JPS6331003B2 - - Google Patents

Info

Publication number
JPS6331003B2
JPS6331003B2 JP57115674A JP11567482A JPS6331003B2 JP S6331003 B2 JPS6331003 B2 JP S6331003B2 JP 57115674 A JP57115674 A JP 57115674A JP 11567482 A JP11567482 A JP 11567482A JP S6331003 B2 JPS6331003 B2 JP S6331003B2
Authority
JP
Japan
Prior art keywords
ceramic
metal
friction
sliding
surface pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57115674A
Other languages
Japanese (ja)
Other versions
JPS5934020A (en
Inventor
Shotaro Mizobuchi
Katsumi Sasaki
Yoshiharu Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP11567482A priority Critical patent/JPS5934020A/en
Publication of JPS5934020A publication Critical patent/JPS5934020A/en
Publication of JPS6331003B2 publication Critical patent/JPS6331003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/24Brasses; Bushes; Linings with different areas of the sliding surface consisting of different materials

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubricants (AREA)
  • Sliding-Contact Bearings (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は液体中にて用いられ特に摺動面に摺動
面の減摩剤を用いることができない摺動部材、或
は乾燥雰囲気中で用いられる摺動部材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sliding member that is used in a liquid and in particular cannot use an anti-friction agent on the sliding surface, or a sliding member that is used in a dry atmosphere.

清水、油等を取扱うポンプでは軸受側にカーボ
ン、銅系焼結材料などが使われており、清水中で
は又ゴム軸受が使われているが、スラリーの混入
した場合摩耗が大きく使用出来ない。また、海水
などの腐食性液を取扱うポンプでは焼付きのない
様に摺動部の隙間を大きくしてステンレス鋼、
BC材を使つているのが実状である(これによつ
て、漏れ量が多くなり、ポンプ効率が下がる欠点
を有する)。
Pumps that handle fresh water, oil, etc. use carbon, copper-based sintered materials, etc. on the bearing side, and rubber bearings are also used for fresh water, but if slurry gets mixed in, they will wear out and cannot be used. In addition, for pumps that handle corrosive liquids such as seawater, the gap between the sliding parts is increased to prevent seizure, and stainless steel or stainless steel or
The reality is that BC materials are used (this has the disadvantage of increasing leakage and reducing pump efficiency).

例えばスラリーが混入した腐食性海水を取扱う
場合、ケーシングリング、インペラリングの摺動
部のほかに軸シール部の材料組合わせが最大の問
題となつている。スラリーの種類によつてはスラ
リーはSiO2からなり最大粒径が0.1mm以下であり、
軸受隙間を直径で0.3mmとすると殆んどのスラリ
ーは軸受隙間に入つてしまう。この軸シール部は
出来る限り摺動部のクリアランスを少なくし、ま
た、この部分で荷重もささえられる軸受としての
働きが必要である。このようなシール部に適する
耐食、耐摩耗、耐焼付性の有する材料組合わせは
現在のところ全くないのが実状である。更に一般
的には竪軸ポンプ、斜軸ポンプ等では起動時摺動
面が乾燥しているため注液して起動しなければな
らない。その他ポンプによつては短時間にポンプ
封水のための摺動面及び軸受がドライに近い状態
となることがあるのでドライ状態で使用できるこ
とが望まれる。
For example, when dealing with corrosive seawater mixed with slurry, the biggest problem is the combination of materials for the shaft seals as well as the sliding parts of the casing ring and impeller ring. Depending on the type of slurry, the slurry may be made of SiO 2 and have a maximum particle size of 0.1 mm or less;
If the bearing gap is set to 0.3 mm in diameter, most of the slurry will enter the bearing gap. This shaft seal part needs to minimize the clearance of the sliding part as much as possible, and also function as a bearing that can support the load. The reality is that there is currently no material combination suitable for such a seal portion that has corrosion resistance, wear resistance, and seizure resistance. Furthermore, since the sliding surfaces of vertical shaft pumps, oblique shaft pumps, etc. are generally dry at the time of startup, they must be started by injecting liquid. For some other pumps, the sliding surfaces and bearings for pump water sealing may become nearly dry in a short period of time, so it is desirable that they can be used in a dry state.

本発明は乾燥した条件下及び清水、海水等に浸
漬された条件下にある摺動部材、例えばポンプ内
ライナリング、軸封部材特に竪軸ポンプ、斜軸ポ
ンプ或は一時的に乾燥した条件で使用されるポン
プの軸受に適する摺動部材を提供することを目的
とする。
The present invention applies to sliding members under dry conditions and under conditions immersed in fresh water, seawater, etc., such as liner rings in pumps, shaft seal members, especially vertical shaft pumps, oblique shaft pumps, or under temporarily dry conditions. It is an object of the present invention to provide a sliding member suitable for the bearing of a pump used.

本発明は二つの摺動部材の一方にカーボン又は
カーボンフアイバを混入したCu又はNiをベース
とした耐食耐摩耗材を、他方にSi3N4のセラミツ
ク材を用いたものである。
The present invention uses a corrosion-resistant and wear-resistant material based on Cu or Ni mixed with carbon or carbon fiber for one of the two sliding members, and a Si 3 N 4 ceramic material for the other.

海水中に用いられる摺動部材に適する材料とし
ては摩擦係数の小さいこと、耐摩耗性が良好なこ
と、スラリーが混入しても焼付がないこと、また
電位差腐食、隙間腐食に耐えることなどがある。
発明者らは第1図に示す試験装置を用い、従来の
組合わせ摺動部材と比較した。
Materials suitable for sliding parts used in seawater include a low coefficient of friction, good wear resistance, no seizure even when mixed with slurry, and resistance to potential difference corrosion and crevice corrosion. .
The inventors used a test device shown in FIG. 1 to compare the results with a conventional combined sliding member.

第1図は摺動試験装置の縦断面図である。図に
おいて油圧モータ1によりトルクメータ2を介し
て軸3が回され、軸3端にはスリーブ状の試験片
5が嵌入固定され、試験片5に摺動するように嵌
入するリング状試験片6が軸受ハウス7に嵌入し
ており、図示矢印10方向より加わるラジアル荷
重はロードセル8を介してロツド9端を通じて軸
受ハウス7の保持部材11に伝えられる。軸受ハ
ウス7には図示矢印12より液体の送入されるホ
ース13が配されている。14は軸3の回転数を
知る回転計である。
FIG. 1 is a longitudinal sectional view of the sliding test device. In the figure, a shaft 3 is rotated by a hydraulic motor 1 via a torque meter 2, a sleeve-shaped test piece 5 is fitted and fixed to the end of the shaft 3, and a ring-shaped test piece 6 is slidably fitted into the test piece 5. is fitted into the bearing house 7, and the radial load applied in the direction of the arrow 10 in the figure is transmitted to the holding member 11 of the bearing house 7 through the end of the rod 9 via the load cell 8. A hose 13 through which liquid is fed is arranged in the bearing house 7 as indicated by an arrow 12 in the figure. Reference numeral 14 is a tachometer that measures the number of revolutions of the shaft 3.

リング状試験片(直径60ミリメートル、幅10ミ
リメートル)6を支持する側の軸受ハウジング
7、ロードセル8、ロツド9、軸受ハウス保持部
材11、ホース13等は試験槽15に支持され、
試験槽15は上下送り装置16の上下動可能なロ
ツド17により支持されている。従つてリング試
験片6は上下動し、スリーブ状試験片5が回転
し、それらの軸受隙間に液体を送り込める如くな
つている。
The bearing housing 7, load cell 8, rod 9, bearing house holding member 11, hose 13, etc. on the side supporting the ring-shaped test piece (diameter 60 mm, width 10 mm) 6 are supported by the test tank 15,
The test tank 15 is supported by a vertically movable rod 17 of a vertical feed device 16. Therefore, the ring test piece 6 moves up and down, and the sleeve-shaped test piece 5 rotates so that liquid can be sent into the bearing gap between them.

本発明は互に摺動する摺動部材の一方はセラミ
ツクSi3N4のセラミツクを用い、このセラミツク
の摺動部材に摺擦する摺動部材は (a) 銅、ニツケル等をベース金属として分散させ
るカーボンCの混入率5〜20体積%の複合材料
(以下金属基カーボン含有複合材料Aと称する) (b) もしくは銅、ニツケル等をベース金属として
分散させるカーボンフアイバ40〜60体積%の複
合材料(以下金属基カーボン含有複合材料Bと
称する)である。
In the present invention, one of the sliding members that slide on each other is made of ceramic Si 3 N 4 , and the sliding member that slides on this ceramic sliding member is made of (a) copper, nickel, etc. dispersed as a base metal; (b) Composite material with a carbon C content of 5 to 20% by volume (hereinafter referred to as metal-based carbon-containing composite material A) (b) Or a composite material with a carbon fiber content of 40 to 60% by volume in which copper, nickel, etc. are dispersed as a base metal (hereinafter referred to as metal-based carbon-containing composite material B).

尚、本発明でいう体積%とは金属基カーボン含
有複合材料A、Bの断面にしめるカーボンの面積
の割合をもつて夫々5〜20%、40〜60%と表わし
たものである。
Incidentally, the term "volume %" as used in the present invention refers to the ratio of the area of carbon in the cross section of metal-based carbon-containing composite materials A and B, which is 5 to 20% and 40 to 60%, respectively.

セラミツクSi3N4は常圧焼結品ホツトプレス品
どちらでも可である。前者は常圧成形したセラミ
ツクSi3N4(一部助剤としてMgO、Y2O3その他を
混入添加)を1750℃、N2雰囲気中で焼結したも
ので気孔率は2%以下としたものである。後者の
ホツトプレス品はセラミツクSi3N4に常圧焼結品
と同様の助剤を添加し1750℃の温度で300Kgf/
cm2の圧力の下で焼結したもので、気孔率も2%以
下のものである。
Ceramic Si 3 N 4 can be either pressureless sintered or hot pressed. The former is made of pressure-molded ceramic Si 3 N 4 (with some additives such as MgO, Y 2 O 3 and others added as auxiliaries) and sintered at 1750℃ in an N 2 atmosphere, with a porosity of 2% or less. It is something. The latter hot-pressed product is made of ceramic Si 3 N 4 with the same additives as the pressureless sintered product, and is produced at a temperature of 1750°C at 300 kgf/
It is sintered under a pressure of cm 2 and has a porosity of 2% or less.

金属基カーボン含有複合材料Aは約10μmの黒
鉛粒5〜20体積%含まれるようにCu、Ni、及び
Mo等の合金粉末を圧縮成形し、約1200℃の温度
で一定加圧のもとで焼結することによつて、固体
潤滑剤の黒鉛を均一に分散させた焼結複合材料で
あり、金属基カーボン含有複合材料Bはカーボン
フアイバー混入複合材料、例えばポリアクリロン
ニトリルを炭素化して直径約6μm位の連続状の
炭素繊維となし、これにチタン又は銅の電気メツ
キを施した後、長さ5mm以下にカツトしてチヨツ
プドフアイバーとなし、次いで前記チヨツプドフ
アイバーが40〜60体積%含まれるように、銅又は
Ni粉末とホツトプレスを行ない焼結化すること
により製造されるものである。
The metal-based carbon-containing composite material A contains Cu, Ni, and 5 to 20% by volume of graphite particles of approximately 10 μm.
It is a sintered composite material in which graphite, a solid lubricant, is uniformly dispersed by compression molding alloy powder such as Mo and sintering it under constant pressure at a temperature of approximately 1200°C. Base carbon-containing composite material B is a carbon fiber-containing composite material, such as polyacrylon nitrile, which is carbonized to form continuous carbon fibers with a diameter of approximately 6 μm, which are electroplated with titanium or copper, and then The chopped fiber is cut into pieces of 5 mm or less, and then copper or copper is added so that the chopped fiber contains 40 to 60% by volume.
It is manufactured by hot-pressing Ni powder and sintering it.

上述に用いられる材料のシリコンの窒化物
Si3N4は常圧焼結品、ホツトプレス品どちらも後
述されるように同様の好結果を示す。
Silicon nitride of the materials used above
As for Si 3 N 4 , both the pressureless sintered product and the hot pressed product show similar good results as will be described later.

第2図は組合せ摺動部材の面圧Kgf/cm2を横軸
にとり、縦軸に摩擦係数をとつた線図であつて軸
受はセラミツクSi3N4を材料とする軸受に軸材料
として各種材料を組合せ実験したもので何れも清
水中におけるすべり摩擦であつて摺動速度は2.5
m/sである。
Figure 2 is a diagram with the surface pressure Kgf/ cm 2 of the combined sliding member taken on the horizontal axis and the friction coefficient taken on the vertical axis . Experiments were conducted on combinations of materials, all of which were based on sliding friction in fresh water, and the sliding speed was 2.5.
m/s.

図において分るようにセラミツク
Si3N4vsSi3N4の組合せは極めて高い摩擦係数を
示し、軸受面圧の増加につれて増加し飽和する。
セラミツクSi3N4vsステンレス鋼SUS316の組合
せでは図のように摩擦係数は大きく、大略セラミ
ツクSi3N4vsSi3N4に倣うが面圧が10〜12Kgf/
cm2の間で急に摩擦係数が増大する。又レイブス相
金属のトリバロイ(商品名)T700では更に低い
摩耗係数を示す。以上のように硬質材料とセラミ
ツクSi3N4との組合せ摺動は摩擦係数が大きい。
工具鋼SK2とセラミツクSi3N4の組合せ摺動部材
では硬質材料の組合せ乍ら比較的低い0.11〜0.15
の摩擦係数を示し、面圧が2〜12Kgf/cm2の間次
第に摩擦係数が増加する。以上の硬質材料の組合
せ(金属vsセラミツクが3組、セラミツクvsセラ
ミツク1組)はトリバロイT700における面圧2
〜6Kgf/cm2での摩擦係数の面圧の増大に反比例
する増加があるけれども、全体としては面圧の増
加につれて摩擦係数は増加する。
Ceramic as seen in the figure
The combination of Si 3 N 4 vs Si 3 N 4 shows an extremely high coefficient of friction, which increases and saturates as the bearing surface pressure increases.
As shown in the figure, the combination of ceramic Si 3 N 4 vs. stainless steel SUS316 has a large friction coefficient, which roughly follows the ceramic Si 3 N 4 vs Si 3 N 4 combination, but the surface pressure is 10 to 12 Kgf/
The coefficient of friction increases suddenly between cm 2 . In addition, the Raves phase metal Tribaloy (trade name) T700 exhibits an even lower wear coefficient. As described above, the sliding combination of hard material and ceramic Si 3 N 4 has a large coefficient of friction.
The combination sliding member of tool steel SK 2 and ceramic Si 3 N 4 has a relatively low value of 0.11 to 0.15 compared to the combination of hard materials.
The friction coefficient gradually increases as the surface pressure increases from 2 to 12 Kgf/cm 2 . The above combinations of hard materials (3 sets of metal vs. ceramic, 1 set of ceramic vs. ceramic) have a surface pressure of 2 on Tribaloy T700.
Although there is an increase in the friction coefficient at ~6 Kgf/cm 2 that is inversely proportional to the increase in surface pressure, overall the friction coefficient increases as the surface pressure increases.

砲金BC6とセラミツクSi3N4の組合せは硬質金
属とセラミツクSi3N4との組合せよりも低い摩擦
係数を示し、面圧が2〜12Kgf/cm2において摩擦
係数は漸減する。摺動部材として砲金BC6は広い
範囲において相手金属特に硬質金属との間におい
て摩擦係数が低く、面圧が比較的高くとれ、潤滑
材があれば焼付が生じ難い等の特質があり賞用さ
れる処であるが、図のように非金属との摺動にお
いても実用上必要とされる面圧下において優れた
摩擦性能を有する。
The combination of gun metal BC6 and ceramic Si 3 N 4 exhibits a lower coefficient of friction than the combination of hard metal and ceramic Si 3 N 4 , and the friction coefficient gradually decreases at a surface pressure of 2 to 12 Kgf/cm 2 . Gunmetal BC6 is widely used as a sliding member due to its characteristics such as low coefficient of friction with other metals, especially hard metals, relatively high surface pressure, and resistance to seizure if lubricant is used. However, as shown in the figure, it has excellent friction performance even when sliding against non-metals under the surface pressure required for practical purposes.

発明者らが提案するCu、Ni等の金属基カーボ
ン含有もしくはカーボンフアイバーを含有する複
合材料では砲金BC6より更に近いほぼ半減した
0.02〜0.05の摩擦係数を示す。図に示すように金
属基カーボン含有複合材料A、Bは面圧の変化に
かゝわらずほぼ一定の摩擦係数を示し、金属基カ
ーボン含有複合材料Aは面圧の増加につれて摩擦
係数はわずかに漸減し、金属基カーボン含有複合
材料Bは面圧の増加につれて摩擦係数はわずかに
低下し、大略11Kgf/cm2にて金属基カーボン含有
複合材料A、Bの摩擦係数の変化曲線は交叉す
る。
The composite material proposed by the inventors containing metal-based carbon such as Cu or Ni or containing carbon fibers was reduced by almost half, which is even closer than that of gunmetal BC6.
Indicates a coefficient of friction between 0.02 and 0.05. As shown in the figure, metal-based carbon-containing composite materials A and B exhibit a nearly constant coefficient of friction regardless of changes in surface pressure, and metal-based carbon-containing composite material A exhibits a slight coefficient of friction as the surface pressure increases. The friction coefficient of the metal-based carbon-containing composite material B slightly decreases as the surface pressure increases, and the friction coefficient change curves of the metal-based carbon-containing composite materials A and B intersect at approximately 11 Kgf/cm 2 .

以上のとおり、本発明のセラミツクSi3N4と金
属基カーボン複合材料A又はBの組合せ摺動部材
は清水中において低摩擦係数である。
As described above, the sliding member of the present invention, which is a combination of ceramic Si 3 N 4 and metal-based carbon composite material A or B, has a low coefficient of friction in fresh water.

次に乾燥雰囲気即ちドライで運転した場合に従
来水中軸受で用いられるゴム軸受とステンレス鋼
SUS316の組合せと本願発明のセラミツク
Si3N4vs金属基カーボン含有複合材料Aについて
の実験についてのべる。
Next, when operating in a dry atmosphere, the rubber bearings conventionally used in underwater bearings and stainless steel
Combination of SUS316 and ceramic of the present invention
An experiment on Si 3 N 4 versus metal-based carbon-containing composite material A will be described.

第3図は横軸に運転時間(分)、縦軸に摩擦係
数をとり摺動速度2.5m/s、面圧はゴム軸受vs
ステンレス鋼SUS316については0.74(四角形記号
で示す符号21)、2.6(逆三角形の記号を表わす
符号22)、3.7(丸の記号を表わす符号23)Kg
f/cm2をとつている。そしてセラミツクSi3N4vs
金属基カーボン含有複合材料Aは面圧11.7Kgf/
cm2(正立三角形の記号で示す符合24)をとつて
いる。ステンレス鋼SUS316vsゴム軸受の場合は
面圧を0.74Kgf/cm2と極めて低くしても符号21
に示すように約15分の運転時間で0.13であつた摩
擦係数は急上昇し焼付を表す。同部材で面圧を
2.6Kgf/cm2とすると符号22で示すように約30
秒の運転時間で摩擦係数は急上昇を示し焼付を表
わす。更に面圧が3.7Kgf/cm2となると符号23
に示すように約10秒の運転時間で摩擦係数は急上
昇し焼付状態を表わす。
In Figure 3, the horizontal axis shows the operating time (minutes), the vertical axis shows the friction coefficient, the sliding speed is 2.5 m/s, and the surface pressure is rubber bearing vs.
For stainless steel SUS316, 0.74 (code 21 representing a square symbol), 2.6 (code 22 representing an inverted triangle symbol), 3.7 (code 23 representing a circle symbol) Kg
f/cm 2 is taken. And Ceramic Si 3 N 4 vs
Metal-based carbon-containing composite material A has a surface pressure of 11.7Kgf/
cm 2 (sign 24 indicated by the symbol of an upright triangle). In the case of stainless steel SUS316 vs rubber bearings, the code is 21 even if the surface pressure is extremely low as 0.74Kgf/ cm2 .
As shown in the figure, the friction coefficient, which was 0.13, suddenly increased after about 15 minutes of operation, indicating seizure. Apply surface pressure with the same member
If it is 2.6Kgf/cm 2 , it will be about 30 as shown by the symbol 22.
The friction coefficient suddenly increases after an operating time of seconds, indicating seizure. Furthermore, when the surface pressure becomes 3.7Kgf/ cm2 , the code becomes 23.
As shown in the figure, the friction coefficient increases rapidly after approximately 10 seconds of operation, indicating a seizure state.

以上に対して本発明のセラミツクSi3N4vs金属
基カーボン含有複合材料Aはドライ運転において
も摩擦係数は清水中の実験時とほぼ一致するし、
0.03と低い値を示す。そして30分運転するも焼付
を生じない。
In contrast, the friction coefficient of the ceramic Si 3 N 4 vs metal-based carbon-containing composite material A of the present invention is almost the same even in dry operation as in the experiment in fresh water.
It shows a low value of 0.03. Even after 30 minutes of operation, no seizure occurred.

尚砲金とセラミツクの組合せのドライ運転は焼
付を起すことは明かなので試験をしていない。
又、第1図に示す本発明品以外の上述の組合せ摺
動部材についても同じく明かなので試験を行つて
いない。
It is clear that dry operation of the combination of gun metal and ceramic will cause seizure, so no tests have been conducted.
Further, since the above-mentioned combined sliding members other than the product of the present invention shown in FIG. 1 are also clear, no tests were conducted.

以上のべた組合せ摺動部材は何れも耐食性はす
ぐれており、特に海水中においてはセラミツク
Si3N4にすぐれる。一方金属基複合材料A、B共
にCu、Ni等をベースとしてカーボン粒もしくは
カーボンせんいを介在させて金属基を適当に選べ
ば耐食性にすぐれる。
All of the above-mentioned solid combination sliding members have excellent corrosion resistance, and ceramics are particularly effective in seawater.
Excellent in Si 3 N 4 . On the other hand, both metal matrix composite materials A and B have superior corrosion resistance if the metal matrix is appropriately selected by using Cu, Ni, etc. as a base and interposing carbon grains or carbon fibers.

本発明の組合せ摺動部材はポンプにおける例で
いえば (1) 例えば取扱液以外に潤滑液を用いることがで
きないポンプにおいてケーシングとインペラリ
ングへ適用することにより所要面圧が得られ摩
擦係数の少ない封水手段或は軸受を得ることが
できる。
For example, in a pump, the combined sliding member of the present invention can be applied to the casing and impeller ring (1) in a pump that cannot use lubricating fluid other than the handling fluid, the required surface pressure can be obtained and the coefficient of friction is small. Water sealing means or bearings can be obtained.

(2) ケーシング、インペラとの接触腐食が生ずる
ことがなく、ポンプ運転停止時の摺動部間にお
ける隙間腐食を防止することができる。
(2) Contact corrosion between the casing and the impeller does not occur, and crevice corrosion between sliding parts when pump operation is stopped can be prevented.

(3) 摩擦係数が小さいから動力の軽減省エネとな
る。
(3) Low friction coefficient reduces power and saves energy.

(4) ドライの状態でも焼付が生じないから、ポン
プが落水している状態で運転してもポンプにお
ける摺動部分を損傷することがない。
(4) Since seizure does not occur even in dry conditions, the sliding parts of the pump will not be damaged even if the pump is operated under water.

従つて竪軸ポンプ、斜軸ポンプの軸受に適
し、又一般にポンプに用いるときは落水時にポ
ンプ摺動面に生ずる損傷が生じない。
Therefore, it is suitable for bearings of vertical shaft pumps and oblique shaft pumps, and when used in pumps in general, the sliding surface of the pump will not be damaged when it falls into water.

(5) 広く、水潤滑、乾式の摺動部材として用いる
ことができ応用範囲を広くすることができる。
(5) It can be widely used as a water-lubricated or dry sliding member, allowing for a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は回転摩擦試験機の縦断面図、第2図、
第3図は夫々が本発明に係わる組合せ摺動部材の
摩擦特性を示す線図である。 5……スリーブ状試験片、6……リング状試験
片。
Figure 1 is a vertical cross-sectional view of the rotating friction tester, Figure 2 is
FIG. 3 is a diagram showing the friction characteristics of the combined sliding members, each according to the present invention. 5... Sleeve-shaped test piece, 6... Ring-shaped test piece.

Claims (1)

【特許請求の範囲】[Claims] 1 二つ部材が接触をして摺動するものにおい
て、該二つの部材の内一つの部材はセラミツク
Si3N4であり、該二つの部材の内の他の部材はCu
もしくはNi等の金属をベースとしカーボン粒5
〜20体積%を混入又はCuもしくはNi等の金属を
ベースとしカーボンフアイバー40〜60体積%を混
入した組合せ摺動部材。
1 In a device in which two members slide in contact, one of the two members is made of ceramic.
Si 3 N 4 and the other of the two members is Cu
Or carbon particles based on metal such as Ni5
A combination sliding member containing ~20% by volume or 40~60% by volume of carbon fiber based on a metal such as Cu or Ni.
JP11567482A 1982-07-03 1982-07-03 Combination sliding member Granted JPS5934020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11567482A JPS5934020A (en) 1982-07-03 1982-07-03 Combination sliding member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11567482A JPS5934020A (en) 1982-07-03 1982-07-03 Combination sliding member

Publications (2)

Publication Number Publication Date
JPS5934020A JPS5934020A (en) 1984-02-24
JPS6331003B2 true JPS6331003B2 (en) 1988-06-22

Family

ID=14668479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11567482A Granted JPS5934020A (en) 1982-07-03 1982-07-03 Combination sliding member

Country Status (1)

Country Link
JP (1) JPS5934020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068301U (en) * 1992-06-30 1994-02-01 駿河精機株式会社 Paper cup loading mechanism
CN109001065A (en) * 2018-05-18 2018-12-14 杭州电子科技大学 The secondary vibration noise of texture friction and testing device for frictional and abrasive performance and test method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3528934A1 (en) * 1985-08-13 1987-02-26 Feldmuehle Ag SLIDING ELEMENT MADE OF CERAMIC MATERIAL
JP2562593B2 (en) * 1987-03-02 1996-12-11 ヤマハ発動機株式会社 Exhaust control valve bearing device
FR2896012B1 (en) * 2006-01-06 2008-04-04 Snecma Sa ANTI-WEAR DEVICE FOR A TURNBUCKLE COMPRESSOR VARIABLE TUNING ANGLE GUIDING PIVOT PIVOT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857034A (en) * 1971-10-02 1973-08-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857034A (en) * 1971-10-02 1973-08-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068301U (en) * 1992-06-30 1994-02-01 駿河精機株式会社 Paper cup loading mechanism
CN109001065A (en) * 2018-05-18 2018-12-14 杭州电子科技大学 The secondary vibration noise of texture friction and testing device for frictional and abrasive performance and test method
CN109001065B (en) * 2018-05-18 2020-10-09 杭州电子科技大学 Testing device and testing method for vibration noise and frictional wear performance of texture friction pair

Also Published As

Publication number Publication date
JPS5934020A (en) 1984-02-24

Similar Documents

Publication Publication Date Title
US4925490A (en) Mechanical seal using pore-dispersed material, and pore-dispersed cemented carbide and method for manufacturing same
US4798771A (en) Bearings and other support members made of intercalated graphite
US5538649A (en) Carbon composite mateiral for tribological applications
US6398991B1 (en) Processes for making a silicon carbide composition
CN104878272A (en) Nickel aluminum/copper oxide high-temperature self-lubricating composite material and preparation method thereof
CN106011539B (en) Wide temperature range self-lubricating composite of a kind of nickel aluminium/vanadium oxide/silver and preparation method thereof
JPS6331003B2 (en)
JP4635042B2 (en) Free ring mechanical seal
CN109578433B (en) High-reliability closed type spool type dynamic pressure bearing
US3841724A (en) Wear resistant frictionally contacting surfaces
JPS6261811B2 (en)
US3768378A (en) Machines
Kostornov et al. Effects of copper powder bearing material composition on working characteristics
JP4083394B2 (en) End-contact mechanical seal for submersible pumps handling slurry fluids
US3535007A (en) Bearing
IL32490A (en) Lubricant producing system
JP4865146B2 (en) Silicon carbide sintered part, mechanical seal using the same, and manufacturing method thereof
JPS6333563B2 (en)
JP2744856B2 (en) Titanium boride composite silicon carbide sintered body for mechanical seal and mechanical seal
JP4417584B2 (en) Mechanical seal and method for producing silicon carbide sintered seal ring for mechanical seal
Boylan Carbon compounds for performance in severe applications
SU439538A1 (en) Self lubricating antifriction iron based material
US2928167A (en) Seal material
JPH0743434B2 (en) Seal ring material for nuclear reactor
Feinle et al. Product development with SiC and B4C ceramics