JP4083394B2 - End-contact mechanical seal for submersible pumps handling slurry fluids - Google Patents

End-contact mechanical seal for submersible pumps handling slurry fluids Download PDF

Info

Publication number
JP4083394B2
JP4083394B2 JP2001140117A JP2001140117A JP4083394B2 JP 4083394 B2 JP4083394 B2 JP 4083394B2 JP 2001140117 A JP2001140117 A JP 2001140117A JP 2001140117 A JP2001140117 A JP 2001140117A JP 4083394 B2 JP4083394 B2 JP 4083394B2
Authority
JP
Japan
Prior art keywords
oil
seal
hard material
material structure
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001140117A
Other languages
Japanese (ja)
Other versions
JP2002333069A (en
Inventor
比佐志 衣笠
正人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2001140117A priority Critical patent/JP4083394B2/en
Publication of JP2002333069A publication Critical patent/JP2002333069A/en
Application granted granted Critical
Publication of JP4083394B2 publication Critical patent/JP4083394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Mechanical Sealing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油室を有する水中ポンプに装備されるメカニカルシールであって、硬質材で構成される両密封環の対向端面たる密封端面を相対回転摺接させることにより油室とこれに隣接する流体室との間を軸封するように構成されたスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシールに関するものである。
【0002】
【従来の技術】
例えば、水中ポンプにあっては、ポンプ室からモータ室への流体侵入を防止するために両室間に油室を設けると共に、油室とこれに隣接する流体室であるポンプ室との間を軸封する手段としてメカニカルシールが使用されている。而して、かかるメカニカルシールとしては、図6に示す如く、油室ケース2に軸線方向移動可能に且つ相対回転不能に保持された密封環たる固定環1と、回転軸4に固定保持された密封環たる回転環3と、固定環1と油室ケース2のリテーナ部5との間に介装されて固定環1を回転環3へと押圧附勢するスプリング6とからなり、両密封環1,3の対向端面たる密封端面1a,3aの相対回転摺接作用により、その相対回転摺接部分の外周側領域である油室Aとその内周側領域であるポンプ室(流体室)Bとを軸封するように構成した端面接触型のものが周知である。
【0003】
ところで、メカニカルシールは、密封環の構成材上、密封環1,3の一方を焼結炭化珪素(SiC)や焼結タングステンカーバイト(WC)等の硬質材で構成すると共に他方を焼結カーボン等の軟質材で構成したもの(以下「硬質材/軟質材シール」という)―と、両密封環1,3を上記した硬質材で構成したもの(以下「硬質材/硬質材シール」という)とに大別されるが、水中ポンプにあっては、固形成分を含むスラリ流体を扱うことが多いため、硬質材/軟質材シールを使用した場合には、密封端面がスラリ流体により摩耗,損傷し易く耐久性に問題があり、長期に亘って良好な軸封機能(シール機能)を発揮できない。したがって、水中ポンプのようにスラリ流体を扱うことの多い回転機器においては、一般に、硬質材/軟質材シールは使用されず、両密封環1,3を耐摩耗性に優れるSiC,WC等の焼結材で構成した硬質材/硬質材シールが使用されている。
【0004】
【発明が解決しようとする課題】
しかし、SiC,WC等の硬質材はカーボン等のような自己潤滑性を有しないものであり、摩擦係数が高いものであることから、硬質材/硬質材シールにあっては、密封環1,3の摺動による発熱や摩耗が激しく、長期に亘って良好な軸封機能を発揮できない。また、密封端面1a,3a間には油室Aに封入された油により潤滑油膜が形成されるが、SiC,WC等の硬質材は親油性に乏しいため、密封端面1a,3a間に安定した潤滑油膜を形成,維持しておくことができず、密封環1,3の摺動による発熱をさほど抑制することができない。そして、かかる発熱により油温が上昇して油の粘度が低下し、密封端面全体に潤滑油膜が形成されなくなり、所謂油切れの半ドライ状態となって、摩耗や漏れを生じる虞れがある。さらには、密封端面1a,3a間に高温による油の分解物が堆積して、漏れを増大させる虞れがある。かかる問題は、食品衛生上や環境汚染上から油室Aに封入する油として潤滑性に乏しい流動パラフィン等を使用せざるを得ない場合や油室Aが小さく封入油量が少ない場合には、更に顕著に生じることになる。
【0005】
本発明は、このような点に鑑みてなされたもので、両密封環を硬質材で構成する場合にも、油室に封入される油質や油量に拘わらず、密封端面間に適正な潤滑油膜を安定した状態で形成,維持することができ、相手密封環との摺動による発熱や摩耗を可及的に抑制し得て、長期に亘って良好な軸封機能を発揮することができるスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシールを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、硬質材で構成される両密封環の対向端面たる密封端面を相対回転摺接させることにより油室とこれに隣接するポンプ室たる流体室との間を軸封するように構成されたスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシールにおいて、上記の目的を達成すべく、特に、一方の密封端面における油室側の周端縁部に、密封端面の相対回転に伴って油室から密封端面間へと油を強制的に導入させる凹溝を形成しておくと共に、少なくとも一方の密封環を、緻密な硬質材組織中に微細な親油性材が密集する親油性材組織を分散配合してなる複合焼結材で構成して、密封端面間に凹溝によって導入された油による潤滑油膜が形成,維持されるように構成してあり、親油性材組織は1〜100μmの大きさをなすものであって硬質材組織に対して5〜50%の割合で配置されたものであり且つ硬質材組織と同質材である硬質材の微粒子が親油性材:硬質材=100:0〜20:80の割合で配合されているものであることを特徴とするスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシールを提案するものである。
【0007】
かかるメカニカルシールにあって、一方の密封端面に形成される凹溝は、所謂ハイドロダイナミックシール又はサーモハイドロダイナミックシールにおいて密封端面に形成される流体導入溝ないし流体循環溝と同一の機能を有するものである。すなわち、本発明のメカニカルシールは、ハイドロダイナミックシール又はサーモハイドロダイナミックシールに構成されたものである。なお、凹溝の形状,配置,数はシール条件に応じて任意に設定することができる。一般には、凹溝は密封端面の周方向に等間隔を隔てた複数箇所に形成され、ハイドロダイナミックシールとして機能させる場合には、凹溝は一端部が油室側に開口する扇形状等とされ、サーモハイドロダイナミックシールとして機能させる場合には、凹溝は両端部が油室側に開口する円弧形状,U字形状等とされる。また、凹溝は、何れの密封環に形成してもよいが、凹溝による油の攪拌作用に起因する油温上昇を考慮すれば、固定側の密封環(固定環)に形成しておくことが好ましい。
【0008】
また、硬質材としては耐摩耗性等に優れる炭化珪素,タングステンカーバイト等が使用され、親油性材としては油の吸着性,保持性に優れる非晶質カーボン等が使用される。好ましい実施の形態にあっては、硬質材組織は炭化珪素粒子又はタングステンカーバイト粒子が焼結してなるものであり、親油性材組織は微細な非晶質カーボンが密集した状態でその周囲の硬質材組織により保持されたものである。ところで、硬質材組織をなす部分は焼結時において大きく収縮する(例えば、炭化珪素組織は焼結時において約1/2程度の容積減となる)ことから、微細な親油性材が密集する親油性組織部分は、その周囲の硬質材組織部分の収縮力によって強力に圧縮されることになる。その結果、親油性組織部分における粒子間結合力は、焼結による結合力自体は弱くとも、上記した硬質材組織部分の収縮による外周側からの圧縮作用によって大幅に増大することになる。したがって、硬質材組織中に親油性材組織が分散配置された複合焼結材全体としての硬度,耐摩耗性等は硬質材のみからなる単一焼結材と同等となり、両密封環の一方を当該複合焼結材で構成すると共に他方を当該複合焼結材又は一般的な硬質材(炭化珪素焼結材等)で構成したメカニカルシールは、スラリ流体を扱う水中ポンプ等の回転機器にも好適に使用しうる硬質材/硬質材シールである。
【0009】
而して、本発明のメカニカルシールは、上記した如く、ハイドロダイナミックシール又はサーモハイドロダイナミックシールに構成されたものであるから、一方の密封端面に形成された凹溝により、両密封端面の相対回転に伴って、油室の油が密封端面間に強制的に導入される。そして、少なくとも一方の密封環は、緻密な硬質材組織中に親油性材組織を分散配置してなる複合焼結材で構成されていて、全体として硬質で耐摩耗性に優れたものであるが、当該密封環の密封端面には油を吸着,保持を積極的に行う親油性材組織が存在していることから、他方の密封環(相手密封環)が同質の複合焼結材で構成されている場合には勿論、一般的な硬質材(SiC,WC等の緻密質焼結材)で構成されている場合(つまり硬質材/硬質材シールである場合)にも、凹溝によって導入された油が密封端面間に確実に保持されることになる。したがって、油室に封入される油質や油量に拘わらず、密封端面間には適正且つ安定した潤滑油膜が形成,維持されることになり、密封環の摺動による発熱や摩耗が可及的に防止される。
【0010】
ところで、親油性材組織の大きさが1μm未満であるとき又は親油性材組織の硬質材組織に対する配合割合((親油性材含有量/(親油性材含有量+硬質材含有量))×100で与えられる割合であり、以下「親油性材配合割合」という)が5%未満であるときは、密封端面における油の吸着力,保持力が十分に発揮されず、密封端面間における潤滑油膜の形成,維持を効果的に行い得ない。かかる潤滑油膜の形成,維持は、親油性材組織の大きさが5μm以上である場合に、より効果的に行われる。一方、親油性材組織の大きさが100μmを超えるとき又は親油性材配合割合が50%を超えるときは、複合焼結材全体の硬度,耐摩耗性が低下して、スラリ流体のような固形成分を含む流体を扱う回転機器に好適に使用できる硬質材/硬質材シールを構成し得ない。特に、一般的な硬質材製の密封環と同等の硬度,耐摩耗性を確保するためには、親油性材組織は50μmとしておくことが好ましい。したがって、親油性材組織の大きさは1〜100μmとしておくことが好ましく、5〜50μmとしておくことがより好ましい。また、親油性材配合割合は5〜50%としておくことが好ましい。
【0011】
また、親油性材組織は非晶質カーボン等の親油性材のみで構成する他、硬質材組織と同質材である硬質材(炭化珪素,タングステンカーバイト等)との混合組織となすこともできるが、硬質材の配合割合は、上記した親油性材組織による潤滑油膜の形成,維持機能を確保するために、親油性材:硬質材=20:80を超えないように設定しておくことが好ましい。すなわち、親油性材組織には、硬質材組織と同質材である硬質材の微粒子が親油性材:硬質材=100:0〜20:80の割合で配合されていることが好ましい。
【0012】
【実施例】
実施例1として、図1及び図2に示すメカニカルシールを製作した。すなわち、実施例1のメカニカルシール(以下「第1シール」という)は、図1及び図2に示す如く、シールケースたる油室ケース2に軸線方向移動可能に且つ相対回転不能に保持された密封環たる固定環1と、回転軸4に固定保持された密封環たる回転環3と、固定環1と油室ケース2のリテーナ部5との間に介装されて固定環1を回転環3へと押圧附勢するスプリング6とからなり、両密封環1,3の対向端面たる密封端面1a,3aの相対回転摺接作用により、その相対回転摺接部分の外周側領域である油室Aとその内周側領域である流体室Bとを軸封するように構成された端面接触型のものであって、固定環1を一般的な硬質材である炭化珪素焼結材で構成すると共に回転環3を上述した複合焼結材で構成した硬質材/硬質材シールであり、固定環1の密封端面1aにおける油室側の周端縁部たる外周端縁部に、周方向に等間隔を隔てた3箇所に配して、密封端面1a,3aの相対回転に伴って油室Aから密封端面1a,3a間へと油を強制的に導入させる扇状の凹溝7…を形成したハイドロダイナミックシールに構成されている。
【0013】
而して、回転環3は、緻密な炭化珪素組織中に微細な非晶質カーボンが密集する親油性材組織を分散配置してなる複合炭化珪素焼結材で構成されたものであり、次のような予備造粒工程,焼結原料混合工程,本造粒工程,予備成形工程,焼成工程,仕上げ工程により製作されたものである。
【0014】
予備造粒工程: 平均粒子径0.7μmのα型炭化珪素(α−SiC)粉末100gと、焼結助剤としての炭化ホウ素(B4 C)粉末0.5gと、ポリマ助剤である平均分子量1000のポリビニルアルコール(PVA#1000)2gを水300gに溶解させた溶解液とからなる親油性材組織原料に、親油性材である非晶質カーボン(カーボンブラック)の粉末100gを添加して、これらをボールミルにより24時間混合し、その混合液をスプレードライヤーにより噴霧乾燥することによって造粒(顆粒化)し、径20〜80μmの球形状の予備造粒材(顆粒)を得た。
【0015】
焼結原料混合工程: 平均粒子径0.7μmのα−SiC粉末80gに、焼結助剤としてのB4 C粉末0.4g、カーボン源としてのフェノール樹脂(残炭率50%)3.5g、成形助剤としての平均分子量6000のポリエチレングリコール(PEG#6000)2g及びステアリン酸1gを添加し、これらを溶剤であるメタノールと共にボールミルで24時間混合して、硬質材組織焼結原料を得た。
【0016】
本造粒工程: 焼結原料混合工程で得られた硬質材組織焼結原料を攪拌容器に採って、これに予備造粒工程で得られた予備造粒材20gを添加し、これらを1時間攪拌混合し、その混合スラリをスプレードライヤーにより噴霧乾燥することによって造粒(顆粒化)して、径20〜80μmの球形状の本造粒材(顆粒)を得た。
【0017】
予備成形工程: 本造粒工程で得られた本造粒材を所定の金型に充填した上、1500kg/cm2 で冷間プレス成形して、回転環3に対応する環状形態をなす予備成形体を得た。なお、予備成形体の形状は、焼結時における収縮を考慮して設定される。
【0018】
焼成工程: 予備成形工程で得られた予備成形体を、加圧することなく、2150℃のアルゴン雰囲気中で焼成して、回転環3に相当する密封環形状をなす複合炭化珪素焼結材を得た。
【0019】
仕上げ工程: 焼成工程で得られた複合炭化珪素焼結材の端面(密封端面3a)をRa=0.05の鏡面に表面研磨(ラップ)する等により、回転環3を得た。
【0020】
かくして得られた回転環3は、図3に示す如く、緻密な硬質材組織(炭化珪素の焼結組織)中に親油性材組織(非晶質カーボン(カーボンブラック)と炭化珪素との混合組織であり、図3における黒色部分である)が分散配置された複合炭化珪素焼結材である。かかる複合炭化珪素焼結材における親油性材組織の大きさは5〜50μmであり、親油性材配合割合は10%であり、親油性材組織における非晶質カーボンと炭化珪素との配合比率は親油性材(非晶質カーボン):硬質材(炭化珪素)=50:50である(以下、かかる組成,構成の複合炭化珪素焼結材を「当該複合炭化珪素焼結材」という)。なお、図3は回転環3の密封端面(表面研磨された鏡面)3aを100倍に拡大して示す顕微鏡写真である。
【0021】
また、固定環1は緻密質の炭化珪素焼結材で構成されたものであり、次のような造粒工程,予備成形工程,焼成工程,仕上げ工程により製作されたものである。
【0022】
造粒工程: 平均粒子径0.6μmのβ−SiC粉末100gに、焼結助剤としてのB4 C粉末0.5g及びカーボン源としてのフェノール樹脂(レゾール型)4gを添加し、さらに成形助剤としてPEG(#6000)2g及びステアリン酸1gを添加して、これらをメタノールと共にボールミルで24時間混合し、その混合スラリをスプレードライヤーにより噴霧乾燥することによって造粒して、径20〜80μmの球形状の造粒材を得た。
