JP3916413B2 - Pipe promotion method - Google Patents

Pipe promotion method Download PDF

Info

Publication number
JP3916413B2
JP3916413B2 JP2001135651A JP2001135651A JP3916413B2 JP 3916413 B2 JP3916413 B2 JP 3916413B2 JP 2001135651 A JP2001135651 A JP 2001135651A JP 2001135651 A JP2001135651 A JP 2001135651A JP 3916413 B2 JP3916413 B2 JP 3916413B2
Authority
JP
Japan
Prior art keywords
propulsive force
propulsion
pipe
force transmission
receiving port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001135651A
Other languages
Japanese (ja)
Other versions
JP2002327595A (en
Inventor
敏雄 戸島
貴司 横溝
善胤 嘉戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2001135651A priority Critical patent/JP3916413B2/en
Publication of JP2002327595A publication Critical patent/JP2002327595A/en
Application granted granted Critical
Publication of JP3916413B2 publication Critical patent/JP3916413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は管の推進工法に関する。
【0002】
【従来の技術】
さや管内に新管を推進させることによって管路を布設するようにしたさや管工法による推進工法が知られている。この推進工法に用いられる推進管は、互いに接合される一方の管の端部に形成された受口の内部に、他方の管の端部に形成された挿口が挿入されて、これら受口と挿口との間で推進力の伝達が行われるように構成されている。この場合、推進力は挿口が受口に完全に入り込んだ状態で伝達され、したがって管路の布設が完了した時点では、挿口はそれ以上受口の内部に入り込むことはできない。
【0003】
一方、受口と挿口との間に離脱防止機能と伸縮機能とが付与された耐震管が知られている。図5を参照しながらその耐震機能についての説明をする。
図5に示すように、互いに接合される一方の鋳鉄管1の端部には受口2が形成されており、この受口2の内周のシール材収容溝3に環状のゴム製のシール材4が配置され、シール材収容溝3よりも奥側にロックリング収容溝5が形成され、このロックリング収容溝5に周方向一つ割のロックリング6が装着されている。ロックリング6の外周側とロックリング収容溝5の内周側との間には、挿口7の挿入時にロックリング6を芯出し状態で保持するための保持用ゴム輪8が配置され、この保持用ゴム輪8はたとえばロックリング6の外周に接着されている。
【0004】
他方の鋳鉄管9の挿口7の先端部の外周には、ロックリング6に受口2の奥側からかかり合い可能な挿口突部10が形成されている。挿口突部10を含む挿口7の先端の外周には、シール材4とロックリング6とが収容された受口2の内部へ挿口7を挿入するときの案内となるテ−パ面11が形成されている。また、鋳鉄管1及び鋳鉄管9の直部における内周には管の内面を保護するためのライニング12が施されている。
【0005】
受口2及び挿口7は、挿口7における挿口突部10と受口2における奥端面13との間に適当な距離sができるように、かつ挿口突部10とロックリング6との間に適当な距離tができるように接合されている。したがって、地震などによって鋳鉄管1及び鋳鉄管9に引っ張り及び圧縮などの大きな力が加わった場合、挿口突部10がロックリング6と奥端面13との間において移動可能である分だけ、挿口7は受口2に対して伸縮可能である。
【0006】
さらに、挿口突部10が受口2の奥端面13側からロックリング6にかかり合うことによって、受口2と挿口7との間に離脱防止機能が付与されている。
以上のような構成によって、耐震管には離脱防止機能と伸縮機能とが付与されいる。ところが、上述したようにして離脱防止機能と伸縮機能とが付与されている状態の耐震管を推進させて布設するのは、管が離脱防止機能と伸縮機能とを保持するために、挿口突部10と受口2における奥端面13との間に適当な距離s及び挿口突部10とロックリング6との間に適当な距離tを確保しなければならず、推進力の伝達が行えず困難である。
【0007】
そこで、耐震管を推進工法によって布設するには、図5に示すように、挿口突部10の先端と受口2の奥端面13との間に適当な距離s及び挿口突部10とロックリング6との間に適当な距離tをおいた状態で、管の継手部14における受口2に入り込まない挿口7の外周面7aに、推進力伝達リング15を、その一方の端面16が受口2における端面17に接するように適宜の方法で取り付ける。
【0008】
次に、鋳鉄管1及び鋳鉄管9を推進させるための推進力を挿口7側から作用させると、推進力伝達リング15における一方の端面16は受口2の端面17を押すので、受口2に推進力を伝達することができる。
【0009】
したがって、挿口突部10と受口2の奥端面13との間に適当な距離s及び挿口突部10とロックリング6との間に適当な距離tをおいた状態、すなわち、管の継手部14に離脱防止機能と伸縮機能とが付与された状態で推進力を伝達することができるので、耐震管を推進工法によって布設することができる。
【0010】
なお、布設後に、管の継手部14に推進力よりも遥かに大きい地震力などの大きな力が管の圧縮方向に作用した場合、この大きな力が推進力伝達リング15と挿口7の外周面7aとの間に作用する最大の摩擦力よりも大きいと、推進力伝達リング15は、受口2の端面17に押されて挿口7に対して滑るので、挿口7が受口2に対して入り込むことができ、継手部14に付与されている耐震機能を発揮することができる。
【0011】
上述したような従来の推進工法では、通常のように、例えば25メートル程度の推進距離であれば、挿口7の外周面7aに取り付けられている推進力伝達リング15に作用する推進力が小さいので、問題なく耐震管をさや管内において推進させて布設することができる。
【0012】
しかし、従来の管の推進工法では、河川や道路を横切るために耐震管の推進距離を、例えば50メートルと長くすると、推進力伝達リング15に作用する推進力は、管の総重量と推進距離に比例して大きくなるので、推進力伝達リング15には、通常の推進距離の場合の推進工法時に作用する推進力よりも大きな推進力が作用する。この通常のときよりも大きな推進力が、推進力伝達リング15と挿口7の外周面7aとの間に作用する最大の摩擦力よりも大きいと、推進力伝達リング15には伝達可能な推進力の大きさに限度があるので、推進力伝達リング15は受口2の端面17に押され、挿口7の外周面7aに対して滑り始めることがある。
【0013】
推進力伝達リング15が挿口7の外周面7aに対して滑ったままの状態で、さらに鋳鉄管1及び鋳鉄管9を推進させようとすると、推進力は推進力伝達リング15によって伝達されず、挿口7が受口2に完全に入り込むことによって挿口突部10と受口2の奥端面13との間で伝達されるようになり、挿口突部10と受口2における奥端面13との間に適当な距離sが確保されない。すなわち、受口2の奥端面13まで挿口7が完全に入り込んでしまうので、地震時に鋳鉄管1及び鋳鉄管9に圧縮方向の力が作用した場合に、挿口7は受口2に対してそれ以上入り込むことができず、十分な耐震機能と発揮することができなくなる恐れがある。
【0014】
【発明が解決しようとする課題】
上述したような従来の推進工法では、ある程度の距離までは伝達する推進力が比較的に小さいので推進可能であるが、推進距離が通常よりも長くなると、推進力伝達リング15に作用する推進力は、管の総重量と推進距離に比例して大きくなるので、この大きな推進力が推進力伝達リング15と挿口7の外周面7aとの間に作用する最大の摩擦力よりも大きいと、推進力伝達リング15が挿口7に対して滑りはじめ、耐震管を長い距離にわたって推進させることができない。
【0015】
そこで本発明はこのような問題を解決して、管の推進距離が長い場合においても、管に耐震機能を付与した状態で推進力の伝達を行い、管を推進工法によって布設することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために請求項1記載の発明は、管の受口と挿口との間に離脱防止機能と伸縮機能とが付与された耐震管の推進工法において、前記挿口の外周面に、前記受口の端面と接触して前記受口と前記挿口との間で推進力を伝達する推進力伝達部材を締め付け、管の推進距離に応じて前記推進力伝達部材の数を増減させるものである。
【0017】
このような構成によれば、推進力が作用すると、各推進力伝達部材と挿口の外周面との間に摩擦力が発生するので、管に作用する大きな推進力は、取り付けられている推進力伝達部材の数だけ各推進力伝達部材に分散して作用する。すなわち、推進力伝達部材の数を増減させることは、推進力伝達部材1つ当たりに分散して作用する推進力の大きさを変化させることと同様であり、推進力伝達部材1つ当たりに作用する推進力の大きさを小さくすることを可能にする。したがって、推進距離に適した個数の推進力伝達部材を挿口の外周面に取り付けることで、作用する大きな推進力を、1つ当たりの推進力伝達部材が伝達し得る推進力の大きさに分散することができるので、推進中に各推進力伝達部材が挿口に対して滑り始めることはなく、総合的に大きな推進力を伝達することができ、管を長距離にわたって推進させることができる。
【0018】
【発明の実施の形態】
本発明に基づく管の推進工法を図1〜図4を参照しながら説明する。
耐震管をさや管工法による推進工法によって推進させる際に、この耐震管を長い距離にわたって、例えば50メートルにわたって推進させる時には、図1に示すように、例えば2個の推進力伝達リング15が挿口7の外周面7aに取り付けられる。
【0019】
互いに接合されている鋳鉄管1及び鋳鉄管9の構成は、図5に示した従来の推進工法における鋳鉄管1及び鋳鉄管9の構成と同様である。推進力伝達リング15の詳細を図1及び図2を参照しながら説明する。
【0020】
図2に示すように、推進力伝達リング15は、環状体で周方向2つ割の構造をしており、その分割部18における径方向外向きの突出部19には、ボルト20を通すためのボルト孔21が設けられている。
【0021】
挿口7の外周面7aにおける所定の位置に、推進力伝達部材15を外ばめ状態で配置し、突出部19におけるボルト孔21にボルト20を通し、ナット22を締めることによって、推進力伝達リング15における内周面23を挿口7の外周面7aに密着させて固定する。
【0022】
このとき、図1に示すように、2個の推進力伝達リング15のうちの受口2側に取り付けられる最初の1つ目は、挿口突部10の先端と受口2の奥端面13との間に適当な距離s及び挿口突部10とロックリング6との間に適当な距離tをおいた状態で、管の継手部14における受口2に入り込まない挿口7の外周面7aに、推進力伝達リング15の一方の端面16が受口2における端面17に接するように取り付けられる。
【0023】
次に、2個目の推進力伝達リング15を、その受口2側の端面16が1つ目に取り付けた推進力伝達リング15の受口2側でないほうの端面30に接触するように、1つ目の推進力伝達リング15と同様の方法で挿口7の外周面7aに取り付ける。なお、2個目以降に取り付けられる推進力伝達リング15の受口2側の端面16は、その1つ前に取り付けられている推進力伝達リング15の受口2側でない端面30に接し、逆側の端面は、その1つ後に取り付けられている推進力伝達リング15の受口2側の端面16に接し、最後に取り付けられる推進力伝達リング15の受口2側でない端面は何とも接しない。
【0024】
上記のような構成において、鋳鉄管1及び鋳鉄管9を長い距離にわたって推進させるために、通常の推進距離に必要とされる推進力よりも大きい推進力を挿口7側から作用させる。
【0025】
このとき、図1に示すように、挿口7の外周面7aに、2つの推進力伝達リング15が互いに接しながら同様の方法で取り付けられていることにより、推進力はこれらの推進力伝達リング15に対して同様に作用する、つまり挿口7の外周面7aに取り付けられている推進力伝達リング15の数の分だけ推進力が同等に分散されることになる。
【0026】
したがって、あらかじめ推進距離に応じて必要とされる推進力の大きさと推進力伝達リング15が挿口7に対して滑り始める時の力の大きさとを算出しておくことで、耐震管の推進距離に適する数の推進力伝達リング15を挿口7の外周面7aに取り付けることができる。これにより、大きな推進力が作用しても各推進力伝達リング15が挿口7に対して滑り始めることはなく、この推進力を受口2に伝達するので、管を長距離にわたって推進させることが可能である。
【0027】
なお、上述したように、推進力伝達リング15の数は推進力を伝達するために必要な最低限の数であるので、推進力よりも遥かに大きな力である地震力が管の圧縮方向に作用した場合には、各推進力伝達リング15は挿口7に対して滑り始める。したがって、推進力伝達リング15が、管の継手部14に付与されている耐震機能に悪影響を与えることはないので、地震時には、十分な耐震機能が発揮される。
【0028】
また、推進距離が50メートル程度の長い距離で、上方に道路24や軌道25などがある場合において、耐震管を推進させる時の様子を図3に示す。
図3に示すように、さや管28内において推進される管の先頭管26よりも25メートル程度後方までは、推進力伝達リング15は1個で推進力を伝達可能であるが、25メートル以降になると、上述したように、管の推進に必要な推進力は、管の総重量と推進距離に比例して大きくなるので、1個の推進力伝達リング15ではこの推進力を伝達することができない。そこで、先頭管26よりも25メートル以降となる挿口7の外周面7aに2個の推進力伝達リング15を取り付けることで、作用する推進力を分散することができるので、各推進力伝達リング15が挿口7に対して滑り始めることを防止でき、推進力を受口2に伝達することができる。
【0029】
さらに、推進距離が75メートル程度の長い距離で、上方に河川27などがある場合において、耐震管を推進させる時の様子を図4に示す。
図4に示すように、さや管28内において推進される管の先頭管26よりも25メートル程度後方までは推進力伝達リング15は1個で推進力を伝達可能であるが、先頭管26よりも25メートル以降になると、その都度推進距離に応じた推進力の大きさに推進力伝達リング15が対応できるように、挿口7の外周面7aに推進力伝達リング15を2個〜3個と変化させて取り付ける。これにより、作用する大きな推進力を分散することができるので、各推進力伝達リング15が挿口7に対して滑り始めることを防止でき、推進力を受口2に伝達することができる。
【0030】
以上のようにすることで、挿口突部10と受口2の奥端面13との間に適当な距離s及び挿口突部10とロックリング6との間に適当な距離tをおいた状態、すなわち、管の継手部14に離脱防止機能と伸縮機能とが付与された状態で推進力を伝達することができるので、耐震管を推進工法によって布設することができる。
【0031】
【発明の効果】
以上のように本発明によると、推進力が作用すると、各推進力伝達部材と挿口の外周面との間に摩擦力が発生するので、管に作用する大きな推進力は、取り付けられている推進力伝達部材の数だけ各推進力伝達部材に分散して作用する。すなわち、推進力伝達部材の数を増減させることは、推進力伝達部材1つ当たりに分散して作用する推進力の大きさを変化させることと同様であり、推進力伝達部材1つ当たりに作用する推進力の大きさを小さくすることを可能にする。したがって、推進距離に適した個数の推進力伝達部材を挿口の外周面に取り付けることで、作用する大きな推進力を、1つ当たりの推進力伝達部材が伝達し得る推進力の大きさに分散することができるので、推進中に各推進力伝達部材が挿口に対して滑り始めることはなく、総合的に大きな推進力を伝達することができ、管を長距離にわたって推進させることができる。
【図面の簡単な説明】
【図1】本発明における管の推進工法を示す図である。
【図2】図1に示す推進力伝達リングを示す図である。
【図3】本発明に基づいて管を推進工法にて布設している時を示す図である。
【図4】本発明に基づいて管を推進工法にて布設している時を示す図3とは異なる図である。
【図5】従来の管の推進工法を示す図である。
【符号の説明】
2 受口
7 挿口
7a 外周面
15 推進力伝達部材
17 端面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pipe propulsion method.
[0002]
[Prior art]
There has been known a propulsion method using a sheath tube method in which a pipe line is laid by propelling a new tube in the sheath tube. The propulsion pipe used in this propulsion method has an insertion port formed at the end of the other pipe inserted into the reception port formed at the end of one of the pipes joined to each other. The propulsive force is transmitted between the door and the insertion opening. In this case, the propulsive force is transmitted in a state where the insertion port is completely inserted into the receiving port, and therefore the insertion port cannot enter the interior of the receiving port any more when the installation of the conduit is completed.
[0003]
On the other hand, there is known an earthquake resistant tube provided with a separation preventing function and an expansion / contraction function between the receiving port and the insertion port. The earthquake resistance function will be described with reference to FIG.
As shown in FIG. 5, a receiving port 2 is formed at the end of one of the cast iron pipes 1 to be joined to each other, and an annular rubber seal is formed in the sealing material receiving groove 3 on the inner periphery of the receiving port 2. A material 4 is disposed, a lock ring housing groove 5 is formed on the back side of the seal material housing groove 3, and a lock ring 6 that is divided by 10% in the circumferential direction is attached to the lock ring housing groove 5. Between the outer peripheral side of the lock ring 6 and the inner peripheral side of the lock ring receiving groove 5, a holding rubber ring 8 for holding the lock ring 6 in a centered state when the insertion slot 7 is inserted is disposed. The holding rubber ring 8 is bonded to the outer periphery of the lock ring 6, for example.
[0004]
On the outer periphery of the distal end portion of the insertion port 7 of the other cast iron pipe 9, an insertion projection 10 is formed that can engage the lock ring 6 from the back side of the receiving port 2. A taper surface on the outer periphery of the distal end of the insertion opening 7 including the insertion protrusion 10 serves as a guide when inserting the insertion opening 7 into the receiving opening 2 in which the sealing material 4 and the lock ring 6 are accommodated. 11 is formed. In addition, a lining 12 for protecting the inner surface of the pipe is provided on the inner periphery of the cast iron pipe 1 and the cast iron pipe 9 at the direct portion.
[0005]
The receiving port 2 and the insertion port 7 are formed so that an appropriate distance s can be formed between the insertion projection 10 in the insertion port 7 and the back end face 13 in the reception port 2, and the insertion projection 10 and the lock ring 6. Are joined so that an appropriate distance t can be formed. Therefore, when a large force such as tension or compression is applied to the cast iron pipe 1 and the cast iron pipe 9 due to an earthquake or the like, the insertion protrusion 10 is inserted by the amount that can be moved between the lock ring 6 and the back end face 13. The mouth 7 can be expanded and contracted with respect to the receiving mouth 2.
[0006]
Furthermore, when the insertion projection 10 is engaged with the lock ring 6 from the back end surface 13 side of the receiving port 2, a separation preventing function is provided between the receiving port 2 and the insertion port 7.
With the above configuration, the seismic tube is provided with a detachment prevention function and an expansion / contraction function. However, as described above, the seismic pipe having the detachment prevention function and the expansion / contraction function is promoted and installed in order to maintain the detachment prevention function and the expansion / contraction function. An appropriate distance s between the portion 10 and the back end face 13 of the receiving port 2 and an appropriate distance t between the insertion projection 10 and the lock ring 6 must be ensured, and the propulsive force can be transmitted. It is difficult.
[0007]
Therefore, in order to lay the earthquake-resistant tube by the propulsion method, as shown in FIG. 5, an appropriate distance s between the tip of the insertion projection 10 and the back end surface 13 of the receptacle 2 and the insertion projection 10 A propulsive force transmission ring 15 is provided on the outer peripheral surface 7a of the insertion port 7 that does not enter the receiving port 2 of the pipe joint portion 14 with an appropriate distance t between the lock ring 6 and one end surface 16 thereof. Is attached by an appropriate method so as to be in contact with the end face 17 of the receiving port 2.
[0008]
Next, when a driving force for propelling the cast iron pipe 1 and the cast iron pipe 9 is applied from the insertion port 7 side, one end surface 16 of the propulsive force transmission ring 15 pushes the end surface 17 of the receiving port 2. The propulsive force can be transmitted to 2.
[0009]
Therefore, a state in which an appropriate distance s is placed between the insertion projection 10 and the back end surface 13 of the receiving port 2 and an appropriate distance t is placed between the insertion projection 10 and the lock ring 6, that is, the pipe Since the propulsive force can be transmitted in a state in which the joint portion 14 is provided with the detachment preventing function and the expansion / contraction function, the earthquake resistant tube can be laid by the propulsion method.
[0010]
When a large force such as an earthquake force much larger than the propulsive force is applied to the joint portion 14 of the pipe after laying, the large force is applied to the outer peripheral surface of the propulsive force transmission ring 15 and the insertion port 7. If it is larger than the maximum frictional force acting between 7 a and 7 a, the propulsive force transmission ring 15 is pushed by the end face 17 of the receiving port 2 and slides with respect to the inserting port 7. Therefore, the seismic function imparted to the joint portion 14 can be exhibited.
[0011]
In the conventional propulsion method as described above, the propulsive force acting on the propulsive force transmission ring 15 attached to the outer peripheral surface 7a of the insertion port 7 is small as long as the propulsion distance is, for example, about 25 meters as usual. Therefore, the earthquake-resistant pipe can be propelled in the sheath and installed without any problem.
[0012]
However, in the conventional pipe propulsion method, when the propulsion distance of the earthquake resistant pipe is increased to, for example, 50 meters in order to cross rivers and roads, the propulsive force acting on the propulsive force transmission ring 15 is the total weight of the pipe and the propulsion distance. Therefore, the propulsive force transmission ring 15 receives a propulsive force larger than the propulsive force that acts during the propulsion method in the case of a normal propulsion distance. Propulsion that can be transmitted to the propulsive force transmission ring 15 when the propulsive force that is larger than that in the normal state is larger than the maximum frictional force that acts between the propulsive force transmission ring 15 and the outer peripheral surface 7a of the insertion slot 7. Since there is a limit to the magnitude of the force, the propulsive force transmission ring 15 may be pushed by the end surface 17 of the receiving port 2 and may begin to slide with respect to the outer peripheral surface 7a of the insertion port 7.
[0013]
If the cast iron pipe 1 and the cast iron pipe 9 are further propelled in a state where the propulsive force transmission ring 15 remains slid with respect to the outer peripheral surface 7a of the insertion opening 7, the propulsive force is not transmitted by the propulsive force transmission ring 15. When the insertion port 7 completely enters the receiving port 2, it is transmitted between the insertion projection 10 and the back end surface 13 of the receiving port 2, and the back end surface of the insertion projection 10 and the receiving port 2. An appropriate distance s is not ensured between the distance 13 and 13. That is, since the insertion slot 7 completely enters the back end face 13 of the receptacle 2, when a force in the compression direction is applied to the cast iron pipe 1 and the cast iron pipe 9 during an earthquake, the insertion slot 7 is in contact with the receptacle 2. May not be able to enter further, and may not be able to perform with sufficient earthquake resistance.
[0014]
[Problems to be solved by the invention]
In the conventional propulsion method as described above, the propulsive force transmitted to a certain distance is relatively small and can be propelled. However, when the propulsion distance is longer than usual, the propulsive force acting on the propulsive force transmission ring 15 is possible. Is increased in proportion to the total weight of the tube and the propulsion distance, so that this large propulsive force is greater than the maximum frictional force acting between the propulsive force transmission ring 15 and the outer peripheral surface 7a of the insertion port 7, The propulsive force transmission ring 15 begins to slide with respect to the insertion slot 7, and the earthquake resistant tube cannot be propelled over a long distance.
[0015]
Therefore, the present invention aims to solve such a problem and to transmit a propulsive force with a seismic function imparted to the pipe even when the propulsion distance of the pipe is long, and to lay the pipe by a propulsion method. To do.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is the seismic tube propulsion method in which the separation preventing function and the expansion / contraction function are provided between the tube receiving port and the insertion port, and the outer peripheral surface of the insertion port. And tightening a propulsive force transmitting member that contacts the end face of the receiving port and transmits a propulsive force between the receiving port and the insertion port, and increases or decreases the number of the propulsive force transmitting members according to the propulsion distance of the pipe. It is something to be made.
[0017]
According to such a configuration, when a propulsive force is applied, a frictional force is generated between each propulsive force transmitting member and the outer peripheral surface of the insertion slot. Therefore, a large propulsive force acting on the pipe is attached to the attached propulsive force. The number of force transmission members acts in a distributed manner on each propulsive force transmission member. That is, increasing / decreasing the number of propulsion force transmission members is the same as changing the magnitude of the propulsion force that acts in a distributed manner per propulsion force transmission member, and acts per propulsion force transmission member. It is possible to reduce the magnitude of the propulsion force to be performed. Therefore, by attaching a number of propulsive force transmission members suitable for the propulsion distance to the outer peripheral surface of the insertion opening, the large propulsive force that acts is distributed to the magnitude of the propulsive force that can be transmitted by each propulsive force transmission member. Therefore, each propulsive force transmission member does not begin to slide with respect to the insertion port during propulsion, and a large propulsive force can be transmitted comprehensively, and the tube can be propelled over a long distance.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The tube propulsion method according to the present invention will be described with reference to FIGS.
When propelling the earthquake-resistant pipe by the propulsion method using the sheath pipe construction method, when propelling the earthquake-resistant pipe over a long distance, for example, 50 meters, as shown in FIG. 1, for example, two propulsive force transmission rings 15 are inserted. 7 is attached to the outer peripheral surface 7a.
[0019]
The structures of the cast iron pipe 1 and the cast iron pipe 9 joined to each other are the same as the structures of the cast iron pipe 1 and the cast iron pipe 9 in the conventional propulsion method shown in FIG. Details of the propulsive force transmission ring 15 will be described with reference to FIGS. 1 and 2.
[0020]
As shown in FIG. 2, the propulsive force transmission ring 15 is an annular body and has a structure divided into two in the circumferential direction, and the bolts 20 are passed through the radially outward projecting portions 19 of the divided portions 18. Bolt holes 21 are provided.
[0021]
The propulsive force transmission member 15 is disposed in a predetermined position on the outer peripheral surface 7 a of the insertion opening 7 in a state of being fitted, the bolt 20 is passed through the bolt hole 21 in the projecting portion 19, and the nut 22 is tightened to transmit the propulsive force. The inner peripheral surface 23 of the ring 15 is fixed in close contact with the outer peripheral surface 7 a of the insertion slot 7.
[0022]
At this time, as shown in FIG. 1, the first one attached to the receiving port 2 side of the two propulsive force transmission rings 15 is the tip of the insertion projection 10 and the back end surface 13 of the receiving port 2. The outer peripheral surface of the insertion port 7 that does not enter the receiving port 2 in the joint portion 14 of the pipe, with an appropriate distance s between and a proper distance t between the insertion projection 10 and the lock ring 6. 7 a is attached so that one end face 16 of the propulsive force transmission ring 15 is in contact with the end face 17 in the receiving port 2.
[0023]
Next, the second propulsive force transmission ring 15 is brought into contact with the end surface 30 of the propulsion force transmission ring 15 which is attached to the first propulsive force transmission ring 15 which is not on the receiving port 2 side. It is attached to the outer peripheral surface 7 a of the insertion slot 7 in the same manner as the first propulsive force transmission ring 15. Note that the end surface 16 on the receiving port 2 side of the thrust transmission ring 15 attached after the second piece is in contact with the end surface 30 on the non-receiving port 2 side of the thrust transmission ring 15 mounted on the front side, and reversely. The end surface on the side contacts the end surface 16 on the receiving port 2 side of the thrust transmission ring 15 attached one after the other, and the end surface that is not on the receiving port 2 side of the thrust transmission ring 15 installed last does not contact anything.
[0024]
In the above configuration, in order to propel the cast iron pipe 1 and the cast iron pipe 9 over a long distance, a propulsive force larger than the propulsive force required for a normal propulsion distance is applied from the insertion port 7 side.
[0025]
At this time, as shown in FIG. 1, the two propulsive force transmission rings 15 are attached to the outer peripheral surface 7a of the insertion port 7 in the same manner while being in contact with each other. 15, the propulsive force is equally distributed by the number of propulsive force transmission rings 15 acting in the same manner, that is, attached to the outer peripheral surface 7 a of the insertion opening 7.
[0026]
Therefore, by calculating in advance the magnitude of the propulsive force required according to the propulsion distance and the magnitude of the force when the propulsive force transmission ring 15 starts to slide with respect to the insertion slot 7, the propulsion distance of the earthquake resistant tube is calculated. The number of propulsive force transmission rings 15 suitable for the above can be attached to the outer peripheral surface 7 a of the insertion opening 7. Thereby, even if a large propulsive force is applied, each propulsive force transmission ring 15 does not start to slide with respect to the insertion slot 7, and this propulsive force is transmitted to the receiving port 2, so that the tube is propelled over a long distance. Is possible.
[0027]
As described above, since the number of the propulsive force transmission rings 15 is the minimum number necessary for transmitting the propulsive force, an earthquake force that is much larger than the propulsive force is generated in the compression direction of the pipe. When acted, each propulsive force transmission ring 15 starts to slide with respect to the insertion slot 7. Therefore, the propulsive force transmission ring 15 does not adversely affect the seismic function provided to the joint portion 14 of the pipe, so that a sufficient seismic function is exhibited during an earthquake.
[0028]
FIG. 3 shows a state in which the seismic tube is propelled when the propulsion distance is a long distance of about 50 meters and there is a road 24, a track 25, and the like above.
As shown in FIG. 3, the propulsive force transmission ring 15 can transmit propulsive force up to about 25 meters behind the head tube 26 of the tube propelled in the sheath tube 28. Then, as described above, the propulsive force necessary for propelling the pipe increases in proportion to the total weight of the pipe and the propulsion distance. Therefore, one propulsive force transmission ring 15 can transmit this propulsive force. Can not. Therefore, by attaching the two propulsive force transmission rings 15 to the outer peripheral surface 7a of the insertion opening 7 which is 25 meters or more away from the top tube 26, the acting propulsive force can be dispersed. 15 can be prevented from starting to slide with respect to the insertion slot 7, and the propulsive force can be transmitted to the receiving slot 2.
[0029]
Further, FIG. 4 shows a state in which the seismic tube is propelled when the propulsion distance is a long distance of about 75 meters and there is a river 27 or the like above.
As shown in FIG. 4, the propulsive force transmission ring 15 can transmit a propulsive force up to about 25 meters behind the head pipe 26 of the pipe propelled in the sheath pipe 28. When the distance is 25 meters or more, two to three propulsion force transmission rings 15 are provided on the outer peripheral surface 7a of the insertion slot 7 so that the propulsion force transmission ring 15 can correspond to the magnitude of the propulsion force corresponding to the propulsion distance each time. Change and install. Thereby, since the large driving force which acts can be disperse | distributed, it can prevent that each driving force transmission ring 15 begins to slide with respect to the insertion port 7, and can transmit a driving force to the receiving port 2. FIG.
[0030]
By doing so, an appropriate distance s is provided between the insertion projection 10 and the back end surface 13 of the receiving port 2, and an appropriate distance t is provided between the insertion projection 10 and the lock ring 6. Since the propulsive force can be transmitted in the state, that is, in the state where the detachment preventing function and the expansion / contraction function are imparted to the joint portion 14 of the pipe, the earthquake resistant pipe can be laid by the propulsion method.
[0031]
【The invention's effect】
As described above, according to the present invention, when a propulsive force is applied, a frictional force is generated between each propulsive force transmitting member and the outer peripheral surface of the insertion slot, so that a large propulsive force acting on the pipe is attached. The number of the propulsive force transmitting members acts on each propulsive force transmitting member in a distributed manner. That is, increasing / decreasing the number of propulsion force transmission members is the same as changing the magnitude of the propulsion force that acts in a distributed manner per propulsion force transmission member, and acts per propulsion force transmission member. It is possible to reduce the magnitude of the propulsion force to be performed. Therefore, by attaching a number of propulsive force transmission members suitable for the propulsion distance to the outer peripheral surface of the insertion opening, the large propulsive force that acts is distributed to the magnitude of the propulsive force that can be transmitted by each propulsive force transmission member. Therefore, each propulsive force transmission member does not begin to slide with respect to the insertion port during propulsion, and a large propulsive force can be transmitted comprehensively, and the tube can be propelled over a long distance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a pipe propulsion method according to the present invention.
FIG. 2 is a view showing a propulsive force transmission ring shown in FIG. 1;
FIG. 3 is a view showing a time when a pipe is installed by a propulsion method according to the present invention.
4 is a view different from FIG. 3 showing a time when a pipe is installed by a propulsion method according to the present invention.
FIG. 5 is a diagram showing a conventional pipe propulsion method.
[Explanation of symbols]
2 Receiving port 7 Inserting port 7a Outer peripheral surface 15 Propulsive force transmitting member 17 End surface

Claims (1)

管の受口と挿口との間に離脱防止機能と伸縮機能とが付与された耐震管の推進工法において、前記挿口の外周面に、前記受口の端面と接触して前記受口と前記挿口との間で推進力を伝達する推進力伝達部材を締め付け、管の推進距離に応じて前記推進力伝達部材の数を増減させることを特徴とする管の推進工法。In the seismic tube propulsion method provided with a detachment preventing function and an expansion / contraction function between the tube receiving port and the insertion port, the outer surface of the insertion port contacts the end surface of the receiving port and the receiving port A tube propulsion method characterized in that a propulsive force transmitting member that transmits propulsive force to the insertion port is tightened, and the number of propulsive force transmitting members is increased or decreased according to the propulsion distance of the tube.
JP2001135651A 2001-05-07 2001-05-07 Pipe promotion method Expired - Lifetime JP3916413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135651A JP3916413B2 (en) 2001-05-07 2001-05-07 Pipe promotion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135651A JP3916413B2 (en) 2001-05-07 2001-05-07 Pipe promotion method

Publications (2)

Publication Number Publication Date
JP2002327595A JP2002327595A (en) 2002-11-15
JP3916413B2 true JP3916413B2 (en) 2007-05-16

Family

ID=18983074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135651A Expired - Lifetime JP3916413B2 (en) 2001-05-07 2001-05-07 Pipe promotion method

Country Status (1)

Country Link
JP (1) JP3916413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247009A (en) * 2016-08-31 2016-12-21 新兴铸管股份有限公司 Metal tube axial jacking force transmission system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106545694B (en) * 2016-11-25 2018-11-27 中国海洋石油集团有限公司 The installation method of technique of grouted clamp centering and end seal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106247009A (en) * 2016-08-31 2016-12-21 新兴铸管股份有限公司 Metal tube axial jacking force transmission system

Also Published As

Publication number Publication date
JP2002327595A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP3916413B2 (en) Pipe promotion method
JP2020148256A (en) Driving force transmission device for earthquake-resistant pipe propulsion laying method
JP2020034062A (en) Propulsive force transmission device for earthquake-resistant pipe propulsion laying construction method
JP3764323B2 (en) Plug-in type propulsion pipe
JP3441927B2 (en) Slip-on type earthquake-resistant pipe joint and its joining method
JP3969957B2 (en) Propulsion pipe with earthquake resistance function
JP4079568B2 (en) Propulsion pipe with earthquake resistance function
JP3758918B2 (en) Pipe joint for earthquake-proof propulsion method with propulsion jig
JP2001141113A (en) Jacking pipe with earthquake-resistant function
JP2019138449A (en) Earthquake proof pipe propulsion laying construction method and propulsive force transmission device
JP2000266261A (en) Aseismatic propulsion construction method and pipe joint
JP3781592B2 (en) Propulsion pipe with earthquake resistance function
JP3821619B2 (en) Seismic joint structure for pipe-in-pipe method
JP3681275B2 (en) Joint structure of earthquake-resistant propulsion pipe
JP3874678B2 (en) Pipe propulsion guide for sheath propulsion method and its attachment
JP3523993B6 (en) Liner for seismic propulsion pipe
JP2000266260A (en) Aseismatic propulsion construction method and pipe joint
JP2002188769A (en) Pipe with aseismatic function
JP2001141152A (en) Jacking pipe with earthquake-resistant function
JP3979838B2 (en) Seismic joint for existing pipe rehabilitation method
JP3916412B2 (en) Seismic pipe joint for propulsion method with propulsion jig
JP4175754B2 (en) Propulsion pipe with earthquake resistance function
JP3523993B2 (en) Liner for seismic propulsion pipe
JP2002147667A (en) Aseismic propulsion pipe joint
JP3894742B2 (en) Saya tube propulsion method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3916413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

EXPY Cancellation because of completion of term