JP2000106187A - Nonaqueous electrolytic secondary battery - Google Patents

Nonaqueous electrolytic secondary battery

Info

Publication number
JP2000106187A
JP2000106187A JP10279080A JP27908098A JP2000106187A JP 2000106187 A JP2000106187 A JP 2000106187A JP 10279080 A JP10279080 A JP 10279080A JP 27908098 A JP27908098 A JP 27908098A JP 2000106187 A JP2000106187 A JP 2000106187A
Authority
JP
Japan
Prior art keywords
potential
secondary battery
positive electrode
carbon fiber
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10279080A
Other languages
Japanese (ja)
Inventor
Keisuke Narumi
惠介 成海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP10279080A priority Critical patent/JP2000106187A/en
Publication of JP2000106187A publication Critical patent/JP2000106187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide high charging and discharging efficiency, an superior cycle characteristic, and compatibility with a nickel - cadmium battery, by constituting a positive electrode of an active material of Li4/3Ti5/3O4, a conducting material of vapor-phase carbon fiber, and a binder. SOLUTION: A positive electrode 2 is obtained by pressure-forming a mixture including an active material of Li4/3Ti5/3O4, a conducting material made of a vapor-phase carbon fiber, and a binder. The vapor-phase carbon fiber 5-10 vol.%, having a diameter of 0.1-0.5 μm and the length of 10-100 μm, is included into the active material, in order to prevent lowering of charging efficiency and maintain a cycle characteristic. The potential of the active material Li4/3 Ti5/3O4 is 1.5 V with the Li+/Li potential as the reference, and the potential of a carbon material which is a negative electrode material is about 0 V on with the Li+/Li potential as the reference, consequently the secondary battery having an operating potential of 1.5 V is obtained. The battery presents a high discharge maintenance ratio in spite of repeated charges and discharges, and the crystal structure will not change even under the overcharged condition. Further, the vapor-phase carbon fiber has high resistance against expansion and contraction, low water absorption, and superior conductivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解液二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】最近、各種のホータブルな電気・電子機
器の多様化、小型化、軽量化の進展に伴い、その駆動源
として用いられる二次電池に対しても多様化、小型化、
軽量化が要望されている。
2. Description of the Related Art In recent years, with the diversification, miniaturization, and weight reduction of various kinds of electric and electronic devices, secondary batteries used as their driving sources have been diversified and miniaturized.
Lightening is demanded.

【0003】前記二次電池としては、従来より作動電圧
が1.5V級のニッケルカドミウム二次電池が知られて
いる。しかしながら、ニッケルカドミウム二次電池は電
解液が水溶液であるため、使用環境の温度によって十分
な電流を取り出せないという問題があった。例えば、使
用環境が0℃より低くなると、電解液の凍結等が生じて
電流を取り出すことが殆ど不可能になる。また、長期安
定性も劣る。
As the secondary battery, a nickel cadmium secondary battery having an operating voltage of 1.5 V class has been known. However, the nickel cadmium secondary battery has a problem that a sufficient current cannot be taken out depending on the temperature of the use environment since the electrolyte is an aqueous solution. For example, when the use environment is lower than 0 ° C., the electrolyte solution freezes and the like, and it is almost impossible to extract a current. In addition, long-term stability is poor.

【0004】これに対し、有機溶媒を含む非水電解液を
用いる非水電解液二次電池の研究、開発が最近、盛んに
行なわれており、リチウム二次電池として実用化されて
いる。この非水電解液二次電池は、一般に高エネルギー
見度を有し、かつ貯蔵・保管時における自己放電も少な
く、さらに環境温度が−20〜60℃という広い範囲で
電流を取り出すことができるという利点を有する。
On the other hand, research and development of a non-aqueous electrolyte secondary battery using a non-aqueous electrolyte containing an organic solvent have been actively conducted recently, and have been put to practical use as lithium secondary batteries. This non-aqueous electrolyte secondary battery generally has a high energy rating, has little self-discharge during storage, and can take out current in a wide range of environmental temperatures of -20 to 60 ° C. Has advantages.

【0005】しかしながら、前記非水電解液二次電池は
電解液が水溶液である二次電池に比べて単位面積当たり
の充電電流の最大値が小さいという問題があった。これ
は、駆動源としての二次電池の小型化が要望されている
現状において、水溶液系の二次電池に比べて不利にな
る。
[0005] However, the non-aqueous electrolyte secondary battery has a problem that the maximum value of the charging current per unit area is smaller than that of a secondary battery in which the electrolyte is an aqueous solution. This is disadvantageous in comparison with an aqueous solution type secondary battery in the current situation in which a secondary battery as a driving source is required to be downsized.

【0006】具体的には、二次電池がコイン型である場
合、電池反応に寄与する反応面積は非常に小さくなるた
め、微小電流しか流すことができないことになる。仮
に、大電流で充電を行なうと活物質の利用率の低下や充
放電サイクル寿命特性の劣化をを招く。
Specifically, when the secondary battery is a coin type, the reaction area contributing to the battery reaction becomes very small, so that only a small current can flow. If charging is performed with a large current, a reduction in the utilization rate of the active material and a deterioration in the charge / discharge cycle life characteristics are caused.

【0007】前記非水電解液二次電池の正極活物質とし
ては、例えば五酸化バナジウム、マンガン酸化物、リチ
ウムコバルト酸化物、リチウムニッケル酸化物、スピネ
ル型リチウムマンガン酸化物等が検討され、その一部が
実用化されている。
As the positive electrode active material of the nonaqueous electrolyte secondary battery, for example, vanadium pentoxide, manganese oxide, lithium cobalt oxide, lithium nickel oxide, spinel lithium manganese oxide and the like have been studied. Department has been put to practical use.

【0008】しかしながら、前述した正極材料はいずれ
もリチウムの標準単極電位(以後、Li+/Li電位と
称す)を基準にして3.0〜4.0V前後の放電電位を
示すため、これらの材料を用いたリチウム二次電池はそ
の作動電位が1.5Vにならず、前述したニッケルカド
ミウム二次電池と互換することが困難である。
However, all of the above-mentioned positive electrode materials exhibit a discharge potential of about 3.0 to 4.0 V with respect to a standard monopolar potential of lithium (hereinafter referred to as Li + / Li potential). The operating potential of the lithium secondary battery using the material does not reach 1.5 V, and it is difficult to be compatible with the above-mentioned nickel cadmium secondary battery.

【0009】ところで、スピネル型結晶構造を有する材
料のうち、LixTiy4で示される材料の放電電位は
Li+/Li電位に対して1.5V付近にあることが知
られている。特に、x=4/3,y=5/3の材料、つ
まりLi4/3Ti5/34の放電電位はLi+/Li電位を
基準にして1.5Vを示すことが知られている。このよ
うなLi4/3Ti5/34材料は、充放電を100サイク
ル以上繰り返しても、95%以上の放電維持率を示す。
また、Li+/Li電位に対して3.0V以上の電位を
印加する過充電状態にあっても、その結晶構造の変化が
起こらない特性を有する。このため、前記材料は長寿命
のリチウム二次電池の電池材料として期待されている。
It is known that among materials having a spinel-type crystal structure, the discharge potential of a material represented by Li x Ti y O 4 is around 1.5 V with respect to the Li + / Li potential. In particular, it is known that the discharge potential of a material of x = 4/3 , y = 5/3 , that is, Li 4/3 Ti 5/3 O 4 shows 1.5 V based on the Li + / Li potential. I have. Such a Li 4/3 Ti 5/3 O 4 material shows a discharge maintenance rate of 95% or more even when charge and discharge are repeated for 100 cycles or more.
Further, even in an overcharged state in which a potential of 3.0 V or more with respect to the Li + / Li potential is applied, the crystal structure does not change. For this reason, the material is expected as a battery material for a long-life lithium secondary battery.

【0010】このようなことから、LixTiy4を用
いたリチウム二次電池が提案されている。例えば、特開
平6−275263号公報にはLi+/Li電位に対し
て2.0V以上の放電電位を示す正極および負極に前記
LixTiy4を用いたリチウム二次電池が開示されて
いる。また、特開平7−320784号公報にはLi2
MnO3やLiMnO2を正極材料として用い、Li4/3
Ti5/34またはLiTi24を負極材料として用いる
ことが開示されている。
[0010] Under such circumstances, a lithium secondary battery using Li x Ti y O 4 has been proposed. For example, JP-A-6-275263 discloses a lithium secondary battery using the Li x Ti y O 4 as a positive electrode and a negative electrode exhibiting a discharge potential of 2.0 V or more with respect to Li + / Li potential. I have. Japanese Patent Application Laid-Open No. 7-320784 discloses Li2
MnO3 or LiMnO2 is used as a cathode material, and Li 4/3
It is disclosed that Ti 5/3 O 4 or LiTi 2 O 4 is used as a negative electrode material.

【0011】しかしながら、前述した公開公報に開示さ
れた発明はLixTiy4をいずれも負極材料として用
いており、しかも正極活物質の特性が電池性能を強く規
制するため、LixTiy4が持つ充放電サイクル寿
命、過充電特性、充放電時の電位変化の平坦性等の優れ
た特性を十分に生かせないという問題があった。
[0011] However, none of the invention Li x Ti y O 4, which is disclosed in publications described above is used as a negative electrode material, and since the characteristics of the positive electrode active material is strongly regulate the battery performance, Li x Ti y There is a problem that the excellent characteristics of O 4 such as charge / discharge cycle life, overcharge characteristics, and flatness of potential change during charge / discharge cannot be fully utilized.

【0012】なお、LixTiy4を正極に用いたリチ
ウム二次電池の場合には、理論的に前記LixTiy4
の働きによって優れた過充電特性を発揮できることが期
待されているものの、未だ実用化されていない。これ
は、次のような理由によるものと考えられる。
Incidentally, in the case of a lithium secondary battery using Li x Ti y O 4 as the positive electrode, the above-mentioned Li x Ti y O 4 is theoretically used.
Is expected to exhibit excellent overcharge characteristics, but has not yet been put to practical use. This is considered to be due to the following reasons.

【0013】例えば、負極としてリチウム箔を用いた場
合、充放電の繰り返しによりリチウム箔が微細化した
り、リチウム箔の表面にリチウムの樹枝状突起が成長し
てそれがセパレータを突き破って正極と接触して内分短
絡を発生したり、電池の充放電サイクル特性の劣化を招
き、電池寿命を短くする。
For example, when a lithium foil is used as a negative electrode, the lithium foil becomes finer due to repetition of charge and discharge, or dendrites of lithium grow on the surface of the lithium foil and break through the separator to come into contact with the positive electrode. As a result, the internal short circuit may occur or the charge / discharge cycle characteristics of the battery may be deteriorated, thereby shortening the battery life.

【0014】このような問題に対してLi−Al合金を
負極に用いることが知られている。しかしながら、Li
−Al合金の放電電位はLi+/Li電位を基準にして
約0.4Vであるため、結局そのリチウム二次電池の作
動電圧は1.1V(1.5V−0.4V)程度になって
しまい、1.5V系電池として不適切になる。
It is known that a Li-Al alloy is used for the negative electrode to solve such a problem. However, Li
Since the discharge potential of the Al alloy is about 0.4 V with reference to the Li + / Li potential, the operating voltage of the lithium secondary battery eventually becomes about 1.1 V (1.5 V-0.4 V). This makes the battery unsuitable as a 1.5 V battery.

【0015】一方、リチウム二次電池に用いられる正極
としては、活物質と例えばカーボンブラックのような導
電材と例えばポリテトラフルオロエチレンのような結着
材とを所定の割合で混練して調製し、成形して偏平状に
した、いわゆる正極合剤が知られている。
On the other hand, a positive electrode used in a lithium secondary battery is prepared by kneading an active material, a conductive material such as carbon black and a binder such as polytetrafluoroethylene at a predetermined ratio. A so-called positive electrode mixture formed into a flat shape by molding is known.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、正極合
剤の導電材としてカーボンブラックを用いたリチウム二
次電池はサイクル特性等において必ずしも十分に満足す
るものではなかった。
However, lithium secondary batteries using carbon black as the conductive material of the positive electrode mixture have not always been sufficiently satisfactory in cycle characteristics and the like.

【0017】本発明は、優れた充電効率とサイクル特性
を有する1.5Vの作動が可能な非水電解液二次電池を
提供しようとするものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of operating at 1.5 V and having excellent charging efficiency and cycle characteristics.

【0018】[0018]

【課題を解決するための手段】本発明に係わる非水電解
液二次電池は、活物質としてのLi4/3Ti5/34、導
電材および結着材を含む正極と、リチウムイオンの吸蔵
・放出が可能に炭素材料を含む負極と、非水電解液とを
具備し、前記導電材は、気相法炭素繊維であることを特
徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode containing Li 4/3 Ti 5/3 O 4 as an active material, a conductive material and a binder, and a lithium ion A negative electrode containing a carbon material capable of occluding and releasing carbon, and a non-aqueous electrolyte, wherein the conductive material is a vapor grown carbon fiber.

【0019】前記気相法炭素繊維は、前記活物質に対し
て5〜10体積%の割合で含有されることが好ましい。
It is preferable that the vapor grown carbon fiber is contained at a ratio of 5 to 10% by volume based on the active material.

【0020】[0020]

【発明の実施の形態】以下、本発明に係わる非水電解液
二次電池を図1を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail with reference to FIG.

【0021】例えばステンレス鋼製の正極缶1内には、
正極2が収納されている。この正極2が接する前記正極
缶1の内面には、コロイダルカーボンのような集電体3
が被覆されている。セパレ―タ4は、前記正極2上に配
置されている。前記セパレータ4には、非水電解液が含
浸保持されている。負極5は、前記セパレータ4上に配
置されている。前記正極缶1の開口部には、絶縁ガスケ
ット6を介して負極缶7が設けられており、この負極缶
7および前記正極缶1のかしめ加工により前記正極缶1
および前記負極缶7内に前記正極2、セパレ―タ4およ
び負極5が密閉されている。なお、前記負極5が接する
前記負極缶7の内面はエキスパンドメタルような集電体
8が配置されている。
For example, in a positive electrode can 1 made of stainless steel,
The positive electrode 2 is housed. A current collector 3 such as colloidal carbon is provided on the inner surface of the positive electrode can 1 where the positive electrode 2 contacts.
Is coated. The separator 4 is disposed on the positive electrode 2. The separator 4 is impregnated with a non-aqueous electrolyte. The negative electrode 5 is disposed on the separator 4. At the opening of the positive electrode can 1, a negative electrode can 7 is provided via an insulating gasket 6. The negative electrode can 7 and the positive electrode can 1 are caulked to form the positive electrode can 1.
The positive electrode 2, the separator 4 and the negative electrode 5 are hermetically sealed in the negative electrode can 7. Note that a current collector 8 such as an expanded metal is disposed on the inner surface of the negative electrode can 7 in contact with the negative electrode 5.

【0022】次に、前記正極2、負極5およびセパレー
タ4および非水電解液について詳細に説明する。
Next, the positive electrode 2, the negative electrode 5, the separator 4, and the non-aqueous electrolyte will be described in detail.

【0023】(1)正極2 この正極2は、Li4/3Ti5/34からなる活物質と、
気相法炭素繊維からなる導電材と、結着剤とを含む混合
物を加圧成形することにより作製される。
(1) Positive electrode 2 This positive electrode 2 comprises an active material composed of Li 4/3 Ti 5/3 O 4 ,
It is produced by press-molding a mixture containing a conductive material composed of vapor grown carbon fiber and a binder.

【0024】前記気相法炭素繊維は、径が0.1〜0.
5μm、長さが10〜100μmであることが好まし
い。
The vapor-grown carbon fiber has a diameter of 0.1 to 0.1 mm.
Preferably, the length is 5 μm and the length is 10 to 100 μm.

【0025】前記気相法炭素繊維は、前記活物質に対し
て5〜10体積%の割合で含有することが好ましい。前
記気相法炭素繊維の割合を5体積%未満にすると、充電
効率が低下する恐れがある。一方、前記気相法炭素繊維
の割合が10体積%を超えると二次電池のサイクル特性
が低下する恐れがある。
The vapor grown carbon fiber is preferably contained at a ratio of 5 to 10% by volume based on the active material. When the ratio of the vapor grown carbon fiber is less than 5% by volume, the charging efficiency may be reduced. On the other hand, when the ratio of the vapor grown carbon fiber exceeds 10% by volume, the cycle characteristics of the secondary battery may be deteriorated.

【0026】前記結着材としては、例えばポリテトラフ
ルオロエチレン等を用いることができる。
As the binder, for example, polytetrafluoroethylene or the like can be used.

【0027】(2)負極5 この負極5は、リチウムを吸蔵・放出する炭素質材料、
導電剤および結着剤からなる混合物を加圧成形すること
により作製される。
(2) Negative electrode 5 This negative electrode 5 is made of a carbonaceous material that absorbs and releases lithium.
It is produced by press-molding a mixture comprising a conductive agent and a binder.

【0028】前記炭素質材料としては、例えば人造黒
鉛、天然黒鉛、熱分解炭素、コークス、樹脂焼成体、メ
ソフェーズ小球体、メソフェーズ系ピッチ等を用いるこ
とができる。
As the carbonaceous material, for example, artificial graphite, natural graphite, pyrolytic carbon, coke, resin fired body, mesophase small sphere, mesophase pitch and the like can be used.

【0029】前記導電材としては、例えばアセチレンブ
ラック、カーボンブラック等を用いることができる。
As the conductive material, for example, acetylene black, carbon black or the like can be used.

【0030】前記結着剤としては、例えばスチレン・ブ
タジエンラテックス(SBR)、カルボキシメチルセル
ロース(CMC)、ポリテトラフルオロエチレン(PT
FE)、ポリフッ化ビニリデン(PVDE)、エチレン
−プロピレン−ジエン共重合体(EPDM)、ニトリル
−ブタジエンゴム(NBR)、フッ化ビニリデン−ヘキ
サフルオロプロピレン共重合体、フッ化ビニリデン−ヘ
キサフルオロプロピレン−テトラフルオロエチレン3元
系共重合体、ポリトリフルオロエチレン(PTrF
E)、フッ化ビニリデン−トリフルオロエチレン共重合
体、フッ化ビニリデン−テトラフルオロエチレン共重合
体等を用いることができる。
Examples of the binder include styrene / butadiene latex (SBR), carboxymethyl cellulose (CMC), and polytetrafluoroethylene (PT
FE), polyvinylidene fluoride (PVDE), ethylene-propylene-diene copolymer (EPDM), nitrile-butadiene rubber (NBR), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene-tetra Fluoroethylene terpolymer, polytrifluoroethylene (PTrF
E), a vinylidene fluoride-trifluoroethylene copolymer, a vinylidene fluoride-tetrafluoroethylene copolymer, or the like can be used.

【0031】(3)セパレータ4 このセパレータ4は、例えばポリプロピレン不織布、微
孔性ポリエチレンフィルム等からなる。
(3) Separator 4 The separator 4 is made of, for example, a polypropylene nonwoven fabric, a microporous polyethylene film, or the like.

【0032】(4)非水電解液 この非水電解液は、非水溶媒に電解質を溶解した組成を
有する。
(4) Nonaqueous Electrolyte This nonaqueous electrolyte has a composition in which an electrolyte is dissolved in a nonaqueous solvent.

【0033】前記非水溶媒としては、例えばエチレンカ
ーボネート(EC)、プロピレンカーボネート(P
C)、ブチレンカーボネート(BC)、ジメチルカーボ
ネート(DMC)、ジエチルカーボネート(DEC)、
エチルメチルカーボネート(EMC)、γ−ブチロラク
トン(γ−BL)、スルホラン、アセトニトリル、1,
2−ジメトキシエタン、1,3−ジメトキシプロパン、
ジメチルエーテル、テトラヒドロフラン(THF)、2
−メチルテトラヒドロフラン等を挙げることができる。
これらの溶媒は、1種または2種以上の混合物の形態で
用いることができる。
Examples of the non-aqueous solvent include ethylene carbonate (EC) and propylene carbonate (P
C), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC),
Ethyl methyl carbonate (EMC), γ-butyrolactone (γ-BL), sulfolane, acetonitrile, 1,
2-dimethoxyethane, 1,3-dimethoxypropane,
Dimethyl ether, tetrahydrofuran (THF), 2
-Methyltetrahydrofuran and the like.
These solvents can be used in the form of one kind or a mixture of two or more kinds.

【0034】前記電解質としては、例えばホウフッ化リ
チウム(LiBF4 )、六フッ化リン酸リチウム(Li
PF6 )、過塩素酸リチウム(LiClO4 )、六フッ
化砒素リチウム(LiAsF6 )、トリフルオロメタン
スルホン酸リチウム(LiCF3 SO3 )、塩化アルミ
ニウムリチウム(LiAlCl)、リチウムフルオロメ
タンスルホン酸イミド[LiN(CF3SO22]から
選ばれる1種または2種以上のリチウム塩を挙げること
ができる。
Examples of the electrolyte include lithium borofluoride (LiBF 4 ) and lithium hexafluorophosphate (Li
PF 6 ), lithium perchlorate (LiClO 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium aluminum chloride (LiAlCl), lithium fluoromethanesulfonimide [LiN (CF 3 SO 2 ) 2 ], and one or more lithium salts.

【0035】前記電解質の非水溶媒に対する溶解量は、
0.5〜1.5モル/lとすることが望ましい。
The amount of the electrolyte dissolved in the non-aqueous solvent is as follows:
It is desirably 0.5 to 1.5 mol / l.

【0036】以上説明した本発明に係わる非水電解液二
次電池は、活物質としてのLi4/3Ti5/34、導電材
としての気相法炭素繊維および結着材を含む正極と、リ
チウムイオンの吸蔵・放出が可能に炭素材料を含む負極
と、非水電解液とを備えた構造を有する。
The non-aqueous electrolyte secondary battery according to the present invention described above has a positive electrode containing Li 4/3 Ti 5/3 O 4 as an active material, vapor-grown carbon fiber as a conductive material, and a binder. And a negative electrode containing a carbon material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte.

【0037】このような構成によれば、正極活物質であ
るLi4/3Ti5/34はLi+/Li電位を基準にして
1.5Vであり、負極材料である炭素材料はLi+/L
i電位を基準にして約0Vであるため、作動電位が1.
5V系の二次電池を実現できる。
According to such a configuration, Li 4/3 Ti 5/3 O 4 as the positive electrode active material is 1.5 V with reference to the Li + / Li potential, and the carbon material as the negative electrode material is Li 4 + / L
Since it is about 0 V with respect to the i potential, the operating potential is 1.
A 5V secondary battery can be realized.

【0038】また、前記正極活物質であるLi4/3Ti
5/34は充放電の繰り返し時において高い放電維持率を
示し、かつ過充電状態にあっても、その結晶構造の変化
が起こらない特性を有する。
Further, the positive electrode active material Li 4/3 Ti
5/3 O 4 has such characteristics that it exhibits a high discharge retention rate during repeated charging and discharging and does not change its crystal structure even in an overcharged state.

【0039】さらに、前記導電材としての気相法炭素繊
維は膨張・収縮に対する強度が高く、水分吸着がファー
ネスブラックのような従来使用されている導電材に比べ
て低く、かつ電気電導性が優れている。その結果、この
導電材を含む正極は充填密度の向上と非水電解液の浸透
性の改善が図られるため、充電効率とサイクル特性が向
上された非水電解液二次電池を実現できる。
Further, the vapor grown carbon fiber as the conductive material has a high strength against expansion and contraction, has a lower moisture adsorption than conventional conductive materials such as furnace black, and has excellent electric conductivity. ing. As a result, the positive electrode containing the conductive material has an improved filling density and an improved permeability of the non-aqueous electrolyte, thereby realizing a non-aqueous electrolyte secondary battery having improved charging efficiency and cycle characteristics.

【0040】[0040]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0041】(実施例1) <正極の作製>まず、水酸化リチウム(LiOH)と酸
化チタン(TiO2)とをモル比が4:5になるように
混合し、その混合物を窒素雰囲気中、800℃で24時
間焼成すことによりLi4/3Ti5/34を合成した。
Example 1 <Preparation of Positive Electrode> First, lithium hydroxide (LiOH) and titanium oxide (TiO 2 ) were mixed at a molar ratio of 4: 5, and the mixture was placed in a nitrogen atmosphere. By firing at 800 ° C. for 24 hours, Li 4/3 Ti 5/3 O 4 was synthesized.

【0042】次いで、得られたLi4/3Ti5/34粉末
(活物質)に平均径0.2μm、長さ40〜50μmの
気相法炭素繊維(黒鉛化品)、ポリテトラフルオロエチ
レン粉末を配合した。なお、前記気相法炭素繊維は前記
活物質に対して10体積%配合し、前記ポリテトラフル
オロエチレン粉末は前記活物質に対して5体積%配合し
た。前記混合物を攪拌した後、得られた混合物を5トン
/cm2で直径16mm、厚さ0.9mmのペレット状
に加圧成形した。つづいて、このペレットを150℃で
5時間乾燥して正極を作製した。
Next, a vapor-grown carbon fiber (graphitized product) having an average diameter of 0.2 μm and a length of 40 to 50 μm was added to the obtained Li 4/3 Ti 5/3 O 4 powder (active material), Ethylene powder was blended. The vapor grown carbon fiber was blended at 10% by volume based on the active material, and the polytetrafluoroethylene powder was blended at 5% by volume based on the active material. After stirring the mixture, the resulting mixture was pressed into a pellet having a diameter of 16 mm and a thickness of 0.9 mm at 5 ton / cm 2 . Subsequently, the pellet was dried at 150 ° C. for 5 hours to produce a positive electrode.

【0043】<負極の作製>メソフェーズピッチを原料
とするピッチ系炭素繊維を細かく粉砕し、2800℃の
温度で焼成して炭素粉末を得た。つづいて、前記炭素粉
末95重量部とスチレン・ブタジエンゴム5重量部とを
混合、攪拌した後、得られた混合物を5トン/cm2
直径16mm、厚さ0.7mmのペレット状に加圧成形
し、さらに150℃で5時間乾燥した。ひきつづき、こ
のペレットにリチウムを電解含浸させることにより負極
を作製した。
<Preparation of Negative Electrode> A pitch-based carbon fiber using mesophase pitch as a raw material was finely ground and fired at a temperature of 2800 ° C. to obtain a carbon powder. Subsequently, after mixing and stirring 95 parts by weight of the carbon powder and 5 parts by weight of styrene-butadiene rubber, the resulting mixture is pressed at 5 tons / cm 2 into pellets having a diameter of 16 mm and a thickness of 0.7 mm. It was molded and dried at 150 ° C. for 5 hours. Subsequently, the pellet was electrolytically impregnated with lithium to produce a negative electrode.

【0044】次いで、前記正極を内面にコロイダルカー
ボンを集電体として被覆したステンレス鋼からなる正極
缶に収納し、かつ前記負極を内面に直径10mm、厚さ
0.05mmのニッケル製エキスパンドメタルを配置し
たステンレス鋼からなる負極缶に収納し、さらにこれら
正負極間にホウフッ化リチウムをエチレンカーボネート
(EC)およびγ−ブチロラクトン(γ−BL)の混合
溶媒(混合体積比率1:2)に1.0モル/L溶解した
組成の非水電解液が含浸されたポリプロピレン不織布か
らなるセパレータを配置することにより前述した図1に
示す構造の外径20mm、厚さ0.5mmのコイン型リ
チウム二次電池を組み立てた。
Next, the positive electrode was housed in a stainless steel positive electrode can coated with colloidal carbon as a current collector on the inner surface, and a nickel expanded metal having a diameter of 10 mm and a thickness of 0.05 mm was arranged on the inner surface. The lithium borofluoride was placed between the positive and negative electrodes in a mixed solvent of ethylene carbonate (EC) and γ-butyrolactone (γ-BL) (mixing volume ratio 1: 2). A coin-type lithium secondary battery having an outer diameter of 20 mm and a thickness of 0.5 mm having the structure shown in FIG. Assembled.

【0045】(比較例1〜3)正極の導電材として下記
表1に示すものを用いた以外、実施例1と同様で、前述
した図1に示す構造の3種のコイン型リチウム二次電池
を組み立てた。
(Comparative Examples 1 to 3) Three types of coin-type lithium secondary batteries having the structure shown in FIG. 1 described above in the same manner as in Example 1 except that the conductive materials for the positive electrode shown in Table 1 below were used. Was assembled.

【0046】得られた実施例1および比較例1〜3の二
次電池について、組み立て後に20℃で7〜14日間エ
ージングを行なった。なお、エージング後の開回路電圧
は3.2Vであった。
The obtained secondary batteries of Example 1 and Comparative Examples 1 to 3 were aged at 20 ° C. for 7 to 14 days after assembly. The open circuit voltage after aging was 3.2 V.

【0047】エージング後の各二次電池について、20
℃にて充電電流0.5mAで2.5Vまで充電させた
後、放電電流0.5mAで0.5Vまで放電させる充放
電を繰り返し、放電容量が初期の放電容量の50%にな
るまでの充放電回数(サイクル数)を測定した。その結
果を下記表1に示す。
For each secondary battery after aging, 20
After charging to 2.5 V at 0.5 mA with a charging current of 0.5 mA, charging and discharging were repeated until the discharging capacity reached 50% of the initial discharging capacity. The number of discharges (number of cycles) was measured. The results are shown in Table 1 below.

【0048】[0048]

【表1】 [Table 1]

【0049】前記表1から明らかなように導電材として
気相法炭素繊維を含む正極を備えた実施例1の二次電池
は、導電材としてケッチェンブラック、アセチレンブラ
ック、ファーネスブラックを含む正極を備えた比較例1
〜3に比べて放電容量が50%低下するまでのサイクル
数が2倍以上になり、サイクル数の増加に伴う放電容量
の低下が少なく、優れた充放電サイクル特性を有するこ
とがわかる。
As is clear from Table 1, the secondary battery of Example 1 provided with a positive electrode containing vapor grown carbon fiber as a conductive material used a positive electrode containing Ketjen black, acetylene black, and furnace black as a conductive material. Comparative Example 1 provided
The number of cycles until the discharge capacity is reduced by 50% is twice or more as compared with Nos. 3 to 3, and it can be seen that the decrease in the discharge capacity with the increase in the number of cycles is small and that the battery has excellent charge / discharge cycle characteristics.

【0050】(実施例2−1〜2−7)正極としてLi
4/3Ti5/34粉末(活物質)と平均径0.2μm、長
さ40〜50μmの気相法炭素繊維(黒鉛化品)とポリ
テトラフルオロエチレン粉末とを下記表2に示す体積比
率で混合したものを用いた以外、実施例1と同様で、前
述した図1に示す構造の7種のコイン型リチウム二次電
池を組み立てた。
(Examples 2-1 to 2-7) Li as a positive electrode
Table 2 shows 4/3 Ti 5/3 O 4 powder (active material), vapor-grown carbon fiber (graphitized product) having an average diameter of 0.2 μm and a length of 40 to 50 μm, and polytetrafluoroethylene powder. Seven kinds of coin-type lithium secondary batteries having the above-described structure shown in FIG. 1 were assembled in the same manner as in Example 1 except that the mixture at a volume ratio was used.

【0051】得られた実施例2−1〜2−7の二次電池
について、実施例1と同様な方法により充放電回数(サ
イクル数)を測定した。
With respect to the obtained secondary batteries of Examples 2-1 to 2-7, the number of charge / discharge (cycle) was measured in the same manner as in Example 1.

【0052】また、実施例2−1〜2−7の二次電池に
ついて実施例1と同様なエージングを行ない、さらに2
0℃にて充電電流0.5mAで2.5Vまで充電させた
後、放電電流0.5mAで0.5Vまで放電させ、それ
ぞれ下記式に従って充放電効率を求めた。その結果を下
記表2に示す。
Further, the secondary batteries of Examples 2-1 to 2-7 were subjected to the same aging as in Example 1, and
After charging at 0 ° C. to 0.5 V at a charging current of 0.5 mA, the battery was discharged to 0.5 V at a discharging current of 0.5 mA, and the charging / discharging efficiency was calculated according to the following equations. The results are shown in Table 2 below.

【0053】 充放電効率(%)=(放電容量/充電容量)×100Charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100

【表2】 [Table 2]

【0054】前記表2から明らかなように気相法炭素繊
維をLi4/3Ti5/34粉末(活物質)に対して5〜1
0体積%で配合した正極を備えた実施例2−2〜2−6
の二次電池は、前記気相法炭素繊維が5体積%未満の実
施例2−1の二次電池に比べて充放電効率が高く、かつ
前記気相法炭素繊維が10体積%を超える実施例2−7
の二次電池に比べてサイクル数が大きくなることがわか
る。
As is apparent from Table 2, the vapor-grown carbon fiber was added to Li 4/3 Ti 5/3 O 4 powder (active material) in an amount of 5 to 1%.
Examples 2-2 to 2-6 provided with a positive electrode mixed at 0% by volume
In the secondary battery, the charge / discharge efficiency is higher than that of the secondary battery of Example 2-1 in which the vapor grown carbon fiber is less than 5% by volume, and the vapor grown carbon fiber exceeds 10% by volume. Example 2-7
It can be seen that the number of cycles is larger than that of the secondary battery.

【0055】[0055]

【発明の効果】以上詳述したように本発明によれば、優
れた充放電効率やサイクル特性を有し、さらに1.5V
での作動が可能でニッケルカドミウム二次電池との互換
性を持つ非水電解液二次電池を提供することができる。
As described in detail above, according to the present invention, excellent charge / discharge efficiency and cycle characteristics,
And a non-aqueous electrolyte secondary battery compatible with a nickel cadmium secondary battery.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明におけるコイン型非水電解液二次電池を
示す断面図。
FIG. 1 is a sectional view showing a coin-type non-aqueous electrolyte secondary battery according to the present invention.

【符号の説明】[Explanation of symbols]

1…正極缶、 2…正極、 4…セパレータ、 5…負極、 7…負極缶。 DESCRIPTION OF SYMBOLS 1 ... Positive electrode can, 2 ... Positive electrode, 4 ... Separator, 5 ... Negative electrode, 7 ... Negative electrode can.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活物質としてのLi4/3Ti5/34、導
電材および結着材を含む正極と、リチウムイオンの吸蔵
・放出が可能に炭素材料を含む負極と、非水電解液とを
具備し、 前記導電材は、気相法炭素繊維であることを特徴とする
非水電解液二次電池。
1. A positive electrode containing Li 4/3 Ti 5/3 O 4 as an active material, a conductive material and a binder, a negative electrode containing a carbon material capable of inserting and extracting lithium ions, and a non-aqueous electrolysis. A non-aqueous electrolyte secondary battery, wherein the conductive material is a vapor grown carbon fiber.
【請求項2】 前記気相法炭素繊維は、前記活物質に対
して5〜10体積%の割合で含有されることを特徴とす
る請求項1記載の非水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the vapor grown carbon fiber is contained at a ratio of 5 to 10% by volume based on the active material.
JP10279080A 1998-09-30 1998-09-30 Nonaqueous electrolytic secondary battery Pending JP2000106187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10279080A JP2000106187A (en) 1998-09-30 1998-09-30 Nonaqueous electrolytic secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10279080A JP2000106187A (en) 1998-09-30 1998-09-30 Nonaqueous electrolytic secondary battery

Publications (1)

Publication Number Publication Date
JP2000106187A true JP2000106187A (en) 2000-04-11

Family

ID=17606145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10279080A Pending JP2000106187A (en) 1998-09-30 1998-09-30 Nonaqueous electrolytic secondary battery

Country Status (1)

Country Link
JP (1) JP2000106187A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147641A (en) * 2001-08-29 2003-05-21 Gsi Creos Corp Carbon fiber produced by vapor growth method, electrode material for battery, and method for producing the carbon fiber
US6858349B1 (en) 2000-09-07 2005-02-22 The Gillette Company Battery cathode
WO2006097586A1 (en) * 2004-07-02 2006-09-21 Commissariat A L'energie Atomique Method of charging a lithium-ion battery comprising a negative electrode
JP2011060764A (en) * 2009-09-09 2011-03-24 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, this manufacturing method, and lithium secondary battery containing this
JP2012195100A (en) * 2011-03-15 2012-10-11 Sumitomo Electric Ind Ltd Molten salt battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858349B1 (en) 2000-09-07 2005-02-22 The Gillette Company Battery cathode
JP2003147641A (en) * 2001-08-29 2003-05-21 Gsi Creos Corp Carbon fiber produced by vapor growth method, electrode material for battery, and method for producing the carbon fiber
WO2006097586A1 (en) * 2004-07-02 2006-09-21 Commissariat A L'energie Atomique Method of charging a lithium-ion battery comprising a negative electrode
US7671568B2 (en) 2004-07-02 2010-03-02 Commissariat A L'energie Atomique Method of charging a lithium-ion battery comprising a negative electrode
JP2011060764A (en) * 2009-09-09 2011-03-24 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, this manufacturing method, and lithium secondary battery containing this
US8530095B2 (en) 2009-09-09 2013-09-10 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP2012195100A (en) * 2011-03-15 2012-10-11 Sumitomo Electric Ind Ltd Molten salt battery

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4196234B2 (en) Nonaqueous electrolyte lithium secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
KR101626570B1 (en) Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
KR101599323B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR100469163B1 (en) Anode-activating materials and non-aqueous electrolyte secondary cells
JP3598153B2 (en) Non-aqueous electrolyte secondary battery
JPH04342966A (en) Secondary battery with non-aqueous solvent
US7150940B2 (en) Lithium ion secondary battery
JP2007042302A (en) Battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2001210325A (en) Nonaqueous electrolytic solution secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JP2001135317A (en) Nonaqueous electrolytic secondary battery
JP2000106187A (en) Nonaqueous electrolytic secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2001160418A (en) Lithium ion rechargeable battery
JP2000106188A (en) Nonaqueous electrolyte secondary battery
KR101602419B1 (en) Cathode active material cathode comprising the same and lithium battery using the cathode
JP2002015775A (en) Nonaqueous solvent secondary cell and positive active material for the same
JPH10312825A (en) Nonaqueous solvent secondary battery