【0023】
予備成形工程: 本造粒工程で得られた本造粒材を所定の金型(以下「固定環成形用金型」という)に充填した上、1500kg/cm2 で冷間プレス成形して、固定環1に対応する環状形態をなす予備成形体を得た。なお、予備成形体の形状は、焼結時における収縮を考慮して設定される。
【0024】
焼成工程: 予備成形工程で得られた予備成形体を、加圧することなく、2150℃のアルゴン雰囲気中で焼成して、固定環1に相当する密封環形状をなす複合炭化珪素焼結材を得た。
【0025】
仕上げ工程: 焼成工程で得られた複合炭化珪素焼結材の端面(密封端面1a)をRa=0.05の鏡面に表面研磨(ラップ)する等により、固定環1を得た。かくして得られた固定環1は、一般的な炭化珪素製密封環と同質の炭化珪素焼結材(密度:3.10g/cm3)である(以下、かかる組成の炭化珪素焼結材を「当該単一炭化珪素焼結材」という)。
【0026】
また、実施例2として、固定環1を当該複合炭化珪素焼結材で構成した点を除いて、第1シールと同一構成のメカニカルシール(以下「第2シール」という)を製作した。すなわち、第2シールは、図1及び図2に示す構成をなすものであり、両密封環1,3を当該複合炭化珪素焼結材で構成したものである。
【0027】
また、実施例3として、凹溝7…を回転環3の密封端面3aに形成した点及び回転環3を当該単一炭化珪素焼結材で構成した点を除いて、第2シールと同一構成のメカニカルシールを製作した。すなわち、実施例3のメカニカルシール(以下「第3シール」という)は、図4及び図5に示す如く、油室ケース2に軸線方向移動可能に且つ相対回転不能に保持された密封環たる固定環1と、回転軸4に固定保持された密封環たる回転環3と、固定環1と油室ケース2のリテーナ部5との間に介装されて固定環1を回転環3へと押圧附勢するスプリング6とからなり、両密封環1,3の対向端面たる密封端面1a,3aの相対回転摺接作用により、その相対回転摺接部分の外周側領域である油室Aとその内周側領域である流体室Bとを軸封するように構成された端面接触型のものであって、固定環1を当該複合炭化珪素焼結材で構成すると共に回転環3を当該単一炭化珪素焼結材で構成した硬質材/硬質材シールであり、回転環3の密封端面3aにおける油室側の周端縁部たる外周端縁部に、周方向に等間隔を隔てた3箇所に配して、密封端面1a,3aの相対回転に伴って油室Aから密封端面1a,3a間へと油を強制的に導入させる扇状の凹溝7…を形成したハイドロダイナミックシールに構成されている。
【0028】
さらに、実施例4として、回転環3を当該複合炭化珪素焼結材で構成した点を除いて、第3シールと同一構成のメカニカルシール(以下「第4シール」という)を製作した。すなわち、第4シールは、図4及び図5に示す構成をなすものであり、両密封環1,3を当該複合炭化珪素焼結材で構成したものである。
【0029】
また、比較例1として、何れの密封端面1a,3aにも凹溝7…を形成しない点及び両密封環1,3を当該単一炭化珪素焼結材で構成した点を除いて、第1メカニカルシールと同一構成のメカニカルシール(以下「第5シール」という)を製作した。すなわち、第5シールは、図6に示す一般的な硬質材/硬質材シールと同一構成をなすものである。
【0030】
また、比較例2として、両密封環1,3を当該単一炭化珪素焼結材で構成した点を除いて、第1シールと同一構成をなすメカニカルシール(以下「第6シール」という)を製作した。
【0031】
さらに、比較例3として、両密封環1,3を当該単一炭化珪素焼結材で構成した点を除いて、第3シールと同一構成をなすメカニカルシール(以下「第7シール」という)を製作した。
【0032】
而して、第1〜第7シールを使用して、次のようなシール試験を行った。すなわち、このシール試験にあっては、油室Aに油として流動パラフィン(粘度:60mPa.s)を封入すると共に流体室Bに工業用水を供給した状態で100時間連続運転して、運転中における両密封端面1a,3aからの油の漏れ量(ml)を測定し、100時間経過後における油温(℃)を測定すると共に摺動面状態を判定した。摺動面状態の判定は、密封端面1a,3aにおける油分解付着物の有無を確認する共に表面形態(相手密封環との摺接により環状痕が発生しているか否か等)を視認することによって行った。
【0033】
かかるシール試験の結果は、表1に示す通りであった。なお、表1において、当該複合炭化珪素焼結材で構成されている密封環については「複合SiC」と記載し、当該単一炭化珪素焼結材で構成されている密封環については「SiC」と記載し、凹溝7が形成されている密封環については「/H」と記載してある。また、摺動面状態の判定結果については、油分解付着物の有無のみを記載した。
【0034】
表1から理解されるように、本発明に係る第1〜第4シールについては、漏れを全く生じておらず、油温も55〜63℃に上昇するに止まった。また、密封端面1a,3aの状態も、摺接による環状痕等は全く認められず、油分解付着物もなく、極めて良好であった。これに対して、比較例の第5〜第7シールでは、5〜15mlの漏れを生じ、油温も71〜78℃まで上昇しており、密封端面1a,3aには茶褐色の油分解付着物が認められた。これらの点から明らかなように、凹溝7によるハイドロダイナックシール機能と親油性材組織による油の吸着,保持機能により、安定した潤滑油膜が形成,維持され、良好なシール機能が発揮されることが理解される。
【0035】
また、凹溝7を有する第6及び第7シールでは、凹溝7を有しない第5シールに比して、漏れ量及び油温の上昇が小さくなっているが、同じく凹溝7を有する第1〜第4シールに比しては、漏れ量及び油温の上昇が大きくなっている。かかる点から、適正な潤滑油膜の形成,維持を行うに凹溝7の形成のみでは不十分であり、少なくとも一方の密封環を親油性材組織を有する当該複合炭化珪素焼結材で構成しておくことが必要であることが理解される。なお、第3及び第4シールにあっては、第1及び第2シールに比して、油温がやや高くなっているが、これは、凹溝7を回転環3に形成したために、凹溝7の回転による油の攪拌作用が促進されたことによると考えられる。この点からして、凹溝7は固定環1に形成しておくことが好ましいと考えられる。
【0036】
【表1】

Figure 0004083394
【0037】
【発明の効果】
以上の説明から理解されるように、本発明のスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシールによれば、油室に封入される油が流動パラフィンのような潤滑性の低いものである場合等、潤滑条件が悪い場合にも、密封端面間に適正な潤滑油膜を安定した状態で形成,維持することができ、相手密封環との摺動による発熱や摩耗を可及的に抑制し得て、長期に亘って良好な軸封機能を発揮することができる。
【図面の簡単な説明】
【図1】第1又は第2シールを示す縦断側面図である。
【図2】図1のII−II線に沿う縦断背面図である。
【図3】当該複合炭化珪素焼結材で構成された密封環の密封端面(鏡面)を100倍に拡大して示す顕微鏡写真である。
【図4】第3又は第4シールを示す縦断側面図である。
【図5】図4のV−V線に沿う縦断正面図である。
【図6】一般的な端面接触型メカニカルシールを示す縦断側面図である。
【符号の説明】
1…固定環(密封環)、1a…固定環の密封端面、3…回転環(密封環)、7…凹溝、A…油室、B…流体室。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mechanical seal to be mounted in the water pump having an oil chamber, adjacent to an oil chamber by relative rotation sliding contact with the facing end surface serving as the sealing end faces of the seal ring composed of a rigid material The present invention relates to an end surface contact type mechanical seal for a submersible pump that handles slurry fluid that is configured to seal a shaft with a fluid chamber.
[0002]
[Prior art]
For example, in a submersible pump, an oil chamber is provided between both chambers in order to prevent fluid intrusion from the pump chamber to the motor chamber, and between the oil chamber and a pump chamber that is a fluid chamber adjacent thereto. A mechanical seal is used as a means for sealing the shaft. Thus, as shown in FIG. 6, the mechanical seal is fixedly held on the rotating shaft 4 and the fixed ring 1 which is a sealing ring held in the oil chamber case 2 so as to be movable in the axial direction and not relatively rotatable. The seal ring includes a rotating ring 3 that is a sealing ring, and a spring 6 that is interposed between the stationary ring 1 and the retainer portion 5 of the oil chamber case 2 and presses and urges the stationary ring 1 toward the rotating ring 3. By the relative rotational sliding contact action of the sealing end surfaces 1a and 3a, which are the opposed end surfaces 1 and 3, an oil chamber A which is an outer peripheral side region of the relative rotational sliding contact portion and a pump chamber (fluid chamber) B which is an inner peripheral side region thereof. An end face contact type configured to seal the shaft is well known.
[0003]
By the way, the mechanical seal is formed of a hard ring material such as sintered silicon carbide (SiC) or sintered tungsten carbide (WC) on one of the sealing rings 1 and 3 on the constituent material of the sealing ring and the other is sintered carbon. Made of a soft material such as the above (hereinafter referred to as “hard material / soft material seal”) and the seal rings 1 and 3 made of the hard material described above (hereinafter referred to as “hard material / hard material seal”). However, submersible pumps often handle slurry fluids that contain solid components, so if a hard / soft seal is used, the sealed end face is worn or damaged by the slurry fluid. It is easy to do and there is a problem in durability, and a good shaft sealing function (sealing function) cannot be exhibited over a long period of time. Therefore, in rotating equipment that often handles slurry fluids such as submersible pumps, generally hard / soft seals are not used, and both seal rings 1 and 3 are made of a sintered material such as SiC or WC, which has excellent wear resistance. Hard material / hard material seals made of binder are used.
[0004]
[Problems to be solved by the invention]
However, since hard materials such as SiC and WC do not have self-lubricating properties such as carbon and have a high coefficient of friction, the seal ring 1, Heat generation and wear due to sliding of 3 are severe, and a good shaft sealing function cannot be exhibited over a long period of time. Further, a lubricating oil film is formed between the sealed end faces 1a and 3a by the oil enclosed in the oil chamber A. However, since hard materials such as SiC and WC are poor in lipophilicity, the oil is stable between the sealed end faces 1a and 3a. A lubricating oil film cannot be formed and maintained, and heat generation due to sliding of the sealing rings 1 and 3 cannot be suppressed to a great extent. Then, due to such heat generation, the oil temperature rises and the viscosity of the oil decreases, and a lubricating oil film is not formed on the entire sealed end face, so that a so-called semi-dry state of running out of oil may occur, which may cause wear and leakage. Furthermore, there is a possibility that oil decomposition products due to high temperature accumulate between the sealed end faces 1a and 3a, thereby increasing leakage. Such a problem is caused when it is necessary to use liquid paraffin or the like having poor lubricity as oil to be enclosed in the oil chamber A for food hygiene or environmental pollution, or when the oil chamber A is small and the amount of the enclosed oil is small. Furthermore, it will occur remarkably.
[0005]
The present invention has been made in view of such a point, and even when both sealing rings are made of a hard material, an appropriate gap between the sealing end faces is obtained regardless of the oil quality and the amount of oil sealed in the oil chamber. Lubricating oil film can be formed and maintained in a stable state, heat generation and wear due to sliding with the other sealing ring can be suppressed as much as possible, and a good shaft sealing function can be exhibited over a long period of time. An object of the present invention is to provide an end surface contact type mechanical seal for a submersible pump that handles slurry fluid.
[0006]
[Means for Solving the Problems]
The present invention is configured to seal a shaft between an oil chamber and a fluid chamber serving as a pump chamber adjacent thereto by bringing the sealing end surfaces as opposed end surfaces of both sealing rings formed of a hard material into relative rotational sliding contact. In an end face contact type mechanical seal for a submersible pump that handles a slurry fluid, in order to achieve the above-mentioned purpose, in particular, oil is provided at the peripheral edge of the oil chamber side of one sealed end face along with the relative rotation of the sealed end face. A concave groove for forcibly introducing oil from the chamber to the sealed end face is formed, and at least one sealing ring is formed with a lipophilic material structure in which fine lipophilic materials are concentrated in a dense hard material structure. It is composed of a composite sintered material formed by dispersing and blending so that a lubricating oil film is formed and maintained by oil introduced by a concave groove between the sealed end faces , and the lipophilic material structure is 1 to 100 μm. A hard material structure that is large in size The fine particles of the hard material, which is arranged at a ratio of 5 to 50% with respect to the hard material structure, are blended at a ratio of lipophilic material: hard material = 100: 0 to 20:80. The present invention proposes an end face contact type mechanical seal for a submersible pump that handles slurry fluid.
[0007]
In such a mechanical seal, the concave groove formed on one sealed end surface has the same function as a fluid introduction groove or a fluid circulation groove formed on the sealed end surface in a so-called hydrodynamic seal or thermohydrodynamic seal. is there. That is, the mechanical seal of the present invention is configured as a hydrodynamic seal or a thermohydrodynamic seal. In addition, the shape, arrangement | positioning, and number of a ditch | groove can be arbitrarily set according to sealing conditions. In general, the concave groove is formed at a plurality of locations spaced at equal intervals in the circumferential direction of the sealed end face. When the concave groove is to function as a hydrodynamic seal, the concave groove has a fan shape or the like whose one end opens to the oil chamber side. In the case of functioning as a thermohydrodynamic seal, the concave groove has an arc shape, a U shape, or the like whose both ends open to the oil chamber side. Further, the concave groove may be formed in any sealing ring, but in consideration of the oil temperature rise caused by the oil stirring action by the concave groove, it is formed in the sealing ring (fixed ring) on the fixed side. It is preferable.
[0008]
As the hard material, silicon carbide, tungsten carbide or the like excellent in wear resistance is used, and as the lipophilic material, amorphous carbon or the like excellent in oil adsorption and retention is used. In a preferred embodiment, the hard material structure is formed by sintering silicon carbide particles or tungsten carbide particles, and the lipophilic material structure is surrounded by fine amorphous carbon in a dense state. It is held by a hard material structure. By the way, the portion forming the hard material structure is greatly shrunk during sintering (for example, the silicon carbide structure is reduced in volume by about 1/2 during sintering). The oily tissue portion is strongly compressed by the contraction force of the surrounding hard material tissue portion. As a result, the interparticle bonding force in the lipophilic tissue portion is greatly increased by the compression action from the outer peripheral side due to the shrinkage of the hard material tissue portion described above, even though the bonding force itself due to sintering is weak. Therefore, the hardness, wear resistance, etc. of the composite sintered material in which the lipophilic material structure is dispersed and arranged in the hard material structure are equivalent to those of the single sintered material consisting of only the hard material, The mechanical seal composed of the composite sintered material and the other composed of the composite sintered material or a general hard material (silicon carbide sintered material, etc.) is also suitable for rotating equipment such as an underwater pump that handles slurry fluid. Hard material / hard material seal that can be used for
[0009]
Thus, as described above, the mechanical seal of the present invention is configured as a hydrodynamic seal or a thermohydrodynamic seal, so that the relative rotation of both sealed end faces is achieved by the concave groove formed on one sealed end face. As a result, the oil in the oil chamber is forcibly introduced between the sealed end faces. And at least one of the sealing rings is composed of a composite sintered material in which a lipophilic material structure is dispersedly arranged in a dense hard material structure, and is hard and excellent in wear resistance as a whole. The seal end face of the seal ring has a lipophilic material structure that actively adsorbs and holds oil, so that the other seal ring (mating seal ring) is made of a homogeneous sintered material. Of course, even when it is composed of a general hard material (dense sintered material such as SiC or WC) (that is, when it is a hard material / hard material seal), it is introduced by the concave groove. The oil is reliably held between the sealed end faces. Therefore, an appropriate and stable lubricating oil film is formed and maintained between the sealed end faces regardless of the oil quality and amount of oil sealed in the oil chamber, and heat generation and wear due to sliding of the sealing ring are possible. Is prevented.
[0010]
By the way, when the size of the lipophilic material structure is less than 1 μm, or the blending ratio of the lipophilic material structure to the hard material structure ((lipophilic material content / (lipophilic material content + hard material content)) × 100 (Hereinafter referred to as “lipophilic material blending ratio”) is less than 5%, the oil adsorbing force and holding power at the sealed end faces are not fully exhibited, and the lubricating oil film between the sealed end faces It cannot be formed and maintained effectively. Formation and maintenance of the lubricating oil film is more effectively performed when the size of the lipophilic material structure is 5 μm or more. On the other hand, when the size of the lipophilic material structure exceeds 100 μm or the blending ratio of the lipophilic material exceeds 50%, the hardness and wear resistance of the composite sintered material as a whole decreases, and solids such as slurry fluids are produced. A hard material / hard material seal that can be suitably used in a rotating device that handles fluid containing components cannot be constructed. In particular, the lipophilic material structure is preferably 50 μm in order to ensure the same hardness and wear resistance as a general hard seal ring. Therefore, the size of the lipophilic material structure is preferably 1 to 100 μm, and more preferably 5 to 50 μm. Moreover, it is preferable to make the lipophilic material compounding ratio 5 to 50%.
[0011]
In addition, the lipophilic material structure may be composed of only an oleophilic material such as amorphous carbon, or may be a mixed structure of a hard material structure and a hard material (silicon carbide, tungsten carbide, etc.) that is the same material. However, the blending ratio of the hard material may be set so as not to exceed lipophilic material: hard material = 20: 80 in order to secure the function of forming and maintaining the lubricating oil film by the above-described lipophilic material structure. preferable. That is, it is preferable that fine particles of a hard material that is the same material as the hard material structure are blended in the lipophilic material structure in a ratio of lipophilic material: hard material = 100: 0 to 20:80.
[0012]
【Example】
As Example 1, the mechanical seal shown in FIGS. 1 and 2 was manufactured. That is, the mechanical seal of the first embodiment (hereinafter referred to as “first seal”) is a seal that is held in an oil chamber case 2 that is a seal case so as to be movable in the axial direction and non-rotatably as shown in FIGS. The stationary ring 1 is interposed between the stationary ring 1, the rotating ring 3 which is a sealing ring fixedly held on the rotating shaft 4, and the retainer portion 5 of the oil chamber case 2. An oil chamber A which is an outer peripheral side region of the relative rotational sliding contact portion due to the relative rotational sliding contact action of the sealing end faces 1a and 3a which are the opposite end faces of the sealing rings 1 and 3 And a fluid chamber B which is an inner peripheral side region of the end surface contact type, and the stationary ring 1 is made of a silicon carbide sintered material which is a general hard material. Hard material / hard material seal in which the rotating ring 3 is composed of the composite sintered material described above. Yes, on the outer peripheral edge as the peripheral edge on the oil chamber side of the sealing end surface 1a of the fixed ring 1, and arranged at three locations at equal intervals in the circumferential direction, with relative rotation of the sealing end surfaces 1a, 3a The hydrodynamic seal is formed with fan-shaped concave grooves 7 for forcibly introducing oil from the oil chamber A to the sealed end faces 1a and 3a.
[0013]
Thus, the rotating ring 3 is composed of a composite silicon carbide sintered material in which a lipophilic material structure in which fine amorphous carbon is densely distributed in a dense silicon carbide structure is distributed. Such a pre-granulation step, sintering raw material mixing step, main granulation step, pre-forming step, firing step, and finishing step.
[0014]
Pre-granulation step: 100 g of α-type silicon carbide (α-SiC) powder having an average particle size of 0.7 μm, 0.5 g of boron carbide (B 4 C) powder as a sintering aid, and an average which is a polymer aid 100 g of amorphous carbon (carbon black) powder, which is a lipophilic material, is added to a lipophilic material structure raw material consisting of a solution obtained by dissolving 2 g of polyvinyl alcohol (PVA # 1000) having a molecular weight of 1000 in 300 g of water. These were mixed by a ball mill for 24 hours, and the mixed solution was granulated (granulated) by spray drying with a spray dryer to obtain a spherical pre-granulated material (granule) having a diameter of 20 to 80 μm.
[0015]
Sintering raw material mixing step: 80 g of α-SiC powder having an average particle size of 0.7 μm, 0.4 g of B 4 C powder as a sintering aid, and 3.5 g of phenol resin (residual carbon ratio 50%) as a carbon source Then, 2 g of polyethylene glycol (PEG # 6000) having an average molecular weight of 6000 as a molding aid and 1 g of stearic acid were added and mixed with methanol as a solvent in a ball mill for 24 hours to obtain a hard material structure sintered raw material. .
[0016]
Main granulation step: The hard material structure sintered raw material obtained in the sintering raw material mixing step is put in a stirring vessel, and 20 g of the pre-granulated material obtained in the pre-granulation step is added thereto, and these are added for 1 hour. The mixture was stirred and mixed, and the mixed slurry was spray-dried with a spray dryer to granulate (granulate) to obtain a spherical granulated material (granule) having a diameter of 20 to 80 μm.
[0017]
Preliminary molding step: The granulated material obtained in the granulation step is filled in a predetermined mold, and then cold press-molded at 1500 kg / cm 2 to form an annular shape corresponding to the rotating ring 3. Got the body. The shape of the preform is set in consideration of shrinkage during sintering.
[0018]
Firing step: The pre-formed body obtained in the pre-forming step is fired in an argon atmosphere at 2150 ° C. without applying pressure to obtain a composite silicon carbide sintered material having a sealed ring shape corresponding to the rotating ring 3. It was.
[0019]
Finishing step: The rotating ring 3 was obtained by polishing (wrapping) the end surface (sealed end surface 3a) of the composite silicon carbide sintered material obtained in the firing step to a mirror surface of Ra = 0.05.
[0020]
As shown in FIG. 3, the rotating ring 3 thus obtained has a dense hard material structure (sintered structure of silicon carbide) and a lipophilic material structure (a mixed structure of amorphous carbon (carbon black) and silicon carbide). And the black portion in FIG. 3) is a composite silicon carbide sintered material dispersedly arranged. In this composite silicon carbide sintered material, the size of the lipophilic material structure is 5 to 50 μm, the blending ratio of the lipophilic material is 10%, and the blending ratio of amorphous carbon and silicon carbide in the lipophilic material structure is Lipophilic material (amorphous carbon): hard material (silicon carbide) = 50: 50 (hereinafter, a composite silicon carbide sintered material having such a composition and configuration is referred to as “the composite silicon carbide sintered material”). FIG. 3 is a photomicrograph showing the sealing end surface (surface polished mirror surface) 3a of the rotating ring 3 enlarged 100 times.
[0021]
The stationary ring 1 is made of a dense silicon carbide sintered material, and is manufactured by the following granulation process, pre-forming process, firing process, and finishing process.
[0022]
Granulation step: To 100 g of β-SiC powder having an average particle size of 0.6 μm, 0.5 g of B 4 C powder as a sintering aid and 4 g of phenol resin (resole type) as a carbon source are added, and further molding aid is added. 2 g of PEG (# 6000) and 1 g of stearic acid were added as agents, and these were mixed with methanol in a ball mill for 24 hours, and the mixed slurry was granulated by spray-drying with a spray dryer. A spherical granulated material was obtained.
[0023]
Preliminary molding step: The granulated material obtained in the granulating step is filled in a predetermined mold (hereinafter referred to as “fixed ring molding mold”), and then cold press-molded at 1500 kg / cm 2 , A preform having an annular shape corresponding to the stationary ring 1 was obtained. The shape of the preform is set in consideration of shrinkage during sintering.
[0024]
Firing step: The pre-formed body obtained in the pre-forming step is fired in an argon atmosphere at 2150 ° C. without applying pressure to obtain a composite silicon carbide sintered material having a sealed ring shape corresponding to the stationary ring 1. It was.
[0025]
Finishing step: The fixed ring 1 was obtained by polishing (wrapping) the end surface (sealed end surface 1a) of the composite silicon carbide sintered material obtained in the firing step to a mirror surface of Ra = 0.05. The thus obtained stationary ring 1 is a silicon carbide sintered material (density: 3.10 g / cm 3 ) of the same quality as a general silicon carbide sealing ring (hereinafter, a silicon carbide sintered material having such a composition is referred to as “ This single silicon carbide sintered material ”).
[0026]
Further, as Example 2, a mechanical seal having the same configuration as the first seal (hereinafter referred to as “second seal”) was manufactured except that the stationary ring 1 was composed of the composite silicon carbide sintered material. That is, the second seal has the configuration shown in FIGS. 1 and 2, and both the sealing rings 1 and 3 are formed of the composite silicon carbide sintered material.
[0027]
Further, as Example 3, the same configuration as that of the second seal except that the concave grooves 7 are formed on the sealed end face 3a of the rotary ring 3 and the rotary ring 3 is made of the single silicon carbide sintered material. A mechanical seal was manufactured. That is, the mechanical seal of the third embodiment (hereinafter referred to as “third seal”) is fixed as a sealing ring held in the oil chamber case 2 so as to be movable in the axial direction and not to be relatively rotatable, as shown in FIGS. The fixed ring 1 is pressed against the rotating ring 3 by being interposed between the ring 1, the rotating ring 3 that is a sealing ring fixedly held on the rotating shaft 4, and the retainer portion 5 of the fixed ring 1 and the oil chamber case 2. An oil chamber A that is an outer peripheral side region of the relative rotational sliding contact portion and its inner portion by the relative rotational sliding contact action of the sealing end faces 1a and 3a, which are opposed end faces of the sealing rings 1 and 3, respectively. An end face contact type that is configured to axially seal a fluid chamber B that is a peripheral region, and the stationary ring 1 is made of the composite silicon carbide sintered material and the rotating ring 3 is made of the single carbonization. Hard material / hard material seal composed of sintered silicon material, sealed end of rotating ring 3 3a is arranged on the outer peripheral edge which is the peripheral edge on the oil chamber side at three locations equally spaced in the circumferential direction, and from the oil chamber A to the sealed end surface 1a with relative rotation of the sealed end surfaces 1a, 3a. , 3a is formed into a hydrodynamic seal formed with fan-shaped concave grooves 7 for forcibly introducing oil.
[0028]
Furthermore, as Example 4, a mechanical seal (hereinafter referred to as “fourth seal”) having the same configuration as the third seal was manufactured except that the rotating ring 3 was composed of the composite silicon carbide sintered material. That is, the fourth seal has the configuration shown in FIGS. 4 and 5, and both the sealing rings 1 and 3 are formed of the composite silicon carbide sintered material.
[0029]
Further, as Comparative Example 1, except that the concave grooves 7 are not formed in any of the sealing end faces 1a and 3a and that both the sealing rings 1 and 3 are made of the single silicon carbide sintered material, A mechanical seal having the same configuration as the mechanical seal (hereinafter referred to as “fifth seal”) was produced. That is, the fifth seal has the same configuration as the general hard material / hard material seal shown in FIG.
[0030]
Further, as Comparative Example 2, a mechanical seal (hereinafter referred to as “sixth seal”) having the same configuration as the first seal except that both the sealing rings 1 and 3 are formed of the single silicon carbide sintered material. Produced.
[0031]
Further, as Comparative Example 3, a mechanical seal (hereinafter referred to as “seventh seal”) having the same configuration as the third seal except that both the sealing rings 1 and 3 are formed of the single silicon carbide sintered material. Produced.
[0032]
Thus, the following seal test was performed using the first to seventh seals. That is, in this seal test, liquid paraffin (viscosity: 60 mPa.s) is sealed in the oil chamber A as oil, and is continuously operated for 100 hours with industrial water supplied to the fluid chamber B. The amount of oil leakage (ml) from both sealed end faces 1a and 3a was measured, and the oil temperature (° C) after 100 hours was measured and the sliding surface state was judged. The sliding surface state is determined by checking the presence or absence of oil-decomposition deposits on the sealing end surfaces 1a and 3a and visually checking the surface form (whether or not an annular mark is generated by sliding contact with the other sealing ring). Went by.
[0033]
The results of such a seal test are as shown in Table 1. In Table 1, the seal ring made of the composite silicon carbide sintered material is described as “composite SiC”, and the seal ring made of the single silicon carbide sintered material is “SiC”. The seal ring in which the concave groove 7 is formed is described as “/ H”. Moreover, about the determination result of the sliding surface state, only the presence or absence of the oil decomposition deposit was described.
[0034]
As understood from Table 1, the first to fourth seals according to the present invention did not leak at all, and the oil temperature only increased to 55 to 63 ° C. The sealed end faces 1a and 3a were also very good with no ring marks due to sliding contact and no oil-decomposed deposits. In contrast, in the fifth to seventh seals of the comparative example, leakage of 5 to 15 ml occurs, the oil temperature also rises to 71 to 78 ° C., and the brown oil decomposition deposits on the sealed end faces 1a and 3a Was recognized. As is clear from these points, a stable lubricating oil film is formed and maintained by the hydrodynamic seal function by the groove 7 and the oil adsorption and retention function by the lipophilic material structure, and a good sealing function is exhibited. Is understood.
[0035]
Further, in the sixth and seventh seals having the concave groove 7, the increase in leakage amount and oil temperature is smaller than that in the fifth seal not having the concave groove 7. As compared with the first to fourth seals, the leakage amount and the oil temperature are increased. From this point, it is not sufficient to form and maintain an appropriate lubricating oil film, and it is not sufficient to form the groove 7 alone. At least one sealing ring is composed of the composite silicon carbide sintered material having a lipophilic material structure. It is understood that it is necessary to keep. In the third and fourth seals, the oil temperature is slightly higher than that of the first and second seals. This is considered to be because the stirring action of oil by the rotation of the groove 7 was promoted. From this point, it is considered that the concave groove 7 is preferably formed in the fixed ring 1.
[0036]
[Table 1]
Figure 0004083394
[0037]
【The invention's effect】
As understood from the above description, according to the end surface contact type mechanical seal for the submersible pump handling the slurry fluid of the present invention, the oil sealed in the oil chamber has low lubricity such as liquid paraffin. Even when the lubrication conditions are poor, an appropriate lubricating oil film can be formed and maintained in a stable state between the sealed end faces, and heat generation and wear due to sliding with the other seal ring are suppressed as much as possible. Thus, a good shaft sealing function can be exhibited over a long period of time.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view showing a first or second seal.
FIG. 2 is a longitudinal rear view taken along the line II-II in FIG.
FIG. 3 is a photomicrograph showing an enlargement of the sealing end face (mirror surface) of the sealing ring made of the composite silicon carbide sintered material 100 times.
FIG. 4 is a longitudinal side view showing a third or fourth seal.
5 is a longitudinal front view taken along line VV in FIG. 4. FIG.
FIG. 6 is a longitudinal sectional side view showing a general end surface contact type mechanical seal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Fixed ring (sealing ring), 1a ... Sealing end surface of fixed ring, 3 ... Rotating ring (sealing ring), 7 ... Groove, A ... Oil chamber, B ... Fluid chamber.

Claims (2)

硬質材で構成される両密封環の対向端面たる密封端面を相対回転摺接させることにより油室とこれに隣接するポンプ室たる流体室との間を軸封するように構成されたスラリ流体用の端面接触型メカニカルシールにおいて、一方の密封端面における油室側の周端縁部に、密封端面の相対回転に伴って油室から密封端面間へと油を強制的に導入させる凹溝を形成すると共に、少なくとも一方の密封環を、緻密な硬質材組織中に微細な親油性材が密集する親油性材組織を分散配合してなる複合焼結材で構成して、密封端面間に凹溝によって導入された油による潤滑油膜が形成,維持されるように構成してあり、親油性材組織は1〜100μmの大きさをなすものであって硬質材組織に対して5〜50%の割合で配置されたものであり且つ硬質材組織と同質材である硬質材の微粒子が親油性材:硬質材=100:0〜20:80の割合で配合されているものであることを特徴とするスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシール。For slurry fluid configured to seal the shaft between the oil chamber and the fluid chamber which is the pump chamber adjacent to the sealing chamber, which is the opposite end surface of both sealing rings made of hard material, by making relative rotational sliding contact. In the end-face contact type mechanical seal, a groove is formed in the peripheral edge on the oil chamber side of one sealed end face to force oil to be introduced from the oil chamber into the space between the sealed end faces as the sealed end face rotates relatively. In addition, at least one sealing ring is composed of a composite sintered material obtained by dispersing and blending a lipophilic material structure in which a fine lipophilic material is concentrated in a dense hard material structure, and a groove is formed between the sealing end faces. The lubricating oil film is formed and maintained by the oil introduced by the oil , and the lipophilic material structure has a size of 1 to 100 μm and is a ratio of 5 to 50% with respect to the hard material structure. And hard material structure Particulate lipophilic material of the hard material is a homogeneous material: hard material = 100: 0 to 20: 80 the end surface contact type mechanical for submersible pumps to handle slurry fluid, characterized in that those which are blended at a ratio of sticker. 硬質材組織は炭化珪素粒子又はタングステンカーバイト粒子が焼結してなるものであり、親油性材組織は5〜50μmの大きさをなすものであって微細な非晶質カーボンが密集した状態でその周囲の硬質材組織により保持されたものであることを特徴とする、請求項1に記載するスラリ流体を扱う水中ポンプ用の端面接触型メカニカルシール。The hard material structure is formed by sintering silicon carbide particles or tungsten carbide particles, and the lipophilic material structure has a size of 5 to 50 μm in a state where fine amorphous carbon is densely packed. The end face contact type mechanical seal for a submersible pump for handling a slurry fluid according to claim 1, wherein the end face contact type mechanical seal is held by a surrounding hard material structure.
JP2001140117A 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids Expired - Fee Related JP4083394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001140117A JP4083394B2 (en) 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001140117A JP4083394B2 (en) 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids

Publications (2)

Publication Number Publication Date
JP2002333069A JP2002333069A (en) 2002-11-22
JP4083394B2 true JP4083394B2 (en) 2008-04-30

Family

ID=18986776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001140117A Expired - Fee Related JP4083394B2 (en) 2001-05-10 2001-05-10 End-contact mechanical seal for submersible pumps handling slurry fluids

Country Status (1)

Country Link
JP (1) JP4083394B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100666787B1 (en) 2005-11-03 2007-01-09 현대자동차주식회사 Manufacturing method of mechanical seal of water pump for fuel cell
CN104847687B (en) * 2014-02-16 2018-12-25 杭州大路实业有限公司 Drum pump novel sealing ring and preparation method thereof
CN106574725B (en) 2014-09-04 2019-04-16 伊格尔工业股份有限公司 Mechanical sealing member
CN104895830A (en) * 2015-06-02 2015-09-09 沈阳潜水泵业有限公司 External sealing structure of latent halogen pump motor and manufacturing method
CN106122078A (en) * 2016-08-30 2016-11-16 湖北双剑鼓风机股份有限公司 The asymmetric carbon ring seal device of card slot type for centrifugal blower
JP2019027466A (en) * 2017-07-27 2019-02-21 日本ピラー工業株式会社 mechanical seal

Also Published As

Publication number Publication date
JP2002333069A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
US5538649A (en) Carbon composite mateiral for tribological applications
CN1040341C (en) Bearing material of porous SiC having a trimodal pore composition
EP1873429B1 (en) Mechanical seal device, sliding part, and method of producing the sliding part
KR101275873B1 (en) Mechanical seal device
JP4083394B2 (en) End-contact mechanical seal for submersible pumps handling slurry fluids
US6398991B1 (en) Processes for making a silicon carbide composition
EP1988067A1 (en) Sintered ceramic, slide part therefrom, and process for producing sintered ceramic
JP4199504B2 (en) Sliding parts and manufacturing method thereof
JP4635042B2 (en) Free ring mechanical seal
JP3607778B2 (en) Carbon sliding material
JP4030426B2 (en) Sliding member for sealing and manufacturing method thereof
JP3999468B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JP4141778B2 (en) Sliding parts and manufacturing method thereof
JPH09292033A (en) Mechanism seal
JP3650739B2 (en) SLIDING BODY, MANUFACTURING METHOD THEREOF, AND MECHANICAL SEAL
JP2001139376A (en) Silicon carbide sintered compact, and mechanical seal and segment seal using the silicon carbide sintered compact
CN100406771C (en) Seal ring and seal device
JP4002406B2 (en) Slider and mechanical seal
JP2003200344A (en) Rotary joint for cmp device
JP4865146B2 (en) Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JPS6331003B2 (en)
JP2543093B2 (en) Sliding parts for seals
KR100286532B1 (en) Sealing Material with Silicon Carbide and Manufacturing Method of the same
JP5530739B2 (en) Seal ring for mechanical seal and manufacturing method thereof
JP2003042305A (en) Sliding component, mechanical seal using the sliding component, and manufacturing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Ref document number: 4083394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees