JP4096618B2 - プラズマディスプレイ装置 - Google Patents

プラズマディスプレイ装置 Download PDF

Info

Publication number
JP4096618B2
JP4096618B2 JP2002142658A JP2002142658A JP4096618B2 JP 4096618 B2 JP4096618 B2 JP 4096618B2 JP 2002142658 A JP2002142658 A JP 2002142658A JP 2002142658 A JP2002142658 A JP 2002142658A JP 4096618 B2 JP4096618 B2 JP 4096618B2
Authority
JP
Japan
Prior art keywords
phosphor
ions
blue
layer
trivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002142658A
Other languages
English (en)
Other versions
JP2003336063A (ja
Inventor
正樹 青木
浩幸 河村
和彦 杉本
光弘 大谷
広志 瀬戸口
純一 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002142658A priority Critical patent/JP4096618B2/ja
Priority to CNB038007517A priority patent/CN100396752C/zh
Priority to US10/485,149 priority patent/US7067969B2/en
Priority to EP03752902A priority patent/EP1506988A4/en
Priority to KR1020047001525A priority patent/KR100554814B1/ko
Priority to PCT/JP2003/006046 priority patent/WO2003097766A1/ja
Publication of JP2003336063A publication Critical patent/JP2003336063A/ja
Application granted granted Critical
Publication of JP4096618B2 publication Critical patent/JP4096618B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はテレビなどの画像表示に用いられ、かつ紫外線により励起されて発光する蛍光体層を有するプラズマディスプレイ装置に関する。
【0002】
【従来の技術】
近年、コンピュータやテレビなどの画像表示に用いられているカラー表示デバイスにおいて、プラズマディスプレイパネル(以下、PDPという)を用いたプラズマディスプレイ装置は、大型で薄型軽量を実現することのできるカラー表示デバイスとして注目されている。
【0003】
プラズマディスプレイ装置は、いわゆる3原色(赤、緑、青)を加法混色することにより、フルカラー表示を行っている。このフルカラー表示を行うために、プラズマディスプレイ装置には3原色である赤(R)、緑(G)、青(B)の各色を発光する蛍光体層が備えられ、この蛍光体層を構成する蛍光体粒子はPDPの放電セル内で発生する紫外線により励起され、各色の可視光を生成している。
【0004】
上記各色の蛍光体に用いられる化合物としては、例えば、赤色を発光する(YGd)BO3:Eu3+、Y23:Eu3+、緑色を発光するZn2SiO4:Mn2+、青色を発光するBaMgAl1017:Eu2+が知られている。これらの各蛍光体は、所定の原材料を混ぜ合わせた後、1000℃以上の高温で焼成することにより固相反応されて作製される(例えば、蛍光体ハンドブック P219、225 オーム社参照)。この焼成により得られた蛍光体粒子は、粉砕してふるい分け(赤、緑の平均粒径:2μm〜5μm、青の平均粒径:3μm〜10μm)を行ってから使用している。
【0005】
蛍光体粒子を粉砕、ふるい分け(分級)する理由は、一般にPDPに蛍光体層を形成する場合において、各色蛍光体粒子をペーストにしてスクリーン印刷する手法、または細いノズルから蛍光体インキを吐出させるインキジェット法等が用いられており、ペーストを塗布した際に蛍光体の粒子径が小さく、均一である(粒度分布がそろっている)方がよりきれいな塗布面が得易いためである。つまり、蛍光体の粒子径が小さく、均一で形状が球状に近いほど、塗布面がきれいになり、蛍光体層における蛍光体粒子の充填密度が向上するとともに、粒子の発光表面積が増加し、アドレス駆動時の不安定性も改善される。理論的にはプラズマディスプレイ装置の輝度を上げることができると考えられるからである。
【0006】
【発明が解決しようとする課題】
しかしながら、蛍光体粒子の粒径を小さくすることで蛍光体の表面積が増大したり、蛍光体中の欠陥が増大したりする。そのため、蛍光体表面に多くの水や炭酸ガス、または炭化水素系の有機物が付着しやすくなる。特に、Ba(1-x)MgAl1017:Euxや、Ba(1-x-y)SryMgAl1017:Euxのような2価のEuイオンが発光中心となる青色蛍光体の場合は、これらの結晶構造が層状構造を有しており(例えば、ディスプレイアンドイメージング 1999.Vol.7、pp225〜234)、その層の中でBa原子を含有する層(Ba−O層)近傍の酸素(O)に欠損が、粒径に関係なく存在しており粒径が小さくなるとその欠陥量がさらに増大するという課題を有している(例えば、応用物理、第70巻 第3号 2001年 pp310)。
【0007】
そのため、蛍光体のBa−O層の表面に空気中に存在する水が選択的に吸着してしまう。したがって、パネル製造工程中で水が大量にパネル内に放出され放電中に蛍光体やMgOと反応して輝度劣化や色度変化(色度変化による色ずれや画面の焼き付け)または駆動マージンの低下や放電電圧の上昇といった課題が発生する。
【0008】
また、水や炭化水素系ガスが選択的に青色蛍光体に吸着するため、蛍光体インキを作製する時バインダー中のエチルセルロースが、青色蛍光体に吸着しにくくなるため(蛍光体とエチルセルロースの結合が不十分となるため)、蛍光体とエチルセルロースが分離しやすくなる。エチルセルロースと蛍光体が分離すると、蛍光体は速度勾配がゼロとなるノズル開口部付近に堆積したり、分離したセルロース自身が会合したりして、結果としてノズルの目詰まりを起こすと言う課題が発生する。
【0009】
これらの課題を解決するために、従来Ba−O層の欠陥を修復する事を目的に蛍光体表面にAl23の結晶を全面にコーティングする方法が考案されている。しかしながら、全面にコートすることによって、紫外線の吸収が起こり、蛍光体の発光輝度が低下するという課題及びコーティングしてもなお紫外線による輝度の低下という課題があった。
【0010】
本発明はこのような課題に鑑みなされたもので、青色蛍光体表面への水の吸着を抑え、特性の改善を図ることを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記課題に鑑み、青色蛍光体のBaまたはSr原子の一部をLaで置き換えることで、Baを含有する層(Ba−O層)近傍の酸素の欠陥をなくして、青色蛍光体表面への水の吸着を抑え、蛍光体の輝度を低下させずに輝度劣化や色度変化または、放電特性の改善を行うものである。
【0012】
【発明の実施の形態】
PDPなどに用いられている蛍光体は、固相反応法や水溶液反応法等で作製されているが、粒子径が小さくなると欠陥が発生しやすくなる。特に固相反応では蛍光体を焼成後粉砕することで、多くの欠陥が生成することが知られている。また、パネルを駆動する時の放電によって生じる波長が147nmの紫外線によっても、蛍光体に欠陥が発生するということも知られている(例えば、電子情報通信学会 技術研究報告、EID99−94 2000年1月27日)。特に、青色蛍光体であるBaMgAl1017:Euは、蛍光体自身に酸素欠陥(特にBa−O層)を有していることも知られている(例えば、応用物理、第70巻 第3号 2001年 PP310)。図6は、BaMgAl1017:Eu青色蛍光体のBa−O層の構成を模式的に示した図である。
【0013】
従来の青色蛍光体について、これらの欠陥が発生することそのものが、輝度劣化の原因であるとされてきた。すなわち、パネル駆動時に発生するイオンによる蛍光体への衝撃によって出来る欠陥や、波長147nmの紫外線によって出来る欠陥が劣化の原因であるとされてきた。
【0014】
本発明者らは、輝度劣化の原因の本質は欠陥が存在することだけで起こるのではなく、Ba−O層近傍の酸素(O)欠陥に選択的に水や炭酸ガスが吸着し、その吸着した状態に紫外線やイオンが照射されることによって蛍光体が水と反応して輝度劣化や色ずれが起こることを見出した。すなわち、青色蛍光体中のBa−O層近傍の酸素欠陥に水や炭酸ガスを吸着することによって、種々の劣化が起こるという知見を得た。
【0015】
これらの知見から青色蛍光体のBa−O層近傍の酸素欠陥を低減させることで、青色蛍光体の輝度を低下させることなく、パネル作製工程やパネルの駆動時の青色蛍光体の劣化防止を行った。
【0016】
ここで、Ba−O層近傍の酸素欠陥を低減させるために、BaMgAl1017:Eu、またはBaSrMgAl1017:Euの結晶構造を有する青色蛍光体中のBaまたはSr元素の一部をLaと置換することが、輝度を低下させずに酸素欠陥を低減出来ることが判った。また、これに加えてBaまたはSrと置換している2価のEuイオンの一部を3価のEuイオンで置換することで、Ba−O層近傍の酸素欠陥をさらに大幅に低減できることが判った。
【0017】
青色蛍光体である(Ba、Sr)MgAl1017結晶中にLa(ランタン)やEu(ユーロピウム)を添加すると、La、Euは2価の価数を取るBa(バリウム)やSr(ストロンチューム)の格子に入る。一般に青色蛍光体を作製する時、還元雰囲気で焼成するため、Eu(ユーロピウム)は還元されて2価のプラスイオンとして存在し、Laは、還元されにくいため3価、2価が共存している。このような青色蛍光体において、例えば、酸化雰囲気中で蛍光体を焼成しそのEuの2価イオンの内の一部を3価のEuイオンで置換すること及びLaイオンをほぼ3価にすることで、プラスの電荷が結晶中に大幅に増大する。Ba、Sr、Euはすべて2価であったのが、La、Euの添加と酸化により3価が結晶中、特にBa−O層に増加する。この大幅に増加した+電荷を中和するために(電荷を補償するために)、Ba元素の近傍の酸素欠陥を−電荷を持つ酸素が埋めるため、結果としてBa−O層近傍の酸素欠陥が低減できるものと考えられる。
【0018】
したがって本蛍光体を用いることで、工程中の輝度劣化や、147nmの紫外線による劣化または、ノズルの目詰まりといった課題を解決できる。
【0019】
次に、本発明の蛍光体の製造方法について説明すると、蛍光体本体の製造方法としては、従来の酸化物や炭酸化物原料を、フラックスを用いた固相焼結法や有機金属塩や硝酸塩を用い、これらを水溶液中で加水分解したり、アルカリ等を加えて沈殿させる共沈法を用いて蛍光体の前駆体を作製し、次にこれを熱処理する液相法、または蛍光体原料が入った水溶液を加熱された炉中に噴霧して作製する液体噴霧法等の蛍光体の製造方法が考えられるが、いずれの方法で作製した蛍光体を用いてもBaEuMgAl1017中のBaイオンの一部をLaイオンで置換すること、及びEuの2価のイオンを3価のイオンでその一部を置換することの効果があることが判明した。また、Laの置換のみでも、Euの2価の一部を3価にすることのみでも効果はあるが、Laの置換とEuの一部を3価にすることを同時に行えばさらに効果的である。
【0020】
ここで、蛍光体作製方法の一例として、青色蛍光体の固相反応法による製法について述べる。原料として、BaCO3、MgCO3、La23、Al23、Eu23等の炭酸化物や酸化物と、焼結促進剤としてのフラックス(AlF3、NH4Cl)を少量加えて1400℃で2時間焼成後、これを粉砕及びふるい分けを行い、次に1500℃で2時間、還元性雰囲気(H25%、N2中)で焼成し、再び粉砕とふるい分けを行い蛍光体とする。また、さらに輝度低下や147nmの紫外光に対する輝度劣化を少なくするために、次にこの蛍光体を酸素(O2)中、酸素−窒素(N2)中、またはオゾン(O3)−窒素中の酸化雰囲気で350℃〜900℃で焼成して、Eu2価の一部を3価にし、Laを90%以上3価にする。
【0021】
水溶液から蛍光体を作製する場合(液相法)は蛍光体を構成する元素を含有する有機金属塩(例えばアルコキシドやアセチルアセトン)または硝酸塩を水に溶解後、加水分解して共沈物(水和物)を作製し、それを水熱合成(オートクレーブ中で結晶化)や、空気中で焼成、または高温炉中に噴霧して得られた粉体を1500℃で2時間、還元性雰囲気(H25%、N2中)で焼成し、粉砕とふるい分けを行い、蛍光体とする。次にさらに劣化特性を改善するために、これをO2、O2−N2、O3−N2中で350℃〜900℃で焼成する。
【0022】
なお、紫外線や放電による劣化を改善するためには、Laの置換量は0.1%〜20%が好ましい。0.1%以下では、改善効果が少なく20%以上では輝度低下を起こす。また、Eu2価に対するEu3価の量は、5%〜40%が望ましい。置換量が5%以下では輝度劣化を防止する効果はなく、40%以上になると蛍光体の輝度の低下を伴うため好ましくない。また、前記2価のEuイオンの一部が3価になったことについては、EXANES(X−ray Absorption Near Edge Structure)スペクトルの測定により同定した。
【0023】
このように従来の青色蛍光体粉作製工程を用いて、(Ba、Sr)EuMgAl1017結晶中のBa、SrとLaの置換、及びEuの2価イオンをEuの3価のイオンで一部置換することで、青色蛍光体の紫外光(147nm)による輝度を低下させることなく、水に対して強い(蛍光体焼成工程、パネル封着工程、パネルエージング工程またはパネル駆動中に発生する水や炭酸ガスに耐久性を持つ)青色蛍光体が得られる。
【0024】
本発明の請求項1に記載の発明は、1色または複数色の放電セルが複数配列されるとともに、各放電セルに対応する色の蛍光体層が配設され、当該蛍光体層が紫外線により励起されて発光するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、前記蛍光体層は青色蛍光体層を有し、当該青色蛍光体層を構成する青色蛍光体は、Ba (1-x-z) Eu x La z MgAl 10 17 またはBa (1-x-y-z) Eu x Sr y La z MgAl 10 17 (ただし、0.03≦X≦0.20、0.1≦Y≦0.5、0.001≦Z≦0.2)で表される化合物で構成し、かつ2価のEuイオンの一部を3価のEuイオンで置換したことを特徴とする。
【0026】
すなわち、Ba(1-x-z)EuxLazMgAl1017、またはBa(1-x-y-z)EuxSryLazMgAl1017の2価のEuイオンの一部を3価のEuイオンで置換した青色蛍光体粒子は、粒径が0.05μm〜3μmと小さく、粒度分布も良好である。また、蛍光体層を形成する蛍光体粒子の形状が球状であればさらに充填密度が向上し、実質的に発光に寄与する蛍光体粒子の発光面積が増加する。したがって、プラズマディスプレイ装置の輝度も向上すると共に、輝度劣化や色ずれが抑制されて輝度特性に優れたプラズマディスプレイ装置を得ることができる。
【0027】
ここで、蛍光体粒子の平均粒径は、0.1μm〜2.0μmの範囲がさらに好ましい。また、粒度分布は最大粒径が平均値の4倍以下で最小値が平均値の1/4以上がさらに好ましい。蛍光体粒子において紫外線が到達する領域は、粒子表面から数百nm程度と浅く、ほとんど表面しか発光しない状態であり、こうした蛍光体粒子の粒径が2.0μm以下になれば発光に寄与する粒子の表面積が増加して蛍光体層の発光効率は高い状態に保たれる。また、3.0μm以上であると、蛍光体の厚みが20μm以上必要となり放電空間が十分確保できない。0.1μm以下であると、欠陥が生じやすく輝度が向上しない。
【0028】
また、蛍光体層の厚みを蛍光体粒子の平均粒径の8〜25倍の範囲内にすれば、蛍光体層の発光効率が高い状態を保ちつつ放電空間を十分に確保することができるので、プラズマディスプレイ装置における輝度を高くすることができる。特に蛍光体の平均粒径が3μm以下であるとその効果は大きい(映像情報メディア学会 IDY2000−317.PP32)。
【0029】
ここで、プラズマディスプレイ装置における青色蛍光体層に使用する具体的な蛍光体粒子としては、2価のEuイオンの一部を3価のEuイオンで置換したBa(1-x-z)EuxLazMgAl1017、もしくはBa(1-x-y-z)EuxSryLazMgAl1017で表される化合物を用いることができる。ここで、前記化合物におけるX、Y、Zの値は、0.03≦X≦0.20、0.1≦Y≦0.5、0.001≦Z≦0.2であれば、輝度が高く好ましい。
【0030】
また、プラズマディスプレイ装置における赤色蛍光体層に使用する具体的な蛍光体粒子としては、Y2X3:EuX、もしくは(Y、Gd)1-XBO3:EuXで表される化合物を用いることができる。ここで、赤色蛍光体の化合物におけるXの値は、0.05≦X≦0.20であれば、輝度及び輝度劣化に優れ、好ましい。
【0031】
また、プラズマディスプレイ装置における緑色蛍光体層に使用する具体的な蛍光体粒子としては、Ba1-XAl1219:MnX、もしくはZn2-XSiO4:MnXで表される化合物を用いることができる。ここで、上記緑色蛍光体の化合物におけるXの値は、0.01≦X≦0.10であれば、輝度、及び輝度劣化に優れるため好ましい。
【0032】
また、本発明に係る製造方法は、背面側のパネル基板上に、Ba(1-x-z)EuxLazMgAl1017または、Ba(1-x-y-z)EuxSryLazMgAl1017の青色蛍光体であって、2価のEuの一部を3価のEuでイオンで置換した青色蛍光体粒子、赤色蛍光体粒子、及び緑色蛍光体粒子と、バインダーとからなるペーストを配設する配設工程と、当該パネル基板上に配設されたペーストに含まれるバインダーを焼失させる焼成工程と、焼成工程により蛍光体粒子が基板上に配設された背面側パネルと前面側パネルとを重ね合わせて封着する工程とを備えることを特徴とする。これにより、輝度、及び輝度劣化に優れたプラズマディスプレイ装置を得ることができる。
【0034】
以下、本発明の実施の形態によるプラズマディスプレイ装置ついて、図面を参照しながら説明する。
【0035】
図1はPDPにおける前面ガラス基板を取り除いた概略平面図であり、図2は、PDPの画像表示領域について一部を断面で示す斜視図である。なお、図1においては表示電極群、表示スキャン電極群、アドレス電極群の本数などについては分かり易くするため一部省略して図示している。
【0036】
図1に示すように、PDP100は、前面ガラス基板101(図示せず)と、背面ガラス基板102と、N本の表示電極103と、N本の表示スキャン電極104(N本目を示す場合はその数字を付す)と、M本のアドレス電極群107(M本目を示す場合はその数字を付す)と、斜線で示す気密シール層121とからなり、各電極103、104、107による3電極構造の電極マトリックスを有しており、表示電極103及び表示スキャン電極104とアドレス電極107との交点にセルが形成されている。123は画像表示領域である。
【0037】
このPDP100は、図2に示すように、前面ガラス基板101の1主面上に表示電極103、表示スキャン電極104、誘電体ガラス層105、MgO保護層106が配設された前面パネルと、背面ガラス基板102の1主面上にアドレス電極107、誘電体ガラス層108、隔壁109、及び蛍光体層110R、110G、110Bが配設された背面パネルとが張り合わされ、前面パネルと背面パネルとの間に形成される放電空間122内に放電ガスが封入された構成となっており、図3に示すPDP駆動装置に接続することによりプラズマディスプレイ装置が構成されている。
【0038】
プラズマディスプレイ装置は、図3に示すように、PDP100に表示ドライバ回路153、表示スキャンドライバ回路154、アドレスドライバ回路155を有しており、コントローラ152の制御に従い点灯させようとするセルにおいて表示スキャン電極104とアドレス電極107に電圧を印加することによりその間でアドレス放電を行い、その後表示電極103、表示スキャン電極104間にパルス電圧を印加して維持放電を行う。この維持放電により、当該セルにおいて紫外線が発生し、この紫外線により励起された蛍光体層が発光することでセルが点灯するもので、各色セルの点灯、非点灯の組み合わせによって画像が表示される。
【0039】
次に、上述したPDPについて、その製造方法を図4及び図5を参照しながら説明する。
【0040】
前面パネルは、前面ガラス基板101上に、まず各N本の表示電極103及び表示スキャン電極104(図2においては各2本のみ表示している)を交互かつ平行にストライプ状に形成した後、その上から誘電体ガラス層105で被覆し、さらに誘電体ガラス層の表面にMgO保護層106を形成することによって作製される。
【0041】
表示電極103及び表示スキャン電極104は、ITOからなる透明電極と銀からなるバス電極とから構成される電極であって、バス電極用の銀ペーストはスクリーン印刷により塗布した後、焼成することによって形成される。
【0042】
誘電体ガラス層105は、鉛系のガラス材料を含むペーストをスクリーン印刷で塗布した後、所定温度、所定時間(例えば560℃で20分)焼成することによって、所定の層の厚み(約20μm)となるように形成する。上記鉛系のガラス材料を含むペーストとしては、例えば、PbO(70wt%)、B23(15wt%)、SiO2(10wt%)、及びAl23(5wt%)と有機バインダー(α−ターピネオールに10%のエチルセルロースを溶解したもの)との混合物が使用される。ここで、有機バインダーとは樹脂を有機溶媒に溶解したものであり、エチルセルロース以外に樹脂としてアクリル樹脂、有機溶媒としてブチルカービトールなども使用することができる。さらに、こうした有機バインダーに分散剤(例えば、グリセルトリオレエート)を混入させてもよい。
【0043】
MgO保護層106は、酸化マグネシウム(MgO)からなるものであり、例えばスパッタリング法やCVD法(化学蒸着法)によって層が所定の厚み(約0.5μm)となるように形成される。
【0044】
一方、背面パネルは、まず背面ガラス基板102上に、電極用の銀ペーストをスクリーン印刷法やフォトグラフィー法で形成し、その後焼成することによってM本のアドレス電極107が列設された状態に形成される。その上に鉛系のガラス材料を含むペーストがスクリーン印刷法で塗布されて誘電体ガラス層108が形成され、同じく鉛系のガラス材料を含むペーストをスクリーン印刷法により所定のピッチで繰り返し塗布した後焼成することによって隔壁109が形成される。この隔壁109により、放電空間122はライン方向に一つのセル(単位発光領域)毎に区画される。
【0045】
図4はPDP100の一部断面図である。図4に示すように、隔壁109の間隙寸法Wが一定値32インチ〜50インチのHD−TVに合わせて130μm〜240μm程度に規定される。そして、隔壁109と隔壁109の間の溝には、赤色(R)蛍光体、緑色(G)蛍光体、及び青色(B)の蛍光体、すなわちBaの一部をLaで置換したBa(1-x-z)EuxLazMgAl1017またはBa(1-x-y-z)EuxSryLazMgAl1017であって、2価のEuイオンの一部を3価のEuイオンで置換した青色(B)の蛍光体の各蛍光体粒子と、有機バインダーとからなるペースト状の蛍光体インキを塗布し、これを400〜590℃の温度で焼成して有機バインダーを焼失させることによって、各蛍光体粒子が結着してなる蛍光体層110R、110G、110Bが形成される。この蛍光体層110R、110G、110Bのアドレス電極107上における積層方向の厚みLは、各色蛍光体粒子の平均粒径のおよそ8〜25倍程度に形成することが望ましい。すなわち、蛍光体層に一定の紫外線を照射したときの輝度(発光効率)を確保するためには、蛍光体層は、放電空間において発生した紫外線を透過させることなく吸収するために、蛍光体粒子は最低でも8層、好ましくは20層程度積層された厚みを保持することが望ましく、それ以上の厚みとなれば、蛍光体層の発光効率はほとんどサチュレートしてしまうとともに、20層程度積層された厚みを超えると放電空間122の大きさを十分に確保できなくなるからである。また、水熱合成法等により得られた蛍光体粒子のように、その粒径が十分小さく、かつ球状であれば、球状でない粒子を使用する場合と比べ積層段数が同じ場合であっても蛍光体層充填度が高まるとともに、蛍光体粒子の総表面積が増加するため、蛍光体層における実際の発光に寄与する蛍光体粒子表面積が増加しさらに発光効率が高まる。この蛍光体層110R、110G、110Bの合成方法、及び青色蛍光体層に用いる2価のEuイオンが3価のEuイオンに置換された青色蛍光体粒子の製造法については後述する。
【0046】
このようにして作製された前面パネルと背面パネルは、前面パネルの各電極と背面パネルのアドレス電極とが直交するように重ね合わせられるとともに、パネル周縁部に封着用ガラスを配置し、これを例えば450℃程度で10〜20分間焼成して気密シール層121(図1)を形成させることにより封着される。そして、一旦放電空間122内を高真空(例えば、1.1×10-4Pa)に排気した後、放電ガス(例えば、He−Xe系、Ne−Xe系の不活性ガス)を所定の圧力で封入することによってPDP100が作製される。
【0047】
図5は、蛍光体層を形成する際に用いるインキ塗布装置の概略構成図である。図5に示すように、インキ塗布装置200は、サーバ210、加圧ポンプ220、ヘッダ230などを備え、蛍光体インキを蓄えるサーバ210から供給される蛍光体インキは、加圧ポンプ220によりヘッダ230に加圧されて供給される。ヘッダ230にはインキ室230a及びノズル240(内径が30μm〜120μm)が設けられており、加圧されてインキ室230aに供給された蛍光体インキは、ノズル240から連続的に吐出されるようになっている。このノズル240の口径Dは、ノズルの目詰まり防止のため30μm以上で、かつ塗布の際の隔壁からのはみ出し防止のために隔壁109間の間隔W(約130μm〜200μm)以下にすることが望ましく、通常30μm〜130μmに設定される。
【0048】
ヘッダ230は、図示しないヘッダ走査機構によって直線的に駆動されるように構成されており、ヘッダ230を走査させるとともにノズル240から蛍光体インキ250を連続的に吐出することにより、背面ガラス基板102上の隔壁109間の溝に蛍光体インキが均一に塗布される。ここで、使用される蛍光体インキの粘度は25℃において、1500〜30000CP(センチポイズ)の範囲に保たれている。
【0049】
なお、上記サーバ210には図示しない攪拌装置が備えられており、その攪拌により蛍光体インキ中の粒子の沈殿が防止される。またヘッダ230は、インキ室230aやノズル240の部分も含めて一体成形されたものであり、金属材料を機器加工ならびに放電加工することによって作製されたものである。
【0050】
また、蛍光体層を形成する方法としては、上記方法に限定されるものではなく、例えば、フォトリソ法、スクリーン印刷法、及び蛍光体粒子を混合させたフィルムを配設する方法など、種々の方法を利用することができる。
【0051】
蛍光体インキは、各色蛍光体粒子、バインダー、溶媒とが混合され、1500〜30000センチポアズ(CP)となるように調合されたものであり、必要に応じて、界面活性剤、シリカ、分散剤(0.1〜5wt%)等を添加してもよい。
【0052】
この蛍光体インキに調合される赤色蛍光体としては、(Y、Gd)1-XBO3:EuX、またはY2X3:EuXで表される化合物が用いられる。これらは、その母体材料を構成するY元素の一部がEuに置換された化合物である。ここで、Y元素に対するEu元素の置換量Xは、0.05≦X≦0.20の範囲となることが好ましい。これ以上の置換量とすると、輝度は高くなるものの輝度劣化が著しくなることから実用上使用できにくくなると考えられる。一方、この置換量以下である場合には、発光中心であるEuの組成比率が低下し、輝度が低下して蛍光体として使用できなくなるためである。
【0053】
緑色蛍光体としては、Ba1-XAl1219:MnX、またはZn2-XSiO4:MnXで表される化合物が用いられる。Ba1-XAl1219:MnXは、その母体材料を構成するBa元素の一部がMnに置換された化合物であり、Zn2-XSiO4:MnXは、その母体材料を構成するZn元素の一部がMnに置換された化合物である。ここで、Ba元素及びZn元素に対するMn元素の置換量Xは、上記赤色蛍光体のところで説明した理由と同様の理由により、0.01≦X≦0.10の範囲となることが好ましい。
【0054】
青色蛍光体としては、Ba(1-x-z)EuxLazMgAl1017またはBa(1-x-y-z)EuxSryLazMgAl1017で表される化合物が用いられる。Ba(1-x-z)EuxLazMgAl1017、Ba(1-x-y-z)EuxSryLazMgAl1017は、その母体材料を構成する2価のBa元素の一部が3価のLaや2価のEuまたは、2価のSrに置換された化合物である。ここで、Ba元素に対するLa、Sr、Eu元素の置換量は、上記と同様の理由により、前者の青色蛍光体は0.03≦X≦0.20、0.1≦Y≦0.5、0.001≦Z≦0.2の範囲となることが好ましい。また、前記2価のEuイオンと置換させる3価のEuイオンの置換量はBaEu(+2)1-aEu(+3)aLaMgAl1017とすると0.05≦a≦0.4、の範囲となることが好ましい。すなわち5%〜40%の範囲が好ましい。
【0055】
これらの蛍光体の合成方法については後述する。
【0056】
蛍光体インキに調合されるバインダーとしては、エチルセルロースやアクリル樹脂を用い(インキの0.1〜10wt%を混合)、溶媒としては、α−ターピネオール、ブチルカービトールを用いることができる。なお、バインダーとして、PMAやPVAなどの高分子を、溶媒として、ジエチレングリコール、メチルエーテルなどの有機溶媒を用いることもできる。
【0057】
また、本実施の形態においては、蛍光体粒子には、固相焼成法、水溶液法、噴霧焼成法、水熱合成法により製造されたものが用いられる。
【0058】
(1)青色蛍光体
(Ba(1-x-z)EuxLazMgAl1017について)
まず、混合液作製工程において、原料となる、硝酸バリウムBa(No32、硝酸マグネシウムMg(NO32、硝酸アルミニウムAl(NO33、硝酸ユーロピウムEu(NO32、硝酸ランタンLa(NO33を、モル比が上記化学式になるように(0.03≦X≦0.25、0.001≦Z≦0.2)混合し、これを水性媒体に溶解して混合液を作製する。この水性媒体にはイオン交換水、純水が不純物を含まない点で好ましいが、これらに非水溶媒(メタノール、エタノールなど)が含まれていても使用することができる。
【0059】
次に水和混合液を金または白金などの耐食性、耐熱性を持つものからなる容器に入れて、例えばオートクレーブなどの加圧しながら加熱することができる装置を用い、高圧容器中で所定温度(100〜300℃)、所定圧力(0.2MPa〜10MPa)の下で水熱合成(12〜20時間)を行う。
【0060】
次に、この粉体を還元雰囲気下(例えば水素を5%、窒素を95%含む雰囲気)で、所定温度、所定時間(例えば1350℃で2時間)焼成し、次にこれを分級して蛍光体を作製する。次に、Euの2価の一部を3価にするために、この蛍光体をO2、O2−N2、またはO3−N2中で350℃〜100℃で焼成することにより、還元雰囲気下で作製した青色蛍光体中の2価のEu〈還元雰囲気下で作製した青色蛍光体のEuはほとんど2価〉の一部を3価のEuで置換した所望の青色蛍光体Ba(1-x-z)EuxLazMgAl1017を得ることができる。また、O2、O2−N2、O3−N2中で焼成する時に、Al23やSiO2、La23等の酸化物やLaF2、AlF3等のフッ化物をこれらの元素を含有する有機化合物(例えばアルコキシドやアセチルアセトン)を用いて蛍光体表面に加水分解法(蛍光体紛とアルコール、及び有機化合物を混合して有機化合物を蛍光体表面で加水分解しその後アルコールを除去し焼成する方法)を用いて付着させれば、青色蛍光体の劣化特性はさらに改良される。なお、これらの酸化物やフッ化物のコーティング量は紫外線が通過する必要から必要最小限が望ましい。すなわち0.1μm以下が望ましい。
【0061】
また、水熱合成を行うことにより得られる蛍光体粒子は、形状が球状となり、かつ粒径が従来の固相反応から作製されるものと比べて小さく(平均粒径:0.05μm〜2.0μm程度)形成される。なお、ここでいう「球状」とは、ほとんどの蛍光粒子の軸径比(短軸径/長軸径)が、例えば、0.9以上1.0以下となるように定義されるものであるが、必ずしも蛍光体粒子のすべてがこの範囲に入る必要はない。
【0062】
また、前記水和混合物を、金または白金の容器に入れずに、この水和混合物をノズルから高温炉に吹き付けて蛍光体を合成する噴霧法によって得られた青色蛍光体を用い、これをO2、O2−N2、またはO3−N2中で焼成しても作製することができる。
(Ba(1-x-y-z)EuxSryLazMgAl1017について)
この蛍光体は、上述したBa(1-x-z)EuxLazMgAl1017と原料が異なるのみで固相反応法で作製する。以下、その使用する原料について説明する。
【0063】
原料として、水酸化バリウムBa(OH)2、水酸化ストロンチウムSr(OH)2、水酸化マグネシウムMg(OH)2、水酸化アルミニウムAl(OH)3、水酸化ユーロピウムEu(OH)2、水酸化ランタンLa(OH)3を必要に応じたモル比となるように秤量し、これらをフラックスとしてのAlF3と共に混合し、これを還元雰囲気下、例えば水素を5%、窒素を95%の雰囲気で所定温度(1000℃から1600℃)で2時間焼成した後、空気分級機によって分級して青色蛍光体粉を作製する。次に、Euの2価の一部を3価にするためにO2、O2−N2、またはO3−N2中で焼成してEuの2価イオンの一部を3価のイオンで置換した青色蛍光体を得る。
【0064】
なお、蛍光体の原料として、酸化物、硝酸塩、水酸化物を主に用いたが、Ba、Sr、Mg、Al、Eu、La等の元素を含む有機金属化合物、例えば金属アルコキシドやアセチルアセトン等を用いて、蛍光体を作製することもできる。また、O2、O2−N2、O3−N2中で焼成するときに、Al23、SiO2、AlF3、La23、LaF2等を同時に金属アルコキシドやアセチルアセトンを用いた加水分解法によってコーティングすれば蛍光体の劣化特性はさらに改良される。
【0065】
(2)緑色蛍光体
(Zn2-XSiO4:MnXについて)
まず、混合液作製工程において、原料である、硝酸亜鉛Zn(NO3)、硝酸珪素Si(NO32、硝酸マンガンMn(NO32を、モル比で2−X:1:X(0.01≦X≦0.10)となるように混合し、次にこの混合溶液をノズルから超音波を印加しながら1500℃に加熱した焼に噴霧して緑色蛍光体を作製する。
(Ba1-XAl1219:MnXについて)
まず、混合液作製工程において、原料である、硝酸バリウムBa(No32、硝酸アルミニウムAl(NO32、硝酸マンガンMn(NO32がモル比で1−X:12:X(0.01≦X≦0.10)となるように混合し、これをイオン交換水に溶解して混合液を作製する。
【0066】
次に、水和工程においてこの混合液に塩基性水溶液(例えばアンモニア水溶液)を滴下することにより、水和物を形成させる。その後、水熱合成工程において、この水和物とイオン交換水を白金や金などの耐食性、耐熱性を持つものからなるカプセル中に入れて、例えばオートクレーブを用いて高圧容器中で所定温度、所定圧力(例えば温度100〜300℃、圧力0.2MPa〜10MPa)の条件下で、所定時間(例えば2〜20時間)水熱合成を行う。
【0067】
その後、乾燥することにより、所望のBa1-XAl1219:MnXが得られる。この水熱合成工程により、得られる蛍光体は粒径が0.1μm〜2.0μm程度となり、その形状が球状となる。次にこの粉体を空気中で800℃〜1100℃でアニール後分級して、緑色の蛍光体とする。
【0068】
(3)赤色蛍光体
((Y、Gd)1-XBO3:EuXについて)
混合液作製工程において、原料である、硝酸イットリウムY2(NO33と水硝酸ガドリミウムGd2(NO33とホウ酸H3BO3と硝酸ユーロピウムEu2(NO33を混合し、モル比が1−X:2:X(0.05≦X≦0.20)、YとGdの比は65対35となるように混合し、次にこれを空気中で1200℃〜1350℃で2時間熱処理後、分級して赤色蛍光体を得る。
(Y2-X3:EuXについて)
混合液作製工程において、原料である、硝酸イットリウムY2(NO32と硝酸ユーロピウムEu(NO32を混合し、モル比が2−X:X(0.05≦X≦0.30)となるようにイオン交換水に溶解して混合液を作製する。
【0069】
次に、水和工程において、この水溶液に対して塩基性水溶液(例えばアンモニア水溶液)を添加し、水和物を形成させる。
【0070】
その後、水熱合成工程において、この水和物とイオン交換水を白金や金などの耐食性、耐熱性を持つものからなる容器中に入れ、例えばオートクレーブを用いて高圧容器中で温度100〜300℃、圧力0.2MPa〜10MPaの条件下で、3〜12時間水熱合成を行う。その後、得られた化合物の乾燥を行うことにより、所望のY2-X3:EuXが得られる。
【0071】
次に、この蛍光体を空気中で1300℃〜1400℃2時間でアニール後分級して赤色蛍光体とする。この水熱合成工程により、得られる蛍光体は粒径が0.1μm〜2.0μm程度となり、かつその形状が球状となる。この粒径、形状は発光特性に優れた蛍光体層を形成するのに適している。
【0072】
なお、上述したPDP100の蛍光体層110R、110Gについては、従来用いられてきた蛍光体で、蛍光体層110Bについては、蛍光体を構成するBa、Srの一部をLaで置換した蛍光体で、Eu2価のイオンの一部をEuの3価のイオンで置換した蛍光体粒子を使用した。特に、従来の青色蛍光体は、本発明の青色蛍光体と比べて、各工程中の劣化及び147nmによる紫外線による劣化が大きいため、3色同時に発光した場合の白色の色温度は低下する傾向があった。
【0073】
そのため、プラズマディスプレイ装置においては、回路的に青色以外の蛍光体(赤、緑)のセルの輝度を下げることにより白表示の色温度を改善していたが、本発明にかかる製造方法により製造された青色蛍光体を使用すれば、青色セルの輝度が高まり(輝度の低下がなく)、またパネル作製工程中における劣化や147nmの紫外線による劣化も少ないため、他の色のセルの輝度を意図的に下げることが不要となる。したがって、全ての色のセルの輝度を意図的に下げることが不要となり、全ての色のセルの輝度をフルに使用することができるので、白表示の色温度が高い状態を保ちつつ、プラズマディスプレイ装置の輝度を上げることができる。
【0075】
以下、本発明のプラズマディスプレイ装置の性能を評価するために、上記実施の形態に基づくサンプルを作製し、そのサンプルについて性能評価実験を行い、実験結果を検討する。
【0076】
作製した各プラズマディスプレイ装置は、42インチの大きさを持ち(リブピッチ150μmのHD−TV仕様)、誘電体ガラス層の厚みは20μm、MgO保護層の厚みは0.5μm、表示電極と表示スキャン電極の間の距離は0.08mmとなるように作製した。また、放電空間に封入される放電ガスは、ネオンを主体にキセノンガスを5%混合したガスである。
【0077】
サンプル1、5のプラズマディスプレイ装置に用いる各青色蛍光体粒子には蛍光体を構成する2価のBaあるいはSrイオンを主に3価のLaイオンで置換した蛍光体を用いた。
【0078】
サンプル2〜4、6〜9のプラズマディスプレイ装置に用いる各青色蛍光体粒子には蛍光体を構成する2価のBaまたはSrイオンを主に3価のLaイオンで置換すると共に、2価のEuイオンを3価のEuイオンで置換した蛍光体を用いた。それぞれの合成条件を表1に示す。
【0079】
【表1】
Figure 0004096618
【0080】
サンプル1〜4は、赤色蛍光体に(Y、Gd)1-XBO3:EuX、緑色蛍光体にZn2-XSiO4:MnX、青色蛍光体にBa(1-x-z)EuxLazMgAl1017を用いた組み合わせのものであり、蛍光体の合成の方法、発光中心となるEu、Mnの置換比率、すなわちY、Ba元素に対するEuの置換比率、及びZn元素に対するMnの置換比率及び2価のEuイオンと置換する3価のEuイオン量を表1のように変化させたものである。
【0081】
サンプル5〜9は、赤色蛍光体にY2-X3:EuX、緑色蛍光体にBa1-XAl1219:MnX、青色蛍光体にBa(1-x-y-z)EuxSryLazMgAl1017を用いた組み合わせのものであり、上記と同様、蛍光体合成方法の条件及び発光中心の置換比率及び青色蛍光体を構成するBaまたはSrのLaへの置換量や、2価のEuイオンと置換する3価のEuイオン量を表1のように変化させたものである。
【0082】
また、蛍光体層の形成に使用した蛍光体インキは、表1に示す各蛍光体粒子を使用して蛍光体、樹脂、溶剤、分散剤を混合して作製した。
【0083】
そのときの蛍光体インキの粘度(25℃)について測定した結果、いずれも粘度が1500〜30000CPの範囲に保たれている。形成された蛍光体層を観察したところ、いずれも隔壁壁面に均一に蛍光体インキが塗布され、しかも200時間連続で目詰まりなく塗布できた。
【0084】
また、各色における蛍光体層に使用される蛍光体粒子については、平均粒径0.1〜3.0μm、最大粒径8μm以下の粒径のものが各サンプルに使用されている。
【0085】
サンプル10はBaに対するLaの置換量が35%で、Euの3価が60%の青色蛍光体粒子を用いた。サンプル11の各色蛍光体粒子には、特にLaの置換や、Euの酸化処理は行っていない従来の青色蛍光体粒子を用いたサンプルである。
【0086】
なお表1のEuイオンの2価、3価の測定は、XANES(X−ray Absorpution Near Edge Structure)スペクトル法で測定した。
【0087】
(実験1)
作製されたサンプル1〜9及び比較サンプル10、11について、背面パネル製造工程における蛍光体焼成工程(520℃、20分)後、モデル的に147nmの紫外光(ウシオ社製エキシマランプHD0012)を100時間照射した時の青色蛍光体の輝度および輝度の変化率を測定した。
【0088】
(実験2)
パネルを各色に点燈した時の輝度及び青色蛍光体の輝度劣化変化率の測定は、プラズマディスプレイ装置に電圧200V、周波数100kHzの放電維持パルスを100時間連続して印加し、その前後におけるパネル輝度を測定し、そこから輝度劣化変化率(<〔印加後の輝度−印加前の輝度〕/印加前の輝度>*100)を求めた。
【0089】
(実験3)
パネルの青色のみを全面点燈した時の輝度を、プラズマディスプレイ装置の表示電極部分に電圧180V、周波数50kHzを印加して測定した。
【0090】
また、プラズマディスプレイ装置のアドレス放電時のアドレスミスについては画像を見てちらつきがあるかないかで判断し、1ヶ所でもあればありとしている。
【0091】
これら実験1〜3の青色蛍光体層部分の輝度及び輝度劣化変化率についての結果を表2に示す。
【0092】
【表2】
Figure 0004096618
【0093】
表2に示すように比較サンプル10、11において、青色蛍光体においてBaをLaで置換せず、また、2価のEuイオンを3価のEuイオンで置換していないサンプル11では、147nmの紫外線照射や、維持放電(200V、100kHzの維持放電パルス100時間印加)における輝度劣化率が大きい。また、BaをLaで35%置換し、Euを60%3価にしたサンプル10は輝度変化は比較的少ないが、青色単体の輝度が大幅に低下している。
【0094】
また、サンプル1〜9については147nmの紫外線による青色の変化率がすべて3.5%以下の値となっており、しかもアドレスミスもない。
【0095】
これは、青色蛍光体を構成する2価のBaまたはSrイオンの一部を3価のLaイオンで置換すること及び、2価のEuイオンの一部を3価のEuイオンで置換することにより、青色蛍光体中の酸素欠陥(特にBa−O近傍の酸素欠陥)が大幅に減少したためである。このため蛍光体焼成時のまわりの雰囲気による水や炭化水素系ガスまたは、パネル封着時のMgOや隔壁、封着フリット材及び蛍光体から出た水や炭化水素系ガスが蛍光体の表面の欠陥層(Ba−O層近傍酸素欠陥)に吸着しなくなったためである。
【0096】
従って、水や炭化水素系のガス吸着が少ないため、蛍光体インキ中のエチルセルロースの蛍光体への吸着が良好になり、ノズルの目詰まりがなくなった。
【0097】
(実験4)
モデル実験として、青色蛍光体の2価のBaイオンを3価のLaイオンで置換しない蛍光体及び2価のEuイオンの一部を3価のEuイオンで置換していない蛍光体(サンプル11)を60℃90%の相対湿度中に10分間放置した後、100℃で乾燥し、その後これらの蛍光体のTDS分析(昇温脱離ガス質量分析)を行った結果、水の物理吸着(100℃付近)及び化学吸着(300℃〜500℃)のピークが、置換処理をしたサンプル(サンプルNo.1〜10)と比較して15倍多い結果となった。
【0098】
【発明の効果】
以上のように本発明によれば、青色蛍光体のBaまたはSrの一部をLaと置換し、また当該蛍光体を構成する2価のEuイオンの一部を3価に置換した構成とすることによって、蛍光体層の各種工程での劣化を防止することができ、PDPの輝度及び寿命を改善することができるとともに、信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係るプラズマディスプレイパネルの前面ガラス基板を除いた平面図
【図2】同パネルの画像表示領域の構造を一部を断面で示す斜視図
【図3】同パネルを用いたプラズマディスプレイ装置のブロック図
【図4】同パネルの画像表示領域の構造を示す断面図
【図5】同パネルの蛍光体層を形成する際に用いるインキ塗布装置の概略構成図
【図6】青色蛍光体の原子構造を示す概略図
【符号の説明】
100 PDP
101 前面ガラス基板
103 表示電極
104 表示スキャン電極
105 誘電体ガラス層
106 MgO保護層
107 アドレス電極
108 誘電体ガラス層
109 隔壁
110R 蛍光体層(赤)
110G 蛍光体層(緑)
110B 蛍光体層(青)
122 放電空間

Claims (5)

  1. 1色または複数色の放電セルが複数配列されるとともに、各放電セルに対応する色の蛍光体層が配設され、当該蛍光体層が紫外線により励起されて発光するプラズマディスプレイパネルを備えたプラズマディスプレイ装置であって、前記蛍光体層は青色蛍光体層を有し、当該青色蛍光体層を構成する青色蛍光体は、Ba (1-x-z) Eu x La z MgAl 10 17 またはBa (1-x-y-z) Eu x Sr y La z MgAl 10 17 (ただし、0.03≦X≦0.20、0.1≦Y≦0.5、0.001≦Z≦0.2)で表される化合物で構成し、かつ2価のEuイオンの一部を3価のEuイオンで置換したことを特徴とするプラズマディスプレイ装置。
  2. 紫外線により励起されて可視光を発光する青色蛍光体であって、当該蛍光体は、Ba (1-x-z) Eu x La z MgAl 10 17 またはBa (1-x-y-z) Eu x Sr y La z MgAl 10 17 (ただし、0.03≦X≦0.20、0.1≦Y≦0.5、0.001≦Z≦0.2)で表される化合物で構成すると共に、当該蛍光体を構成する2価のEuイオンの一部を3価に置換したことを特徴とするプラズマディスプレイ装置用蛍光体
  3. Eu2価のイオン量が、60%〜95%で、Eu3価のイオン量が、5%〜40%であることを特徴とする請求項2に記載のプラズマディスプレイ装置用蛍光体
  4. 2価のEuイオンを母体に持つBa (1-x-z) Eu x La z Al 10 17 またはBa (1-x-y-z) Eu x Sr y La z MgAl 10 17 (ただし、0.03≦X≦0.20、0.1≦Y≦0.5、0.001≦Z≦0.2)の青色蛍光体を酸化雰囲気で焼成して、2価のEuイオンの一部を3価にすることを特徴とするプラズマディスプレイ装置用蛍光体の製造方法。
  5. 酸化雰囲気で焼成する工程の酸化雰囲気が、酸素、酸素−窒素、オゾン−窒素のうちのいずれかであり、焼成温度が350℃〜900℃であることを特徴とする請求項4に記載のプラズマディスプレイ装置用蛍光体の製造方法。
JP2002142658A 2002-05-17 2002-05-17 プラズマディスプレイ装置 Expired - Fee Related JP4096618B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002142658A JP4096618B2 (ja) 2002-05-17 2002-05-17 プラズマディスプレイ装置
CNB038007517A CN100396752C (zh) 2002-05-17 2003-05-15 等离子体显示装置
US10/485,149 US7067969B2 (en) 2002-05-17 2003-05-15 Plasma display unit including lanthnum substituted aluminate phosphor
EP03752902A EP1506988A4 (en) 2002-05-17 2003-05-15 PLASMA SCREEN
KR1020047001525A KR100554814B1 (ko) 2002-05-17 2003-05-15 청색 형광체, 이의 제조 방법 및 이를 포함하는 플라즈마 디스플레이 장치
PCT/JP2003/006046 WO2003097766A1 (fr) 2002-05-17 2003-05-15 Ecran plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002142658A JP4096618B2 (ja) 2002-05-17 2002-05-17 プラズマディスプレイ装置

Publications (2)

Publication Number Publication Date
JP2003336063A JP2003336063A (ja) 2003-11-28
JP4096618B2 true JP4096618B2 (ja) 2008-06-04

Family

ID=29544994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002142658A Expired - Fee Related JP4096618B2 (ja) 2002-05-17 2002-05-17 プラズマディスプレイ装置

Country Status (6)

Country Link
US (1) US7067969B2 (ja)
EP (1) EP1506988A4 (ja)
JP (1) JP4096618B2 (ja)
KR (1) KR100554814B1 (ja)
CN (1) CN100396752C (ja)
WO (1) WO2003097766A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7569406B2 (en) * 2006-01-09 2009-08-04 Cree, Inc. Method for coating semiconductor device using droplet deposition
TWI406928B (zh) 2010-03-18 2013-09-01 Ind Tech Res Inst 藍光螢光材料、白光發光裝置、及太陽能電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102979A (ja) 1982-12-02 1984-06-14 Matsushita Electronics Corp 螢光体
KR100247817B1 (ko) * 1993-02-18 2000-03-15 손욱 형광램프용 청색 발광형광체
TW353678B (en) 1994-08-17 1999-03-01 Mitsubishi Chem Corp Aluminate phosphor
CN1137956C (zh) * 1997-02-05 2004-02-11 中国科学院长春物理研究所 蓝色荧光粉制造方法
EP1030339B1 (en) * 1997-11-06 2004-05-19 Matsushita Electric Industrial Co., Ltd. Phosphor material, phosphor material powder, plasma display panel, and processes for producing these
US6187225B1 (en) * 1998-07-06 2001-02-13 Matsushita Electric Industrial Company, Ltd. Blue phosphor for plasma display and lamp application and method of making
JP2000226574A (ja) * 1999-02-08 2000-08-15 Daiden Co Ltd プラズマディスプレイパネル用青色蛍光体
JP4854106B2 (ja) * 1999-10-08 2012-01-18 大電株式会社 紫外線または真空紫外線励起青色蛍光体
JP4396016B2 (ja) * 2000-09-21 2010-01-13 三菱化学株式会社 アルミン酸塩蛍光体、蛍光体ペースト組成物及び真空紫外線励起発光装置
JP4727093B2 (ja) * 2001-09-12 2011-07-20 パナソニック株式会社 プラズマディスプレイ装置

Also Published As

Publication number Publication date
EP1506988A4 (en) 2007-08-08
KR20040015381A (ko) 2004-02-18
CN100396752C (zh) 2008-06-25
EP1506988A1 (en) 2005-02-16
CN1537154A (zh) 2004-10-13
US7067969B2 (en) 2006-06-27
JP2003336063A (ja) 2003-11-28
KR100554814B1 (ko) 2006-02-22
WO2003097766A1 (fr) 2003-11-27
US20040183438A1 (en) 2004-09-23

Similar Documents

Publication Publication Date Title
JP4096619B2 (ja) プラズマディスプレイ装置の製造方法
JP4092911B2 (ja) プラズマディスプレイ装置の製造方法
JP4096620B2 (ja) プラズマディスプレイ装置の製造方法
JP5065080B2 (ja) プラズマディスプレイ装置
JP3915458B2 (ja) プラズマディスプレイ装置
JP4042372B2 (ja) 蛍光体の製造方法
JP4727093B2 (ja) プラズマディスプレイ装置
JP4415578B2 (ja) プラズマディスプレイ装置
JP4244726B2 (ja) プラズマディスプレイ装置
KR100572431B1 (ko) 플라즈마 표시 장치, 형광체 및 형광체의 제조 방법
JP2003238954A (ja) プラズマディスプレイ装置
JP3818285B2 (ja) プラズマディスプレイ装置
JP4694088B2 (ja) プラズマディスプレイ装置
JP4096618B2 (ja) プラズマディスプレイ装置
JP4672231B2 (ja) プラズマディスプレイパネル
JP2005340155A (ja) プラズマディスプレイ装置
JP2003336055A (ja) プラズマディスプレイ装置
JP4513397B2 (ja) プラズマディスプレイ装置
JP2006059629A (ja) プラズマディスプレイ装置
JP4526904B2 (ja) 蛍光体及びプラズマディスプレイ装置
JP4556908B2 (ja) プラズマディスプレイ装置
JP2004091623A (ja) プラズマディスプレイパネル
JP2004067874A (ja) プラズマディスプレイパネル
JP2003336049A (ja) プラズマディスプレイ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees