution is less than 80% by weight.

前記無機アルカリ化合物としては、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物などが好適に用いられる。これらの無機アルカリ化合物は固形または水溶液のいずれの形態でも使用することができるが、工業的に使用する場合は、水溶液が好適に使用される。   As the inorganic alkali compound, alkali metal hydroxides such as potassium hydroxide and sodium hydroxide are preferably used. These inorganic alkali compounds can be used either in the form of a solid or an aqueous solution, but in the case of industrial use, an aqueous solution is preferably used.

そして、前記の分子中に少なくとも1個以上の水酸基を有する脂肪族アミノアルコールとしては、モノエタノールアミン(2−アミノエタノール)、ジエタノールアミン、α−アミノイソプロパノ−ル、2−アミノブタノール等のような炭素数が2〜4程度のアルキル基を有する水溶性脂肪族アミノアルコールが挙げられる。   The aliphatic amino alcohol having at least one hydroxyl group in the molecule includes monoethanolamine (2-aminoethanol), diethanolamine, α-aminoisopropanol, 2-aminobutanol and the like. Examples thereof include water-soluble aliphatic amino alcohols having an alkyl group having about 2 to 4 carbon atoms.

これらのアミノアルコールは、無機アルカリ水溶液との相溶性がよく、無機アルカリが極端に高濃度でない限り、任意の割合で均一な混合ができるという特徴がある。これらの脂肪族アミノアルコールは1種類だけのアミノアルコールを使用するのではなく二つ以上を混合して使用してもよい。これらの脂肪族アミノアルコール類は水溶性なのでエッチング後の湯洗浄や水洗でアルカリ成分といっしょに簡単に除去することができる。   These amino alcohols are characterized by good compatibility with an aqueous inorganic alkali solution and uniform mixing at an arbitrary ratio as long as the inorganic alkali is not extremely high in concentration. These aliphatic amino alcohols may be used in a mixture of two or more instead of using only one type of amino alcohol. Since these aliphatic amino alcohols are water-soluble, they can be easily removed together with the alkaline component by hot water washing or water washing after etching.

特に、モノエタノールアミン(2−アミノエタノール)は水溶性が高く沸点も150°C以上と高く、100°C以下の加熱温度で使用する場合、蒸発による液組成の変化を起こすことなく使用できる。また、液晶ポリエステルへの浸透性や加水分解生成物の溶解性も高い上に、工業的にも容易に入手できるので特に好ましい。   In particular, monoethanolamine (2-aminoethanol) has high water solubility and a boiling point as high as 150 ° C. or higher, and when used at a heating temperature of 100 ° C. or lower, it can be used without causing a change in liquid composition due to evaporation. Further, it is particularly preferable since it has high permeability to liquid crystal polyester and solubility of hydrolysis products, and is easily available industrially.

ところで、従来から無機アルカリ水溶液は液晶ポリエステル樹脂を加水分解する作用があり、表面処理などのエッチングに利用されてきたが、液晶ポリエステルの耐水性が高いため、低濃度水溶液においてはエッチング速度は極めて小さく、工業的に利用する場合においては、特許文献1に記載されているように、35重量%以上好ましくは40重量%の極めて高い濃度が必要であるといわれていた。   By the way, conventionally, an inorganic alkaline aqueous solution has an action of hydrolyzing a liquid crystal polyester resin and has been used for etching such as surface treatment. However, since the liquid polyester has high water resistance, the etching rate is extremely low in a low concentration aqueous solution. In industrial use, as described in Patent Document 1, it has been said that an extremely high concentration of 35% by weight or more, preferably 40% by weight, is necessary.

しかしながら、このような高濃度の無機アルカリ化合物水溶液を用いた場合には、使用中に空気中の炭酸ガスを吸収してエッチング液中に不溶性の炭酸塩や樹脂の加水分解反応物が固形物として析出または沈殿しやすい。そのため、エッチング液中のこれらの不溶解物を除去したり、エッチング液の組成濃度の調整や液の交換を頻繁に行う必要があるという問題があった。   However, when such a high concentration inorganic alkali compound aqueous solution is used, carbon dioxide gas in the air is absorbed during use, and the insoluble carbonate or resin hydrolysis reaction product in the etching solution becomes a solid. Easy to precipitate or precipitate. For this reason, there is a problem that it is necessary to remove these insoluble substances in the etching solution, and to frequently adjust the composition concentration of the etching solution and replace the solution.

そのような状況の中、本発明において、前述したようなエッチング液組成を最適化することによって、従来法ではエッチング速度が遅く効果がないといわれていた無機アルカリ化合物濃度が35重量%未満でも、工業的に利用可能な優れたエッチング性能(加工速度と加工形状)を得ることができた。   Under such circumstances, in the present invention, by optimizing the etching solution composition as described above, even if the concentration of the inorganic alkali compound, which has been said to be ineffective due to the slow etching rate in the conventional method, is less than 35% by weight, Excellent etching performance (processing speed and processing shape) that can be used industrially was obtained.

その理由として、前記のアミノアルコールが液晶ポリエステル表面における無機アルカリ成分の濡れ性や浸透性を促進して加水分解反応を速め、さらに、最適濃度のアミノアルコールが液晶ポリエステルの加水分解生成物を樹脂表面からすばやく溶出・除去するためと考えられるが、エッチング速度を高く保持し、かつ、反応液中の不溶物析出を避けるためには、エッチング液中の無機アルカリ化合物、脂肪族アミノアルコールおよび水との混合割合が極めて重要であり、本発明の効果を得るためには、脂肪族アミノアルコールは無機アルカリ化合物に対して少なくとも等量以上を必要とする。   The reason is that the amino alcohol accelerates the hydrolysis reaction by promoting the wettability and permeability of the inorganic alkali component on the liquid crystal polyester surface, and the amino alcohol of the optimum concentration converts the hydrolysis product of the liquid crystal polyester to the resin surface. It is thought to be a quick elution / removal method from the above, but in order to keep the etching rate high and avoid insoluble precipitation in the reaction solution, it is necessary to remove the inorganic alkali compound, aliphatic amino alcohol and water in the reaction solution. The mixing ratio is extremely important. In order to obtain the effects of the present invention, the aliphatic amino alcohol needs to be at least equal to the inorganic alkali compound.

と言っても、例えば、無機アルカリ化合物を35重量%以上にしてアミノアルコール濃度を40重量%以上とすると、無機アルカリ化合物の濃度が高いほどエッチング速度が高くなる傾向にあるとはいえ、前述しているように液中に無機アルカリが溶けにくくなって析出してしまうし、また逆に、無機アルカリ濃度やアミノアルコール濃度が本発明でいう最適濃度より薄い場合、例えば、無機アルカリ化合物28重量%、アミノアルコール34重量%、水38重量%程度の場合は、無機アルカリ化合物などの析出はないが、エッチング速度が遅くサイドエッチングが起こりやすいため、図2に示したような扁平な孔の形状のものしか得られない。   However, for example, when the inorganic alkali compound is 35% by weight or more and the amino alcohol concentration is 40% by weight or more, the etching rate tends to increase as the concentration of the inorganic alkali compound increases. If the inorganic alkali concentration or aminoalcohol concentration is less than the optimum concentration in the present invention, the inorganic alkali compound is, for example, 28% by weight. In the case of 34% by weight of amino alcohol and 38% by weight of water, there is no precipitation of inorganic alkali compounds or the like, but the etching rate is slow and side etching is likely to occur, so the shape of the flat hole as shown in FIG. You can only get things.

また、無機アルカリ化合物が30重量%以上であっても、アミノアルコールが40重量%未満で、水の割合が30重量%以上とすると、加水分解速度が遅くなることや表面の加水分解生成物の適度な剥離が阻害されるため、液晶ポリエステルの加水分解が不均一となり、さらに、加水分解反応物の溶解除去が不十分となって液中に浮遊し、加工表面もざらざらした状態になったり、エッチング残渣が残ったりしてエッチング部分の形状が不安定になりやすくなる。   Further, even if the inorganic alkali compound is 30% by weight or more, if the amino alcohol is less than 40% by weight and the ratio of water is 30% by weight or more, the hydrolysis rate becomes slow and the hydrolysis product on the surface Since moderate peeling is hindered, the hydrolysis of the liquid crystalline polyester becomes non-uniform, and further, the hydrolysis reaction product is insufficiently dissolved and removed and floats in the liquid, and the processed surface becomes rough, Etching residue remains, and the shape of the etched portion tends to become unstable.

そこで、エッチング速度を低下することなく、液中に不溶解物が生成しないような工業的に利用可能なエッチング液としては、無機アルカリ化合物の濃度を30重量%以上35重量%未満とし、さらに、アミノアルコールの濃度を40重量%以上にして、かつ、水以外の全アルカリ成分(無機アルカリ化合物とアミノアルコールの合計)が75重量%以上80重量%未満になるようにすることが重要である。   Therefore, as an industrially usable etching solution that does not generate insoluble matter in the solution without decreasing the etching rate, the concentration of the inorganic alkali compound is 30 wt% or more and less than 35 wt%, It is important that the concentration of amino alcohol is 40% by weight or more, and that all alkali components other than water (total of inorganic alkali compound and amino alcohol) are 75% by weight or more and less than 80% by weight.

したがって、エッチング液中の各成分の適正濃度は、無機アルカリの濃度が30重量%以上35重量%未満、アミノアルコールの濃度が45重量%〜50重量%、水分濃度が20〜25重量%とするのが好ましいのである。   Therefore, the appropriate concentration of each component in the etching solution is such that the concentration of inorganic alkali is 30 wt% or more and less than 35 wt%, the concentration of amino alcohol is 45 wt% to 50 wt%, and the moisture concentration is 20 to 25 wt%. It is preferable.

このような本発明によるエッチング液の各成分の組成比率であるエッチング液であれば、図6に示すように、液を長時間(10日間)使用した場合においては、エッチング操作中の液晶ポリマーの溶解によってエッチング液は黄色に着色してくるが、液は透明であり白色沈殿物や結晶の析出などは見られないため、安定したエッチング操作ができる。   As shown in FIG. 6, if the etching solution is a composition ratio of each component of the etching solution according to the present invention, the liquid crystal polymer during the etching operation is used when the solution is used for a long time (10 days). Although the etching solution is colored yellow by dissolution, the solution is transparent and no white precipitates or crystals are observed, so that a stable etching operation can be performed.

一方、従来の各成分の組成比率であるエッチング液では、図7に示すように、使用中に空気中の炭酸ガスを吸収してエッチング液中に白色の浮遊物や沈殿が短時間(1日後)に発生し、さらに、この白色物質が時間の経過とともに反応液中で結晶化して反応槽壁に付着したり、エッチング処理物に付着しやすくなるため、安定したエッチング操作ができない。   On the other hand, in the conventional etching solution having the composition ratio of each component, as shown in FIG. 7, the carbon dioxide gas in the air is absorbed during use, and white suspended matters and precipitates appear in the etching solution for a short time (after 1 day). In addition, the white substance crystallizes in the reaction solution over time and adheres to the reaction vessel wall or adheres to the etched product, so that a stable etching operation cannot be performed.

また、表2には、本発明のエッチング液と従来のエッチング液とで液晶ポリマー基材をエッチングした場合のエッチング速度を比較した結果を示す。この表からも明らかなように、本発明のエッチング液によるエッチング速度は非常に速く、従来の市販のエッチング液(例えば、比較例1、4)に比べると、実施例1及び5などでは約10倍も速いことがわかる。   Table 2 shows the results of comparing the etching rates when the liquid crystal polymer substrate is etched with the etching solution of the present invention and the conventional etching solution. As is apparent from this table, the etching rate with the etching solution of the present invention is very high, and about 10 in Examples 1 and 5 compared with conventional commercially available etching solutions (for example, Comparative Examples 1 and 4). You can see that it is twice as fast.

なお、エッチング液中の無機または有機アルカリ成分の量やモノエタノールアミン等の量は規定濃度の塩酸で電位差滴定することによって管理することができる。   The amount of the inorganic or organic alkali component or monoethanolamine in the etching solution can be controlled by potentiometric titration with a specified concentration of hydrochloric acid.

また、本発明のエッチング液を用いてエッチング処理を行う場合は、液温度条件を60°C以上90°C以下、処理時間を1〜20分間程度とするのが好ましく、より好ましい温度は80°Cである。温度が低いと反応に時間がかかり、あまり高温になると、水分の蒸発が激しくなり、エッチング液の濃度が変化しやすくなる。   Moreover, when performing an etching process using the etching liquid of this invention, it is preferable that liquid temperature conditions shall be 60 degreeC or more and 90 degrees C or less, and processing time shall be about 1 to 20 minutes, and more preferable temperature is 80 degrees. C. If the temperature is low, the reaction takes time, and if the temperature is too high, the evaporation of moisture becomes intense and the concentration of the etching solution tends to change.

本発明によるエッチング操作において、基材とエッチング液を接触させる方法としては、攪拌状態の液中に基材を浸漬させる方法、基材に液を気中でスプレーする方法、液中でジェット噴流をあてる方法、液中で超音波をあてる方法などが挙げられる。液中で接触させる場合は基板を揺動することが有効である。基材に液を気中でスプレーする方法では炭酸ガスの混入や作業者の安全のためにも密閉系が好ましい。   In the etching operation according to the present invention, as a method of bringing the substrate into contact with the etching solution, a method of immersing the substrate in a stirred solution, a method of spraying the solution in the air, and a jet jet in the solution. Examples thereof include a method of hitting and a method of applying ultrasonic waves in a liquid. When contacting in a liquid, it is effective to swing the substrate. In the method of spraying the liquid on the substrate in the air, a closed system is preferable for the mixing of carbon dioxide gas and the safety of workers.

なお、本発明のエッチング液を用いたエッチング処理によって得られたスルービアホールのSEM(Scanning Electron Microscope)写真を図3に、ブラインドビアホールのSEM写真を図4に示す。いずれもホール側壁部の液晶ポリマーがきれいに除去され、しかも、テーパー角が大きく、エッチング表面には割れや凹凸もなく、比較的平滑な表面となっているのが分かる。   FIG. 3 shows a SEM (Scanning Electron Microscope) photograph of a through via hole obtained by etching using the etching solution of the present invention, and FIG. 4 shows a SEM photograph of a blind via hole. In either case, it can be seen that the liquid crystal polymer on the side wall of the hole is neatly removed, the taper angle is large, and the etching surface is free of cracks and irregularities and has a relatively smooth surface.

[実施例1]ジャパンゴアテックス株式会社製の片面銅張り液晶ポリマーフィルム基材(銅厚み18μm、液晶ポリエステルフィルム基材「BIAC」厚み125μm)のサンプル片(5cm×5cm、厚み143μm)を、水酸化カリウム(KOH)34.5重量%、モノエタノールアミン(MEA)45重量%、水20.5重量%からなるエッチング液に液温度80°Cで浸漬し、全体膜厚みの変化を測定し、エッチングされた液晶ポリマー層の厚みの変化を測定した。エッチング液はビーカー中で攪拌しながら行った。時間の経過と共に液晶ポリマー層の膜厚は減少し、6.5分で液晶ポリマー層は完全にエッチングされて、銅表面が露出した。反応時間と液晶ポリマー層の膜厚の減少量はほぼ比例関係にあり、液晶ポリマー層平均のエッチング速度は19.5μm/分であった。(膜厚はMITUTOYO CORP.製model1D−C112で測定)。 Example 1 A sample piece (5 cm × 5 cm, thickness 143 μm) of a single-sided copper-clad liquid crystal polymer film substrate (copper thickness 18 μm, liquid crystal polyester film substrate “BIAC” thickness 125 μm) manufactured by Japan Gore-Tex Co., Ltd. Immerse it in an etching solution consisting of 34.5% by weight of potassium oxide (KOH), 45% by weight of monoethanolamine (MEA) and 20.5% by weight of water at a liquid temperature of 80 ° C., and measure the change in the total film thickness. The change in thickness of the etched liquid crystal polymer layer was measured. The etchant was stirred in a beaker. The film thickness of the liquid crystal polymer layer decreased with the passage of time, and the liquid crystal polymer layer was completely etched in 6.5 minutes to expose the copper surface. The reaction time and the amount of decrease in the film thickness of the liquid crystal polymer layer were in a proportional relationship, and the average etching rate of the liquid crystal polymer layer was 19.5 μm / min. (The film thickness is measured with model 1D-C112 manufactured by MITUTOYO CORP.).

[実施例2]ジャパンゴアテックス株式会社製の片面銅張り液晶ポリマーフィルム基材(銅厚み18μm、液晶ポリエステルフィルム基材「BIAC」厚み125μm)のサンプル片(5cm×5cm、厚み143μm)を、水酸化カリウム34重量%、モノエタノールアミン45重量%、水21重量%からなるエッチング液に液温度80°Cで浸漬し、全体膜厚みの変化を測定し、エッチングされた液晶ポリマー層の厚みの変化を測定した。エッチング液はビーカー中で攪拌しながら行った。時間の経過と共に液晶ポリマー層の膜厚は減少し、6.9分で液晶ポリマー層は完全にエッチングされて、銅表面が露出した。反応時間と液晶ポリマー層の膜厚の減少量はほぼ比例関係にあり、液晶ポリマー層平均のエッチング速度は18μm/分であった。   Example 2 A sample piece (5 cm × 5 cm, thickness 143 μm) of a single-sided copper-clad liquid crystal polymer film base material (copper thickness 18 μm, liquid crystal polyester film base material “BIAC” thickness 125 μm) manufactured by Japan Gore-Tex Co., Ltd.) Immersion in an etching solution consisting of 34% by weight of potassium oxide, 45% by weight of monoethanolamine, and 21% by weight of water at a liquid temperature of 80 ° C., measuring the change in the total film thickness, and changing the thickness of the etched liquid crystal polymer layer Was measured. The etchant was stirred in a beaker. The film thickness of the liquid crystal polymer layer decreased with the passage of time, and the liquid crystal polymer layer was completely etched in 6.9 minutes to expose the copper surface. The reaction time and the amount of decrease in the thickness of the liquid crystal polymer layer were in a proportional relationship, and the average etching rate of the liquid crystal polymer layer was 18 μm / min.

[実施例3]ジャパンゴアテックス株式会社製の片面銅張り液晶ポリマーフィルム基材(銅厚み18μm、液晶ポリエステルフィルム基材「BIAC」厚み125μm)のサンプル片(5cm×5cm、厚み143μm)を、水酸化カリウム34.5重量%、モノエタノールアミン42重量%、水23.5重量%からなるエッチング液に液温度80°Cで浸漬し、全体膜厚みの変化を測定し、エッチングされた液晶ポリマー膜の厚みの変化を測定した。エッチング液はビーカー中で攪拌しながら行った。時間の経過と共に液晶ポリマーの膜厚は減少し、8.3分で液晶ポリマー層は完全にエッチングされて、銅表面が露出した。反応時間と液晶ポリマー層の膜厚の減少量はほぼ比例関係にあり、液晶ポリマー層平均のエッチング速度は15μm/分であった。   Example 3 A sample piece (5 cm × 5 cm, thickness 143 μm) of a single-sided copper-clad liquid crystal polymer film substrate (copper thickness 18 μm, liquid crystal polyester film substrate “BIAC” thickness 125 μm) manufactured by Japan Gore-Tex Co., Ltd. A liquid crystal polymer film etched by immersing it in an etching solution comprising 34.5% by weight of potassium oxide, 42% by weight of monoethanolamine, and 23.5% by weight of water at a liquid temperature of 80 ° C., and measuring the change in the total film thickness. The change in the thickness was measured. The etchant was stirred in a beaker. The film thickness of the liquid crystal polymer decreased with time, and the liquid crystal polymer layer was completely etched in 8.3 minutes, exposing the copper surface. The reaction time and the amount of decrease in the thickness of the liquid crystal polymer layer were in a proportional relationship, and the average etching rate of the liquid crystal polymer layer was 15 μm / min.

[実施例4]新日本製鉄化学株式会社製の「エスパネックス」LCP(液晶ポリマーフィルム基材「VECSTAR」:50μm/Cu:18μm)の試験片を、水酸化カリウム30重量%、モノエタノールアミン49重量%、水21重量%からなるエッチング液に液温度80°Cで浸漬し、全体膜厚みの変化を測定し、エッチングされた液晶ポリマー層の厚みの変化を測定した。時間の経過と共に液晶ポリマー層の膜厚は減少し、3.5分で液晶ポリマー層は完全にエッチングされて、銅表面が露出した。液晶ポリマー層平均のエッチング速度は14.4μm/分であった。   [Example 4] A test piece of “Espanex” LCP (liquid crystal polymer film substrate “VECSTAR”: 50 μm / Cu: 18 μm) manufactured by Nippon Steel Chemical Co., Ltd., 30 wt% potassium hydroxide, monoethanolamine 49 The film was immersed in an etching solution composed of 15% by weight and 21% by weight of water at a liquid temperature of 80 ° C., the change in the total film thickness was measured, and the change in the thickness of the etched liquid crystal polymer layer was measured. The film thickness of the liquid crystal polymer layer decreased with the passage of time, and the liquid crystal polymer layer was completely etched in 3.5 minutes to expose the copper surface. The average etching rate of the liquid crystal polymer layer was 14.4 μm / min.

[実施例5]新日本製鉄化学株式会社製の「エスパネックス」LCP(液晶ポリマーフィルム基材「VECSTAR」:50μm/Cu:18μm)の試験片を、水酸化カリウム34.9重量%、モノエタノールアミン45重量%、水20.1重量%からなるエッチング液に液温度80°Cで浸漬し、全体膜厚みの変化を測定し、エッチングされた液晶ポリマー層の厚みの変化を測定した。時間の経過と共に液晶ポリマーの層の膜厚は減少し、2.3分で液晶ポリマー層は完全にエッチングされて、銅表面が露出した。液晶ポリマー層平均のエッチング速度は22μm/分であった。   [Example 5] A test piece of “Espanex” LCP (liquid crystal polymer film substrate “VECSTAR”: 50 μm / Cu: 18 μm) manufactured by Nippon Steel Chemical Co., Ltd., 34.9% by weight of potassium hydroxide, monoethanol The film was immersed in an etching solution composed of 45% by weight of amine and 20.1% by weight of water at a liquid temperature of 80 ° C., the change in the total film thickness was measured, and the change in the thickness of the etched liquid crystal polymer layer was measured. The film thickness of the liquid crystal polymer layer decreased with the passage of time, and in 2.3 minutes, the liquid crystal polymer layer was completely etched to expose the copper surface. The average etching rate of the liquid crystal polymer layer was 22 μm / min.

[比較例1〜5]実施例1と同じ基材を用いて、エッチング液のKOH/MEA/水の割合を表2のような組成に調整し、実施例1〜5と同じ温度条件でエッチング速度を測定した。結果は表2に示す通りである。   [Comparative Examples 1-5] Using the same base material as in Example 1, the ratio of KOH / MEA / water in the etching solution was adjusted to the composition shown in Table 2, and etching was performed under the same temperature conditions as in Examples 1-5. The speed was measured. The results are as shown in Table 2.

いずれのエッチング速度も比較例5を除いては、実施例1〜5の結果に比べると、1/10〜1/2と大幅に低いものであった。   Except for Comparative Example 5, all the etching rates were significantly lower, 1/10 to 1/2, compared with the results of Examples 1-5.

Figure 0004104154
Figure 0004104154

エッチング条件:反応温度はすべて80℃、ビーカー中で液を攪拌しながら試料を浸漬した。
材料:「BIAC」はジャパンゴアテックス株式会社の銅張り液晶ポリマーフィルム基材、「VECSTAR」は新日本製鉄化学株式会社の銅張り液晶ポリマーフィルム基材である。
Etching conditions: All reaction temperatures were 80 ° C., and the sample was immersed while stirring the solution in a beaker.
Materials: “BIAC” is a copper-clad liquid crystal polymer film substrate of Japan Gore-Tex Corporation, and “VECSTAR” is a copper-clad liquid crystal polymer film substrate of Nippon Steel Corporation.

比較例5では反応終了後、液温低下とともに液中に結晶が析出し、加温後も簡単には消失しなかった。   In Comparative Example 5, after the completion of the reaction, crystals were precipitated in the liquid as the liquid temperature decreased and did not disappear easily after heating.

[実施例6]新日本製鉄化学株式会社製「エスパネックス」LCP(液晶ポリマーフィルム基材「VECSTAR」:100μm/Cu:18μm)の両面にニチゴーモートン社製アルカリ現像タイプのドライフィルムNIT−215をラミネートし、銅側のドライフィルムに図5に示すエッチング評価試験用マスク(孔径100〜800μm)を使って露光・現像し、パターンマスク加工を行った。つぎに、この試験片を塩化第二鉄エッチング液でマスク開口部の銅膜をエッチングしたあと、アルカリ剥離液で銅側だけのドライフィルムを剥離して、100〜800μmの孔径をもつ銅マスクを作った。つぎに、この銅マスク形成液晶ポリマーフィルム試験片を、水酸化カリウム34.9重量%、エタノールアミン45重量%、水20.1重量%からなるエッチング液に液温度80°Cで5分間浸漬し、液晶ポリマーフィルム基材のエッチング孔加工を行った。結果は図3に示すように、73度のテーパー角を有するエッチング壁の表面も平滑なきれいな孔を得ることができた。   [Embodiment 6] Nichigo Morton's alkali development type dry film NIT-215 on both sides of “Espanex” LCP (liquid crystal polymer film substrate “VECSTAR”: 100 μm / Cu: 18 μm) manufactured by Nippon Steel Chemical Co., Ltd. The laminate was exposed to light and developed using a mask for etching evaluation test (pore diameter: 100 to 800 μm) shown in FIG. 5 on the dry film on the copper side to perform pattern mask processing. Next, after etching the copper film at the mask opening with ferric chloride etching solution on this test piece, the dry film only on the copper side is peeled off with an alkali stripping solution to form a copper mask having a pore diameter of 100 to 800 μm. Had made. Next, this copper mask-forming liquid crystal polymer film test piece was immersed in an etching solution comprising 34.9% by weight of potassium hydroxide, 45% by weight of ethanolamine and 20.1% by weight of water at a liquid temperature of 80 ° C. for 5 minutes. Etching hole processing of the liquid crystal polymer film substrate was performed. As a result, as shown in FIG. 3, the surface of the etching wall having a taper angle of 73 degrees was able to obtain a smooth and smooth hole.

[実施例7]ジャパンゴアテックス株式会社製片面銅張り液晶ポリマーフィルム基材(銅厚み18μm、液晶ポリエステルフィルム基材「BIAC」厚み125μm)のサンプル片[5cmx5cm,厚み143μm]の両面にドライフィルムをラミネートし、銅側に図5に示す丸孔の評価用パターンマスクを用いて露光・現像を行い、樹脂パターンマスクを作製したあと、塩化第二鉄で銅エッチングを行い、丸孔のある銅マスクパターンを形成した。つぎに、このサンプルを、水酸化カリウム34.5重量%、モノエタノールアミン45重量%、水20.5重量%からなる液温80°Cのエッチング液で7分間エッチングした。裏面のドライフィルムと銅マスクを剥離したところ、スルーホールをもった液晶フィルム基板が得られた。ビアのテーパー角は73度であった。この組成のエッチング液では、液中への沈殿物の生成はなく、何度も繰り返しエッチングを行っても処理効果は変わらず安定していた。   [Example 7] A dry film on both sides of a sample piece [5 cm × 5 cm, thickness 143 μm] of a single-sided copper-clad liquid crystal polymer film substrate (copper thickness 18 μm, liquid crystal polyester film substrate “BIAC” thickness 125 μm) manufactured by Japan Gore-Tex Co., Ltd. After laminating and exposing and developing using a pattern mask for evaluation of round holes as shown in FIG. 5 on the copper side, a resin pattern mask is prepared, and then copper etching is performed with ferric chloride to provide a copper mask with round holes. A pattern was formed. Next, this sample was etched for 7 minutes with an etching solution of 34.5% by weight of potassium hydroxide, 45% by weight of monoethanolamine, and 20.5% by weight of water at a liquid temperature of 80 ° C. When the dry film and the copper mask on the back surface were peeled off, a liquid crystal film substrate having through holes was obtained. The taper angle of the via was 73 degrees. In the etching solution having this composition, no precipitate was generated in the solution, and the treatment effect was stable even after repeated etching.

[実施例8]新日本製鉄化学株式会社製「エスパネックス」LCP(液晶ポリマーフィルム基材「VECSTAR」:100μm/Cu:18μm)の試験片100mm×100mmの両面にドライフィルムをラミネートし、銅側に丸孔のパターンマスクを用いて露光・現像を行い、樹脂パターンマスクを作製したあと、塩化第二鉄で銅エッチングを行い、丸孔のある銅マスクパターンを形成した。つぎに、水酸化カリウム34.5重量%、エタノールアミン45重量%、水20.1重量%からなるエッチング液に液温度85°Cで5分間浸漬エッチングした。裏面のドライフィルムと銅マスクを剥離したところ、72度のテーパー角のスルーホールをもった液晶フィルム基板が得られた。この組成のエッチング液では、液中への沈殿物の生成はなく、何度も繰り返しエッチングを行っても処理効果は変わらず安定していた。   [Example 8] A test piece of "Espanex" LCP (liquid crystal polymer film base material "VECSTAR": 100 μm / Cu: 18 μm) made by Nippon Steel Chemical Co., Ltd. was laminated on both sides of a 100 mm × 100 mm test piece, and the copper side Then, exposure and development were carried out using a round hole pattern mask to produce a resin pattern mask, and then copper etching was performed with ferric chloride to form a copper mask pattern with round holes. Next, immersion etching was performed for 5 minutes at a liquid temperature of 85 ° C. in an etching solution composed of 34.5% by weight of potassium hydroxide, 45% by weight of ethanolamine and 20.1% by weight of water. When the dry film and the copper mask on the back surface were peeled off, a liquid crystal film substrate having a through hole with a taper angle of 72 degrees was obtained. In the etching solution having this composition, no precipitate was generated in the solution, and the treatment effect was stable even after repeated etching.

[実施例9]新日本製鉄化学株式会社製「エスパネックス」LCP(液晶ポリマーフィルム基材「VECSTAR」:100μm/Cu:18μm)の試験片100mm×100mmの両面にドライフィルムをラミネートし、片面に丸孔のパターンマスクを用いて露光・現像を行い、樹脂パターンマスクを作製したあと、塩化第二鉄で銅エッチングを行い、丸孔のある銅マスクパターンを形成した。つぎに、水酸化カリウム34.5重量%、エタノールアミン45重量%、水20.1重量%からなるエッチング液に液温度85°Cで6分間浸漬エッチングした。裏面のドライフィルムをラミネートしたままで銅マスクを剥離し、ついで、裏面のドライフィルムを剥離したところ、ブラインドビアホールをもった液晶フィルム基板が得られた。この組成のエッチング液では、液中への沈殿物の生成はなく、何度も繰り返しエッチングを行っても処理効果は変わらず安定していた。   [Example 9] A test piece of “Espanex” LCP (liquid crystal polymer film substrate “VECSTAR”: 100 μm / Cu: 18 μm) manufactured by Nippon Steel Chemical Co., Ltd. was laminated on both sides of a dry film on one side. Exposure / development was performed using a round hole pattern mask to produce a resin pattern mask, and then copper etching was performed with ferric chloride to form a copper mask pattern with round holes. Next, immersion etching was carried out for 6 minutes at a liquid temperature of 85 ° C. in an etching solution comprising 34.5% by weight of potassium hydroxide, 45% by weight of ethanolamine and 20.1% by weight of water. The copper mask was peeled while the dry film on the back surface was laminated, and then the dry film on the back surface was peeled off to obtain a liquid crystal film substrate having blind via holes. In the etching solution having this composition, no precipitate was generated in the solution, and the treatment effect was stable even after repeated etching.

[比較例6]新日本製鉄化学株式会社製「エスパネックス」LCP(液晶ポリマーフィルム基材べクスタ:100μm/Cu:18μm)の両面にニチゴーモートン社製アルカリ現像タイプのドライフィルムNIT−215をラミネートし、銅側のドライフィルムに図5のエッチング評価試験用マスク(孔径100〜800μm)を使って露光・現像し、パターンマスク加工を行った。つぎに、この試験片を塩化第二鉄エッチング液でマスク開口部の銅膜をエッチングしたあと、アルカリ剥離液で銅側だけのドライフィルムを剥離して、100〜800μmの孔径をもつ銅マスクを作った。つぎに、この銅マスクが形成された液晶ポリマーフィルム試験片を、水酸化カリウム28重量%、エタノールアミン33重量%、水39重量%からなるエッチング液に液温度85°Cで浸漬し、液晶ポリマーフィルム基材にエッチング孔加工を行った。エッチング速度が遅いため、フィルムに孔が開くまでには約45分間を要した。結果は図2に示すように、樹脂のサイドエッチングが大きく、テーパー角の小さな樹脂壁の表面も平滑でない孔しか得ることができなかった。   [Comparative Example 6] Nichigo Morton's alkali development type dry film NIT-215 is laminated on both sides of “Espanex” LCP (liquid crystal polymer film substrate vector: 100 μm / Cu: 18 μm) manufactured by Nippon Steel Chemical Co., Ltd. Then, the copper-side dry film was exposed and developed using the etching evaluation test mask (pore diameter 100 to 800 μm) of FIG. 5 to perform pattern mask processing. Next, after etching the copper film at the mask opening with ferric chloride etching solution on this test piece, the dry film only on the copper side is peeled off with an alkali stripping solution to form a copper mask having a pore diameter of 100 to 800 μm. Had made. Next, the liquid crystal polymer film test piece on which the copper mask was formed was immersed in an etching solution consisting of 28% by weight of potassium hydroxide, 33% by weight of ethanolamine and 39% by weight of water at a liquid temperature of 85 ° C. Etching holes were processed on the film substrate. Since the etching rate was slow, it took about 45 minutes for the holes to open in the film. As a result, as shown in FIG. 2, only side holes of the resin were large, and the surface of the resin wall having a small taper angle was able to obtain only holes that were not smooth.

[比較例7]新日本製鉄化学株式会社製「エスパネックス」LCP(液晶ポリマーフィルム基材べクスタ:100μm/Cu:18μm)の両面にニチゴーモートン社製アルカリ現像タイプのドライフィルムNIT−215をラミネートし、銅側のドライフィルムに図5のエッチング評価試験用マスク(孔径100〜800μm)を使って露光・現像し、パターンマスク加工を行った。つぎに、この試験片をアンモニア銅エッチング液でマスク開口部の銅膜をエッチングしたあと、アルカリ剥離液で銅側だけのドライフィルムを剥離して、100〜800μmの孔径をもつ銅マスクを作った。つぎに、この銅マスクが形成された液晶ポリマーフィルム試験片を、水酸化カリウム40重量%、エタノールアミン33重量%、水27重量%からなるエッチング液に液温度85°Cで7分間浸漬し、液晶ポリマーフィルム基材にエッチング孔加工を行った。樹脂のサイドエッチングが少なく、71度のテーパー角を有する樹脂壁の表面も平滑な孔が得られた。しかし、エッチング処理後のエッチング液の表面には白い膜状の物質が生成し、室温に一日放置したところ、液中の底部に結晶状の沈殿物が多量に生成していた。   [Comparative Example 7] Nichigo Morton's alkali development type dry film NIT-215 is laminated on both sides of “Espanex” LCP (liquid crystal polymer film substrate vector: 100 μm / Cu: 18 μm) manufactured by Nippon Steel Chemical Co., Ltd. Then, the copper-side dry film was exposed and developed using the etching evaluation test mask (pore diameter 100 to 800 μm) of FIG. 5 to perform pattern mask processing. Next, after etching the copper film of the mask opening with the ammonia copper etching solution on this test piece, the dry film only on the copper side was peeled off with an alkali stripping solution to make a copper mask having a hole diameter of 100 to 800 μm. . Next, the liquid crystal polymer film test piece on which the copper mask was formed was immersed in an etching solution consisting of 40% by weight of potassium hydroxide, 33% by weight of ethanolamine and 27% by weight of water at a liquid temperature of 85 ° C. for 7 minutes. Etching holes were processed in the liquid crystal polymer film substrate. There was little resin side etching, and a smooth hole was also obtained on the surface of the resin wall having a taper angle of 71 degrees. However, a white film-like substance was formed on the surface of the etching solution after the etching treatment, and when left at room temperature for one day, a large amount of crystalline precipitate was formed at the bottom of the solution.

液晶ポリエステルの分子構造を示す図である。It is a figure which shows the molecular structure of liquid crystalline polyester. 従来のエッチング液によるスルービアホールのSEM写真であり、撮影倍率:100倍と350倍の場合を示す。It is the SEM photograph of the through-via hole by the conventional etching liquid, and shows the case of photographing magnification: 100 times and 350 times. 本願発明による組成(KOH34.5%)のエッチング液によるスルービアホールのSEM写真であり、撮影倍率:100倍と350倍の場合を示す。It is a SEM photograph of a through-via hole by the etching liquid of composition (KOH34.5%) by this invention, and shows the case where photography magnification: 100 times and 350 times. 本願発明による組成(KOH34.5%)のエッチング液によるブラインドビアホールのSEM写真であり、撮影倍率:100倍と350倍の場合を示す。It is a SEM photograph of the blind via hole by the etching liquid of composition (KOH34.5%) by this invention, and the case where imaging magnification: 100 time and 350 time is shown. 評価用の丸孔パターンマスクを示す写真である。It is a photograph which shows the round hole pattern mask for evaluation. 液組成が例えば、KOH34.5%、MEA45%、水20.5%である本発明のエッチング液の使用日数10日後の液状態を示す写真である。It is a photograph which shows the liquid state after 10 days of use of the etching liquid of this invention whose liquid composition is 34.5% of KOH, 45% of MEA, and 20.5% of water, for example. 液組成が例えば、KOH40%、MEA33%、水27%である従来のエッチング液の使用日数1日後の液状態を示す写真である。It is a photograph showing the liquid state after one day of use of a conventional etching liquid whose liquid composition is, for example, KOH 40%, MEA 33%, and water 27%.

Claims (5)

液晶ポリマーのエッチング液において、30重量%以上35重量%未満のアルカリ金属水酸化物などの無機アルカリ化合物と、45〜50重量%の分子中に少なくとも1個以上のアミノ基と水酸基を有する脂肪族アミノアルコール及び水とからなり、かつ、全アルカリ成分濃度(無機アルカリ化合物とアミノアルコールの合計)が75重量%〜80重量%の水溶液であることを特徴とする液晶ポリマーのエッチング液。 In an etching solution for a liquid crystal polymer, an inorganic alkali compound such as an alkali metal hydroxide in an amount of 30% by weight to less than 35% by weight, and an aliphatic having at least one amino group and hydroxyl group in a molecule of 45 to 50% by weight A liquid crystal polymer etching solution comprising an amino alcohol and water, and an aqueous solution having a total alkali component concentration (total of inorganic alkali compounds and amino alcohol) of 75 wt% to 80 wt%. 前記アルカリ金属水酸化物が水酸化カリウムまたは水酸化ナトリウムであり、前記脂肪族アミノアルコールが2−アミノエタノールであることを特徴とする請求項1に記載の液晶ポリマーのエッチング液。 2. The liquid crystal polymer etching solution according to claim 1, wherein the alkali metal hydroxide is potassium hydroxide or sodium hydroxide, and the aliphatic amino alcohol is 2-aminoethanol. 前記液晶ポリマーが全芳香族ポリエステルであることを特徴とする請求項1または請求項2に記載の液晶ポリマーのエッチング液。 The liquid crystal polymer etching solution according to claim 1, wherein the liquid crystal polymer is a wholly aromatic polyester. 請求項1〜3のいずれか一つに記載の液晶ポリマーのエッチング液を用いて、金属張り液晶ポリマーフィルム基材をエッチングすることを特徴とする液晶ポリマーのエッチング方法。 A method for etching a liquid crystal polymer, comprising etching a metal-clad liquid crystal polymer film substrate using the liquid crystal polymer etchant according to claim 1. 前記液晶ポリマーのエッチング液の液温度が60°C以上90°C以下であることを特徴とする請求項4に記載の液晶ポリマーのエッチング方法。 The liquid crystal polymer etching method according to claim 4, wherein the liquid temperature of the liquid crystal polymer etching solution is 60 ° C. or higher and 90 ° C. or lower.
JP2005102888A 2005-03-31 2005-03-31 Liquid crystal polymer etching solution and liquid crystal polymer etching method. Active JP4104154B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005102888A JP4104154B2 (en) 2005-03-31 2005-03-31 Liquid crystal polymer etching solution and liquid crystal polymer etching method.
TW095110913A TW200641101A (en) 2005-03-31 2006-03-29 Etching solution for liquid crystal polymer and method for etching liquid crystal polymer
KR1020060028747A KR20060105541A (en) 2005-03-31 2006-03-30 Liquid crystal polymer etching solution and etching process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102888A JP4104154B2 (en) 2005-03-31 2005-03-31 Liquid crystal polymer etching solution and liquid crystal polymer etching method.

Publications (2)

Publication Number Publication Date
JP2006282791A JP2006282791A (en) 2006-10-19
JP4104154B2 true JP4104154B2 (en) 2008-06-18

Family

ID=37405040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102888A Active JP4104154B2 (en) 2005-03-31 2005-03-31 Liquid crystal polymer etching solution and liquid crystal polymer etching method.

Country Status (3)

Country Link
JP (1) JP4104154B2 (en)
KR (1) KR20060105541A (en)
TW (1) TW200641101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169249A (en) * 2018-10-30 2021-07-23 三星显示有限公司 Light emitting diode structure and light emitting diode manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008210891A (en) * 2007-02-23 2008-09-11 Fujikura Ltd Flexible printed circuit board
KR102340959B1 (en) * 2017-04-06 2021-12-17 미쓰비시 세이시 가부시키가이샤 Etching liquid for resin composition and etching method
CN112912466A (en) * 2018-10-24 2021-06-04 三菱制纸株式会社 Etching solution and etching method for resin composition
JP6805397B1 (en) 2019-04-03 2020-12-23 三菱製紙株式会社 Etching solution for liquid crystal polymer and etching method for liquid crystal polymer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288286A (en) * 2000-02-01 2001-10-16 Toray Ind Inc Etching method
JP2001310959A (en) * 2000-02-23 2001-11-06 Toray Ind Inc Liquid etchant for wet-etching resin membrane and etching process using the same
US6923919B2 (en) * 2000-07-18 2005-08-02 3M Innovative Properties Company Liquid crystal polymers for flexible circuits
JP2003261699A (en) * 2002-03-08 2003-09-19 Toray Eng Co Ltd Etching solution for liquid crystal polymer and etching method using the same
JP3929925B2 (en) * 2003-04-10 2007-06-13 東レエンジニアリング株式会社 Method for producing metal-clad liquid crystal polyester substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113169249A (en) * 2018-10-30 2021-07-23 三星显示有限公司 Light emitting diode structure and light emitting diode manufacturing method
US20220013693A1 (en) * 2018-10-30 2022-01-13 Samsung Display Co., Ltd. Light emitting element structure and method of fabricating a light emitting element
US11949045B2 (en) * 2018-10-30 2024-04-02 Samsung Display Co., Ltd. Light emitting element structure and method of fabricating a light emitting element

Also Published As

Publication number Publication date
TW200641101A (en) 2006-12-01
JP2006282791A (en) 2006-10-19
KR20060105541A (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US6403211B1 (en) Liquid crystal polymer for flexible circuits
TW540259B (en) Liquid crystal polymers for flexible circuits
EP0832918B1 (en) Polyimide etching solution and etching process
TWI627884B (en) Manufacturing method of printed circuit board
US5227008A (en) Method for making flexible circuits
JP4104154B2 (en) Liquid crystal polymer etching solution and liquid crystal polymer etching method.
US6611046B2 (en) Flexible polyimide circuits having predetermined via angles
JP2014503607A (en) Polymer etching agent and method of using the same
EP0446032B1 (en) Wet-etch process and composition
CN107113982A (en) Printing distributing board substrate, the method for making printing distributing board substrate, printing distributing board, the method and resin base material for making printing distributing board
US20110049104A1 (en) Etchant for copper or copper alloy, liquid for etching pretreatment, and etching method
CN106400015B (en) A kind of silvering remover and its preparation method and application
JP2014520955A (en) Method for providing adhesion of organic resist to copper or copper alloy surface
JP3251515B2 (en) Resin etching solution and etching method
JP2004190054A (en) Etching liquid
JP3765970B2 (en) Etching solution and method for manufacturing flexible wiring board
JP3929925B2 (en) Method for producing metal-clad liquid crystal polyester substrate
JP6184578B1 (en) Method for electroless copper plating and method for producing catalyst solution for electroless copper plating
JP2005154899A (en) Etchant and replenishment solution therefor, and etching method and method for producing wiring board using the same
CN113504715B (en) Printed circuit board developing additive
JP2003261699A (en) Etching solution for liquid crystal polymer and etching method using the same
JP4164954B2 (en) Etching method of polyimide resin
TW201931030A (en) Resist stripping solution
WO2005082983A9 (en) Etched polycarbonate films
JP6551784B2 (en) Method and apparatus for managing carbonic acid concentration in resist stripping solution

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

R150 Certificate of patent or registration of utility model

Ref document number: 4104154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250