JP4096090B2 - Pipe joint shrinkage allowance measuring device - Google Patents

Pipe joint shrinkage allowance measuring device Download PDF

Info

Publication number
JP4096090B2
JP4096090B2 JP2002272949A JP2002272949A JP4096090B2 JP 4096090 B2 JP4096090 B2 JP 4096090B2 JP 2002272949 A JP2002272949 A JP 2002272949A JP 2002272949 A JP2002272949 A JP 2002272949A JP 4096090 B2 JP4096090 B2 JP 4096090B2
Authority
JP
Japan
Prior art keywords
pipe
tube
measuring
outer tube
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002272949A
Other languages
Japanese (ja)
Other versions
JP2004108036A (en
Inventor
義徳 吉田
直岐 冨田
哲二 下保
正純 小仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2002272949A priority Critical patent/JP4096090B2/en
Publication of JP2004108036A publication Critical patent/JP2004108036A/en
Application granted granted Critical
Publication of JP4096090B2 publication Critical patent/JP4096090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐震管で布設された水道、ガス、下水道等の管路において、当該耐震管の継手部に設けられている収縮代を外部から測定することのできる収縮代測定装置に関するものである。
【0002】
【従来の技術】
水道管等に用いられるダクタイル鋳鉄管等には、配管埋設後に地震等による大きな力が作用したときに継手部が伸縮してその外力を吸収することができる耐震管継手を備えたものがある。この種の耐震性を有する配管では、その伸縮機能を確保するため、地下に管路を布設したときに、前後の管の継手部に胴付き間隔と呼ばれる収縮代が残されていなければならない。
【0003】
この種の配管の布設には、ヒューム管等をさや管として、その内部に管を継ぎ合わせつつ推進していく推進工法が採用されることが多い。この推進工法によって管の布設を行う場合、後続管から先行する管に推力(管を挿入する時の力)を伝達して行うため、管と管を接合する継手として、例えば図8に示すような耐震管継手であるNS形管継手(S形管継手その他の耐震継手でも同じ)を用いた場合に、何らかの間隔保持手段を講じていなければ、図中の点線のごとく、先端部に挿し口突起が形成された挿し口の先端面Pbが受口の奥端部Paまで押し込まれた状態となり、押し込み余裕量(収縮代,胴付き間隔)Lがなくなって、継手が両方向に伸縮する必要がある耐震管Pとしての性能を具備しなくなるという問題点がある。
【0004】
耐震管の推進に際して、管継手部の収縮代を確保するため、所定の間隔で対向させて互いに固定した前後一対の環状板体を有する外装枠体の内部に、埋設後に自らの膨張圧によって破砕する環状の脆性成形体を挟持させ、推進完了後に当該脆性成形体の破砕によって両環状板体を互いに接近可能とする推進力伝達用カラーを用いて管を推進する方法(特開2000−282779)や、推進完了後に外部操作で取り外すことのできるスぺーサを継手部に介装して収縮代を確保した状態で推進する方法等が開発されている。これらの方法によると、推進力を効率よく伝達できるとともに、推進終了後は継手の収縮が可能となる。
【0005】
【発明が解決しようとする課題】
ところで、この種の耐震管の推進工法では、布設された配管の継手部の収縮代が規定量確保されているかどうかをチェックする場合もある。この収縮代の測定方法として従来採用されてきたのは、作業員が直接管内に入ってノギス等で胴付き間隔を測定する方法、管内へカメラを挿入してテレビ画像で解析測定する方法、管外周に表示した目印(白線等)の位置を測定して胴付き間隔を計算する方法等である。
【0006】
しかしながら、上記作業員が直接管内に入って測定する方法は、土足等で管内面が汚れたり、内面保護材に傷がつくという問題があるほか、酸欠による事故のおそれもあった。また、カメラを管内へ挿入して計測する方法は、高価な機材を必要とし、計測に熟練を要するほか、作業時間も長くかかるという問題点がある。さらに、管外周に表示した目印で測定する方法は、さや管内へ耐震管を挿入する工法では当該目印を見ることができないので測定が不可能である。そこで、本発明は、管内へ人が入ることができない場合でも外部から比較的簡単に胴付き間隔を測定できる手軽な測定装置を提供することを課題としている。
【0007】
【課題を解決するための手段】
上記課題を解決するため、本発明は次のような構成を採用した。すなわち、本発明にかかる管継手部の収縮代測定装置は、複数の管を接合しつつ推進して地下に埋設する水道配管等における管継手部の収縮代を測定する測定装置であって、外管と、該外管内に摺動自在に挿通された内管とを備え、これら外管と内管の先端部にはそれぞれ軸方向と直角方向に突出する嘴状の測定端子が設けられるとともに、外管と内管の後端部には、外管に対する内管の相対移動量を測定することのできる目盛が設けられているものであり、さらに、前記内管と外管とが軸心回りに回転自在にキャスター付きの支持具で支持されているもの(請求項1にかかる発明)、もしくは前記内管と外管とがそれぞれ別の継ぎ管を継ぎ合わせることにより長さ調節可能に構成されているもの(請求項2にかかる発明)、もしくは内管と外管の後端部に測定端子の突出方向と同じ方向に突出する指示突起がそれぞれ設けられているもの(請求項3にかかる発明)である。
【0008】
この測定装置は、外管と内管に設けられている一対の測定端子を管内に挿入し、該測定端子を継手部の胴付き間隔の前後端面、すなわち挿し口の先端面と受口の奥端面に当接させる。この操作は、内管と外管を相対移動させることにより簡単に行うことができる。一対の測定端子が胴付き間隔の端面に当接したら、その時の内管と外管の相対移動量を目盛で読み取ることにより当該胴付き間隔を測定することができる。
【0009】
【発明の実施の形態】
以下、図面に表わされた本発明の実施の形態に基づいて、本発明をより具体的に説明する。
【0010】
図1はこの収縮代測定装置(「測定装置」と略す)1を用いる方法を例示するもので、この測定装置1は、外管2と該外管内に挿通された内管3の二重管構造となっている。外管2の先端部には耐震管(図1ではNS形耐震管)Pの受口側の端面すなわち受口奥端面Paに当接する測定面4aを有する第1の測定端子4が軸方向と直角方向に突出するように固着されている。また、内管3の先端部には、挿し口の先端面Pbに当接する測定面5aを有する第2の測定端子5が固着されている。図示例では、内管3もパイプで構成され、軽量なものとなっているが、場合によっては内管3を中実ロッドで構成することもできる。
【0011】
測定端子4,5は、基部が広い板状であり、そこから細い測定部が伸びている。測定端子4,5の互いに対向する内側の面は平行であり、内管3を外管2内に一杯に引き込んだ状態では内側の面同士が密着する。また、測定部の外側の面は上記測定面4a,5aとなっている。受口の奥端面は曲面となっているので、この面に当接する測定面4aの端部には、図4に示すように、丸み付け(R)を施しておくのが好ましい。
【0012】
外管2の中間部には複数(通常は2個)の支持具10が取り付けられている。支持具10は、外管2に外嵌する筒体11の下面にキャスター12が取り付けられている。前記測定端子4,5は、キャスター12の下面よりも下側に突出するようになっている。外管2は筒体11に対し回転自在であり、この筒体11の前後には該支持具10の軸方向の移動を規制するストッパ13,13が外管2に取り付けられている。
【0013】
外管2と内管3の後側端部には、測定端子の向きを示す指示突起16,17が取り付けられている。この指示突起16,17は、前記測定端子4,5と同じ方向に突出しているので、さや管の外側から管内の測定端子の向きを知ることができる。なお、この指示突起16,17は、固定用のネジ18を緩めることにより、外管の円周方向に回して向きを調節することができるようになっている。これは、測定端子4,5の向きが変化したとき修正するためである。
【0014】
外管2の後端部から突出する内管3の後端部には、外管2に対する移動量を表す目盛20が設けられている。この目盛20は、内管3を前方に移動させて測定端子4,5の間隔を広げたとき、外管2内に押し込まれるが、外管2の後端面の位置にある目盛を読み取ることにより、両測定端子の測定面4a,5aの間隔すなわち収縮代を測定することができるのである。なお、図2に示すように、両測定端子4,5を互いに密着させた閉状態における両測定面4a,5aの間隔Aとその状態における外管2の後端面の目盛20をAに揃えておくと、読み取った量がそのまま継手部の胴付きの間隔となるので、測定がより簡単となる。
【0015】
外管2と内管3の中間部には連結部30が設けられている。この連結部30の構造は次のとおりである。すなわち、外管2の場合は、前側外管2(A)の後端部に設けたねじ部2cと後側外管2(B)の前端部に設けたねじ部2dを共通のねじ筒31に両側から螺着することにより接合されている。また、内管3の場合は、前側の内管3(A)の後端部にねじ穴3bが設けられ、後側の内管3(B)の前端部に該ねじ穴に螺合するねじロッド3cが突設されていて、該ねじロッド3cをねじ穴3bにねじ込むことにより接合されている。
【0016】
この外管2と内管3は、耐震管の長さが変わった場合等、必要に応じて継ぎ管32,33を継ぎ足して、管長を延長することができる。図3はこの継ぎ足し方法を表すもので、外管2と内管3の中間部に設けられている連結部30を外し、分離された前後の管の間に継ぎ管32,33を接続する。外管2の場合は、ねじ筒31の後側のねじ穴に継ぎ管32のねじ部32aを螺着し、該継ぎ管32の後側のねじ部に別のねじ筒31を螺着する。この後側のねじ筒31の他方(後側)のねじ穴には分離した後側の外管2(B)を螺着する。
【0017】
また、内管3の場合は、後側の内管3(B)のロッド3cを前側の内管3(A)のねじ穴3bから抜き取り、継ぎ管33のロッド33cを螺着するとともに、この継ぎ管33の後端部のねじ穴33bに前記後側の内管3(B)のロッド3cを螺着する。以上により、外管2と内管3の長さを簡単に延長することができるのである。
【0018】
この測定装置1の使用して推進後の配管の胴付き間隔を測定する方法について説明する。測定に際しては、測定装置1を推進された管P内に挿入する前に、内管3の測定端子5が外管2の測定端子4に当接するまで内管3を外管2内に引き込んで、両測定端子4,5を閉じた状態とし、この状態における目盛Aを読み取っておく。しかるのち、配管の後端部からこの測定装置1を管P内に挿入する。測定装置1を管内に挿入するに際しては、測定端子4,5が管の内面をこすらないように、外管2と内管3を軸回りに半回転して測定端子4,5を上に向けておく。なお、測定装置1はキャスターを有する支持具10によって支持されているので、この挿入は容易である。
【0019】
測定装置1の先端部が配管の継手部Jに達したら(管の長さと測定装置1の長さから容易に知ることができる)、外管2と内管3を軸回りに回転させて測定端子4,5を下に向ける。この時、測定端子4,5の位置は、管継手の胴付き間隔の位置にあるので、測定端子を下に向けると該測定端子の先端部が胴付き間隔すなわち受口の奥端面Paと挿し口の先端面Pbとの間に嵌り込む。この状態で、外筒2を後向きに引っ張ると(図6)、該外筒側の測定端子4の測定面4aが受口の奥端面Paに当接する。しかる後、内筒3を前向きに押してその測定端子5の測定面5aを挿し口の先端面Pbに当接させる(図7)。この測定面5aが挿し口先端面に当接するまでの移動距離を目盛20で読み取ると、胴付き間隔Lが計算できる。すなわち、両測定端子4,5を閉じた状態における両測定面4a,5a間の距離Aに上記移動距離を加えた値が胴付き間隔(収縮代)となる。この値が規定長さ以上であればよい。なお、(財)国土開発技術センターの「地下埋設管路耐震継手の技術基準」(案)によると、この胴付き間隔つまり収縮代は、管長の1%以上とされている。
【0020】
図示例の装置では、内管3と外管2の後端部に指示突起16、17を設けているため、測定端子の向きを把握しながら作業を行うことができる。すなわち、挿入時や引き出し時には該指示突起を上に向けて測定端子が管の内面をこすらないようにでき、測定時には管を回転させて指示突起16、17を下に向けるので、測定端子の位置を容易に知ることができる。また、測定端子が管の直径方向に突出しているので、内管3が外管2内に入り込み過ぎることを防止することもできる。測定が終了したら、再度内管3の測定端子5と外管2の測定端子4を重ね合わせ、外管2と内管3を半回転させて両測定端子4,5を上に向け、外管2を内管3ごと管から引き出せばよい。
【0021】
この測定装置1は、継手接合後に管内に立ち入らなくても管外から胴付きの間隔を測定することができる。挿入や引き出しは、キャスターを転動させながら移動させるので、管内面を汚したり損傷したりするおそれがない。また、測定装置1の後端部に測定端子の向きを示す指示具が設けられているので、管の外で測定端子の向きを容易に知ることができる。外管2と内管3が、前後に分割された管をその中間部で連結した構造となっているので、管の長さが変わった場合等に、外管2と内管3に継ぎ管を継ぎ足すことにより、管の長さを簡単に調節することができる。
【0022】
【発明の効果】
以上の説明から明らかなように、本発明に係る管継手の収縮代測定装置は、推進された水道配管等に作業員が入り込まなくても、その収縮代を外部から簡単に測定することができるので、布設されている配管における耐震管継手が適正な耐震性を具備するかどうかを容易にチェックすることが可能となった。請求項1にかかる発明によれは、キャスターを転動させながら移動させるので、挿入や引き出しが簡単であり、しかも管内面を汚したり損傷したりするおそれがない。また、請求項2にかかる発明によれば、外管2と内管3とを継ぎ合わせることにより、管の長さを簡単に調節することができる。さらに、請求項3にかかる発明によれば、測定装置1の後端部に測定端子の向きを示す指示具が設けられているので、管の外で測定端子の向きを容易に知ることができる。なお、この測定装置を、耐震管継手の収縮代の測定以外の用途、例えば人の立ち入ることのできない構造物における凹部の長さの測定等に使用することができることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の測定装置を用いて管継手の収縮代を測定する状態を表す断面図である。
【図2】測定装置の正面図である。
【図3】連結部に継ぎ管を継ぎ足す場合の説明図である。
【図4】測定端子の拡大図である。
【図5】測定装置を管内に挿入する状態を表す断面図である。
【図6】測定端子を下に向けた状態を表す断面図である。
【図7】測定法の説明図である。
【図8】NS形耐震管継手の説明図である。
【符号の説明】
1 測定装置
2 外管
3 内管
4 測定端子
5 測定端子
10 支持具
12 キャスター
16 指示突起
17 指示突起
20 目盛
30 連結部
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a shrinkage allowance measuring apparatus capable of measuring a shrinkage allowance provided in a joint portion of a seismic pipe from the outside in pipes such as water supply, gas, and sewerage laid with the earthquake resistant pipe. .
[0002]
[Prior art]
Some ductile cast iron pipes and the like used for water pipes and the like are provided with earthquake-resistant pipe joints that can expand and contract the joint portion to absorb the external force when a large force due to an earthquake or the like is applied after the pipes are buried. In this type of seismic resistant piping, in order to ensure its expansion and contraction function, when a pipe line is laid in the basement, a shrinkage allowance called a body interval must be left in the joint portion of the front and rear pipes.
[0003]
In laying this type of pipe, a propulsion method is often employed in which a fume pipe or the like is used as a sheath pipe and the pipe is spliced together. When laying pipes by this propulsion method, since the thrust (force when inserting the pipe) is transmitted from the succeeding pipe to the preceding pipe, the joint for joining the pipes is shown in FIG. When using NS type pipe joints (which are the same for S type pipe joints and other earthquake-resistant joints), if there is no space retaining means, insert the tip into the tip as shown by the dotted line in the figure. The tip end surface Pb of the insertion port where the protrusion is formed is pushed into the back end portion Pa of the receiving port, and there is no allowance margin (shrinkage allowance, gap between the cylinders) L, and the joint needs to expand and contract in both directions. There is a problem that it does not have the performance as a certain earthquake-resistant pipe P.
[0004]
When propelling a seismic tube, in order to secure the shrinkage allowance of the pipe joint, it is crushed by its own expansion pressure after embedding in the exterior frame having a pair of front and rear annular plates facing each other at predetermined intervals. A method of propelling a pipe using a propulsive force transmitting collar that sandwiches the annular brittle molded body to be held and allows both annular plate bodies to approach each other by crushing the brittle molded body after completion of propulsion (Japanese Patent Laid-Open No. 2000-28279) In addition, a method has been developed in which a spacer, which can be removed by an external operation after completion of propulsion, is interposed in a joint portion and propulsion is ensured with a contraction margin secured. According to these methods, the propulsive force can be transmitted efficiently and the joint can be contracted after the end of the propulsion.
[0005]
[Problems to be solved by the invention]
By the way, in this type of seismic tube propulsion method, it may be checked whether a specified amount of contraction allowance is secured for the joint portion of the installed pipe. As a method for measuring the contraction allowance, a method in which an operator directly enters the tube and measures the gap between the body with a caliper, etc., a method in which a camera is inserted into the tube and an analysis measurement is performed with a television image, a tube, For example, a position of a mark (white line or the like) displayed on the outer circumference is measured to calculate a body interval.
[0006]
However, the method in which the worker directly enters the pipe has a problem that the inner surface of the pipe is soiled by dirt or the like, the inner surface protecting material is damaged, and there is a risk of an accident due to lack of oxygen. In addition, the method of measuring by inserting a camera into the tube requires expensive equipment, requires skill in measurement, and takes a long time. Further, the method of measuring with the mark displayed on the outer periphery of the pipe cannot be measured because the mark cannot be seen by the method of inserting the earthquake resistant pipe into the sheath. In view of the above, an object of the present invention is to provide a simple measuring apparatus capable of measuring the torso interval from the outside relatively easily even when a person cannot enter the pipe.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration. That is, the shrinkage allowance measuring device for a pipe joint portion according to the present invention is a measuring device that measures the shrinkage allowance of a pipe joint portion in a water pipe or the like that is propelled while joining a plurality of pipes and buried underground. A tube and an inner tube that is slidably inserted into the outer tube, and the outer tube and the distal end of the inner tube are each provided with a bowl-shaped measurement terminal projecting in a direction perpendicular to the axial direction. The rear end portion of the outer tube and the inner tube is provided with a scale capable of measuring the relative movement amount of the inner tube with respect to the outer tube, and the inner tube and the outer tube are arranged around the axis. Is supported by a support with a caster so as to be freely rotatable (the invention according to claim 1), or the inner pipe and the outer pipe are configured to be adjustable in length by joining different joint pipes. (Invention according to claim 2) or an inner pipe It is intended to instruct projection projecting in the same direction as the projecting direction of the measuring terminals on the rear end portion of the tube are provided, respectively (the invention according to claim 3).
[0008]
In this measuring apparatus, a pair of measurement terminals provided on an outer tube and an inner tube are inserted into the tube, and the measurement terminals are inserted into the front and rear end surfaces of the body-attached interval of the joint portion, that is, the front end surface of the insertion port and the back of the receiving port. Abut on the end face. This operation can be easily performed by relatively moving the inner tube and the outer tube. When the pair of measurement terminals contact the end face of the barrel interval, the barrel interval can be measured by reading the relative movement amount of the inner tube and the outer tube at that time on a scale.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described more specifically based on the embodiments of the present invention shown in the drawings.
[0010]
FIG. 1 exemplifies a method of using this contraction allowance measuring device (abbreviated as “measuring device”) 1. This measuring device 1 includes an outer tube 2 and a double tube of an inner tube 3 inserted into the outer tube. It has a structure. A first measurement terminal 4 having a measurement surface 4a that abuts the end face on the receiving side of the earthquake-resistant pipe (NS-type earthquake-resistant pipe P) in FIG. It is fixed so as to protrude in a right angle direction. A second measurement terminal 5 having a measurement surface 5a that abuts on the distal end surface Pb of the insertion opening is fixed to the distal end portion of the inner tube 3. In the illustrated example, the inner tube 3 is also constituted by a pipe and is lightweight, but in some cases, the inner tube 3 can also be constituted by a solid rod.
[0011]
The measurement terminals 4 and 5 have a plate shape with a wide base portion, and a thin measurement portion extends therefrom. The inner surfaces of the measurement terminals 4 and 5 facing each other are parallel to each other, and the inner surfaces are in close contact with each other when the inner tube 3 is fully drawn into the outer tube 2. Further, the outer surfaces of the measurement unit are the measurement surfaces 4a and 5a. Since the back end surface of the receiving port is a curved surface, it is preferable to round (R) the end portion of the measurement surface 4a in contact with this surface as shown in FIG.
[0012]
A plurality (usually two) of support tools 10 are attached to the intermediate portion of the outer tube 2. As for the support tool 10, the caster 12 is attached to the lower surface of the cylinder 11 externally fitted to the outer tube 2. The measurement terminals 4 and 5 protrude below the lower surface of the caster 12. The outer tube 2 is rotatable with respect to the cylinder 11, and stoppers 13 and 13 for restricting the axial movement of the support 10 are attached to the outer tube 2 before and after the cylinder 11.
[0013]
On the rear end portions of the outer tube 2 and the inner tube 3, indicator protrusions 16 and 17 indicating the orientation of the measurement terminal are attached. Since the indicator protrusions 16 and 17 protrude in the same direction as the measurement terminals 4 and 5, the direction of the measurement terminal in the pipe can be known from the outside of the pipe. The indicator projections 16 and 17 can be rotated in the circumferential direction of the outer tube and adjusted in direction by loosening the fixing screw 18. This is to correct when the orientation of the measurement terminals 4 and 5 changes.
[0014]
A scale 20 representing the amount of movement with respect to the outer tube 2 is provided at the rear end of the inner tube 3 protruding from the rear end of the outer tube 2. The scale 20 is pushed into the outer tube 2 when the inner tube 3 is moved forward to widen the distance between the measurement terminals 4 and 5, but by reading the scale at the position of the rear end surface of the outer tube 2. The distance between the measurement surfaces 4a and 5a of both measurement terminals, that is, the contraction allowance can be measured. As shown in FIG. 2, the distance A between the measurement surfaces 4a and 5a in the closed state in which the measurement terminals 4 and 5 are in close contact with each other and the scale 20 on the rear end surface of the outer tube 2 in that state are aligned with A. In other words, since the read amount becomes the interval with the body of the joint as it is, the measurement becomes easier.
[0015]
A connecting portion 30 is provided at an intermediate portion between the outer tube 2 and the inner tube 3. The structure of the connecting portion 30 is as follows. That is, in the case of the outer tube 2, the screw portion 2 c provided at the rear end portion of the front outer tube 2 (A) and the screw portion 2 d provided at the front end portion of the rear outer tube 2 (B) are shared by the common screw cylinder 31. It is joined by screwing from both sides. In the case of the inner tube 3, a screw hole 3 b is provided at the rear end portion of the front inner tube 3 (A), and a screw that is screwed into the screw hole at the front end portion of the rear inner tube 3 (B). A rod 3c is provided so as to be joined by screwing the screw rod 3c into the screw hole 3b.
[0016]
The outer pipe 2 and the inner pipe 3 can be extended by adding the connecting pipes 32 and 33 as necessary, for example, when the length of the earthquake-resistant pipe is changed. FIG. 3 shows this addition method. The connecting portion 30 provided at the intermediate portion between the outer tube 2 and the inner tube 3 is removed, and the connecting tubes 32 and 33 are connected between the separated tubes. In the case of the outer tube 2, the screw portion 32 a of the joint tube 32 is screwed into the screw hole on the rear side of the screw tube 31, and another screw tube 31 is screwed to the screw portion on the rear side of the joint tube 32. The separated rear outer tube 2 (B) is screwed into the other (rear) screw hole of the rear screw cylinder 31.
[0017]
In the case of the inner pipe 3, the rod 3c of the rear inner pipe 3 (B) is removed from the screw hole 3b of the front inner pipe 3 (A), and the rod 33c of the joint pipe 33 is screwed. The rod 3c of the rear inner pipe 3 (B) is screwed into the screw hole 33b at the rear end of the joint pipe 33. As described above, the lengths of the outer tube 2 and the inner tube 3 can be easily extended.
[0018]
A method for measuring the distance between the cylinders of the pipe after propulsion using the measuring apparatus 1 will be described. When measuring, before inserting the measuring device 1 into the propelled tube P, the inner tube 3 is pulled into the outer tube 2 until the measuring terminal 5 of the inner tube 3 comes into contact with the measuring terminal 4 of the outer tube 2. The measurement terminals 4 and 5 are closed, and the scale A in this state is read. Thereafter, the measuring device 1 is inserted into the pipe P from the rear end of the pipe. When inserting the measuring device 1 into the pipe, the outer terminals 2 and 5 are rotated halfway around the axis so that the measuring terminals 4 and 5 face upward so that the measuring terminals 4 and 5 do not rub the inner surface of the pipe. Keep it. In addition, since the measuring apparatus 1 is supported by the support 10 which has a caster, this insertion is easy.
[0019]
When the tip of the measuring device 1 reaches the joint J of the pipe (it can be easily known from the length of the pipe and the length of the measuring device 1), the outer tube 2 and the inner tube 3 are rotated around the axis for measurement. Terminals 4 and 5 face down. At this time, since the positions of the measurement terminals 4 and 5 are at the position of the pipe joint barrel, when the measurement terminal is turned downward, the tip of the measurement terminal is inserted into the barrel gap, that is, the back end face Pa of the receiving port. It fits between the front end face Pb of the mouth. When the outer cylinder 2 is pulled rearward in this state (FIG. 6), the measurement surface 4a of the measurement terminal 4 on the outer cylinder side comes into contact with the back end surface Pa of the receiving port. Thereafter, the inner cylinder 3 is pushed forward to bring the measurement surface 5a of the measurement terminal 5 into contact with the distal end surface Pb of the opening (FIG. 7). When the movement distance until the measurement surface 5a is inserted and comes into contact with the distal end surface of the mouth is read by the scale 20, the interval L with the body can be calculated. That is, a value obtained by adding the moving distance to the distance A between the two measurement surfaces 4a and 5a in a state in which both the measurement terminals 4 and 5 are closed becomes the body interval (contraction allowance). This value should just be more than regulation length. According to the “Technical Standards for Underground Pipeline Seismic Joints” (draft) of the National Land Development Technology Center, the gap between the cylinders, that is, the shrinkage allowance, is 1% or more of the pipe length.
[0020]
In the apparatus of the illustrated example, the indicator protrusions 16 and 17 are provided at the rear end portions of the inner tube 3 and the outer tube 2, so that the operation can be performed while grasping the direction of the measurement terminal. That is, when inserting or pulling out, the measuring projection can be directed upward so that the measuring terminal does not rub the inner surface of the tube. At the time of measurement, the tube is rotated and the indicating projections 16 and 17 are directed downward. Can be easily known. Further, since the measurement terminal protrudes in the diameter direction of the tube, it is possible to prevent the inner tube 3 from entering the outer tube 2 too much. When the measurement is completed, the measurement terminal 5 of the inner tube 3 and the measurement terminal 4 of the outer tube 2 are again overlapped, and the outer tube 2 and the inner tube 3 are rotated halfway so that both measurement terminals 4 and 5 are directed upward. 2 is pulled out from the pipe together with the inner pipe 3.
[0021]
This measuring apparatus 1 can measure the distance between the body and the outside of the pipe without entering the pipe after joint joining. The insertion and withdrawal are moved while rolling the caster, so that there is no possibility that the inner surface of the pipe is soiled or damaged. Moreover, since the indicator which shows the direction of a measurement terminal is provided in the rear-end part of the measuring apparatus 1, the direction of a measurement terminal can be known easily outside a pipe | tube. Since the outer pipe 2 and the inner pipe 3 have a structure in which the pipes divided in the front and rear are connected at the intermediate part thereof, when the length of the pipe is changed, the outer pipe 2 and the inner pipe 3 are connected to the outer pipe 2 and the inner pipe 3. The length of the tube can be easily adjusted by adding
[0022]
【The invention's effect】
As is apparent from the above description, the shrinkage allowance measuring device for a pipe joint according to the present invention can easily measure the shrinkage allowance from the outside without an operator entering the propelled water pipe or the like. Therefore, it is possible to easily check whether the earthquake-resistant pipe joint in the installed piping has proper earthquake resistance. According to the first aspect of the present invention, since the caster is moved while rolling, insertion and withdrawal are easy, and there is no possibility that the inner surface of the pipe is soiled or damaged. Moreover, according to the invention concerning Claim 2, the length of a pipe | tube can be easily adjusted by joining the outer pipe | tube 2 and the inner pipe | tube 3 together. Further, according to the invention of claim 3, since the indicator indicating the direction of the measurement terminal is provided at the rear end of the measurement apparatus 1, the direction of the measurement terminal can be easily known outside the tube. . In addition, it cannot be overemphasized that this measuring apparatus can be used for uses other than the measurement of the shrinkage allowance of a seismic-resistant pipe joint, for example, the measurement of the length of the recessed part in the structure which a person cannot enter.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which a shrinkage allowance of a pipe joint is measured using the measuring apparatus of the present invention.
FIG. 2 is a front view of the measuring apparatus.
FIG. 3 is an explanatory diagram when a connecting pipe is added to a connecting portion.
FIG. 4 is an enlarged view of a measurement terminal.
FIG. 5 is a cross-sectional view showing a state in which a measuring device is inserted into a pipe.
FIG. 6 is a cross-sectional view illustrating a state in which a measurement terminal faces downward.
FIG. 7 is an explanatory diagram of a measurement method.
FIG. 8 is an explanatory view of an NS type earthquake-resistant pipe joint.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measuring apparatus 2 Outer pipe | tube 3 Inner pipe | tube 4 Measurement terminal 5 Measurement terminal 10 Support tool 12 Caster 16 Indicator protrusion 17 Indicator protrusion 20 Scale 30 Connection part

Claims (4)

複数の管を接合しつつ推進して地下に埋設する水道配管等における管継手部の収縮代を測定する測定装置であって、外管と、該外管内に摺動自在に挿通された内管とを備え、これら外管と内管の先端部にはそれぞれ軸方向と直角方向に突出する嘴状の測定端子が設けられるとともに、外管と内管の後端部には、外管に対する内管の相対移動量を測定することのできる目盛が設けられており、前記内管と外管とが軸心回りに回転自在にキャスター付きの支持具で支持されていることを特徴とする管継手部の収縮代測定装置。A measuring device for measuring a shrinkage allowance of a pipe joint portion in a water pipe or the like that is promoted while joining a plurality of pipes and buried underground, and an outer pipe and an inner pipe slidably inserted into the outer pipe The outer tube and the inner tube are provided with hook-shaped measuring terminals projecting in the direction perpendicular to the axial direction, respectively, and the outer tube and the inner tube at the rear end of the inner tube with respect to the outer tube. A scale for measuring the relative displacement of the pipe is provided, and the inner pipe and the outer pipe are supported by a support with a caster so as to be rotatable about an axis. Device for measuring the contraction allowance. 複数の管を接合しつつ推進して地下に埋設する水道配管等における管継手部の収縮代を測定する測定装置であって、外管と、該外管内に摺動自在に挿通された内管とを備え、これら外管と内管の先端部にはそれぞれ軸方向と直角方向に突出する嘴状の測定端子が設けられるとともに、外管と内管の後端部には、外管に対する内管の相対移動量を測定することのできる目盛が設けられており、さらに、内管と外管とがそれぞれ別の継ぎ管を継ぎ合わせることにより長さ調節可能に構成されていることを特徴とする管継手部の収縮代測定装置。 A measuring device for measuring a shrinkage allowance of a pipe joint portion in a water pipe or the like that is promoted while joining a plurality of pipes and buried underground, and an outer pipe and an inner pipe slidably inserted into the outer pipe The outer tube and the inner tube are provided with hook-shaped measuring terminals projecting in the direction perpendicular to the axial direction, respectively, and the outer tube and the inner tube at the rear end of the inner tube with respect to the outer tube. A scale capable of measuring the relative movement of the pipe is provided, and the length of the inner pipe and the outer pipe can be adjusted by joining different joint pipes. shrinkage allowance measuring device of the pipe joint to be. 複数の管を接合しつつ推進して地下に埋設する水道配管等における管継手部の収縮代を測定する測定装置であって、外管と、該外管内に摺動自在に挿通された内管とを備え、これら外管と内管の先端部にはそれぞれ軸方向と直角方向に突出する嘴状の測定端子が設けられるとともに、外管と内管の後端部には、外管に対する内管の相対移動量を測定することのできる目盛が設けられており、さらに、内管と外管の後端部に測定端子の突出方向と同じ方向に突出する指示突起がそれぞれ設けられていることを特徴とする管継手部の収縮代測定装置。 A measuring device for measuring a shrinkage allowance of a pipe joint portion in a water pipe or the like that is promoted while joining a plurality of pipes and buried underground, and an outer pipe and an inner pipe slidably inserted into the outer pipe The outer tube and the inner tube are provided with hook-shaped measuring terminals projecting in the direction perpendicular to the axial direction, respectively, and the outer tube and the inner tube at the rear end of the inner tube with respect to the outer tube. A scale that can measure the relative movement of the tube is provided, and an indicator projection that protrudes in the same direction as the measuring terminal is provided at the rear end of the inner tube and the outer tube. A shrinkage allowance measuring device for pipe joints characterized by the above . 測定端子の先端部外面に管継手部の受口端面の曲面に対応する丸み付けが施されている請求項1乃至3のいずれかに記載の管継手部の収縮代測定装置。  The shrinkage allowance measuring device for a pipe joint part according to any one of claims 1 to 3, wherein the outer surface of the distal end part of the measurement terminal is rounded corresponding to the curved surface of the receiving end face of the pipe joint part.
JP2002272949A 2002-09-19 2002-09-19 Pipe joint shrinkage allowance measuring device Expired - Fee Related JP4096090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272949A JP4096090B2 (en) 2002-09-19 2002-09-19 Pipe joint shrinkage allowance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272949A JP4096090B2 (en) 2002-09-19 2002-09-19 Pipe joint shrinkage allowance measuring device

Publications (2)

Publication Number Publication Date
JP2004108036A JP2004108036A (en) 2004-04-08
JP4096090B2 true JP4096090B2 (en) 2008-06-04

Family

ID=32269838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272949A Expired - Fee Related JP4096090B2 (en) 2002-09-19 2002-09-19 Pipe joint shrinkage allowance measuring device

Country Status (1)

Country Link
JP (1) JP4096090B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107202198A (en) * 2017-05-12 2017-09-26 成都金玉雄辉建筑工程有限公司 A kind of push pipe for docking damage prevention type
JP7044742B2 (en) * 2019-07-02 2022-03-30 誠 植村 Support for preventing slippage of the laying box and support method for preventing slippage of the laying box
CN110425962A (en) * 2019-07-31 2019-11-08 国家电网有限公司 Ammeter terminals positioning measuring device
CN112943263B (en) * 2021-02-08 2022-10-18 中国铁建重工集团股份有限公司 Pipe jacking machine and pipe joint interval measuring device thereof

Also Published As

Publication number Publication date
JP2004108036A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
CA2339298A1 (en) Flexible fluid-transport pipe joint apparatus
JP4096090B2 (en) Pipe joint shrinkage allowance measuring device
CN113932760A (en) Rock-fill dam internal deformation monitoring pipeline device and system
KR20200067291A (en) Checking piping system using piping inspection robot and mr technology
JP3134692B2 (en) header
JPS6117100Y2 (en)
JP2007309723A (en) Pipeline shape measuring instrument for buried pipe, and pipeline shape measuring method using the same
JP2022178022A (en) Pipe joint construction confirmation method and device
JPH0316011Y2 (en)
JPH0640394Y2 (en) Spiral type flexible tube socket joint
JP2864206B2 (en) Packing for propulsion pipe
JP5474519B2 (en) Small-diameter muddy water type curve propulsion method
JPH1047559A (en) Pipe joint
JPS5915216Y2 (en) electrical plumbing fittings
JPH10148286A (en) Union joint
JP3916413B2 (en) Pipe promotion method
JPS5842890A (en) Gage for pipe joint section
JP4468539B2 (en) Rod insertion jig into cable entry pipeline
JP3916412B2 (en) Seismic pipe joint for propulsion method with propulsion jig
JP2595309Y2 (en) Insertion connection pipe device
JP3024218U (en) Flexible pipe joint
JPH0658473A (en) Pipe joint
JP3069098U (en) Underground pipe
JPH0772595B2 (en) Pipe fitting
JP2596193Y2 (en) Pipe fittings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4096090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees